
©Copyright 2008
Kenneth Eguro

Supporting High-Performance Pipelined Computation in

Commodity-Style FPGAs

Kenneth Eguro

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

University of Washington

2008

Program Authorized to Offer Degree:
Electrical Engineering

University of Washington
Graduate School

This is to certify that I have examined this copy of a doctoral dissertation by

Kenneth Eguro

and have found that it is complete and satisfactory in all respects,
and that any and all revisions required by the final

examining committee have been made.

Chair of the Supervisory Committee:

__

Scott Hauck

Reading Committee:

__

Scott Hauck

__

W. H. Carl Ebeling

__

Mani Soma

Date: ____________________________

In presenting this dissertation in partial fulfillment of the requirements for the doctoral degree at the
University of Washington, I agree that the Library shall make its copies freely available for inspection. I
further agree that extensive copying of the dissertation is allowable only for scholarly purposes, consistent
with “fair use” as prescribed in the U.S. Copyright Law. Requests for copying or reproduction of this
dissertation may be referred to ProQuest Information and Learning, 300 North Zeeb Road, Ann Arbor, MI
48106-1346, 1-800-521-0600, to whom the author has granted “the right to reproduce and sell (a) copies of
the manuscript in microform and/or (b) printed copies of the manuscript made from microform.”

Signature_______________________________

Date___________________________________

University of Washington

Abstract

Supporting High-Performance Pipelined Computation in Commodity-Style FPGAs

Kenneth Eguro

Chair of the Supervisory Committee:
Professor Scott Hauck
Electrical Engineering

Although the popularity of Field Programmable Gate Arrays, or FPGAs, is a testament to their unique

mixture of flexibility and ease of use, this adaptability can come at price. The programmable nature of

FPGAs introduces significant inefficiencies that can limit the maximum clock frequency of mapped

circuits. While there are multiple techniques developers apply to mitigate this performance penalty, these

enhancements can generate an enormous number of additional registers. These heavily registered circuits

have fundamentally different characteristics and create significant problems for many different aspects of

FPGA application development. This dissertation investigates the concerns that arise for both FPGA

physical design tools and the architectures themselves.

FPGA Development Tools: High quality compilation tools are necessary to create fast and efficient FPGA-

based applications. However, heavily registered circuits can confuse existing packing, placement, retiming,

and routing tools. This dissertation examines the roots of these problems and suggests new timing-driven

and register-aware physical design techniques. These new approaches are shown to significantly improve

achievable results, potentially doubling the speed of mapped circuits.

FPGA Architectures: Heavily registered applications can also overwhelm the register resources provided

by classical FPGA architectures. While there have been previous research efforts to build FPGAs with

better register support, most have suggested very specialized systems that depart significantly from

conventional architectures and toolflows. This dissertation explores a different approach and investigates

the practical advantages of making minimally invasive architectural changes to both FPGA logic blocks

and interconnect resources. These architectural choices can affect the required area of implemented

designs by a factor two.

This dissertation shows that netlists with a large number of registers can significantly change the problems

presented to CAD tools and the demands placed on FPGA architectures. Failing to acknowledge these

changes can be costly. That said, some problems are likely more pressing than others. Furthermore,

although this dissertation identifies many of the aspects of an FPGA architecture that can dramatically

affect the required area of deeply pipelined or C-slowed applications, this work merely scratches the

surface and much more research is necessary to determine what future FPGAs should look like.

 i

TABLE OF CONTENTS
Page

List of Figures ..iii

List of Tables ...vi

Chapter 1: Introduction ...1

Chapter 2: Field Programmable Gate Arrays ..3

2.1: Conventional FPGA Architectures...3

2.2: FPGAs, Microprocessors and Application-Specific Integrated Circuits ..5

Chapter 3: Pipelining, Retiming and C-Slowing ...8

Chapter 4: FPGA Development Tools...12

4.1: FPGA CAD Toolflow ..12

4.2: Packing...12

4.3: Placement ...14

4.4: Routing...18

4.5: Issues for Heavily-Registered Applications ...20

Chapter 5: Enhancing Timing-Driven Placement..22

5.1: Background on VPR Timing-Driven Placement ..22

5.2: Implications of Static Timing Analysis ..24

5.3: Characteristics of Registered Applications...31

5.4: Registered Netlists & Placement Stability..32

5.5: Efficient and Stable Placement...41

5.6: Delay Imbalance and Optimality..45

5.7: Testing and Results ..49

5.8: Conclusions and Future Research ..54

Chapter 6: Register-Aware Placement ..57

6.1: Feed-Forward Design Flow – Implications for Packing, Retiming and Placement............................57

6.2: Previous Retiming-Aware Approaches ..59

6.2.1: Previous Architectural Retiming Solutions ...60

6.2.2: Previous CAD Retiming Solutions..62

6.3: Integrated Placement and Physical Synthesis...65

6.3.1: Packing and FF-Level Placement ..66

6.3.2: Retiming ..69

6.4: Testing and Results ..72

6.5: Conclusions and Future Research ..82

Chapter 7: Register-Aware Routing ..86

7.1: Registers with Limited Connectivity..86

 ii

7.2: Pipelined Routing Problem.. 88

7.2.1: PipeRoute.. 89

7.2.2: QuickRoute... 92

7.3: Timing-Driven Pipelined Routing ... 93

7.3.1: Determining Link Criticality .. 94

7.3.2: Assumed Criticality Searching ... 96

7.3.3: New Cost Formulation.. 99

7.4: Armada .. 101

7.5: Testing and Results.. 104

7.6: Conclusions and Future Research.. 109

Chapter 8: Register-Enhanced Architectures.. 114

8.1: Scaling of CLB Requirements and Performance ... 114

8.2: Previous Register-Rich FPGAs ... 118

8.3: New Potentials for Increasing Register Capabilities.. 119

8.3.1: Potential of Registered Switchboxes .. 119

8.3.2: Enhancing Logic Blocks with Additional Registers ... 126

8.3.2.1: Using LUTs as Shift Registers.. 127

8.3.2.2: Adding Independent Flip-Flops .. 131

8.4: Evaluation and Results .. 134

8.5: Conclusions and Future Research.. 147

Chapter 9: Conclusions and Future Research ... 153

Bibliography..161

 iii

LIST OF FIGURES
Figure Number Page

Figure 2.1: Conventional Island-Style FPGA..3

Figure 3.1: Clock Frequency and Latency Effects of Pipelining...8

Figure 3.2: Two Examples of Unbalanced Delay Between Pipelining Registers..9

Figure 3.3: Limitations of Retiming and Demonstration of C-Slowing ..10

Figure 4.1: Packing Restrictions [2] ..13

Figure 4.2: Simulated Annealing Windowing...17

Figure 4.3: Pseudo-Code for VPR Timing-Driven Placement ..18

Figure 4.4: Pseudo-Code for PathFinder Routing ...20

Figure 5.1: Static Timing Analysis..24

Figure 5.2: Effect of Stale Criticality Information..26

Figure 5.3: VPR Placement with Stale Criticality Information ...26

Figure 5.4: VPR Placement λ and Criticality Exponent Tuning for Conventional MCNC Netlists..............29

Figure 5.5: Discrepancy in VPR Placement for Conventional Combinational and Sequential MCNC

Netlists, (λ = 0.3, Criticality Exponent = 12) ..31

Figure 5.6: Timing Implications of Combinational Logic vs. Registers ...32

Figure 5.7: Registered Netlists & Placement Oscillation ..33

Figure 5.8: VPR Placement Convergence Problem with Depth = 1 MCNC Netlist35

Figure 5.9: VPR Placement λ and Criticality Exponent Tuning for Depth = 1 MCNC Netlists, Phase 137

Figure 5.10: VPR Placement λ and Criticality Exponent Tuning for Depth = 1 MCNC Netlists, Phase 2 ..38

Figure 5.11: Similarity in VPR Placement for Depth = 1 Combinational and Sequential MCNC Netlists, (λ

= 0.3, Criticality Exponent = 8) ..41

Figure 5.12: Incremental Slack, Criticality Updating and Accuracy...42

Figure 5.13: Problems with Perfect Timing Information ..43

Figure 5.14: Calculating Relative Change in Criticality ...44

Figure 5.15: Example of Contraction and Imbalance..45

Figure 5.16: Total Delay Contraction as a Function of Criticality Exponent and Balance48

Figure 5.17: Solving for Maximum Delayz Values ...48

Figure 5.18: Incremental Criticality Update Placement λ and Criticality Exponent Tuning for Conventional

MCNC Netlists..50

Figure 5.19: Incremental Criticality Update Placement λ and Criticality Exponent Tuning for Depth = 1

MCNC Netlists..51

Figure 5.20: Comparison Between VPR and Incremental Criticality Update Placement..............................52

Figure 6.1: Packing Implications for Heavily Registered Netlists ..58

Figure 6.2: Track-Graph, Universal and Registered Track-Graph Switchboxes...60

 iv

Figure 6.3: Non-Independently and Independently Accessible Flip-Flop Architectures.............................. 64

Figure 6.4: Probability of LUT and Flip-Flop Separation Versus Reunion.. 67

Figure 6.5: Pseudo-Code for Incorporating FF-Level Placement Moves ... 68

Figure 6.6: Incorporating New Registers Created By Retiming ... 70

Figure 6.7: Updating Timing Information for New Retiming Registers... 71

Figure 6.8: Pseudo-Code for Simulated Annealing-Based Retiming ... 72

Figure 6.9: Logic Blocks Reachable with 1 Wire Segment .. 80

Figure 6.10: Logic Duplication... 85

Figure 7.1: Impact of Connectivity on Area and Number of Switchbox Registers 87

Figure 7.2: Failure of Dijkstra’s Algorithm for the N-Delay Routing Problem ... 88

Figure 7.3: Combined-Phase Breadth-First Search .. 89

Figure 7.4: Failure of Combined-Phase BFS and Need for 2 Combined-Phase BFS................................... 90

Figure 7.5: Greedy Accumulation of Multiple-Latency Routes ... 90

Figure 7.6: PipeRoute and Self Intersection ... 90

Figure 7.7: QuickRoute and Self-Intersection .. 92

Figure 7.8: QuickRoute and Self Blocking... 92

Figure 7.9: Pseudo-Code for QuickRoute... 93

Figure 7.10: Timing Implications for Conventional Routing Versus Pipelined Routing 95

Figure 7.11: Multi-Terminal Criticality Problem ... 96

Figure 7.12: Assumed Criticality Searching... 98

Figure 7.13: Congestion vs. Timing Concerns For Pipelined Routing ... 100

Figure 7.14: QuickRoute with Assumed Criticality Searching... 101

Figure 7.15: Re-initializing PQ for Multi-Terminal Nets ... 102

Figure 7.16: Pseudo-Code for Armada Timing-Driven Pipelined Routing .. 103

Figure 7.17: Illustration of a RaPiD Cell .. 105

Figure 8.1: Combinational MCNC Netlists Critical Path Delay... 115

Figure 8.2: Sequential MCNC Netlists Critical Path Delay.. 115

Figure 8.3: Combinational MCNC Netlists CLB Requirements .. 116

Figure 8.4: Sequential MCNC Netlists CLB Requirements ... 116

Figure 8.5: Effect of Pipelining and Netlist Topology on CLB Requirement .. 117

Figure 8.6: Significant Delay Numbers for an Island-Style FPGA Information taken from 65nm four 4-

LUT, length-4 wire FPGA architecture.. 120

Figure 8.7: Significant Delay Numbers for an Island-Style FPGA with Registered Switchboxes 122

Figure 8.8: Delay Contribution of Best-Case Scenarios (1 Wire Segment) for Registered Switchboxes... 125

Figure 8.9: Conventional BLE (left) and LUT/16-bit Shift-Register BLE (right) 128

Figure 8.10: LUT/Two 8-bit Shift-Register BLE ... 129

 v

Figure 8.11: LUT/Four 4-bit Shift-Register BLE..130

Figure 8.12: Registered Netlists and Effect of Architecture Register Density on Critical Path Delay........133

Figure 8.13: BLE with Two Independent Flip-Flops ..133

Figure 8.14: Testing Phase I – Effect of Additional Independent Flip-Flops and Shift Registers on Depth =

1 Netlists ...137

Figure 8.15: Testing Phase I – Effect of Additional Independent Flip-Flops and Shift Registers on Depth =

0.33 Netlists ..137

Figure 8.16: Architecture Exploration on Depth = 1 Netlists, 1 LUT/CLB has Shift Register(s)...............141

Figure 8.17: Architecture Exploration on Depth = 0.33 Netlists, 1 LUT/CLB has Shift Register(s)141

Figure 8.18: Architecture Exploration on Depth = 1 Netlists, 2 LUTs/CLB have Shift Register(s)144

Figure 8.19: Architecture Exploration on Depth = 0.33 Netlists, 2 LUTs/CLB have Shift Register(s)144

Figure 8.20: Architecture Exploration on Depth = 1 Netlists, 4 LUTs/CLB have Shift Register(s)146

Figure 8.21: Architecture Exploration on Depth = 0.33 Netlists, 4 LUTs/CLB have Shift Register(s)146

 vi

LIST OF TABLES
Table Number Page

Table 4.1: Temperature Update Schedule... 16

Table 5.1. Benefits of VPR Placement with Frequent Static Timing Analysis for Conventional MCNC

Netlists (Default λ, Default Criticality Exponent) .. 27

Table 5.2: VPR Placement λ and Criticality Exponent Tuning for Conventional MCNC Netlists 30

Table 5.3. Instability of VPR Placement with Frequent Static Timing Analysis for Depth = 1 MCNC

Netlists (Default λ, Default Criticality Exponent) .. 35

Table 5.4: VPR Placement λ and Criticality Exponent Tuning for Depth = 1 MCNC Netlists, Phase 1...... 39

Table 5.5: VPR Placement λ and Criticality Exponent Tuning for Depth = 1 MCNC Netlists, Phase 2...... 40

Table 5.6: Incremental Criticality Update Placement λ and Criticality Exponent Tuning for Conventional

MCNC Netlists... 50

Table 5.7: Incremental Criticality Update Placement λ and Criticality Exponent Tuning for Depth = 1

MCNC Netlists... 51

Table 5.8: Conventional MCNC Netlist Placement Comparison ... 53

Table 5.9: Depth = 1 MCNC Netlist Placement Comparison... 53

Table 6.1: FF-Level Placement Activation Point Exploration (Clustered Architecture) 75

Table 6.2: FF-Level Placement Criticality Threshold Exploration (Clustered Architecture) 75

Table 6.3: FF-Level Placement Separation Probability Exploration (Clustered Architecture)..................... 75

Table 6.4: FF-Level Placement Homing Probability Exploration (Clustered Architecture)......................... 75

Table 6.5: FF-Level Placement Results (Clustered Architecture) .. 76

Table 6.6: Retiming Activation Point Exploration (Clustered Architecture).. 77

Table 6.7: Simultaneous Retiming and Placement Results (Clustered Architecture) 77

Table 6.8: Comparison of FF-Level Placement and Retiming Placement (Unclustered Architecture) –

Original Sequential MCNC Netlists ... 81

Table 6.9: Comparison of FF-Level Placement and Retiming Placement (Unclustered Architecture) –

Depth = 1 MCNC Netlists .. 81

Table 6.10: Effect of Architecture on Leiserson/Saxe Retiming After Placement 81

Table 7.1. Normalized Results for Length-16 Long Wire Architecture .. 107

Table 7.2. Normalized Results for Length-8 Long Wire Architecture .. 107

Table 7.3. Normalized Results for Length-4 Long Wire Architecture .. 107

Table 7.4. Normalized Results for Armada, k=1, 2, 4 ... 109

Table 7.5. Normalized Results for Armada, AC=10, 8, 6, 4, 2 .. 109

Table 7.6: Capped Link Criticality of Connections in Figure 7.13... 111

Table 7.7: Effect of Critical Path Delay on Revised Cost Function ... 111

Table 8.1: Estimated Critical Path Delay of Conventional FPGA.. 124

 vii

Table 8.2: Estimated Critical Path Delay of Island-Style FPGA with Registered Switchboxes124

Table 8.3: Architectures Used in Testing Phase I – Adding Independent Flip-Flops and 1 to 16-bit Shift

Registers..135

Table 8.4: Architectures Used in Testing Phase II – Adding Independent Flip-Flops and Shift Registers, 1

Modified LUT/CLB ..140

Table 8.5: Architectures Used in Testing Phase III – Adding Independent Flip-Flops and Shift Registers, 2

Modified LUTs/CLB...143

Table 8.6: Architectures Used in Testing Phase IV – Adding Independent Flip-Flops and Shift Registers, 4

Modified LUTs/CLB...145

 viii

ACKNOWLEDGEMENTS
More than anything having to do with transistors, wires or CAD tools, working on this dissertation has

taught me to appreciate people. During my time in school, I have had the good fortune to work for and

alongside some truly brilliant people. As I look back, I struggle to really comprehend the countless ways

that they have made my life better.

First, I’d like to thank the professors that inspired me to do research while still an undergrad at

Northwestern. As my academic advisor, Professor Prith Banerjee encouraged me to push my limits and

helped me find my first research position. As an instructor and, later, a research advisor, Professor Majid

Sarrafzadeh singlehandedly launched my interest in algorithms and solving hard problems in general.

Although mind-bendingly difficult and more boot camp than classroom, his CAD course laid the

foundation of my academic career.

Next, I’d like to thank the students in the lab that came before me. It was simply a privilege to work beside

Mark Chang and Akshay Sharma. As colleagues, they made life as a grad student interesting and as

friends, they make life as a grad student bearable. Along those lines, I’d like to thank all of my friends. I

hesitate to single anyone out, but particularly Darrick Lew, Masa Mizuchi and Elizabeth Marsten helped

me soldier on when I simply couldn’t figure out how to put one foot in front of the other anymore.

Of course, grad school can be tough economically too. I’d like to thank the National Science Foundation

for providing the majority of the financial support for my work. Not all students are fortunate to get

research assistantships and I feel fortunate to have had the opportunity.

Lastly, I’d like to convey my deep appreciation and respect for my advisor, Professor Scott Hauck. For

over a decade he has been a patient mentor, role model, and friend. Frankly, I don’t think I could ever

thank him enough for his help professionally and, more importantly, personally. Where could I possibly

even start? He gave me my first shot at research as an undergrad, somehow managing to gently throw me

into the deep end of the pool. Later, he quite literally took me in from the cold and gave me a second

chance at grad school. Something that I certainly can never thank him enough for, through several

spectacular failures over the years, he never lost confidence in me even when my confidence in myself had

long eroded. There is absolutely no doubt in my mind that I would have left graduate school long ago

without his guidance and support.

To everyone that I met me along the way - this dissertation is more the product of your help and

encouragement than anything else. Thank you.

 ix

DEDICATIONS
For Mom and Dad. My blood, sweat and tears are your blood, sweat and tears.

1

Chapter 1: Introduction

Field Programmable Gate Arrays (FPGAs) are programmable semiconductor devices that can provide high

performance computing with low engineering effort for a large variety of applications. This has proved to

be a powerful combination, and FPGAs have grown into a multi-billion dollar market in the two decades

since their introduction. FPGAs offer this fast and easy-to-use computation by providing a large array of

relatively small programmable logic elements that can be connected to each other through a flexible

communication network to form more complex calculations. Although there are some notable exceptions,

the majority of FPGAs use SRAM to configure both the logical elements and the interconnect structure.

This not only allows them to implement arbitrary computation, but also gives them the capability to be

programmed and re-programmed to perform multiple different functions.

For many applications, the large programmable computational fabric FPGAs offer provides multiple

advantages over both conventional microprocessors and Application-Specific Integrated Circuits (ASICs).

Unfortunately, although the programmable nature of FPGAs represents the greatest advantage they hold

over other technologies, it also contributes to one of the most serious disadvantages: a much lower

achievable clock frequency. FPGA application developers often try to reduce the impact of this inherent

performance overhead by breaking their computations into smaller, faster sections using registers. One

issue this can cause is that adding registers to an application can fundamentally change its characteristics

and the demands it places on the underlying system. As designers demand higher and higher throughput

from their FPGA-based applications, the number of registers in their circuits will also rise. This further

compounds the issues that these types of circuits can present. This proliferation of heavily registered

applications raises concerns for at least two areas of FPGA research, the primary topics of this dissertation.

First, FPGA application developers rely on a large range of sophisticated Computer Aided Design (CAD)

tools to map their computations to a physical device. The effectiveness of these development tools is

extremely important to produce efficient, high performance implementations. However, circuits with a

large number of registers present multiple problems that existing CAD algorithms do not address. These

issues can cause poor circuit performance, instability within specific compilation tools, or even instability

in the entire toolflow. Dealing with these concerns can allow developers to obtain much better results.

Second, from the perspective of the architectures themselves, adding registers to a circuit puts a larger

burden on the flip-flop resources provided by the device. Increasing the number and accessibility of the

registering resources can drastically improve an FPGA’s support for heavily registered applications.

Although there is a large body of academic work looking into improving these attributes, many of the

proposed systems create serious problems for applications that do not have a large amount of registers.

This makes general-purpose computing very difficult on these specialized devices and prevents them from

2

benefiting from the same technology scaling and economies of scale that have been an essential part of the

success of mainstream FPGAs.

This dissertation discusses the nature of heavily registered applications, introduces CAD tools to handle

them, and lays the groundwork for a new generation of high-performance FPGA system. It is organized as

follows:

• Chapter 2: Field Programmable Gate Arrays provides background on classic FPGA

architectures and discusses some inherent design tradeoffs.

• Chapter 3: Pipelining, Retiming and C-Slowing describes how registers can be introduced into

an application to improve circuit speed.

• Chapter 4: FPGA Development Tools offers details of traditional FPGA physical design

techniques and discusses some of the problems that heavily registered circuits can pose.

• Chapter 5: Enhanced Timing-Driven Placement discusses a fundamental limitation of existing

timing-driven placement algorithms and offers a new technique that dramatically improves critical

path delay.

• Chapter 6: Register-Aware Placement illustrates some of the difficulties that the conventional

toolflow encounters with heavily-registered circuits and presents two new techniques to improve

performance.

• Chapter 7: Register-Aware Routing describes existing register-centric routing algorithms and

presents a new timing-driven approach.

• Chapter 8: Register-Enhanced Architectures concentrates on the potential register resource

limitations of conventional FPGA architectures and discusses several prospective improvements.

• Chapter 9: Conclusions and Future Research summarizes the contributions of this dissertation

and suggests some potential topics that warrant further investigation.

3

Chapter 2: Field Programmable Gate Arrays

Although FPGAs have evolved considerably over the last two decades, the fundamental benefits, tradeoffs,

and characteristics of the hardware remains largely the same. FPGAs offer a large sea of programmable

logic blocks embedded in a flexible communication network and their unique computational fabric can

offer multiple advantages over competing technologies. This chapter will outline the architectural

components of a modern FPGA and compare FPGAs to other computational systems.

2.1: Conventional FPGA Architectures

The most popular FPGA arrangement today is the island-style architecture. As seen in Figure 2.1, it is

named for the characteristic that its computational resources are divided into small islands of logic blocks

that are surrounded by a sea of interconnect wires and programmable communication resources.

Each logic block can generally implement any function of N inputs through the use of Look-Up Tables

(LUTs). LUTs are simply small memories that use the inputs of the logic block to address a read-only

memory. By filling the contents of a LUT with different values when configuring the device, the user can

Logic Block

SB

LB

SB

SB SB

LB

SB SB

LB

SB

SB

LB

SB

LB

SB

SB

LB

SB

1 2 3 4

1 2 3 4

1

2

3

4

1

2

3

4

3-LUT

Connection Block

I
O

I
O

I
O

I
O

IO IO IO

IO IO IO

Figure 2.1: Conventional Island-Style FPGA

4

change the behavior to calculate any arbitrary function. FPGAs also offer the opportunity to implement

sequential logic by providing an optional flip-flop on the output of its LUTs. This LUT/flip-flop pair is

sometimes referred to as a basic logic element (BLE). To create a denser computation fabric modern

FPGAs often cluster multiple BLEs into a single logic block.

The communication resources provided by island-style FPGAs can be separated into three main

components: channels, connection blocks and switchboxes. Channels are simply groups of individual wires

logically organized into bundles by their physical location. The architecture shown in Figure 2.1 has

channels of width four since four independent wires surround each logic block. Connection blocks manage

the movement of data in and out of channels by controlling which wires within a channel receive a logic

block output or primary input, and which wires drive a logic block input or primary output. Switchboxes

are responsible for connecting wires in different channels together. Although there are many different

types of switchbox, Figure 2.1 shows one possibility. Here, each wire in a channel has the capability of

connecting directly across the switchbox to make longer connections in the same direction or turning 90

degrees left and right. Similar to logic block configuration, connection blocks and switchboxes are built

from programmable elements that make arbitrary communication possible.

The most sophisticated FPGAs today often also include specialized communication, logic, and memory

features. In addition to the single-length interconnect wires shown in Figure 2.1, they generally have

longer segments that span multiple logic blocks, even up to the entire chip’s length. Although less flexible

than unit-length wires, longer segments improve the speed of long distance communication since signals

that use these resources need to traverse fewer programmable switch points. FPGAs may also include

dedicated carry chains. These are specific logic and directional connections between blocks in the same

row or column that can improve the speed of wide additions. These dedicated connections supplement the

generic communication network and are considerably faster than sending signals out on to shared

interconnect channels. By a similar token, FPGAs that offer multiple BLEs clustered within a single logic

block often have an internal interconnect system within each logic block that allows BLEs to be cascaded

together without using external wires.

The logic structures themselves also often have some specialized resources or unique operating modes.

Modern Xilinx devices, for example, have the capability of exposing the memory bits within their LUTs so

that they can be used as very small RAMs or shift registers [45]. FPGA architectures might also replace

some of the LUT-based logic blocks altogether. Dedicated coarse-grain functional units such as large

memories, fast multipliers or even simple microprocessors are common. These hard cores supplement the

generic logic fabric by implementing functions that are very slow or expensive to implement using LUTs.

5

Although not all applications might make use of these sophisticated resources, they are used commonly

enough that commercial FPGA companies often include this type of specialized feature to improve the

performance of their devices for the bulk of customer applications. As will be discussed in more detail in

Chapter 8, maintaining the general-purpose performance and efficiency of FPGAs is critical. This means

that while changes can be made to an architecture, any modifications must have one of two characteristics.

If the change is costly in terms of silicon area, as in the case of embedded multipliers or microprocessors, it

must add a great deal of functionality or boost performance dramatically for a large number of end users.

Alternatively, if a given architectural change is only useful for some applications, it must minimally affect

the area and performance of the FPGA for applications that cannot use the new feature. The implications

of this fundamental design decision is central to the discussion in Chapter 8.

2.2: FPGAs, Microprocessors and Application-Specific Integrated Circuits

The programmable computation fabric that FPGAs offer give them some clear advantages over both

microprocessors and ASICs for many applications. Compared to traditional general-purpose

microprocessors, FPGAs provide two capabilities: the ability to implement customized computation and the

ability to execute many calculations in parallel.

Although both software running on a microprocessor and a circuit implemented on an FPGA allow a user

to perform arbitrary computation, the degree of flexibility between the two platforms differs considerably.

A program written for a microprocessor must be compiled down to a fixed set of instructions dictated by

the processor’s instruction set. On the other hand, the developer of an application on an FPGA has the

capability to generate specialized pieces. For example, if a particular application does not use any floating-

point computation, the transistors devoted to a floating-point unit on a modern processor will sit idle.

However, since the instructions that a processor provides are fixed and many applications use floating point

extensively, the processor must have dedicated hardware to support this. Conversely, an FPGA can be

configured to implement one specific application, so all of the available resources can be devoted to the

task at hand. Similarly, the individual instructions that a microprocessor supports are largely determined by

legacy compatibility and what “anticipated” programs require. Thus, while common operations such as

simple addition and multiplication will be implemented in the instruction set directly, less common

operations will need to be broken down into a series of instructions that the processor does support. A

good example of this is the bit-wise operations popular in encryption algorithms. Although very simple

transformations, these functions require multiple instructions to accomplish on a modern processor. On the

other hand, FPGAs have the capability to implement custom computations and can directly implement any

necessary operations.

6

Furthermore, the performance of microprocessors is limited on many applications by their sequential

execution model. Classically, instructions are fetched and executed one at a time, and even modern

superscalar processors only have the capability of executing a small handful of instructions simultaneously.

FPGAs, however, have the capability to exploit massive parallelism. For example, if a user has a list of N

numbers to sum together, a microprocessor will fetch each one individually and keep a running tally. This

will require on the order of N clock cycles to complete because the sequential execution model of the

processor limits the amount of parallelism the system can implement. Conversely, the parallelism that can

be exploited on an FPGA is only limited by the size of the device. If an adder tree with N leaf nodes can fit

on a given FPGA, the computation can be performed in log N time.

FPGAs are also often used as an alternative to Application-Specific Integrated Circuits. As the name

suggests, ASICs are custom-fabricated chips designed to perform a specific computation extremely

quickly. Since they are specialized hardware devices, like FPGAs they are able to avoid the overhead and

limited parallelism of microprocessor-based implementations. However, unlike FPGAs, they are not

programmable circuits and generally cannot be repurposed for any other application. Since each new

design must be developed and manufactured independently, new devices present an extremely high

economic and intellectual hurdle. Not only must a design go through months of development and

verification before fabrication can begin, even highly related devices will have completely unique sets of

fabrication masks, packaging concerns and testing requirements.

FPGAs have a distinct advantage over ASICs because one chip can be used to produce a wide range of

different applications. Once a single FPGA has been designed, manufactured and tested, applications

mapped to that chip can be developed and debugged at a much more intuitive functional block level.

Combined with the fact that fabrication and packaging costs are divided among all the designs that use that

platform, using FPGAs results in a much faster time-to-market and smaller engineering cost. Companies

such as Xilinx and Altera specialize in producing commodity FPGAs that provide a versatile and

inexpensive pathway to producing hardware-based applications.

Although all of these factors seem to indicate that FPGAs are inherently superior to both microprocessors

and ASICs, this heavily depends on the desired application. First, computations that do not benefit from

custom operators or do not have inherent parallelism are generally far more efficiently implemented on

conventional microprocessors. Obviously, if a computation cannot exploit any of the advantages that an

FPGA has over a microprocessor, these devices become far less attractive. Furthermore, FPGAs are only

economically advantageous compared to ASICs if the desired volume of chips is relatively low. In high

volume, the initial engineering costs become less important since they are amortized over so many chips.

7

On the other hand, the overhead presented by the flexibility of an FPGA creates a larger overall die,

increasing the per-unit manufacturing cost.

Furthermore, the universal nature of the logic elements, combined with the flexibility built into the

communication network, means that all of the netlists mapped to an FPGA are merely “emulated” on the

hardware and running through a level of indirection. For example, if we would like to add two numbers

together on either a microprocessor or an ASIC, the physical adder that this computation is executed on can

be built from dedicated transistors communicating via directly connected wires. This means that the entire

operation can be carefully designed and optimized specifically for high performance. Conversely, an

addition performed on an FPGA must be built from much more generic logical pieces that are connected

through much slower, shared communication channels. Thus, although the underlying hardware is capable

of performing a wider range of different functions, this flexibility limits the operational efficiency. The

next chapter introduces some techniques that application developers can apply to their circuits to minimize

the impact of this intrinsic performance penalty.

8

Chapter 3: Pipelining, Retiming and C-Slowing

Despite the potential economic and engineering advantages FPGAs hold, the generic programmable logic

and interconnect offered by an FPGA can be far less efficient at implementing a specific computation than

specialized, finely tuned wires and transistors. As discussed in [19], it can be expected that an application

mapped to an FPGA will lag an ASIC counterpart by up to 40 times in terms of silicon area, 4.3 times in

terms of critical path delay and 12 times in terms of dynamic power consumption. Although minimizing

area and power consumption is certainly important, the technical specifications of many applications

dictate a required throughput. That is, for the device to function correctly it must reach a specified data

rate. Thus, this chapter will focus on three techniques that application developers can apply to a circuit that

can improve the operational frequency: pipelining, retiming and C-slowing.

Pipelining is a very simple technique in which a datapath is separated into multiple stages. As shown in

Figure 3.1, by breaking a function into smaller pieces we can decrease the longest path in the circuit.

However, this increases the latency, or number of clock cycles between when data enters the circuit and

when completed results are seen on the output. Although this increased latency makes it unsuitable for

applications that are sensitive to this, the additional latency can often be offset with a higher clock rate if

the computation is split into relatively equal parts.

For example, disregarding the interconnect delay for a moment and assuming an adder to have a delay of

10 units and the setup times of a register to be 1 unit, the unpipelined circuit on the left of Figure 3.1 will

have a delay of 20 units and a latency of one clock cycle. The pipelined circuit on the right, however, will

have a delay of 11 units and a latency of two clock cycles. Thus, although the pipelined circuit only

requires 2 extra units of time to complete the first result (20 units of delay vs. 2 x 11 = 22), it will produce

new results nearly twice as fast as the unpipelined circuit (20 units of delay versus 11).

However, to achieve this large performance benefit with small additional latency, pipelining requires that

the individual stages be relatively balanced in terms of delay. Considering either of the pipelined circuits in

Figure 3.2, for example, both have increased the latency of the netlist (21 units) without decreasing the

critical path delay (still 20 or 21 units). This is where retiming can be applied.

+

+

+

+

+

+

Figure 3.1: Clock Frequency and Latency Effects of Pipelining

9

Retiming is a technique used in conjunction with pipelining in which registers can be “pushed” or “pulled”

through computational blocks to better balance the delay of different stages. First discussed in [21], this

relies on the concept that registers can generally be migrated either from each of a block’s inputs to the

block’s output or from a block’s output to each of the block’s inputs without changing the logical operation

performed by the circuit. The circuit on the left of Figure 3.2 can be transformed into the optimal pipelined

circuit in Figure 3.1 by simply combining the two registers on each of the adders’ inputs to a single register

on the output. Similarly, the circuit on the right of Figure 3.2 can be improved by replacing the register on

the adder’s output with a registers on each of the adder’s inputs.

The most famous method to implement retiming is the Leiserson/Saxe approach [22]. While the authors of

this paper actually discuss multiple different formulations of their technique, all of them are iterative

processes that operate on a netlist, given a specific target critical path delay. These Leiserson/Saxe

techniques gradually push registers around the circuit and can determine whether or not the system can be

retimed to reach the target delay given the current amount of registering in the system. By performing a

binary search on the target critical path delay, a user can reach the provably maximum clock frequency for

a given input netlist.

While retiming can help balance delay across multiple clock cycles, this is not to say that retiming can

overcome all limitations. First, not all pipelined applications can be retimed because debugging, testing

and proper initialization of the circuit can become much more difficult after retiming is performed. In

addition, there is also a theoretical limit imposed by circuits with feedback. For example, consider a circuit

that has a feedback loop, as in Figure 3.3. Although registers can be migrated forwards (Figure 3.3a and

Figure 3.3b) or backwards (Figure 3.3c and Figure 3.3d) through the chain of adders, the number of

registers on the loop itself cannot be changed. This limits the achievable clock frequency to at least four

adder delays. The original authors of the work done on retiming [22] discussed the limitation of not being

able to increase the number of registers on a loop and suggested an alternative: C-slowing. C-slowing adds

additional registers onto feedback loops by duplicating all registers in the netlist C times. This increases

the retiming capability by interleaving C completely separate computations. The original netlist in

+

+

+

+

+

+

Figure 3.2: Two Examples of Unbalanced Delay Between Pipelining Registers

10

+
+

+
+

+
+

+
+

a

b

c

d

+
+

+
+

+
+

+
+

+
+

+
+e

f
+

+
+

+

retime

retime

retime

Figure 3.3: Limitations of Retiming and Demonstration of C-Slowing

Figure 3.3a or Figure 3.3c can be “2-slowed” to produce the netlist in Figure 3.3e. As seen in retimed

netlist in Figure 3.3f, this approximately doubles the achievable clock frequency. Unfortunately, C-slowing

can have limited use since it interleaves multiple independent, partially completed calculations. Thus, the

nature of the application itself and its I/O protocol must be amenable to this kind of parallelization.

Computations that require iterative computation on a single set of data may not be able to take advantage of

C-slowing.

11

Despite the restrictions associated with pipelining, retiming and C-slowing, developers often utilize these

techniques whenever the netlists and application specifications allow. However, determining how to best

apply these techniques given a specific circuit and a target architecture can be challenging. Although these

concepts will be discussed in far more detail in the following chapters, these issues can be grouped into two

basic types of problems.

First, the pipelining, retiming and C-slowing discussed up to this point has only considered the delay

though the logic portion of a circuit. However, the delay accumulated in the communication network is a

significant part in the overall delay of a system and the distribution of this interconnect delay can vary

greatly from one net to another once it has been mapped to a physical architecture. Thus, the manner in

which registers could be best distributed is highly dependant upon the arrangement of the rest of the

system, but that can be difficult for application mapping tools to evaluate faithfully. This problem is

discussed further in Chapters 4 – 7.

Second, as shown in Figure 3.3d and Figure 3.3f, pipelining, retiming and C-slowing can dramatically

increase the amount of registers in a circuit. However, the number and availability of physical flip-flop

locations offered by the classical FPGAs discussed in Chapter 2 is relatively limited. This is largely

because FPGA applications have traditionally not required a large number of registers. That said, for the

reasons outlined earlier, future applications will likely require a growing number of registers. Chapter 8

discusses several ways of efficiently increasing architectural support for heavily registered applications.

12

Chapter 4: FPGA Development Tools

Just as the quality of a software compiler plays a major role in determining the speed of code running on a

microprocessor, FPGA CAD tools fundamentally affect the achievable performance of an application

mapped to a reconfigurable fabric. This chapter will provide details regarding the traditional FPGA CAD

toolflow and discuss some of the issues that heavily pipelined, retimed and C-slowed applications can

present.

4.1: FPGA CAD Toolflow

The logic and communication resources that FPGAs offer obviously pose a different problem to both

developers and development tools compared to programming for conventional microprocessors. Even so,

despite significant differences in the underlying framework, the process of creating applications for modern

FPGAs can be thought of much like developing software for a microprocessor. Applications generally

begin with a Hardware Description Language (HDL) specification. Much like C or C++, this is a largely

platform independent representation of the application that must be compiled to a specific FPGA.

Compilation for an FPGA consists of five primary steps: logic synthesis, technology mapping, packing,

placement, and routing.

Logic synthesis takes the high-level constructs in the HDL code and turns them into a netlist of basic gates

such as NANDs, NORs and flip-flops. The technology mapping phase uses this generic gate representation

and determines how these pieces could be efficiently translated to the hardware given the specific LUTs

and fixed resources offered by the target FPGA. The packing tool then takes these mapped pieces and

attempts to merge LUTs and flip-flops into groups of logic blocks. The placement tool then determines the

physical location of each logic block in this packed netlist so as to minimize the amount of communication

required. Finally, routing determines how the blocks in the placed netlist communicate with each other by

assigning signals to specific wires. This routed netlist can then be turned into a configuration bitstream to

program the FPGA.

While logic synthesis and technology mapping are essential parts of a modern FPGA compiler, this

dissertation primarily focuses on the effect netlist and architectural characteristics have on packing,

placement and routing. Thus, the discussion here will feature background on these three physical design

phases.

4.2: Packing

The most popular academic FPGA packing tool today is VPack [26]. VPack uses a two-step approach in

which flip-flops are first mated with appropriate LUTs to map to the fewest BLEs, and then these BLEs are

13

LUT LUT LUT

Figure 4.1: Packing Restrictions [2]

combined to form logic blocks if the architecture implements clustered logic. The first stage examines the

way that each flip-flop is used to determine how to pack LUTs and flip-flops together. Some architectures

may restrict the output of a BLE. In the case shown in Figure 2.1, a LUT/flip-flop pair has the capability to

output either the raw LUT output or the registered LUT output, but not both. Thus, as seen on the left of

Figure 4.1, if the rest of the netlist only uses the registered output of a LUT, the optional flip-flop attached

to the host LUT can be used and they can be mapped to a single BLE. However, as seen on the right of

Figure 4.1, if both the gated and non-gated output is needed the LUT and flip-flop must be mapped to

separate BLEs.

The second portion of the packing process attempts to combine BLEs into the fewest number of clustered

logic blocks, subject to the limitations of the architecture. Although the architecture might have multiple

LUTs grouped within a single CLB, some FPGAs attempt to reduce the hardware needed to implement the

connection blocks by offering fewer independent inputs than the maximum number that could be required

by the cluster. For example, if an architecture is built from clusters of four 4-input BLEs, each logic block

might only have twelve, not sixteen, inputs. FPGA architects do this because they realize that logic blocks

do not necessarily require independent inputs for all BLEs. Multiple BLEs within a logic block may share

common inputs, BLEs may be cascaded together and use communication resources internal to the logic

block, or the function mapped to a LUT may use fewer than the maximum number of inputs.

VPack iteratively clusters BLEs with one of two techniques. It first simply selects an unassigned BLE to

seed a cluster. Other BLEs are then added to the cluster to completely fill the logic block. Potential

cluster-mates are ranked based on their “attraction” to the current cluster – how many inputs and outputs

they share. VPack iteratively gathers BLEs with the highest attraction to the current cluster until the CLB

is full. Occasionally, though, a cluster may run out of independent inputs before all BLEs are occupied.

These situations are forwarded to a second technique. Here, clustering is repeated, but BLEs are added to

the cluster based on minimizing the number of inputs.

VPack has also been extended with a timing-driven formulation, T-VPack. This tool is very similar to

VPack, but attempts to consider critical path timing during the clustering process. Although it cannot

necessarily estimate the delay encountered in the interconnect, T-VPack evaluates how likely it is that each

BLE lies on the netlist’s critical path based upon the maximum number of consecutive LUTs, or the logical

14

depth, of the logic using the BLE. BLEs along paths that have multiple consecutive LUTs without

registering are given special priority. Since communication between BLEs in the same cluster is generally

very fast compared to utilizing external routing resources, the tool adjusts its attraction scheme to prefer

BLEs that are more likely to be timing sensitive.

Packing is also very useful on architectures that do not limit the input or output connectivity of the LUTs

and flip-flops within their CLBs. This is because combining multiple LUTs and registers into a single

atomic unit via packing decreases the number of movable blocks. In turn, this dramatically simplifies the

following placement process. For example, take a very small netlist consisting of 20 4-LUTs. If a

placement tool is attempting to map this netlist to the minimum-sized architecture that consists of five 4-

LUT CLBs, there are roughly 3.6x1012 different possible placements1. Obviously, searching such a large

solution space is extremely difficult. However, if the LUTs in the netlist are first packed into five groups of

four 4-LUTs, there are only 120 different possible placements2. Of course, this simplification of the

placement problem means that the vast majority of the potential possible placements are never examined.

While that is true, packing is a natural step for most netlists because the placement problem specifically

tries to put interconnected blocks as close together as possible. Since the packing tool groups tightly

coupled LUTs and registers together into the same CLB, it is likely that the placement tool will still be able

to approach the optimal arrangement.

4.3: Placement

The most common algorithm used for FPGA placement is simulated annealing. The basic premise of

simulated annealing likens the process of determining physical locations for all the logic blocks in a netlist

to nature finding a low-energy atomic arrangement for the atoms in a crystal. The authors of [17] recount

basic metallurgy: if an iron bar is thoroughly heated, then quickly cooled in water, the result is very brittle

and prone to cracking. This is because the small, high-energy crystals that make up the bar contain large

amounts of internal strain. A quick cooling process forces atoms into whatever arrangements they can

manage before they freeze. However, if the metal is allowed to cool slowly in air, the result is much more

1 This calculation assumes that the individual LUTs within each CLB of the array are functionally equivalent. Thus, there are 5
possible different CLB locations for the first LUT to go into. Since one LUT does not fill the first CLB location to capacity, there are
still 5 possible CLB locations for the second LUT, etc. This makes the number of possible solutions (516*4*3*2 ≈ 3.6x1012)
2 There are 5 possible CLB locations in which to map the first packed CLB, 4 possible CLB locations to map the second packed CLB,
etc. This makes the number of possible solutions (5! = 120).

15

flexible and resilient. This is because the slow cooling process allows the atoms to move around freely and

arrange themselves into large, low-energy state crystals.

This phenomenon is mirrored in logic block placement in several ways. First, the random motion available

to atoms while the metal hot is paralleled by iterative random swaps between logic blocks. Next, the

energy state of an atomic arrangement is represented by a cost function that can determine the quality of a

given placement. The most basic cost function used in FPGA CAD is the total rectilinear, or Manhattan,

distance between connected logic blocks. Finally, a temperature is associated with each iteration of the

process that allows the system to gradually move towards better and better solutions.

Placement begins with an arbitrary initial placement and a very high system temperature. Optimization is

achieved by conditionally accepting or rejecting moves while slowly decreasing the temperature of the

system. Swaps that provide a better placement are always allowed, while movements that provide a worse

placement are probabilistically allowed depending upon the current system temperature and how much

worse the movement would make the placement as a whole. In [3], the authors suggest that “bad”

movements should be accepted with a probability shown in Equation 4.1.

 e
eTemperatur/ deltaCost

]1,0[number random
−< (4.1)

Since the probability of accepting a move for the worse is directly related to the temperature and inversely

related to the change in quality, we are likely to accept virtually all moves early in the annealing process

and gradually tend towards only accepting changes for the better as placement continues. While

performing changes that make the placement worse seems counter-productive, only accepting good moves

is similar to the quenching of metal, which results in local minima and poor placements. As it turns out,

permitting solutions that temporarily make the system worse actually encourages better overall placements.

This is because the placement tool often needs to transition through “bad” solutions in order to make larger-

scale improvements.

The fact that the probability of accepting a move for the worse is dependant upon temperature makes

controlling the rate at which the system cools very important. In addition, determining the initial

temperature and the total number of moves attempted is also critical. The work in [2] suggests a

sophisticated scheme in which these factors are somewhat tied together. First, the initial temperature is

determined by performing N random moves on the initial placement, where N is approximately 100 times

the number of blocks in the incoming netlist. Since the initial placement is already arbitrary, these swaps

are unconditionally accepted. However, the costs of these moves are recorded and the initial temperature

16

of the annealing is set to 20 times the standard deviation. This insures that virtually all moves are accepted

at the beginning of the annealing.

The subsequent placement is divided into temperature iterations. During each iteration, the number of

moves attempted is based upon the size of the incoming netlist as calculated in Equation 4.2.

 3
4

)(*10Iteration eTemperaturPer Moves ksNumberBloc= (4.2)

At the end of each temperature iteration a new system temperature is calculated based upon the number of

moves accepted during the previous iteration. This is shown in Equation 4.3 and Table 4.1.

 eTemperatur Old * eTemperatur New γ= (4.3)

After the system temperature is updated, the termination condition shown in Equation 4.4 is evaluated.

NumberNets

TotalCost
*005.0 eTemperatur< (4.4)

This adaptive temperature schedule allows the annealer to operate for a short period of time at a high

temperature to facilitate large-scale changes to the placement, and spend the bulk of its operation

performing medium-scale improvements and small-scale refinements.

This type of relationship is often further reinforced with the addition of movement windowing. First

suggested in [20], the annealing begins by allowing any logic block to swap with any other logic block in

the array. However, as placement continues, it slowly decreases the range that a logic block can move in a

single swap by only attempting to change places with a location within an imaginary frame surrounding

that block. This window slowly shrinks over time until we only allow nearest-neighbors to exchange

places. This can be seen in Figure 4.2.

This enhancement is particularly effective because it encourages the system to continue optimization

through a larger portion of the annealing. Late in the annealing process we have largely determined most

Table 4.1: Temperature Update Schedule
Acceptance Rate > 0.96 γ = 0.5

0.8 < Acceptance Rate ≤ 0.96 γ = 0.9
0.15 < Acceptance Rate ≤ 0.8 γ = 0.95

Acceptance Rate ≤ 0.15 γ = 0.8

17

of the placement. Therefore, long distance moves are not liable to be accepted because they are unlikely to

improve the placement but rather disturb the arrangement we have already carefully set up. On the other

hand, shorter distance moves are both far more likely to improve the placement and, if they are a change for

the worse, any degradation will also naturally be smaller. Thus, windowing prevents the annealing from

stagnating during the later stages of the process by guiding the system towards shorter, more incremental

changes. [13]

Similar to the cooling rate, the size of this movement window can also be determined in an adaptive

manner. The work in [2] suggests updating the window size at the end of each temperature iteration with

Equation 4.5. Obviously, this value is subsequently clamped between one and the maximum size of the

array.

 Rate) Acceptance 0.44 - (1 * Size WindowOldSize WindowNew += (4.5)

Since the interconnect represents such a large portion of the overall delay in FPGA designs, placement also

plays a vital role in determining a netlist’s critical path. Although discussed in more detail in Chapter 8, the

authors of [3] incorporate both Manhattan distance and delay estimation into their simulated annealing cost

function. When their placer is initialized, the system first performs a point-to-point routing between all

logic blocks in the target architecture. This allows the system to fill a look-up matrix with the delay of the

fastest connection between each pair of logic blocks. These values are then used during annealing to

estimate the delay and timing criticality of every connection in the netlist for a given placement. This is

shown in Equation 4.6.

 ExponentCrticalityjiyCriticalitjiDelayji _),(*),(),(tTiming_Cos = (4.6)

High temperature window

Low temperature window

Figure 4.2: Simulated Annealing Windowing

18

Conventional VPR Placement
0 randomly place logic blocks onto architecture
1 determine initial temperature
2 while(!done)
3 for I = 0 to numAnnealMovesPerTemp
4 select random CLB
5 swap CLB with random CLB in move window
6 accept or reject move(∆Cost, currTemp)
7 end for
8 update critical path delay
9 update currTemp
10 update range limit window
11 evaluate exit criteria
12 end while

Figure 4.3: Pseudo-Code for VPR Timing-Driven Placement

In this equation Timing_Cost(i, j) represents the cost of the link between blocks i and j. The slower and the

more timing-critical the link, the more expensive delay becomes. On top of this, by increasing the

criticality exponent, the placer can further emphasize reducing delay on the most critical segments. In a

similar manner to the way the movement window is adaptively changed, the criticality exponent is

generally set to one at the beginning of the annealing process and slowly increased as the annealing

continues.

This timing cost can then be combined with a more traditional Manhattan distance-based cost to evaluate

the overall quality of the placement. This will encourage the placement tool to gather the most timing-

critical blocks close together at the expense of lengthening less critical connections. Pseudo-code for the

entire placement process is shown in Figure 4.3.

4.4: Routing

FPGA routing is generally handled with the PathFinder algorithm [28]. PathFinder is an iterative

technique that allows signals to negotiate with each other for control over communication resources. The

guiding principle behind this approach is that each signal “bids” on the routing resources that it wants.

Over time, the “price” of popular resources goes up, encouraging signals that can use less scarce

commodities to do so and leave more restricted resources for the signals that truly need them.

PathFinder begins by representing all of the logic and routing resources offered by the target architecture as

a directed graph of vertices and edges. Each logic block and wire is converted to a vertex, while the

programmable connections offered by the connection blocks and switchboxes are converted into directional

edges linking these vertices. The placed netlist is then mapped to this abstract graph. This means that

connecting two logic blocks in our netlist is simply a matter of finding a path, or series of connected

vertices, between the nodes that represent the logic blocks in our graph. Since a given physical wire can

only carry a single signal, the challenge PathFinder must solve is to connect all of the signals in our netlist

such that no node is congested, or allocated to too many nets.

19

An essential part of PathFinder is Dijkstra’s algorithm [8]. This is a fast and optimal technique that finds

the lowest-cost path between two vertices in a directed graph. Dijkstra’s begins by starting a wave of

exploration at the source vertex. The neighbors of this node are then added to a list that is sorted by the

total cost of the path to these nodes. The source node is marked as “visited” and the router selects a new

vertex – the lowest cost node in the list. The unvisited neighbors of this node are then added to the sorted

list and the process continues until we find the target vertex or empty the list of routing nodes. PathFinder

also uses a slightly enhanced version of Dijkstra’s algorithm to find multi-terminal routes by stopping and

reinitializing the search each time a sink is found, considering the entire routing tree built thus far as the

source.

The PathFinder algorithm uses this basic search while encouraging congestion resolution between different

nets. It begins by initializing the cost associated with each vertex to a small base cost. All signals in the

netlist can then be routed using the approach from above. At this point, PathFinder evaluates the use or

occupancy of each vertex in the graph. If all of the nets have been connected and no vertices are congested,

the routing is valid and the algorithm is complete. However, if any vertices are congested, the cost of these

nodes is increase and another routing iteration is attempted. By gradually increasing the cost of overused

vertices over time, the use of these nodes is slowly discouraged. This frees them to be used by other paths.

The cost of a node during a given iteration is shown in Equation 4.7.

 nnnn phbc *)(+= (4.7)

Here, bn is the base cost of using the node, hn is a term that reflects the historical congestion of the node,

and pn is a term that reflects the current congestion of the node.

Of course, for most applications it is extremely important to consider critical path timing. The authors of

[28] also suggest a timing-driven formulation of PathFinder that uses a slightly modified cost function to

improve performance. This allows timing-critical nets to follow fast, but possibly congested paths while

encouraging non-critical nets to seek slower, lower congestion alternatives. This is shown in Equation 4.8.

 nijnijn cAdAC)1(−+= (4.8)

Here, Aij represents the criticality of a source/sink pair as found during the last routing iteration, dn is the

delay of a node and cn is the congestion-based cost function described above. Since Aij falls between zero

and one, a route along the critical path of the netlist (Aij=1) only considers the delay of a node without

considering its congestion cost. In this way, it will naturally seek the fastest possible path. However, a less

20

Timing-Driven PathFinder Routing
0 while(!all signals routed || congestion exists)
1 for all nets N
2 clear N.routing tree
3 put source of N into N.routing tree
4 sort sinks in decreasing order of criticality (for iteration #1, set all criticalities to 1.0)
5 for all sinks of N
6 for all nodes in architecture clear visited flag
7 put all nodes in routing tree into priority queue PQ at cost C, previous node null
8 while(PQ.head not sink[i] of N && PQ not empty)
9 remove head of PQ H at cost C, previous node P
10 if(H not visited)
11 mark H visited
12 set H.cost to C
13 set previous node of H to P
14 put unvisited neighbors of H into PQ at cost C + neighbor cost + edge cost, previous node H
15 end if
16 end while
17 if(PQ is empty)
18 net is unroutable, exit
19 else if(PQ.head is sink[i] of N)
20 mark sink found
21 set previous node of sink to P
22 set S to sink
23 while (S not in routing tree of N)
24 add S to routing tree
25 set S to S.previous node
26 end while
27 clear PQ
28 update cost of congested nodes
29 end if
30 end for
31 end for
32 update critical path delay and sink criticalities
33 end while

Figure 4.4: Pseudo-Code for PathFinder Routing

critical net will consider both delay and congestion. As Aij approaches zero, the congestion cost will play a

larger role in determining which path is taken. This formulation encourages less critical nets to find

detours so that the most timing-sensitive links can use the fastest, most direct wires. Pseudo-code for the

entire timing-driven routing process is shown in Figure 4.4.

4.5: Issues for Heavily-Registered Applications

Pipelining, retiming and C-slowing an application introduces additional registers into the netlist with the

hope that this will increase the overall throughput of the system. However, as discussed in Chapter 3, since

these new registers also increase the latency of the circuit these registers must be carefully positioned to

evenly distribute delay. This makes the effectiveness of timing-driven CAD tools crucial to the system as a

whole. However, the addition of a large number of registers into an application can fundamentally change

its characteristics and, by extension, the optimization problem it presents to the CAD tools. This

potentially creates two unique challenges.

First, a large number of registers in a netlist can confuse existing timing-driven placement and routing

algorithms. As will be discussed in Chapter 5 and Chapter 6, this is largely because the relative criticality

21

of different parts of a circuit can change much more quickly in a heavily-registered circuit as the placement

and routing is performed. This not only makes the timing information that the tools use to optimize the

circuit much more difficult to keep up to date, the algorithms themselves are based upon iterative

improvements that subtly rely on the fact that the criticality on individual links does not change very

quickly. Thus, when it does change rapidly when attempting to process heavily-registered applications,

these algorithms can produce degenerate solutions.

Second, a circuit with a large number of registers that need to be packed and retimed can exacerbate

existing problems in the CAD toolflow. As will be discussed in Chapter 7, the traditional compilation

process described above is highly compartmentalized and solely feed-forward. In some sense this causes

problems already since design decisions that must be made by tools early in the flow, such as logic

synthesis and technology mapping, dictate the netlist given to tools later in the flow, such as placement and

routing. However, these early portions of the CAD process also have the least amount of information

regarding the potential realities of the interconnect delay between logic blocks. Thus, the accuracy of the

optimizations performed by these early tools is limited, even though they potentially have the largest

impact on the quality of the final result. Packing circuits with a large number of registers can make this

problem worse because traditional packing algorithms do not expect multiple registers on a LUT output.

Thus, they can produce packed netlists that severely limit the options available to the placer and router.

Retiming compounds these issues because it needs to restructure the netlist as it migrates registers through

logical elements to balance delay. However, the point in the toolflow in which this is most convenient is

prior to packing. Therefore, retiming is generally performed without considering the interconnect delay

information only known after placement and routing.

22

Chapter 5: Enhancing Timing-Driven Placement

As discussed earlier, when pipelining, retiming and C-slowing are aggressively used they can insert a large

number of registers into a netlist. However, these registers make the circuit larger and increase the latency

of the system, so obviously application developers would like to maximize the potential performance

benefits of these additional registers as much as possible. That said, while existing timing-driven

placement tools have shown their advantages over purely wirelength-driven formulations [25], relatively

little is known about the absolute performance of these types of algorithms. Furthermore, they have

generally only been tested on classical, relatively lightly registered circuits.

This chapter will illustrate some potential shortcomings of the most popular timing-driven FPGA

placement approach that can lead to instabilities in the simulated annealing placement itself. In addition

this chapter will outline some of the different characteristics that heavily registered netlists have that can

prevent existing timing-driven placement approaches from attaining the maximum potential of these

circuits. This will lead to the introduction of a new technique for timing-driven placement that can

significantly improve the performance of both lightly and heavily registered applications.

5.1: Background on VPR Timing-Driven Placement

VPR [3] is one of the most popular academic FPGA place and route tool suites. As the de facto standard, it

has served as both a building platform and comparison target for countless other research efforts. VPR

includes T-VPlace, a simulated annealing based timing-driven placement algorithm. T-VPlace considers

both a net’s wirelength and delay contribution during placement to achieve a good balance between overall

netlist routability and critical path delay. During simulated annealing, it calculates the cost of a move using

Equation 5.1.

iring_CostPrevious_W

_
*)1(

iming_CostPrevious_T

st∆Timing_Co
*C

CostWiring∆−+=∆ λλ (5.1)

In this way, VPR can emphasize maximum routability (λ = 0.0), minimum critical path delay (λ = 1.0) or,

most likely, strike a balance between the two. While the Wiring_Cost is essentially just a summation of all

nets’ bounding boxes, calculating the Timing_Cost is a bit more complex.

Before placement on a given architecture is started, VPR builds a distance vs. delay table that estimates the

shortest path delay between each logic block and I/O pad in the array and every other logic block and I/O

pad in the array. VPR then uses this table throughout the annealing process to determine the source/sink

delay of each connection in the netlist. This allows VPR to estimate the delay of each connection in the

netlist for a given placement. Of course, due to routing congestion this estimate table cannot correctly

23

reflect the real delay of every link of any placement. For example, if the annealing were stopped

immediately and the immature placement sent to the router, the actual delay for any given connection as

found by the router would likely be much larger than the shortest-path delay estimates used by the

placement tool. However, it is generally assumed that the congestion in the final placement will be

relatively low and that the most critical signals will be able to take their fastest preferred path during

routing. Thus, these delay estimates offer the placement tool a relatively good idea regarding the timing

implications of the placement as the annealing progresses.

Calculating the timing cost of the current placement begins by performing a static timing analysis on the

initial random placement. As seen in Figure 5.1, static timing analysis uses the delay estimates from the

distance vs. delay table and steps through the netlist from the inputs to the outputs in order to determine the

critical path through the system. As seen in Figure 5.1b, this begins by setting the arrival time of all

primary inputs and registers to be 0. Then, using the delay estimates of each connection, the maximum

arrival time of all nodes is propagated throughout the netlist. This is seen in Figure 5.1c.

This process calculates Dmax, the overall maximum critical path delay of the current placement. Based upon

this information, the timing slack of each source/sink pair can also be calculated. This is performed by

determining the required time of each node. As shown in Figure 5.1d, this begins by setting the required

time of all primary outputs and registers to Dmax. In a similar manner as before, the minimum required time

for each node is propagated through the netlist. This is shown in Figure 5.1e. Finally, the timing slack for

each connection can then be calculated. As shown in Figure 5.1f, this is the required time of the sink minus

the arrival time of the source minus the delay of the connection itself.

The information from static timing analysis is then incorporated into the timing cost using Equations 5.2

and 5.3. As shown in Equation 5.2, first the relative criticality of each link in the netlist is calculated based

upon Dmax and the timing slack.

max

),(
1),(

D

jiSlack
jiyCriticalit −= (5.2)

 ExpCritjiyCriticalitjiDelayji _),(*),(),(tTiming_Cos = (5.3)

As shown in Equation 5.3, VPR then weights the impact of the delay between each source-sink pair based

upon its criticality. That is, delay along a path that has lots of timing slack is relatively cheap, while delay

anywhere along the critical path is expensive. An exponent is also sometimes included to further

discourage high criticality links.

24

7

2 a b
c

1 2

1
7

2 a b
c

1 2

1

7

2 a b
c

1 2

1
7

2 a b
c

1 2

1

7

2 a b
c

1 2

1
7

2 a b
c

1 2

1

7

2 a b
c

1 2

1
7

2 a b
c

1 2

1

0

a

b

0
2 3

9 10

5
c

10

10
d

10

10
e

7

2 a b
c

1 2

1
7

2 a b
c

1 2

1

9

82

0

Delay of links from placement

Arrival time of primary inputs &
registers set to 0

Propagation of arrival times forwards
AT i = max(AT of source + link delay)

Required time of primary outputs &
registers set to Dmax

Propagation of required times backwards
RTi = min(RT of source - link delay)

7/0

2/0 a b
c

1/5 2/5

1/0

f

Slack(i, j) = RT of sinkj - AT of sourcei
- link delay

Figure 5.1: Static Timing Analysis

Finally, Equation 5.4 shows that the overall placement timing cost is calculated as the summation of the

timing cost of each source/sink pair.

),(tTiming_CostTiming_Cos ji∑= (5.4)

5.2: Implications of Static Timing Analysis

While the intent of VPR’s timing-driven formulation is indeed very important, the realities of practical

implementations can interfere with its effectiveness. Focusing on Equations 5.2 and 5.3, VPR’s timing cost

function is based upon the source/sink criticalities calculated during static timing analysis. Unfortunately,

static timing analysis is far too computationally expensive to perform after each annealing move. Thus, by

default VPR only performs a single timing analysis at the beginning of each temperature iteration. It then

uses these criticalities to calculate the quality of subsequent moves until the next temperature iteration.

25

This means that VPR generally performs less than a few hundred timing analysis runs instead of potentially

several millions.

Revisiting VPR’s basic cost function, this optimization can be captured formally. In Equation 5.5, VPR

calculates the criticality of each source/sink pair (i, j) at the beginning of temperature iteration k.

)(

),,(
1),,(

max kD

kjiSlack
kjiyCriticalit −= (5.5)

For any given placement within the kth temperature iteration, Equation 5.6 can be used to calculate the

timing cost. This is simply the delay of the source/sink pair (i, j) at temperature iteration k, move number l

multiplied by the criticality of the link as calculated at the beginning of the temperature iteration.

 ExpCritkjiyCriticalitlkjiDelaylkji _),,(*),,,(),,,(tTiming_Cos = (5.6)

This makes the incremental timing cost as shown in Equation 5.7 simply the change in delay between of

move (l-1) and move l multiplied by the criticality of the link at the beginning of the temperature iteration.

 [] ExpCritkjiyCriticalitlkjiDelaylkjiDelaylkji _),,(*)1,,,(),,,(),,,(TC −−=∆ (5.7)

Unfortunately, while performing static timing analysis only once per temperature iteration does make

placement orders of magnitude faster, since the placement algorithm does not update the criticality nor

critical path delay within a temperature iteration, the timing information that the annealer has slowly gets

less and less accurate. This can lead to less than satisfying final results. At the beginning of the annealing

the placement tool calculates the critical path delay. This value is then used to calculate the slack and

criticality of each source/sink pair. The problem occurs because, as the annealing begin to move blocks

around, a gap forms between the real criticalities of the current placement and the values used to calculate

the timing cost. Since a single temperature iteration might attempt tens of thousands to hundreds of

thousands of moves, the optimizations attempted towards the end of a temperature iteration can actually be

self-defeating.

Figure 5.2 illustrates this problem. Here, the placer believes that the timing of the system will improve if it

moves block a to reduce the delay on the critical path (a, c). However, this particular move accomplishes

this by adding delay to the previously non-critical path (a, b). While this change actually increases the

26

7/0/1.0 2/0/1.0

2/0/1.0

Timing Cost = (2+7+1)*1.0 + (1+2)*0.5 = 11.5 Timing Cost = (2+1+1)*1.0 + (7+2)*0.5 = 8.5

1/0/1.0

a b
c

1/5/0.5 2/5/0.5

a

b

c

7/5/0.5
2/5/0.5

1/0/1.0 1/0/1.0

Figure 5.2: Effect of Stale Criticality Information
Notation: delay / slack / criticality

0.2

0.4

0.6

0.8

1

1.2

1 11 21 31 41 51 61 71 81 91 101

Temperature Iterations

N
o

rm
al

iz
ed

 V
al

u
e

Wire Cost 1 STA/Temp

Critical Path Delay 1 STA/Temp

Wire Cost Update 1000 STA/Temp

Critical Path Delay 1000 STA/Temp

Figure 5.3: VPR Placement with Stale Criticality Information

critical path delay of the circuit from 10 to 11, the placement tool is unaware that this is a poor choice

because, following Equation 5.7, the timing cost goes down from 11.5 to 8.5. Unfortunately, this timing

cost is inaccurate because it only looks at the changes in delay on connections, without considering the

impact that this has on link criticality.

Assuming for the moment that algorithmic runtime can be ignored, the advantages of more up-to-date

criticality information is easily demonstrated. Figure 5.3 shows two placement runs of a benchmark

included with the VPR toolsuite, ex5p. These placement runs were performed on the single 4-LUT, single

flip-flop 4lut_sanitized architecture, also included with VPR. Shown in black is the wirelength and

estimated critical path delay calculated at the end of each temperature iteration when one static timing

analysis (STA) is performed per temperature iteration. Shown in gray are the results when 1000 static

27

Table 5.1. Benefits of VPR Placement with Frequent Static Timing Analysis for
Conventional MCNC Netlists (Default λ, Default Criticality Exponent)

Static Timing Analysis/Temp Normalized Wire Cost Normalized Routed CPD
1 1.000 1.000
10 1.029 0.904
100 1.030 0.857
1000 1.031 0.864
10000 1.036 0.869

timing analysis runs are performed per temperature iteration. For a point of reference, in the case of ex5p

this equates to roughly one static timing analysis for every 100 simulated annealing move attempts.

Clearly, while the wirelength costs for both placement runs, denoted in squares, are very similar and

smoothly decreasing, the critical path delay for the placement performed with the default settings, denoted

in black triangles, fluctuates considerably. This is particularly concerning since this oscillation persists

even as the placer nears the end of the annealing process. These oscillations represent a 20-30% swing in

critical path delay, with no apparent guarantee whether the placement will end with a faster or slower

circuit. This oscillation is likely due to the fact that, with stale criticality information, the placement tool

may not notice when it is increasing the critical path delay of the system. On the other hand, the placement

performed with frequent static timing analysis shows a much more stably decreasing critical path delay.

This behavior can be demonstrated on the full suite of netlists provided by VPR, 22 of the largest MCNC

benchmarks (11 combinational and 11 sequential circuits). Additional information regarding these

benchmarks can be found in Appendix A. Table 5.1 shows the results when the amount of static timing

analysis is increased during placement. Reported are the normalized geometric mean final placement

wirelength and post-routing critical path delay. Testing was performed on the 4lut_sanitized architecture

using a commonly used methodology [1]: minimum sized square arrays with 1.2x the minimum channel

width. Stated more plainly, these netlists were mapped to the smallest square array they could fit on and

routing was performed in two stages. The first phase of routing searched in a binary fashion to find the

minimum channel width architecture that the netlist would route successfully using the timing-driven

PathFinder-based router built into VPR. The second routing run used to produce the reported data

increased this channel width by 20% to provide a slightly lower-stress routing problem. This increase in

channel width is commonly performed to provide slightly more realistic results that better evaluate the

quality of the placement tool. This is done for two reasons. First, modern FPGA architectures generally

have a very large number of communication channels to increase their flexibility. Thus, designs are

typically placed onto systems with very low congestion. Second, this slightly relaxed routing problem

avoids the potentially very poor solutions that routers can produce on heavily congested systems. In this

type of situation, much of the subtle differences in the quality between different placements are lost

because the routed results include so many unpredictably circuitous paths.

28

These results were obtained with the A* optimizations [39] option turned off. Although beyond the scope

of this discussion, A* is meant to improve routing runtime, without impacting quality. This option was not

used because the aggressive implementation built into VPR increased the unpredictably of the routing.

As seen in Table 5.1, simply increasing the amount of static timing analysis resulted in a relatively clear

benefit to the average critical path delay. This advantage also seems to get larger given 1 to 100 static

timing analysis runs per temperature, peaking at a 0.857x speedup. Updating more frequently than that did

not seem to have measurable additional benefit in this testing. That said, while this performance benefit is

nice, there is the matter of placement runtime. Although CPU runtime is notoriously difficult to accurately

measure, in preliminary testing, placement with 100 static timing analysis runs per temperature iteration

took 20x longer to produce than default placement. This is because the time required to perform static

timing analysis quickly begins to eclipse the runtime of the other necessary calculations associated with

placement.

Aside from the issue of runtime, this performance benefit also seems to come with a small average wire

cost penalty. Thus, it is possible that these placements are unfairly taking advantage of the wider

communication channels used in this testing process to improve delay. However, as seen in Equation 5.1,

VPR has a parameter that can change the emphasis placed on wire cost versus critical path delay. This is

the λ term. In addition, as seen in Equation 5.6, VPR also has a parameter that changes the progressive

penalty placed on the highest criticality nets. This is the criticality exponent. While in some sense the

default parameters suggested by such a rigorously tested toolsuite such as VPR are an interesting starting

point, increasing the frequency of static timing analysis by such a large amount does change some of the

basic assumptions likely made during the authors’ tuning process. Thus, recalibrating the λ and criticality

exponent terms seems reasonable.

The testing process was repeated, this time both lowering the λ term to increase the emphasis placed on the

wire cost and increasing the criticality exponent to place more pressure on high criticality nets. The results

of this testing can be seen in Figure 5.4, with more details in Table 5.2. The default parameters used by

VPR are (λ=0.5, crit. exponent = 8). Therefore, the default values can be seen in Figure 5.4 indicated by

the black line marked with black circles – the progressive points from the top left to the bottom right

denoting 1 to 10,000 static timing analysis runs per temperature iteration. During this testing λ was swept

between 0.5 and 0.3 while the criticality exponent was swept between 8 and 12. Based upon the results of

this testing, VPR seems to obtain the best placements with the parameters (λ=0.3, crit. exponent = 12) and

10, 000 static timing analysis runs per temperature iteration. Unlike the results obtained with the default

parameters, these placements have a lower average wire cost (0.977x) despite their better critical path delay

(0.873x). However, this benefit comes with an even larger algorithmic complexity problem since it is

29

obtained with dramatically more static timing analysis. Although annealing with such a large amount of

static timing analysis is impractical in most situations, this does provide a point of reference to show what

is possible with more accurate timing information.

0.80

0.85

0.90

0.95

1.00

1.05

0.96 0.98 1.00 1.02 1.04 1.06 1.08

Normalized Wire Cost

N
o

rm
al

iz
ed

 C
ri

ti
ca

l P
at

h
 D

el
ay

Texp = 8, Lamdba = 0.5

Texp = 10, Lambda = 0.5

Texp = 12, Lambda = 0.5

Texp = 8, Lambda = 0.4

Texp = 10, Lambda = 0.4

Texp = 12, Lambda = 0.4

Texp = 8, Lamdba = 0.3

Texp = 10, Lambda = 0.3

Texp = 12, Lambda = 0.3

Figure 5.4: VPR Placement λ and Criticality Exponent Tuning for Conventional M CNC Netlists

The top left point of each line represents placement with 1 static timing analysis per temperature iteration. Each subsequent
point towards the bottom right denotes 10, 100, 1000 or 10,000 static timing analysis runs per temperature iteration.

30

Table 5.2: VPR Placement λ and Criticality Exponent Tuning for Conventional M CNC Netlists
 Combinational Circuits Only Sequential Circuits Only All Circuits

Crit Exp , λ STA Normalized
Wire Cost

Normalized
Routed CPD

Normalized
Wire Cost

Normalized
Routed CPD

Normalized
Wire Cost

Normalized
Routed CPD

8, 0.5 1 1.000 1.000 1.000 1.000 1.000 1.000
 10 1.020 0.919 1.038 0.890 1.029 0.904
 100 1.016 0.897 1.044 0.819 1.030 0.857
 1000 1.017 0.938 1.045 0.795 1.031 0.864
 10000 1.023 0.921 1.050 0.820 1.036 0.869

10, 0.5 1 1.010 0.974 0.996 0.978 1.003 0.976
 10 1.030 0.928 1.034 0.881 1.032 0.905
 100 1.021 0.920 1.042 0.819 1.031 0.868
 1000 1.025 0.894 1.044 0.810 1.034 0.851
 10000 1.022 0.892 1.050 0.801 1.036 0.845

12, 0.5 1 1.014 0.990 0.988 0.944 1.001 0.967
 10 1.026 1.004 1.028 0.892 1.027 0.946
 100 1.026 0.923 1.047 0.833 1.036 0.877
 1000 1.027 0.893 1.041 0.767 1.034 0.827
 10000 1.029 0.901 1.049 0.788 1.039 0.843

8, 0.4 1 0.988 0.994 0.975 0.988 0.981 0.991
 10 0.995 0.948 0.996 0.919 0.995 0.933
 100 0.994 0.906 1.000 0.851 0.997 0.878
 1000 0.994 0.937 1.010 0.827 1.002 0.880
 10000 0.993 0.923 1.003 0.834 0.998 0.877

10, 0.4 1 0.988 0.998 0.969 0.969 0.978 0.983
 10 0.999 1.004 0.994 0.955 0.997 0.979
 100 0.996 0.940 1.008 0.834 1.002 0.885
 1000 1.005 0.919 1.008 0.819 1.006 0.867
 10000 0.996 0.948 1.013 0.803 1.005 0.873

12. 0.4 1 0.993 0.993 0.966 0.945 0.979 0.969
 10 1.004 0.985 0.980 0.954 0.992 0.970
 100 1.004 0.915 1.007 0.841 1.005 0.877
 1000 1.001 0.887 1.013 0.837 1.007 0.861
 10000 1.003 0.939 1.010 0.806 1.007 0.870

8, 0.3 1 0.976 1.030 0.950 0.991 0.963 1.010
 10 0.977 0.960 0.960 0.974 0.968 0.967
 100 0.978 0.947 0.967 0.874 0.972 0.910
 1000 0.975 0.931 0.963 0.862 0.969 0.896
 10000 0.977 0.935 0.966 0.874 0.971 0.904

10, 0.3 1 0.979 1.001 0.952 1.026 0.965 1.013
 10 0.978 0.968 0.958 0.985 0.968 0.977
 100 0.982 0.942 0.965 0.868 0.973 0.904
 1000 0.980 0.921 0.976 0.844 0.978 0.882
 10000 0.984 0.932 0.966 0.833 0.975 0.881

12, 0.3 1 0.979 1.035 0.953 1.027 0.966 1.031
 10 0.980 0.989 0.962 0.978 0.971 0.983
 100 0.981 0.941 0.962 0.872 0.972 0.906
 1000 0.983 0.931 0.965 0.848 0.974 0.888
 10000 0.985 0.924 0.968 0.825 0.977 0.873

31

0.80

0.85

0.90

0.95

1.00

1.05

1 10 100 1000 10000

STA per Temp Iteration

N
o

rm
al

iz
ed

 W
ir

e
C

o
st

 o
r

R
o

u
te

d
 C

P
D

Comb. Wire Cost
Comb. Routed CPD
Seq. Wire Cost
Seq. Routed CPD

Figure 5.5: Discrepancy in VPR Placement for Conventional Combinational and
Sequential MCNC Netlists, (λ = 0.3, Criticality Exponent = 12)

5.3: Characteristics of Registered Applications

One importation observation should be noted before moving on. While essentially all of the benchmarks

benefited from the increased accuracy in timing information afforded by a larger amount of static timing

analysis during placement, as seen in Figure 5.5 the sequential circuits seemed to respond much more

strongly than the purely combinational netlists. Denoted in grey triangles, the improvement in routed

critical path delay for the sequential benchmarks is 0.825x while, denoted in black triangles, the

improvement for the combinational circuits is 0.924x.

One possible explanation for this phenomenon is that the registers in these sequential benchmarks create

some intrinsic characteristic that causes the timing of the system to change much more quickly for these

circuits during the annealing process. This would make increasing the accuracy of the timing information

during placement far more important; the higher the accuracy, the better the results. Conversely, it can be

thought that placement performed in the classical manner can be far more detrimental to sequential circuits.

Furthermore, it follows that increasing the number of registers in a netlists may cause this problem to get

worse. This is a potentially very significant concern and a concept central to this dissertation.

32

NOT FF

Figure 5.6: Timing Implications of Combinational Logic vs. Registers

A simple thought experiment can illustrate this issue. Consider the combinational circuit on the left of

Figure 5.6. If this device has unit-length communication wires, there is a large envelope of locations in

which the placer can put the inverter that does not change the timing of the circuit. Delay is simply shifted

from the input of the inverter to the output. However, the criticality of all of the nets and the overall timing

situation of the system as a whole does not change. Thus, as long as the placer does not elect to move the

inverter outside of this window there is very little need to update the timing information. However, for the

sequential circuit on the right of Figure 5.6 this is not the case. Here, there is a very small window in which

the flip-flop can move that does not make the critical path delay worse. For that matter, even moving the

flip-flop to its alternate location changes the criticality of the input and output nets. As will be discussed in

the following sections, this makes two issues very important. First, accurately tracking timing information

is critical for registered circuits. Second, this information must be carefully applied to obtain high quality

placements.

5.4: Registered Netlists & Placement Stability

At first glance, the discussion in Section 5.3 would seem to indicate that computational complexity is the

only hurdle for conventional placement with frequent static timing analysis. Also, following the former

line of thought, one would expect that it would be highly beneficial to increase the amount of static timing

analysis as the number of registers in prospective circuits goes up. However, in practice, heavily registered

circuits can actually uncover a unique kind of degenerate situation during this kind of placement. That is,

conventional placement with frequent static timing analysis can induce serious annealing convergence

problems for these types of netlists. Furthermore, this problem can get worse as the frequency of static

timing analysis is increased.

33

4/1.0 2/0.5 1/1.0 5/0.5

Timing Cost = 4*1.0 + 2*0.5 = 5.0 Timing Cost =1*1.0 + 5*0.5 = 3.5

3/0.53/1.0
Timing Cost = 3*1.0 + 3*0.5 = 4.5X

2/1.0 4/0.5

Timing Cost =2*1.0 + 4*0.5 = 4.0X

Figure 5.7: Registered Netlists & Placement Oscillation
Notation on nets: delay / criticality

As shown in Figure 5.7, consider what happens during the placement of a very simple registered circuit.

For simplicity sake, the placement of the I/O pins will be fixed and the annealer will only try to find the

best location for the register. In this example, the initial placement shown in the top left sets the register

slightly off center with regards to the input and output pins. Thus, the input net is 100% critical and the

output net is 50% critical. VPR first performs static timing analysis to obtain criticality information. The

placer then performs a series of annealing moves based upon this information, and then static timing

analysis is repeated to obtain new criticality values. At this point the entire process begins again. Thus,

after the net criticalities of this initial placement are determined, the annealer is ready to consider random

swaps. Figure 5.7 shows three new possible locations for the register. The bottom left is a placement with

the register in the optimal location, the bottom right is a solution that is equally unbalanced in the opposite

direction, and the top right shows an even less balanced solution. Unfortunately, VPR will tend toward the

arrangement on the top right which has the worst possible critical path delay.

This occurs because the placement tool evaluates new possible locations for the register using old net

criticalities. In a similar situation as the example in Figure 5.2, this causes the placer to try and remove as

much delay from slow connections as possible. To compensate, this could mean adding as much “cheap”

delay as possible to formerly fast connections. This can cause the placement tool to favor increasingly

extreme placements, as opposed to better, more moderate solutions. Figure 5.7 shows that, based upon the

timing cost of the three alternate placements, the annealer will tend towards the worst solution.

While this can also occur with combinational circuits (it is possible to create a similar situation for the

example shown in Figure 5.2), this becomes a larger concern and affects the overall stability of placement

for registered netlists because, as discussed earlier, the criticalities of the nets in a registered circuit can

change much more rapidly during placement as compared to a purely combinational netlist. Thus, it is far

more likely that the placer will find these degenerate situations while placing heavily registered netlists.

34

Furthermore, as soon as the system performs another timing analysis, the placement problem will reverse

and the register will tend to head for the extreme solution in the other direction. In some sense, the register

will try to occupy two very different locations depending upon which net it believes is critical. As timing

analysis is performed more often, the preferred location of the register will oscillate faster.

This instability in the “optimal” location for registers presents a very difficult, constantly moving target to

the annealer and can destabilize the system enough to cause the placement to not converge. This was less

of a concern under the classical placement scheme with infrequent static timing analysis because although

the placer was not necessarily optimizing towards the correct goal, at least the guiding forces in the

placement within a given temperature iteration were consistent. In that way it could always make forward

progress, albeit to a potentially less than optimal destination.

The problem with placement convergence can be demonstrated by repeating the static timing analysis

testing on heavily registered circuits. As seen in Appendix A, all 22 original MCNC benchmarks were

converted into depth=1 versions. That is, each circuit was pipelined, C-slowed, and Leiserson/Saxe

retimed such that the maximum logical depth of the circuit was a single LUT. To most faithfully simulate

the modifications that an application developer might perform to optimize a netlist for better throughput,

the minimum amount of pipelining and C-slowing was applied to obtain a depth of one LUT.

Figure 5.8 shows two placement runs of the depth=1 ex5p netlist. Just as in the example shown in Figure

5.3, placement was performed with both the default one static timing analysis per temperature iteration

(shown in black) and 1000 static timing analysis runs per temperature iteration (shown in gray). For this

testing the λ and criticality exponent parameters were left at their default values (λ = 0.5, crit. exponent =

8). Looking at this graph, the placement performed with very frequent timing analysis clearly suffers from

convergence issues. First, although the amount of static timing analysis was increased to improve the

accuracy of the timing information, the critical path delay for this supposedly enhanced annealing approach

never truly improves beyond that of the initial placement. This is most likely due to the tendency for the

annealer to pull registers from one degenerate solution to another.

Of even greater concern, this oscillation also seems to affect the basic functionality of the annealer –

wirelength optimization. The criticality exponent used by VPR begins at one and is slowly increased

during the placement process. Judging by the sudden change in wire cost optimization that occurs around

temperature iteration 45, when the system begins to seriously optimize for delay by increasing the

criticality exponent, the entire placement process is disrupted. Since the wire cost of the final placement

performed with frequent static timing analysis is approximately two to three times that of the results from

placement with the default parameters, not only does this placement have an extremely high critical path

35

delay, it will likely fail to route on any architecture with a reasonable channel width. Thus, although a user

may attempt to improve critical path delay by updating timing information more often, they may end up

derailing the annealer entirely instead.

The instability of placement with frequent timing analysis for all of the depth = 1 MCNC netlists is shown

in Table 5.3. As with the earlier testing, the netlists were packed with T-VPack, placed onto minimum-

sized 4lut_sanitized architectures with 1.2x the minimum channel width as found by default VPR and

routed using the built-in VPR timing-driven routing tool with A* disabled. Here, the problems began as

soon as the amount of timing analysis is increased beyond the default amount. While performing 10 static

timing analysis runs per temperature iteration improves the routed critical path delay for most of the

netlists, 3 fail to route due to annealing convergence problems. This issue only gets worse as the amount of

0.2

0.4

0.6

0.8

1

1.2

1 11 21 31 41 51 61 71 81 91 101 111

Temperature Iterations

N
o

rm
al

iz
ed

 V
al

u
e

Wire Cost 1 STA/Temp

Critical Path Delay 1 STA/Temp

Wire Cost 1000 STA/Temp

Critical Path Delay 1000 STA/Temp

Figure 5.8: VPR Placement Convergence Problem with Depth = 1 MCNC Netlist

Table 5.3. Instability of VPR Placement with Frequent Static Timing Analysis for Depth = 1 MCNC
Netlists (Default λ, Default Criticality Exponent)

Static Timing Analysis/Temp Normalized Wire Cost Normalized Routed CPD
1 1.000 1.000
10 1.053* 0.952* (3 failed to route)
100 1.031* 0.749* (5 failed to route)
1000 1.106* 0.682* (16 failed to route)

* Indicates that some of the netlists failed to route on the 1.2x minimum channel width architecture.
The wire and routed critical path delay shown exclude the failed netlists.

36

static timing analysis is increased. 100 static timing analysis runs per temperature iteration cause 5 netlists

to have problems and 1000 causes ¾ of the tested netlists to fail routing.

Thus, to allow the placement tool to take advantage of more up-to-date timing information, something must

be done to dampen the oscillations in the system. Since these oscillations are caused by the timing

optimizations performed by the annealer, reducing the emphasis on timing considerations could solve some

of these problems. While in some sense this counteracts the entire purpose of increasing the frequency of

static timing analysis, to be completely fair every possibility should be explored. Of the placement

parameters available, a user could either reduce λ to emphasize wirelength more heavily or reduce the

criticality exponent to lessen the impact of highly critical nets. In a similar manner to the testing used for

the conventional lightly registered benchmarks, testing for the depth = 1 circuits was repeated varying both

the λ and criticality exponent.

The first phase of testing, shown in Figure 5.9 with details in Table 5.4, investigated the possibility of

reducing the criticality exponent from 8 to 1. For a given λ and criticality exponent, the amount of static

timing analysis was increased until two or more netlists failed to route on the provided architecture. The

testing performed in Table 5.3 is shown in Figure 5.9 with the black circle at (1.00, 1.00). Since

performing 10 static timing analysis runs per temperature iteration caused three of the netlists to fail to

route, no further points are shown for the default values of (λ = 0.5, crit. exponent = 8). The next test kept

the criticality exponent the same, but reduced λ (λ = 0.4, crit. exponent = 8) in the hope that this would

achieve better results. Shown in black squares, these parameters indeed performed much better. However,

although performing more static timing analysis runs per temperature iteration improved critical path delay

significantly, it also encountered some convergence problems that increased the average normalized wire

cost. This caused one of the netlists to fail to route at 1,000 static timing analysis runs per temperature

iteration and three netlists to fail at 10,000.

Therefore, the next test reduced λ again (λ = 0.3, crit. exponent = 8). Indicated in Figure 5.9 with black

triangles, although the average wire cost for routable placements performing anywhere between 1 to 10,000

static timing analysis runs per temperature iteration remains below 1.00, one of the placements obtained

performing 1,000 static timing analysis runs per temperature iteration failed to route. Thus, just as a

precaution (λ = 0.2, crit. exponent = 8) was tested next. These parameters produced routable placements

for all of the tests. However, as indicated with black diamonds, these parameters also begin to trade

benefits in critical path delay for an average normalized wire cost far below 1.00. Thus, the best results

using a criticality exponent of 8 can probably be obtained with λ = 0.3 and 10,000 static timing analysis

runs per temperature iteration.

37

0.50

0.60

0.70

0.80

0.90

1.00

1.10

0.85 0.90 0.95 1.00 1.05 1.10

Wire Cost

N
o

rm
al

iz
ed

 C
ri

ti
ca

l P
at

h
 D

el
ay

Texp = 8, Lamdba = 0.5

Texp = 8, Lambda = 0.4

Texp = 8, Lambda = 0.3

Texp = 8, Lambda = 0.2

Texp = 4, Lambda = 0.5

Texp = 4, Lambda = 0.4

Texp = 4, Lamdba = 0.3

Texp = 2, Lamdba = 0.5

Texp = 2, Lamdba = 0.4

Texp = 2, Lamdba = 0.3

Texp = 1, Lambda = 0.6

Texp = 1, Lambda = 0.5

Texp = 1, Lamdba = 0.4

Figure 5.9: VPR Placement λ and Criticality Exponent Tuning for Depth = 1 MCNC Netlists, Phase 1
“X” denotes that a single netlist failed to route on the 1.2x minimum channel width architecture. The wire and routed

critical path delay shown exclude the failed netlist. Results with more than one unroutable netlist are excluded entirely.

The next round of testing began back at λ = 0.5, but reduced the criticality exponent to 4. The testing

methodology used to explore the benefits of reducing λ for a criticality exponent of 8 was repeated. The

best results with a criticality exponent of 4 that had an average wire cost below 1.00 were obtained with λ =

0.3 and 10,000 static timing analysis runs per temperature iteration. Similar testing was repeated for

criticality exponents of 2 and 1. Based on these results, a second phase of testing, shown in Figure 5.10

and Table 5.5 explored the possibilities of reducing λ further, but increasing the criticality exponent. A

similar testing methodology was used to find the best critical path delay results for each criticality exponent

from 8 to 12. Like the previous testing, this focused on finding parameters that produced placements with

an average normalized wire cost below 1.0.

These two rounds of testing showed that VPR obtained the best placements with the parameters (λ=0.3,

crit. exponent = 8) and 10,000 static timing analysis runs per temperature iteration. Although very slow

and potentially flirting with instability in the placement, this showed enormous potential. The geometric

mean routed critical path delay was improved by 0.618x while the geometric mean wire cost was improved

by 0.984x. Furthermore, this testing also corroborates the supposition made in Section 5.3 regarding the

38

0.50

0.60

0.70

0.80

0.90

1.00

1.10

0.85 0.90 0.95 1.00 1.05 1.10

Wire Cost

N
o

rm
al

iz
ed

 C
ri

ti
ca

l P
at

h
 D

el
ay

Texp = 8, Lamdba = 0.5

Texp = 8, Lambda = 0.4

Texp = 8, Lambda = 0.3

Texp = 8, Lambda = 0.2

Texp = 10, Lambda = 0.4

Texp = 10, Lambda = 0.3

Texp = 10, Lambda = 0.2

Texp = 12, Lambda = 0.4

Texp = 12, Lambda = 0.3

Texp = 12, Lambda = 0.2

Figure 5.10: VPR Placement λ and Criticality Exponent
Tuning for Depth = 1 MCNC Netlists, Phase 2

“X” denotes that a single netlist failed to route on the 1.2x minimum channel width architecture. The wire and routed
critical path delay shown exclude the failed netlist. Results with more than one unroutable netlist are excluded entirely.

way that registers affect circuit timing during placement. As seen in Figure 5.11, the large discrepancy

between the benefits seen by combinational and sequential circuits has largely evaporated. This is likely

because both sets of netlists now contain a large number of registers, making all of them relatively sensitive

to stale timing information.

Taking a step back for a moment, the difficulties encountered producing high-quality timing-driven

placements, particularly for pipelined netlists, should not be surprising. Placement for pipelined netlists has

been a known difficult problem for some time. For example, the deeply pipelined radio cross-correlator in

[41] was laboriously hand-placed by the author to achieve good performance. This painstaking process

even inspired the authors of [4] to develop a specific tool to assist in manual pipelining and placement. The

extreme difficulty of such an endeavor, given the scale of even relatively small FPGA designs, is likely

indicative of the complexities these netlists present to the design flow.

39

Table 5.4: VPR Placement λ and Criticality Exponent Tuning for Depth = 1 MCNC Netlists, Phase 1
 Combinational Circuits Only Sequential Circuits Only All Circuits

Crit Exp , λ STA Norm.
Wire Cost

Norm.
Routed CPD

Norm.
Wire Cost

Norm.
Routed CPD

Norm.
Wire Cost

Norm.
Routed CPD

8, 0.5 1 1.000 1.000 1.000 1.000 1.000 1.000
 10 1.040 0.982 1.071* 0.911* (3) 1.053* 0.952* (3)
 100 1.016 0.767 1.060* 0.719* (5) 1.031* 0.749* (5)
 1000 1.176* 0.687* (9) 1.072* 0.680* (7) 1.106* 0.682* (16)

8, 0.4 1 0.969 1.005 0.936 0.990 0.952 0.997
 10 0.990 0.882 1.027 0.846 1.008 0.864
 100 0.995 0.783 1.065* 0.740* (1) 1.028* 0.762* (1)
 1000 1.047 0.707 1.084* 0.646* (1) 1.065* 0.677* (1)
 10000 1.089 0.736 1.112* 0.585* (3) 1.099* 0.668* (3)

8, 0.3 1 0.939 1.011 0.883 1.055 0.911 1.033
 10 0.947 0.885 0.962 0.907 0.955 0.896
 100 0.942 0.835 0.978 0.717 0.960 0.774
 1000 0.963 0.733 1.014* 0.669* (1) 0.988* 0.702* (1)
 10000 0.952 0.628 1.018 0.607 0.984 0.618

8, 0.2 1 0.900 1.005 0.861 1.157 0.880 1.078
 10 0.912 0.926 0.883 0.950 0.897 0.938
 100 0.910 0.808 0.884 0.841 0.897 0.824
 1000 0.909 0.722 0.911 0.772 0.910 0.747
 10000 0.912 0.706 0.908 0.687 0.910 0.696

4, 0.5 1 0.999 0.942 1.007 1.020 1.003 0.980
 10 1.022 0.823 1.111* 0.835* (1) 1.061* 0.828* (1)
 100 1.008 0.688 1.079* 0.624* (5) 1.033* 0.664* (5)

4, 0.4 1 0.950 0.901 0.945 1.014 0.947 0.956
 10 0.964 0.815 1.003 0.862 0.983 0.838
 100 0.959 0.741 1.005 0.693 0.982 0.717
 1000 0.965 0.682 1.054 0.652 1.008 0.666
 10000 0.966 0.689 1.062 0.665 1.013 0.677

4, 0.3 1 0.914 0.966 0.892 1.052 0.903 1.008
 10 0.923 0.828 0.922 0.861 0.923 0.844
 100 0.926 0.738 0.925 0.716 0.926 0.726
 1000 0.924 0.715 0.942 0.708 0.933 0.712
 10000 0.923 0.755 0.946 0.664 0.934 0.708

2, 0.5 1 0.972 0.902 0.984 0.932 0.978 0.917
 10 0.975 0.817 1.014 0.751 0.994 0.783
 100 0.980 0.719 1.008* 0.668* (2) 0.993* 0.695* (2)

2, 0.4 1 0.931 0.893 0.915 0.932 0.923 0.913
 10 0.933 0.821 0.949 0.786 0.941 0.804
 100 0.936 0.784 0.943 0.723 0.939 0.753
 1000 0.940 0.793 0.950 0.741 0.945 0.766
 10000 0.936 0.765 0.949 0.723 0.942 0.744

2, 0.3 1 0.904 0.936 0.878 1.018 0.891 0.976
 10 0.906 0.850 0.888 0.942 0.897 0.895
 100 0.905 0.813 0.897 0.823 0.901 0.818
 1000 0.908 0.850 0.889 0.807 0.899 0.828
 10000 0.906 0.837 0.897 0.793 0.901 0.815

1, 0.6 1 1.003 0.891 1.018 0.884 1.011 0.888
 10 0.996 0.845 1.013* 0.810* (1) 1.004* 0.828* (1)
 100 0.994 0.876 1.011* 0.867* (2) 1.002* 0.872* (2)

1, 0.5 1 0.956 0.909 0.953 0.879 0.955 0.894
 10 0.956 0.884 0.961 0.831 0.959 0.857
 100 0.955 0.860 0.958 0.827 0.956 0.844
 1000 0.958 0.875 0.950* 0.806* (1) 0.954* 0.842* (1)
 10000 0.957 0.845 0.958* 0.810* (2) 0.957* 0.829* (2)

1, 0.4 1 0.921 0.942 0.909 0.902 0.915 0.922
 10 0.920 0.899 0.916 0.848 0.918 0.873
 100 0.926 0.882 0.913 0.876 0.920 0.879
 1000 0.923 0.889 0.917 0.875 0.920 0.882
 10000 0.925 0.909 0.911 0.882 0.918 0.895

*Indicates that some of the netlists failed to route on the 1.2x minimum channel width architecture provided. The number of
failed netlists is indicated in parenthesis. The wire and routed critical path delay shown exclude the failed netlists.

40

Table 5.5: VPR Placement λ and Criticality Exponent Tuning for Depth = 1 MCNC Netlists, Phase 2
 Combinational Circuits Only Sequential Circuits Only All Circuits

Crit Exp , λ STA Norm.
Wire Cost

Norm.
Routed CPD

Norm.
Wire Cost

Norm.
Routed CPD

Norm.
Wire Cost

Norm.
Routed CPD

8, 0.5 1 1.000 1.000 1.000 1.000 1.000 1.000
 10 1.040 0.982 1.071* 0.911* (3) 1.053* 0.952* (3)
 100 1.016 0.767 1.060* 0.719* (5) 1.031* 0.749* (5)
 1000 1.176* 0.687* (9) 1.072* 0.680* (7) 1.106* 0.682* (16)

8, 0.4 1 0.969 1.005 0.936 0.990 0.952 0.997
 10 0.990 0.882 1.027 0.846 1.008 0.864
 100 0.995 0.783 1.065* 0.740* (1) 1.028* 0.762* (1)
 1000 1.047 0.707 1.084* 0.646* (1) 1.065* 0.677* (1)
 10000 1.089 0.736 1.112* 0.585* (3) 1.099* 0.668* (3)

8, 0.3 1 0.939 1.011 0.883 1.055 0.911 1.033
 10 0.947 0.885 0.962 0.907 0.955 0.896
 100 0.942 0.835 0.978 0.717 0.960 0.774
 1000 0.963 0.733 1.014* 0.669* (1) 0.988* 0.702* (1)
 10000 0.952 0.628 1.018 0.607 0.984 0.618

8, 0.2 1 0.900 1.005 0.861 1.157 0.880 1.078
 10 0.912 0.926 0.883 0.950 0.897 0.938
 100 0.910 0.808 0.884 0.841 0.897 0.824
 1000 0.909 0.722 0.911 0.772 0.910 0.747
 10000 0.912 0.706 0.908 0.687 0.910 0.696

10, 0.4 1 0.968 1.005 0.930 1.070 0.949 1.037
 10 0.994 0.898 0.992 0.936 0.993 0.917
 100 0.991 0.818 1.063* 0.764* (2) 1.026* 0.793* (2)

10, 0.3 1 0.935 0.988 0.889 1.152 0.912 1.067
 10 0.951 0.898 0.960 0.927 0.955 0.912
 100 0.946 0.795 0.984 0.757 0.965 0.775
 1000 0.963 0.690 0.997* 0.616* (1) 0.980* 0.654* (1)
 10000 0.969 0.675 1.003 0.585 0.986 0.629

10, 0.2 1 0.900 1.049 0.861 1.154 0.880 1.100
 10 0.916 0.904 0.885 0.988 0.901 0.945
 100 0.923 0.910 0.896 0.830 0.910 0.869
 1000 0.919 0.746 0.925 0.788 0.922 0.767
 10000 0.923 0.720 0.926 0.661 0.925 0.690

12. 0.4 1 0.966 1.031 0.919 1.079 0.942 1.055
 10 0.990 0.919 0.997 0.980 0.994 0.949
 100 0.988 0.846 1.034* 0.845* (1) 1.011* 0.846* (1)
 1000 1.064 0.748 1.070* 0.633* (2) 1.067* 0.694* (2)

12, 0.3 1 0.939 1.029 0.895 1.067 0.917 1.048
 10 0.953 0.912 0.942 0.893 0.948 0.903
 100 0.955 0.861 0.987* 0.724* (1) 0.971* 0.793* (1)
 1000 0.978 0.648 0.995 0.662 0.987 0.655
 10000 0.995 0.681 0.997 0.625 0.996 0.652

12, 0.2 1 0.910 1.035 0.856 1.162 0.882 1.096
 10 0.925 0.975 0.891 1.038 0.908 1.006
 100 0.919 0.888 0.899 0.918 0.909 0.903
 1000 0.921 0.678 0.932 0.746 0.926 0.711
 10000 0.930 0.674 0.925 0.656 0.927 0.665

* Indicates that some of the netlists failed to route on the 1.2x minimum channel width architecture provided. The number of failed
netlists is indicated in parenthesis. The wire and routed critical path delay shown exclude the failed netlists.

41

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1 10 100 1000 10000

STA per Temp Iteration

N
o

rm
al

iz
ed

 W
ir

e
C

o
st

 o
r

R
o

u
te

d
 C

P
D

Comb Delta Fwire
Comb Delta R CPD
Seq Delta Fwire
Seq Delta R CPD

Figure 5.11: Similarity in VPR Placement for Depth = 1 Combinational and
Sequential MCNC Netlists, (λ = 0.3, Criticality Exponent = 8)

5.5: Efficient and Stable Placement

Looking back at the problems encountered during placement, two primary issues come forward. First, to

produce high quality placements the annealer must have up-to-date criticality information. How can this be

obtained without resorting to the computationally impractical solution of performing a full static timing

analysis after each move? Second, worrisome instability develops during the annealing process when fresh

timing information is used during the placement of registered netlists. What can be done to stabilize the

system?

Current timing information can be obtained with low computational effort by making simple incremental

changes to link slack. Although the methodology outlined in this section can only, in the worst case,

estimate criticality, it does provide enough information to the placement tool to reveal shifts in timing

significance. While nothing can replace a full static timing analysis performed at the beginning of each

temperature iteration, this approach can help maintain the relevance of criticality information in the

meantime by reflecting changes in link delay on link slack.

Each time an annealing move is made, VPR’s timing-driven placement algorithm already evaluates the

change in link delay for all sources and sinks connected to the migrated blocks. This is seen in Equation

5.3. However, as seen in Equations 5.9 and 5.10, if this change in link delay is subtracted from the link

42

slack, an estimated source/sink criticality for the new placement can be easily recalculated. While less

accurate than a complete timing analysis, this only requires two additional add/subtracts and one

multiplication/division to preserve the majority of the accuracy of the netlist’s criticality information.

),,,()1,,,(),,,(lkjiDelaylkjiSlacklkjiSlack ∆−−= (5.9)

)(

),,,(
1),,,(

max kD

lkjiSlack
lkjiyCriticalit −= (5.10)

The top left and top right illustrations of Figure 5.12 show this technique in action. Here, the example from

Figure 5.2 is revisited, but now the placement tool incrementally updates the slack and link criticality

information. The suggested move decreases the delay on (a, c) by six units from 7 to 1 and increases the

delay on (a, b) by six units from 1 to 7. To evaluate the quality of the new placement, this change is

reflected on the links’ slacks. Since (a, c) was on the critical path, the original slack was 0. Thus, the six

unit drop in delay can be accounted for and the new slack on this link becomes (0 - (-6) = 6). This updated

slack can then be easily turned into a new criticality. In this case, the system still believes that the critical

path is 10 units, so the new criticality of (a, c) is 0.4. Similarly the six unit increase in delay on (a, b) can

be accounted for by updating the slack to (5 - 6 = -1). This makes the criticality of this link 1.1. Finally,

the timing cost of this new placement can be computed based upon the incrementally updated timing

information. From this the annealer can now see that the new placement is not as good as the previous one.

Although this methodology does effectively address the large-scale problem of placement in the face of

inaccurate timing information, it should be noted that this technique cannot guarantee perfect criticality

7/0/1.0

If slack updated incrementally, then link criticality
recalculated:
Timing Cost = (2+1)* 1.0 + 7*1.1 + 1*0.4 + 2*0.5 = 12.1
Still believes critical path is 10

2/0/1.0

2/0/1.0

Initial placement & static timing analysis:
Timing Cost = (2+7+1)*1.0 + (1+2)*0.5 = 11.5
Critical Path Delay = 10

1/0/1.0

a b

c

1/5/0.5 2/5/0.5

a

b

c

7/-1/1.1
2/5/0.5

1/6/0.4 1/0/1.0

2/0/1.0

If full timing analysis is run instead:
Timing Cost =(2+7+2)* 1.0 + (1+1)*0.36 = 11.72
Critical Path = 11

a

b

c

7/0/1.0

1/7/0.36 1/7/0.36

2/0/1.0

Figure 5.12: Incremental Slack, Criticality Updating and Accuracy

43

data – that would require true static timing analysis. The bottom diagram of Figure 5.12 shows the link

slack, criticality and timing cost of the new placement as calculated with exact static timing analysis

information. Comparing the details of calculations performed for the two techniques, there are at least two

small problems. First, the incremental slack approach does not realize that the current critical path delay

for the system has changed. Second, the emphasis placed on the links between blocks b and c and the

output pads is incorrect. However, the suggested estimates do track well, especially considering the

extremely low computational requirements. Furthermore, the accuracy of this technique is particularly high

for heavily registered circuits. The problem of inaccuracy mainly stems from the fact that this approach

only updates the criticality information of the nets directly connected to the moved block. However, the

timing of the links between blocks b and c and the output pads changes because b and c are logic blocks. If

these were registers, the criticality of the connections to the output pads would not change unless the

critical path delay of the entire system changed. Thus, because the computation is broken into so many

separate pieces in a heavily registered netlist, this technique largely correctly calculates link criticality, at

least relative to the critical path delay found during the last static timing analysis.

However, absolutely perfect timing information is not necessarily desirable. Rather, relative criticality is

far more important. Figure 5.13 revisits the registered example from Figure 5.7, but calculates the timing

cost before and after a move with completely correct timing information. Using this methodology, the

placement tool does shy away from the more unbalanced solution in the top right, but still tends towards the

equally unbalanced solution on the bottom right. The optimal solution on the bottom left is not chosen

because both the input and output nets are critical. Although the critical path delay is lower, two critical

links become more expensive as compared to one critical and one semi-critical connection. To prevent

this, the placement tool must take into account the relative criticality of links before and after each move.

Figure 5.14 again calculates the timing cost before and after a move, but now uses the old critical path

delay to calculate the criticality of links in the new placement. This technique allows the system to realize

4/1.0 2/0.5 1/0.2 5/1.0

Timing Cost = 4*1.0 + 2*0.5 = 5.0 Timing Cost =1*0.2 + 5*1.0 = 5.2

3/1.03/1.0
Timing Cost = (3 + 3)*1.0 = 6.0 X

2/0.5 4/1.0

Timing Cost = 2*0.5 + 4*1.0 = 5.0

X

Figure 5.13: Problems with Perfect Timing Information

44

4/1.0 2/0.5 1/0.25 5/1.25

Timing Cost = 4*1.0 + 2*0.5 = 5.0 Timing Cost =1*0.25 + 5*1.25 = 6.5

3/0.753/0.75
Timing Cost = (3 + 3)*0.75 = 4.5 X

2/0.5 4/1.0

Timing Cost = 4*1.0 + 2*0.5 = 5.0

X

Figure 5.14: Calculating Relative Change in Criticality

that reducing the overall critical path delay can be far more important, even if this means creating multiple

highly critical connections. This type of behavior is naturally built into the incremental update technique.

This discussion leads directly to the second issue – what is the source of the instability in the classical

placement technique for registered circuits? Essentially, the problems encountered were caused by the fact

that even when the tool updated its timing information, it did not account for the change in criticality before

and after a given move. This created a mismatch between the real criticalities in the new placement and the

criticalities used to calculate the cost of the new placement. This caused the system to unwittingly prefer

unbalanced delay, which opened the door for potential oscillation. However, since the incremental

criticality updating technique described above makes it possible to evaluate relative timing information

after every single move, the placement tool can compare the cost of the old placement, calculated with the

old criticalities, with the cost of the new placement, calculated with the new relative criticalities. This leads

to subtle, yet extremely importance difference in the cost function.

More formally, given the incremental slack update approach in Equations 5.9 and 5.10, the new criticality

of each source/sink link is determined after a move based upon the critical path delay of the system found

at the beginning of the temperature iteration. Since the delay of each source/sink pair is updated after each

move, the timing cost of a given placement can be defined as the summation of all source/sink delays

multiplied by their current estimated criticality. This is shown in Equations 5.11 and 5.12

 ExpCritlkjiyCriticalitlkjiDelaylkji _),,,(*),,,(),,,(tTiming_Cos = (5.11)

 ∑=),,,(tTiming_Cos),t(Timing_Cos lkjilk (5.12)

45

FF

Balanced Delay
Delayx � FF � Delayx
Critical Path = Delayx

Imbalanced, Contracted Delay
Delayy � FF � Delayz
Critical Path = Delayz

Delayz > Delayx, but 2 * Delayx > Delayy + Delayz

FF

Figure 5.15: Example of Contraction and Imbalance

Taking a look at how this affects the way changes between two placements actually manifest, the timing

cost delta is now calculated in an inherently different way. This is shown in Equation 5.13. Here, the

previous delay is multiplied by the previous criticality and the new delay is multiplied by the new

criticality. This is quite different from the timing cost delta shown in Equation 5.3 and leans heavily

towards the most accurate algorithm suggested by the example in Figure 5.14.

−
−

−

=∆

ExpCritExpCrit lkjiyCriticalit

lkjiDelay

lkjiyCriticalit

lkjiDelay
lkji

__)1,,,(

*)1,,,(

),,,(

*),,,(
),,,(TC (5.13)

5.6: Delay Imbalance and Optimality

One key feature of the approach described above is that it removes the tendency of the system to prefer

unbalanced placements. However, the examples shown thus far have made some assumptions regarding

the underlying architecture. If a netlist is placed on a device that provides different resources, this can

change the behavior of the suggested technique and may cause the annealer to favor unbalanced

placements.

For example, the scenario in Figure 5.14 assumes that as long as the register is placed somewhere between

the input and output pins, the total amount of delay on the input and output nets summed together will be

the same regardless of the balance between these two connections. That is, to make one link slower,

another link must get faster by an equal amount. While this is generally true, this is not necessarily the

case, particularly in devices with longer wire segments. This difference in total delay along a path can

affect the way the placer deals with balanced versus unbalanced connections.

46

Consider the two placements in Figure 5.15 on an architecture with length-four wires. The placement on

the left is faster because the delay between the input and output connections is balanced. However, the

annealer may prefer the placement on the right because the total delay on the input and output nets is

slightly smaller. Rather than using four full wires, the placement on the right uses three full wires and a

short length-one stub. The timing cost for the two placements is shown in Equation 5.14 and Equation

5.15.

ExpCrit
x

x
CPD

Delay
Delay

_

*2Cost Timing balanced

= (5.14)

ExpCrit
z

z

ExpCrit
y

y
CPD

Delay
Delay

CPD

Delay
Delay

__

ImbalancedCost Timing

+

= (5.15)

Comparing these two equations and simplifying, the annealer will prefer the unbalanced placement if

Equation 5.16 is true. Thus, some obvious questions are: 1) for what values of Delayy and Delayz does this

relationship hold, and 2) how much slower can Delayz be compared to Delayx?

)1_()1_()1_(*2 +++ +> ExpCrit
z

ExpCrit
y

ExpCrit
x DelayDelayDelay (5.16)

To answer these questions, the three delay terms can be related to each other by incorporating two

additional variables: a contraction term and a balance term. As seen in Equation 5.17, the contraction term

defines how much smaller the total delay of the unbalanced placement is compared to the balanced

placement. As seen in Equation 5.18, the balance term determines how much larger Delayz is compared to

Delayy.

 xzy DelaynContractioDelayDelay *2*=+ (5.17)

 zy DelayBalanceDelay *= (5.18)

Plugging Equations 5.17 and 5.18 into Equation 5.16 and solving for the contraction term results in

Equation 5.19.

)1_(

1

)1_()1_(

)1_(

)1(*2

)1(*2 +

++

+

+
+<

ExpCrit

ExpCritExpCrit

ExpCrit

Balance

Balance
nContractio (5.19)

47

This equation can then be graphed varying both the balance and the criticality exponent terms. This is

shown in Figure 5.16. Any contraction value below the indicated lines will cause the annealer to prefer the

unbalanced placement. For example, using a criticality exponent of 1 allows the system to prefer

unbalanced placements with relatively little contraction. Delayz can be twice as large as Delayy (balance =

0.5) as long as the total amount of delay along the unbalanced placement is less than about 0.95x the total

delay along the balanced placement (Delayz + Delayy ≤ 0.95 * [Delayx + Delayx]).

These contraction and balance values can be plugged back into Equation 5.17 and 5.18 to get the values of

Delayz, normalizing Delayx to 1.0. This is shown in Figure 5.17. In this case, the annealer will prefer the

unbalanced placement if Delayz is below the values indicated by the various lines. For the parameters used

previously (crit exponent = 1, balance = 0.5, contraction ≈ 0.95), this means that Delayz can be nearly 1.27x

Delayx.

However, taking at closer look at Figure 5.16 and Figure 5.17, the potential sub-optimality of the placement

tool cannot get very bad for typical criticality exponent values. From the prospective of placement

imbalance, the slope of the criticality exponent 8, 10 and 12 lines in Figure 5.16 is relatively high. For

example, an imbalance of (Delayx = 0.75 * Delayz) requires contraction factor of less than about 0.93x for

any criticality exponent larger than 8. However, it is unlikely that such paths will exist in real FPGAs.

While there may be a slight difference between the fastest paths through different register locations in some

architectures, this difference will likely be relatively small, perhaps no more than a few percent. Therefore,

it is unlikely that the placement tool will encounter a situation in which such a viable unbalanced placement

exists.

For that matter, this will also generally not affect the final critical path delay. This is because, as seen in

Figure 5.17, the maximum allowable values of Delayz drop very quickly as the criticality exponent is

raised. For criticality exponents of 8, 10 and 12, Delayz can only become about 1.08x, 1.07x, and 1.05x

worse, respectively. Thus, while the system may prefer unbalanced placements to a certain extent under

some special circumstances, the potential for this to cause larger problems is likely relatively low. This is

particularly true if the criticality exponent is kept relatively high. Although unbalanced placements will not

genuinely affect the testing performed in this chapter since the architecture used has unit-length wires, it is

likely best to keep the criticality exponent as high as possible. This will become important in Chapter 6.

48

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0
0.

05
0.

10
0.

15
0.

20
0.

25
0.

30
0.

35
0.

40
0.

45
0.

50
0.

55
0.

60
0.

65
0.

70
0.

75
0.

80
0.

85
0.

90
0.

95
1.

00

Balance

C
o

n
tr

ac
ti

o
n

Crit Exp = 1
Crit Exp = 2
Crit Exp = 4
Crit Exp = 6
Crit Exp = 8
Crit Exp = 10
Crit Exp = 12

Figure 5.16: Total Delay Contraction as a Function of Criticality Exponent and Balance

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

0
0.

05
0.

10
0.

15
0.

20
0.

25
0.

30
0.

35
0.

40
0.

45
0.

50
0.

55
0.

60
0.

65
0.

70
0.

75
0.

80
0.

85
0.

90
0.

95
1.

00

Balance

D
el

ay
z

Crit Exp = 1
Crit Exp = 2
Crit Exp = 4
Crit Exp = 6
Crit Exp = 8
Crit Exp = 10
Crit Exp = 12

Figure 5.17: Solving for Maximum Delayz Values

49

5.7: Testing and Results

The improved timing-driven placement technique with incremental criticality updating and the

reformulated cost function was tested using the same set of 22 classical and 22 depth = 1 MCNC netlists.

With the exception of the placement tool, all other considerations were kept the same. That is, the netlists

were packed with T-VPack, placed onto minimum-sized 4lut_sanitized architectures with 1.2x the

minimum channel width as found by default VPR and routed using the built-in VPR timing-driven routing

tool with A* disabled. Due to the fundamental changes made to the annealing structure, different λ and

criticality exponent parameters were explored. The results of this testing for the original MCNC netlists are

shown in Figure 5.18 and the results for the depth = 1 netlists are shown in Figure 5.19. More detailed

results for this tuning process are provided in Table 5.6 and Table 5.7. As with the earlier testing, to

provide easy comparison with the results from VPR, all wire costs and post-routing critical path delays

reported have been normalized to the default VPR results. Also, as in the earlier testing, the best placement

parameters were determined by selecting the results with the best geometric mean critical path that still

maintained a geometric mean wire cost below 1.0.

The most obvious result of this testing is that placement with the new cost formulation requires much

smaller values of λ to produce good results. While VPR obtained the best placements with (λ = 0.3), this

new tool required (λ = 0.1) for the conventional MCNC netlists and (λ = 0.025) for the heavily registered

circuits. Looking at Equations 5.9 and 5.10, the cause of this tendency becomes clear. When the new

placer reduces delay on a given link, from the standpoint of the classical VPR framework, the modified cost

formulation somewhat double-counts this reduction. This is because, unlike what VPR is expecting, the

criticality of this link will also be updated to reflect the smaller delay. Thus, when the two factors are

multiplied together, the new delta timing cost is naturally much larger than the range that the existing VPR

framework is expecting. A similar situation holds true for when delay is increased on a given link.

Looking at the results in Figure 5.18 and Table 5.6, the new incremental slack update technique combined

with the reformulated cost function produces the best placements on the purely combinational or lightly

registered original MCNC netlists when the parameters (λ = 0.1, criticality exponent = 12) are used. The

new placement approach was able to produce an average critical path delay 0.888x faster than the default

VPR placer with a slightly better 0.981x average wire cost. Additional details of the placement results on

the original MCNC netlists with the parameters (λ = 0.1, criticality exponent = 12) are shown in Table 5.8.

As an aside, it should be noted that while some of the placements performed with the new incremental

update approach failed to route, unlike VPR with frequent static timing analysis, this is likely not due to

convergence problems caused by instability within the placer itself but simply because the λ factor was too

high, guiding the annealing towards placements with slightly larger wire costs.

50

0.80

0.85

0.90

0.95

1.00

1.05

0.96 0.98 1.00 1.02 1.04 1.06 1.08

Normalized Wire Cost

N
o

rm
al

iz
ed

 C
ri

ti
ca

l P
at

h
 D

el
ay

Default VPR

Texp = 8, Lamdba = 0.3

Texp = 10, Lamdba = 0.3

Texp = 12, Lamdba = 0.3

Texp = 8, Lamdba = 0.2

Texp = 10, Lamdba = 0.2

Texp = 12, Lamdba = 0.2

Texp = 8, Lamdba = 0.1

Texp = 10, Lamdba = 0.1

Texp = 12, Lambda = 0.1

Figure 5.18: Incremental Criticality Update Placement λ and Criticality
Exponent Tuning for Conventional MCNC Netlists

“X” denotes that a single netlist failed to route on the 1.2x minimum channel width architecture.
The wire and routed critical path delay shown exclude the failed netlist.

Table 5.6: Incremental Criticality Update Placement λ and Criticality Exponent
Tuning for Conventional MCNC Netlists

 Combinational Circuits Only Sequential Circuits Only All Circuits

Crit Exp , λ Norm.
Wire Cost

Norm.
Routed CPD

Norm.
Wire Cost

Norm.
Routed CPD

Norm.
Wire Cost

Norm.
Routed CPD

8, 0.3 1.038 0.927 1.032* 0.885* (1) 1.036* 0.909* (1)
8, 0.2 1.004 0.952 1.008 0.859 1.006 0.904
8, 0.1 0.970 1.002 0.971 0.846 0.971 0.921
10, 0.3 1.058 0.906 1.054* 0.816* (1) 1.056* 0.862* (1)
10, 0.2 1.013 0.923 1.028 0.809 1.021 0.864
10, 0.1 0.976 0.952 0.977 0.835 0.977 0.892
12, 0.3 1.076 1.002 1.059* 0.813* (1) 1.068* 0.907* (1)
12, 0.2 1.022 0.951 1.043 0.809 1.032 0.877
12, 0.1 0.983 0.963 0.979 0.820 0.981 0.888

Default VPR 1.000 1.000 1.000 1.000 1.000 1.000
Best VPR w/

Frequent STA
0.985 0.924 0.968 0.825 0.977 0.873

* Indicates that some of the netlists failed to route on the 1.2x minimum channel width architecture. The number of failed netlists is
indicated in parenthesis. The wire and routed critical path delay shown exclude the failed netlists.

Looking at the results in Figure 5.19 and Table 5.7, the new placement technique produces the best results

on the heavily registered depth = 1 MCNC netlists when the parameters (λ = 0.05, criticality exponent = 8)

are used. This produced 0.581x better post-routing critical path delay compared to default VPR placement

51

0.50

0.60

0.70

0.80

0.90

1.00

1.10

0.85 0.90 0.95 1.00 1.05 1.10

Normalized Wire Cost

N
o

rm
al

iz
ed

 C
ri

ti
ca

l P
at

h
 D

el
ay

Default VPR

Texp = 8, Lamdba = 0.05

Texp = 10, Lamdba = 0.05

Texp = 8, Lamdba = 0.025

Texp = 10, Lamdba = 0.025

Texp = 12, Lambda = 0.025

Figure 5.19: Incremental Criticality Update Placement λ and
Criticality Exponent Tuning for Depth = 1 MCNC Netl ists

“X” denotes that a single netlist failed to route on the 1.2x minimum channel width architecture. The wire and routed
critical path delay shown exclude the failed netlist. Results with more than one unroutable netlist are excluded entirely.

Table 5.7: Incremental Criticality Update Placement λ and Criticality Exponent
Tuning for Depth = 1 MCNC Netlists

 Combinational Circuits Only Sequential Circuits Only All Circuits

Crit Exp , λ Norm.
Wire Cost

Norm.
Routed CPD

Norm.
Wire Cost

Norm.
Routed CPD

Norm.
Wire Cost

Norm.
Routed CPD

8, 0.1 1.021 0.604 1.134* 0.530* (3) 1.067* 0.572* (3)
8, 0.05 0.938 0.604 0.965 0.548 0.951 0.576
8, 0.025 0.894 0.709 0.862 0.672 0.878 0.690
10, 0.1 1.045 0.622 1.127* 0.490* (5) 1.073* 0.572* (5)
10, 0.05 0.963 0.611 1.019* 0.526* (1) 0.989* 0.569* (1)
10, 0.025 0.907 0.619 0.884 0.636 0.896 0.628
12, 0.1 1.071 0.592 1.115* 0.453* (6) 1.085* 0.548* (6)
12, 0.05 0.976 0.578 1.070* 0.461* (3) 1.017* 0.523* (3)
12, 0.025 0.916 0.612 0.912 0.560 0.914 0.585

Default VPR 1.000 1.000 1.000 1.000 1.000 1.000

Best VPR
w/Frequent STA

0.952 0.628 1.018 0.607 0.984 0.618

* Indicates that some of the netlists failed to route on the 1.2x minimum channel width architecture. The number of failed netlists is
indicated in parenthesis. The wire and routed critical path delay shown exclude the failed netlists.

with 0.951x better wire cost. Additional details of the placement results on the depth = 1 MCNC netlists

with the parameters (λ = 0.05, criticality exponent = 8) are shown in Table 5.9.

52

Both of these results also compare favorably with the best results produced by VPR with frequent static

timing analysis. Perhaps most easily seen in Figure 5.20, the results for the purely combinational or lightly

registered original MCNC netlists only differ from the results produced by VPR with 10,000 static timing

analysis runs per temperature iteration by a few percent. However, the new placement technique produces

these results with several orders of magnitude less computation. This is because the new placement method

only performs one static timing analysis per temperature iteration with extremely fast incremental updates

in between. The depth = 1 netlists produce similar results. In this case, both placement approaches

produce dramatically faster circuits, but the results obtained by the incremental criticality update technique

are not only slightly better, but are also free of the runtime and stability issues associated with the more

traditional placement approach with performed frequent static timing analysis.

0.000

0.200

0.400

0.600

0.800

1.000

1.200

Default VPR Frequent STA
VPR

Incremental
Slack

Default VPR Frequent STA
VPR

Incremental
Slack

Original Netlists Pipelined Netlists

N
o

rm
al

iz
ed

 V
al

u
e

Wire Cost
Routed CPD

Figure 5.20: Comparison Between VPR and Incremental Criticality Update Placement

53

Table 5.8: Conventional MCNC Netlist Placement Comparison

Default VPR

λλλλ = 0.5, CritExp = 8.0
Frequent STA VPR

λλλλ = 0.3, CritExp = 12, 10K STA/Temp
Incremental Slack

λλλλ = 0.1, CritExp = 12
 Raw Values Norm. Values Raw Values Norm. Values

Netlist Wire CPD Wire CPD Wire CPD Wire CPD Wire CPD
e64 30.21 3.12E-08 29.48 3.12E-08 0.976 1.001 29.81 3.18E-08 0.987 1.019
ex5p 178.17 6.75E-08 171.49 6.78E-08 0.963 1.005 169.60 6.99E-08 0.952 1.037
apex4 192.57 7.74E-08 189.14 7.49E-08 0.982 0.967 184.70 8.46E-08 0.959 1.093
misex3 199.39 7.34E-08 196.62 6.91E-08 0.986 0.942 194.78 6.75E-08 0.977 0.920
alu4 201.10 7.83E-08 199.62 7.72E-08 0.993 0.986 199.37 7.58E-08 0.991 0.969
des 249.48 9.12E-08 245.25 7.10E-08 0.983 0.778 258.01 7.16E-08 1.034 0.785
seq 259.92 7.90E-08 255.99 7.01E-08 0.985 0.887 254.12 8.12E-08 0.978 1.028

apex2 280.18 9.66E-08 274.22 8.37E-08 0.979 0.867 272.07 8.61E-08 0.971 0.892
spla 625.59 1.35E-07 634.98 1.48E-07 1.015 1.099 627.76 1.37E-07 1.003 1.019
pdc 934.04 1.49E-07 912.37 1.33E-07 0.977 0.892 916.11 1.54E-07 0.981 1.035

ex1010 678.37 1.81E-07 677.56 1.43E-07 0.999 0.791 663.71 1.52E-07 0.978 0.840
s1423 16.37 5.82E-08 15.95 5.93E-08 0.974 1.020 15.56 7.05E-08 0.950 1.213
tseng 102.62 5.53E-08 96.77 5.17E-08 0.943 0.936 95.51 5.58E-08 0.931 1.010
dsip 199.69 7.34E-08 193.36 5.39E-08 0.968 0.734 228.00 4.82E-08 1.142 0.656

diffeq 157.43 6.24E-08 149.72 6.47E-08 0.951 1.037 147.88 6.24E-08 0.939 1.001
bigkey 206.92 7.56E-08 204.73 5.27E-08 0.989 0.697 237.22 4.32E-08 1.146 0.572
s298 228.22 1.32E-07 217.23 1.28E-07 0.952 0.971 211.04 1.33E-07 0.925 1.009
frisc 584.86 1.62E-07 557.68 1.26E-07 0.954 0.780 536.85 1.29E-07 0.918 0.798

elliptic 502.36 1.11E-07 483.49 1.07E-07 0.962 0.964 465.58 9.55E-08 0.927 0.862
s38584.1 678.84 1.06E-07 673.69 7.32E-08 0.992 0.694 686.95 7.14E-08 1.012 0.677
s38417 693.47 1.02E-07 675.70 7.69E-08 0.974 0.751 663.02 8.10E-08 0.956 0.792
clma 1481.57 2.42E-07 1472.54 1.50E-07 0.994 0.622 1424.74 1.59E-07 0.962 0.658

Geometric Mean 0.977 0.873 0.981 0.888

Table 5.9: Depth = 1 MCNC Netlist Placement Comparison

Default VPR

λλλλ = 0.5, CritExp = 8.0
Frequent STA VPR

λλλλ = 0.3, CritExp = 8.0, 10K STA/Temp
Incremental Slack

λλλλ = 0.05, CritExp = 8
 Raw Values Norm. Values Raw Values Norm. Values

Netlist Wire CPD Wire CPD Wire CPD Wire CPD Wire CPD
e64 44.35 1.99E-08 41.59 1.17E-08 0.938 0.589 41.79 1.12E-08 0.942 0.560
ex5p 224.83 2.65E-08 218.35 2.12E-08 0.971 0.799 216.26 1.64E-08 0.962 0.618
apex4 213.56 3.24E-08 208.40 2.13E-08 0.976 0.658 204.83 1.87E-08 0.959 0.577
misex3 269.73 3.53E-08 250.93 2.89E-08 0.930 0.817 242.11 2.30E-08 0.898 0.651
alu4 291.84 3.83E-08 256.71 3.12E-08 0.880 0.814 258.31 2.64E-08 0.885 0.688
des 352.68 4.65E-08 345.94 2.43E-08 0.981 0.522 347.54 2.05E-08 0.985 0.440
seq 355.04 4.49E-08 331.02 2.42E-08 0.932 0.539 332.32 2.36E-08 0.936 0.525

apex2 407.76 4.03E-08 372.87 2.43E-08 0.914 0.603 369.61 2.43E-08 0.906 0.602
spla 846.56 5.33E-08 827.47 3.13E-08 0.977 0.587 806.31 6.08E-08 0.952 1.142
pdc 1185.60 7.69E-08 1175.18 3.48E-08 0.991 0.453 1125.07 3.30E-08 0.949 0.429

ex1010 876.20 5.40E-08 866.71 3.51E-08 0.989 0.649 825.82 3.46E-08 0.943 0.641
s1423 75.38 2.24E-08 73.87 1.67E-08 0.980 0.745 68.83 9.90E-09 0.913 0.442
tseng 308.53 4.55E-08 326.61 2.61E-08 1.059 0.573 318.98 2.64E-08 1.034 0.579
dsip 259.39 4.31E-08 227.70 2.90E-08 0.878 0.672 235.66 2.58E-08 0.909 0.598

diffeq 485.70 5.38E-08 507.69 2.67E-08 1.045 0.496 492.11 2.66E-08 1.013 0.495
bigkey 269.51 4.70E-08 258.60 2.78E-08 0.960 0.590 254.68 3.30E-08 0.945 0.701
s298 456.04 4.85E-08 442.93 3.60E-08 0.971 0.742 438.58 2.70E-08 0.962 0.556
frisc 1427.26 7.17E-08 1554.43 2.79E-08 1.089 0.388 1454.20 2.78E-08 1.019 0.388

elliptic 1430.86 8.41E-08 1453.92 4.52E-08 1.016 0.537 1395.34 4.76E-08 0.975 0.566
s38584.1 1721.81 1.19E-07 1812.62 9.16E-08 1.053 0.769 1617.91 8.12E-08 0.940 0.681
s38417 1976.38 7.21E-08 2399.60 4.74E-08 1.214 0.657 2006.69 3.40E-08 1.015 0.472
clma 2414.58 9.42E-08 2329.40 5.91E-08 0.965 0.627 2167.83 6.11E-08 0.898 0.649

Geometric Mean 0.984 0.618 0.951 0.576

54

5.8: Conclusions and Future Research

This chapter identified a longstanding but relatively poorly understood problem surrounding FPGA

placement. Although previous research has shown that timing-driven placement can improve critical path

delay for conventional netlists, existing methodologies have a fundamental shortcoming. Specifically,

classical placement relies solely on the link criticality information provided by static timing analysis.

However, static timing analysis is too computationally expensive to perform very often, so the bulk of the

optimizations performed by conventional annealing is done with stale and potentially very inaccurate

timing information.

Although this can be mitigated somewhat by simply running static timing analysis more often, not only

does this dramatically increase the computational requirements of the placement tool, it does not truly

address the larger scale problem. Inherently, the placement tool must be able to accurately evaluate the

change in timing considerations before and after each annealing move. While increasing the amount of

static timing analysis can improve the wider-scope accuracy of the timing information, conventional

placement approaches still use old timing information on a move-by-move basis. Although subtle, this

approach makes the intrinsic assumption that the critically of any given connection in the system will not

change very quickly. However, as demonstrated, this is clearly not true, even for simple registered circuits.

This very basic incorrect assumption can cause the system to prefer degenerate solutions. While this limits

the potential benefits of more accurate timing information, more seriously it can open the door for

oscillations during the placement of heavily registered applications. These oscillations can results in severe

convergence problems that destroy the basic functionality of the placement tool. Oddly enough, this is an

issue that can also plague timing-driven routers and this concept will be revisited in Chapter 7 during the

discussion of register-aware routing.

This chapter suggests two modifications to the classic timing-driven placement approach that address these

issues. First, the accuracy of timing information can be maintained very efficiently by applying

incremental changes during placement. While this approach cannot guarantee completely accurate

criticality information, this fundamental difference enables the system to evaluate the timing situation of a

placement on a per-move basis. This new capability naturally leads to a change in the cost function.

Degenerate solutions and the accompanying oscillations can be avoided by reflecting potential changes

made to link criticality in the cost of a move. This new approach produces much higher quality placements

without significant affecting the computational requirements. For conventional combinational or lightly

registered netlists it produce placements that are on average 0.888x faster in terms critical path delay with

no degradation in routability. For heavily registered netlists it generated placements that are 0.581x faster

with 0.951x better wirelength.

55

While this approach dramatically improves placement quality, this is not to say that this topic has

necessarily been fully explored. Because FPGAs have fixed, finite resources and because the placement

tool directly affects the interconnect characteristics of the final system, placement is often a lynchpin in the

CAD process. While the next chapter will discuss many of the timing-related issues concerning how the

placement tool interacts with earlier parts of the netlist compilation flow, there are still open questions

regarding how accurate timing information affects the system within the placement tool itself.

For example, while it is obvious that updating link criticality before the cost of a new placement is

evaluated is important, moderately registered netlists and applications with a low logic depth present a

unique opportunity for a different approach. One primary problem that has been discussed is that static

timing analysis of the entire circuit is impractical to perform frequently during annealing. However, it is

possible to perform an incremental static timing analysis after each annealing move. As discussed earlier,

determining the new critical path of the system is not essential. Rather, determining the change in relative

criticality is much more important. Thus, it is possible to propagate changes in the delay on a moved block

forwards and backwards through the circuit in some limited fashion without evaluating the entire netlist.

These changes would only have to spread along the fan-in and fan-out cone of the moved block until they

reached a register or an I/O pin.

Of course, one reason that the incremental timing update technique described above performs so well is that

it is very fast and its error for heavily registered circuits is extremely low. However, circuits with a

moderate number of registers and applications with a small number of logic blocks along the deepest path

are particularly amenable to updating with a limited static timing analysis. This is because the number of

logic blocks that would need to be updated after a move is relatively small. Thus, it is possible that a

limited, but incremental static timing analysis can be performed very quickly and could provide even better

accuracy. Incorporating such a technique into the placer could lead to even better results.

Furthermore, this chapter has focused on simulated annealing-based placement. While the basic issues

addressed in this chapter are important for virtually all placement algorithms, actually applying these

techniques and the impact they will have is not necessarily clear for other placement techniques. It is

generally accepted that although simulated annealing produces good results, it generally comes at the cost

of a large runtime. Thus, while the discussion of computational requirement in this chapter is particularly

relevant, many commercial systems to handle very large circuits often avoid simulated annealing as much

as possible. These types of tools use a two-stage placement process in which a faster, but less accurate

approach is first used to obtain a global placement. This type of tool takes the place of the early high

temperature annealing to determine the large-scale orientation of the blocks and leaves a much simpler

detailed placement problem for a following annealing-based placer. In this case, since only smaller

56

optimizations need to be made, the annealing is generally started at a much lower temperature. This, of

course, leads to a much shorter runtime.

While the problem of inaccurate timing information would seem to be a problem for any iterative

placement algorithm, the challenges that such a two-phase system faces may be different. First, global

placement tools such as quadratic placement [18] or forced-directed placement [5] have dramatically

different techniques to incorporate timing information during the placement process [30]. This in itself

poses a problem because it is not obvious how these tools might integrate more up-to-date timing

information. However, the problem even changes somewhat within the secondary annealing-based

placement phase. Because the larger structure of the placement has already been determined by the global

placer, the optimizations options that are available to the annealer are much more limited and any

improvements must be done much more quickly. While the basic issue of annealing with stale timing

information still stands, it would be interesting to measure the effect the suggested improvements can have

in such a different placement situation.

57

Chapter 6: Register-Aware Placement

The enhanced timing-driven simulated annealing algorithm described in Chapter 5 showed the benefits of

using more accurate timing information during placement. However, in some sense there is still an

inherent limit to the performance benefits that can be achieved because of systemic problems in the basic

toolflow itself. As discussed in Chapter 4, early portions of the netlist compilation tool chain, such as logic

synthesis and packing, define the netlist that following tools, such as placement and routing, work with.

However, these early tools must make design choices with very little information about the interconnect

characteristics of the final implementation. Since the traditional toolflow is purely feed-forward,

conventional placement and routing tools have no opportunity to fix these errors, even once this

information is known.

This chapter will describe some of the basic limitations that applications developers can encounter with the

traditional feed-forward CAD toolflow. The discussion will further focus on how registers in a netlist can

make these problems worse. This will lead to a summary of existing attempts to address this problem and

the introduction of a new technique for placement that incorporates aspects of physical synthesis. Physical

synthesis optimizations change parts of the netlist based upon information that can only be obtained late in

the netlist compilation process. By allowing the placement tool to modify a netlist during placement, the

system is able to significantly improve both wire cost and critical path delay.

6.1: Feed-Forward Design Flow – Implications for Packing, Retiming and Placement

Similar to writing high-performance software, developing applications for an FPGA is generally a very

iterative process. Until the HDL code is compiled to a routed netlist, it is very difficult to determine the

performance or area requirements of an application. First, the logical requirements of a netlist cannot be

accurately measured until the application has been through synthesis, technology mapping, and packing.

However, even at this point the packed netlist only serves as a lower bound on the necessary FPGA size

and an upper bound on the achievable clock frequency.

This is only a lower bound on the FPGA area because the subsequent placement and routing may require a

larger fabric to provide sufficient communication resources to connect all the logic blocks together. This is

because some applications may have many signals that need to traverse a specific area of the chip. If the

number of signals exceeds the communication capacity of that area, the netlist needs to be mapped to a

larger FPGA so that the logic blocks in congested regions can be spread out, distributing traffic over more

routing channels.

Along the same lines, this is only an upper bound on the clock frequency of the design because while the

delay through the necessary logic can be determined, this only represents a portion of the overall delay in

58

the final circuit. The majority of the delay in a modern FPGA is accumulated in the programmable

interconnect. Since the precise path a signal will take is not determined until after routing is completed, it

is very difficult to determine a large portion of a net’s timing requirement. All of these factors combine

and FPGA application developers must generally go through multiple iterations from HDL code to routed

circuit to meet performance or device area specifications.

While the long engineering and debug cycle of FPGA application design can complicate the development

of high performance circuits, in some sense the tool chain itself is somewhat constrained by its highly

compartmentalized and feed-forward nature. For example, as discussed in Section 4.2, conventional CAD

tools group registers and logic together during the packing process. However, this limits the optimizations

that the placement tool can perform since it can only move entire logic blocks around. While this probably

does not create a concern for conventional netlists, the large number of registers in heavily pipelined, C-

slowed and retimed applications can cause problems. This is because packing algorithms such as T-VPack

[1] implicitly assume that flip-flops will be driven by a LUT and the two should be packed into the same

CLB whenever possible. While this approach is likely sufficient if the number of registers in the circuit is

relatively low, heavily registered netlists will likely have signals with many flip-flops.

These multi-register connections create two problems. Consider the example in Figure 6.1. If this circuit is

mapped to an architecture that has two LUTs and 2 flip-flops per CLB, the packing tool will wrap LUT A

and two of its following flip-flops into a single atomic unit before placement. This greatly limits the

potential for the placer to use these registers to mitigate interconnect delay if the LUT’s output signal

requires a long wire and ends up being timing critical. Furthermore, packing can fuse unrelated logic

blocks and flip-flops together. The third register on the output of LUT A cannot fit into the same CLB as its

source, so it will be arbitrarily combined with some other logic block before placement. Not only does this

limit the placer’s ability to use registers to distribute interconnect delay, this artificially ties unrelated parts

of the circuit together, making the placement problem more difficult.

Furthermore, following the conventional toolflow, operations that can restructure the netlist, such as

retiming, must be performed prior to packing. Unfortunately, since packing is performed before placement,

this general approach can encounter problems. First, the retiming may not be very effective. Without any

LUT
A

LUT
B

Figure 6.1: Packing Implications for Heavily Registered Netlists

59

placement information the retiming tool can only very roughly estimate interconnect delay. In general, it

must retime using a simple unit delay model for logic blocks and largely ignore the potentially significant

delay accumulated in the interconnect.

On the other hand, once the circuit has gone all the way through the entire CAD toolflow, if the resulting

implementation does not meet timing specifications an application developer might attempt to repeat

retiming on the original netlist for another run of packing, placement and routing. However, it is unclear

how useful it might be to try and forward timing information from a previous placement and routing back

to the retimer for another iteration of the CAD tools. This is because there is no guarantee that this

information would be accurate or relevant to the new implementation – the placement may change

considerably in the meantime. Nets that were timing critical in an earlier placement may not remain so.

This holds true even if the netlist were not changed at all but simply re-placed. Thus, a subsequent retiming

may actually degrade the performance of the circuit instead of improving it. This is referred to as a

problem with timing closure.

6.2: Previous Retiming-Aware Approaches

Since the precise delay of each net cannot be known until the later stages of the CAD process, multiple

research groups have taken steps towards applying retiming after placement or routing. These efforts can

be split into two general categories. The first devises specific architectures that are particularly amenable

to absorbing the registers generated by retiming. In these systems, allocating new registers is easy due to

the unique characteristics of the underlying hardware. Thus, retiming can be applied after routing without

changing the existing paths. The second general approach relies on sophisticated CAD tools that

incorporate the new registers caused by retiming into an existing placed netlist. Although the precise delay

of each net cannot be known for certain until after routing due to congestion concerns, as discussed in

Chapter 5, the placement can generally give a relatively accurate idea of signal criticality. Thus, while

retiming can be applied with much more precision, the challenge that these tools face is merging the

registers generated by retiming into the existing placement without changing the larger-scale

characteristics.

Unfortunately, in some sense all of these previous approaches still struggle with the same basic problems of

the conventional approach. That is, late in the toolflow it is much safer to apply retiming very

conservatively. However, this also makes the potential benefits quite limited. On the other hand, if

retiming is applied very aggressively, the new registers introduced into the system can overwhelm the

register resources that are available and cause a dramatic or unpredictable change to the existing placement.

60

6.2.1: Previous Architectural Retiming Solutions

Perhaps the most straightforward manner to deal with the problems associated with retiming is to modify

the architecture itself to allow retiming to be performed after placement and routing, without disturbing the

existing configuration. In this way, the system can sidestep any problems with timing closure.

For example, the system suggested in [38] is a registered track-graph FPGA. A track-graph FPGA is

unique because the entire communication network is split into completely separate, but overlaid routing

domains. If the switchbox architecture in Figure 6.2a is used, once a signal is routed onto a given wire, all

of the other wires it can connect to are located in the same relative position in their respective routing

channels. Stated another way, all of the routing domain N wires are connected together, with no cross-

connections to the wires in other routing domains. In Figure 6.2a, a signal that enters the switchbox on the

first track from the left can only reach the first track in the routing channels exiting the top and bottom.

Although for clarity only an edge case is shown, the same segregated connectivity is maintained throughout

the rest of the FPGA. Thus, this architecture will have 4 completely separate sets of communication

3 4

1

2

SB

SB

SB

LB

SB

SB

LB

SB

21

3

4

3 421

1 2 3 4

1 2 3 4

1

2

3

4

a) Track-Graph Switchbox b) Universal Switchbox

c) Registered Track-
Graph Switchbox

1 2 2 1

1 2 2 1

1

2

2

1

Figure 6.2: Track-Graph, Universal and Registered Track-Graph Switchboxes

61

resources that are merely sitting side-by-side. In contrast, if the universal switchbox architecture in Figure

6.2b is used, signals can connect to wires with different relative positions in their routing channel. A signal

that enters the switchbox on the first track from the left can reach multiple tracks exiting the top and

bottom. For that matter, the signal can even return out the left side on the bottom-most track.

While the differences between these two routing architectures is somewhat subtle, as discussed in [44],

more flexible switchboxes such as the universal design tend to improve the routability of the FPGA as a

whole. However, from a CAD standpoint track-graph architectures are attractive because signals on one

routing domain cannot interfere with signals on another. It is exactly this characteristic that the authors of

[38] exploit to incorporate specialized retiming registers.

The authors of [38] replace the conventional track-graph switchboxes with registered switchboxes like the

one shown in Figure 6.2c. In this case, the connections that use routing domain 4 have the option to enter a

register at each switchbox. The results in [38] suggest architectures should replace approximately 25-50%

of the routing domains with registered connections. The toolflow for this system encourages potentially

timing-constrained connections to use registered track domains. It begins with conventional timing-driven

placement and routing, ignoring the registers embedded in the interconnect. At this point, timing-critical

links in the routed configuration are identified and singled out. If they are not already connected via a wire

domain that is outfitted with optional registers, the connection is swapped to an equivalent wire domain that

does. At this point, a restricted retiming algorithm is applied. Instead of performing true Leiserson/Saxe

retiming, this approach limits the number of registers that can be pushed onto a specific connection to the

number of optional retiming registers that already exist along the current route.

Unfortunately, while this is a simple solution, this greatly limits the optimizations available to the retimer.

First, the retimer is specifically limited to only using the specialized retiming-specific registers added to the

interconnect structure that are along the existing route. This makes efficiently using the registers in the

system very difficult. For instance, this approach does not consider using the potentially large number of

registers in switchboxes or logic blocks that are adjacent to, but not directly along, a given path because

this would require changing the routing. Furthermore, the system completely segregates flip-flops present

in the original netlist and registers created by retiming. Flip-flops within the CLB can only be used by

registers in the original netlist and flip-flops embedded in the interconnect can only be used by registers

moved by retiming. This can lead to fragmentation between the two essentially identical resources. The

strict division in the CAD tools means that both a heavily registered netlist that does not require retiming or

a relatively lightly registered netlist that requires extensive retiming will be unable to use all of the

available registers in the system.

62

This problem with register efficiency leads to an even larger issue. This approach makes the amount of

retiming that the architecture can support heavily affected by the number of additional retiming registers

put into the system. Thus, providing sufficient resources to support applications with a lot of retimed

registers is very expensive. In some sense this merely pushes the design paradox associated with retiming

from being a problem for the CAD tool to being a problem for the FPGA architect. Adding too many

retiming registers makes the overhead for the architecture very large. However, adding too few artificially

limits the options for aggressive retiming. Of course, all of these issues are also on top of the more

fundamental problem that this type of approach only works on a very specific and specialized registered

interconnect structure.

6.2.2: Previous CAD Retiming Solutions

Efficiently supporting more general registering resources requires new CAD tools. Towards this goal,

there have been a number of research projects that have attempted to perform retiming after placement.

These approaches generally use multiple stages of processing, with a specialized placement tool followed

by a retiming phase.

The work in [5] was among the first efforts to address retiming as a placement problem. Although this

work actually involved floorplanning, a precursor to placement that can be thought of as a very rough

global placement, it laid the groundwork for the work in [7]. The authors of [7] clearly define a three-stage

approach for retiming-aware placement. This technique first borrows a cue from classical timing-driven

placement by incorporating static timing analysis with a modified simulated annealing cost function to

identify potentially critical nets. It uses this information to keep these links as short as possible. When the

annealing is complete, they perform a classical retiming step to improve delay. This is followed by a short

simulated annealing process to re-distribute registers that are created or deleted and keep the logic blocks

relatively even in size. Unfortunately, this work targeted an ASIC development flow. Since ASICs create

completely custom chips, the CAD tools are able to largely create or delete resources at will. Since FPGAs

must use the finite resources offered by a specific architecture, there are strict limitations as to where the

system can and cannot create a register.

These FPGA-specific concerns were addressed in works such as [31], [43] and [37]. [31] suggested a very

straightforward solution in which conventional placement is followed by a constrained retiming step.

Similar to the architectural solution described earlier, the retimer can only push a limited number of

registers onto a specific link. In this case, the retimer could choose to either use or not use the flip-flops

present in the BLEs already allocated by the placement phase. Again, while this is a simple and closed-

form solution, like the approach in [38] this technique greatly limits the optimization available to the

63

retimer since this does not allow the system to incorporate the resources that might exist in neighboring

unoccupied BLEs.

In contrast, [43] explored the opposite end of the retiming problem. In this approach, the authors still begin

with a good timing-driven placement, but then retiming is performed without any restrictions on the

number of registers that can be placed on a given link. Although they include an algorithm to associate as

many registers as possible with their host LUT to maximize the use of the flip flops in the same BLE,

additional registers are allocated by simply searching in a spiral pattern for the closest unused register.

Thus, this technique offers no guarantee of timing convergence since the retimer can create an unlimited

number of registers in potentially very sensitive areas of the array, with no good way of cleaning up the

placement.

The approach discussed in [37] was the first technique that truly attempted to address the basic problem

between balancing potential retiming improvements and issues with timing closure. Their approach

follows the work in [7] relatively closely with a three-stage retiming-aware placement process. They first

use a modified simulated annealing cost function to identify timing-sensitive nets, specifically targeting

feedback loops and the relationship between critical paths and near-critical paths. This is followed by a

heuristic retiming step. Primarily, this retimer tries to move registers in the netlist, keeping in mind CLB

legalization issues. CLB legalization is a problem because this work focused on architectures with logic

blocks that do not have full input and output connectivity, like those in Figure 6.3a. Retiming creates new

registers that need to be integrated into the rest of the netlist. Thus, this disturbs the original packing of the

netlist. This change in packing makes it possible that certain CLBs may not have enough input or output

pins to accommodate the new contents. The authors of [37] attempt to retime while minimizing this impact

by estimating the cost associated with each potential retiming move. They identified three possible

situations in which they could insert a register into a net. In order of preference, these cases are:

1) Where a register is pushed onto a net very close to the output of the LUT and the entire net uses the

registered result. In this case, the LUT and flip-flop can share a BLE.

2) Where a register is inserted somewhere between the output of a BLE and some of the sinks. In this

case they require an additional BLE, either because the flip-flop associated with the source LUT is

already used or because the net requires access to both the pipelined and unpipelined LUT output.

3) Where a register is pushed onto a net very close to one specific sink. In this case not only is an

additional BLE needed, this register is also only closely associated with one specific logic block.

64

4-LUT
4-LUT

a) b)

Figure 6.3: Non-Independently and Independently Accessible Flip-Flop Architectures

Similar to [7], this FPGA-centric retiming step is followed by a very short iterative legalization phase. This

step is primarily concerned with resolving any illegal CLBs created by the retiming process. Of course,

because the retiming phase preferentially creates registers that can be easily absorbed by the source BLE,

the tool generates relatively few registers that require new BLEs. This lowers the demands on the

legalization phase.

Unfortunately, this approach still has two issues. First, much of their work focuses on solving architecture-

specific CLB input and output legalization problems. However, this is not necessarily a concern for

modern devices. Recent FPGAs such as the Virtex II [45] do not require cluster legalization. This is

because they not only provide independent access to LUTs and flip-flops (Figure 6.3b), they offer full CLB

input and output connectivity. For example, if there are eight 4-LUTs and eight flip-flops in a CLB, the

logic blocks will have the capability to take 40 independent inputs (8 x 4 LUT inputs + 8 flip-flop inputs)

and produce 16 independent outputs (8 LUT outputs + 8 flip-flop outputs).

More importantly, this methodology still may not produce feasible or convergent placements. This is

because the retiming is still wholly decoupled from the legalization phase. This means that the retimer may

produce a netlist that requires registers in an area that currently does not have any available in the existing

placement. At this point, the post-processing step has to choose between producing an illegal placement or

risk disrupting the timing of the system. This type of situation is particularly likely given netlists with a

large number of registers, since, by the very nature of the netlist itself, there might be relatively few empty

register locations in the array and many of the nets may be critical or nearly critical. Thus, the retimer must

be tuned very conservatively to specifically avoid these kinds of circumstances.

Taking a step back, perhaps it is a better idea to consider the source of these problems. All of the

complications regarding retiming stem from the fundamental approach that has been used. The problem is

that retiming cannot be performed as an isolated, single-shot optimization step if the system is to retime as

aggressively as possible while still maintaining the original placement that provided the timing information.

Essentially, all of the approaches discussed so far are still fundamentally patchwork tools in that they rely

on completely distinct placement and retiming phases. To obtain the best results from heavily registered

netlists, it is likely that retiming needs to be considered in a more holistic sense. In other words, retiming

65

needs to be a far more integral part of the placement process itself. This philosophy would allow the

system to apply retiming more effectively and predictably.

The work in [36] is the most encouraging work to date on FPGA retiming because it provides the most

unified placement and retiming approach. This technique begins much like the work in [37] with a

relatively standard timing-driven placement. However, after annealing, the placement is given to an

iterative incremental retiming and placement tool. Here, instead of performing a single traditional retiming

run, such as Leiserson/Saxe, followed by a single legalization phase, the tool alternates multiple times

between very short, incremental retiming steps and CLB legalization phases. The retiming tool is

incremental because it does not try to solve the timing problems of the entire circuit at once. A systemic

retiming can potentially move all of the registers in the system through multiple levels of logic in a single

step. Of course, such a drastic change to the netlist will entirely disrupt the existing placement. Rather,

this tool simply examines the effect of gradually pushing a register through one level of logic at a time. It

examines each of the registers in the netlist once in turn to see if its input or output net is critical or near

critical. If the output net is critical, the retimer attempts to push the register forwards through the logic

blocks directly driven by its output net. Conversely, if the input net is critical, the retimer attempts to pull

the register backwards through the logic block that drives its input net. Of course, this type of incremental

retiming limits the scope of the improvements that can be made in a single step, but the retimer will have

multiple chances to further improve the system.

Each of these comparatively gentle retiming phases is followed by a greedy legalization phase. Again, the

primary goal of this tool is to eliminate the overuse of CLB input and output pins. This legalization tool is

referred to as greedy because while it attempts random swaps like simulated annealing, unlike annealing it

only considers making moves that reduce the total number of illegal CLBs. If the placement remains

illegal after a relatively small number of attempts, the new retiming is considered un-placeable and the

system reverts to the previous netlist. This step-wise retiming and legalization process is repeated until no

more improvements are made to the circuit’s critical path delay.

6.3: Integrated Placement and Physical Synthesis

While the approach described in [36] integrates retiming into the placement process far more than previous

tools, it still uses a somewhat artificially segmented technique. For example, although it begins with

standard simulated annealing for placement, it uses a solely greedy post-retiming legalization phase to

integrate new registers into the existing placement. This shift in placement approaches seems largely

unnecessary. Since simulated annealing provides such a powerful optimization framework, it is ideal for

merging new registers into the system gracefully. For that matter, while the approach in [36] remains

overwhelmingly preoccupied with CLB legalization, in some sense the basic philosophy that it uses does

66

not make this a priority. When retiming, additional registers may need to be created. However, rather than

retiming first, putting new registers into CLBs that make the placement illegal and then trying to fix the

problem later, it is likely safer to only retime the system when it is certain that reasonable legal locations

are available. This allows the natural optimization characteristics of the simulated annealing process to

migrate registers into the proper locations without introducing additional legalization worries.

Furthermore, this approach only considers retiming after annealing has finished. It is entirely possible that

retiming a particular register is a good idea, but to see this requires larger-scale changes to the system that

can only occur during simulated annealing. Finally, there is also the matter of CLB packing. The approach

in [36] does not address the two tendencies discussed in Section 6.1 in which the packing tool unnaturally

combines multiple registers into a single CLB or fuses unrelated logic and registers together. Dealing with

this problem during placement is critical to producing good placements for heavily registered applications.

This section introduces a new technique that addresses all of these concerns by performing simultaneous

simulated annealing-based placement and physical re-synthesis. This approach begins by first

incorporating both traditional CLB-level moves and FF-level moves into the conventional placement

framework. FF-level placement moves give the annealer the ability to migrate individual registers

separately from the rest of their host CLB. This allows the placement tool to change the packing of

registers and more effectively use them to distribute interconnect delay. This approach continues by

integrating retiming into placement. Although similar to the work in [36], the technique presented here

merges retiming moves more smoothly into placement by treating them as much as possible like

conventional placement moves. Essentially, retiming moves are accepted or rejected by the same

temperature/cost/benefit structure as normal logic block swaps. This level of integration allows the

retiming to more fully leverage the power of simulated annealing placement.

6.3.1: Packing and FF-Level Placement

While packing reduces the problem size presented to the annealer, in some sense it also interferes with the

optimizations that are made during placement. As discusses earlier, this is because packing locks registers

into specific logic blocks early in the compilation process. However, dealing with this problem is not

necessarily as simple as reverting to placement at the individual LUT and flip-flop level. This is because

such an approach raises several serious concerns. While this has obvious dramatic implications for the

annealing runtime, it can also lead to problems simply finding high quality placements. For the majority of

registers it makes sense for a LUT and its companion flip-flop to reside in the same CLB. Specifically, this

configuration is special because the connection between the LUT and flip-flop does not incur the delay or

potential wiring congestion associated with exiting a CLB, traveling along shared interconnect wires, and

re-entering another CLB. However, if the placement tool is only able to move LUTs and flip-flops

67

independently from one another, it makes it very easy for a LUT and flip-flop to separate, but much more

difficult for them to reunite.

Consider the two possible states that a LUT and flip-flop can be in (together in the same CLB or apart in

different CLBs), shown in Figure 6.4. If the LUT and flip-flop are initially together within a 5x5 grid of

CLBs, all possible moves of either the LUT or flip-flop will break them apart. However, once in this state,

only two in the 48 possible moves (24 possible new locations for the LUT and 24 possible new locations

for the flip-flop) will bring them back together. Furthermore, once they do reunite, after the annealing

cools past a certain critical temperature it is unlikely that the placement tool will be able to move the

LUT/flip-flop pair to any other CLB location. This is because moving both would require the placement

tool to first separate them, with some comparatively high cost, before reuniting them in the new CLB. This

will cause the placement tool to artificially stall out relatively early in the annealing process because it is

unable to make further improvements.

This problem can be addressed by adding a hybrid CLB-level/FF-level move function to the basic

placement tool. Since the incremental timing update placement approach from Chapter 5 produces such

good results, this is an obvious platform to begin with. As seen in lines 4, 12 and 18 of Figure 6.5, this

technique requires four new placement parameters: a FF-level placement activation point, criticality

threshold, separation probability, and homing probability. These parameters allow this technique to

compensate for the problems associated with FF-level placement.

The FF-level placement activation point determines when the system turns on the capability to move

registers in the netlist separately from their host CLBs. Since the annealing begins with an arbitrary initial

placement, the early portion of the annealing process is primarily devoted to simply roughing out the large-

scale structure of the netlist. It is likely that moving registers separately during these early stages is not

necessary or desirable since moving entire CLBs allows the system to settle down more rapidly. As seen in

lines 4-6 of Figure 6.5, this technique uses a built-in feature of the placement tool to determine how far the

overall annealing has progressed - the range limit window. The FF-level placement activation point is

simply some fraction of the maximum annealing window size. It could vary between the 1.0, beginning

LUT

LUT

48/48

2/48

46/48

Figure 6.4: Probability of LUT and Flip-Flop Separation Versus Reunion

68

Placement with CLB and FF-Level Moves
0 randomly place logic blocks onto architecture
1 determine initial temperature
2 while(!done)
3 for i = 0 to numAnnealMovesPerTemp
4 if range limit window <= (FF-level activation point * max window size)
5 activate FF-level placement
6 end if
7 select random LUT or FF in netlist
8 if (selected LUT || !FF-level placement active)
9 swap entire CLB contents with random CLB
10 else
11 if FF in same CLB as source
12 if (FF max link criticality >= FF-level placement criticality thresehold) &&

 (rand <= FF-level placement separation probability)
13 swap FF with random FF in move window
14 else
15 swap entire CLB contents with random CLB in move window
16 end if
17 else
18 if rand <= FF-level placement homing probability
19 swap FF with a FF in source CLB
20 else
21 swap FF with random FF in move window
22 end if
23 end if
24 end if
25 accept or reject move(∆Cost, currTemp)
26 end for
27 update critical path delay
28 update currTemp
29 update range limit window
30 evaluate exit criteria
31 end while

Figure 6.5: Pseudo-Code for Incorporating FF-Level Placement Moves

FF-level moves right from the start of placement, to 0.0, beginning FF-level moves very late in the

annealing process.

As seen in lines 7-10 of Figure 6.5, the move selection of this approach begins by selecting a random LUT

or flip-flop in the netlist. If a LUT is selected, or if FF-level placement has not been turned on yet, the

entire contents of the host CLB is swapped with another random CLB within the movement window.

However, if a flip-flop is selected and FF-level placement has been activated, the system performs several

tests to determine what to do next.

As seen in lines 11-16, if the register is in the same CLB as its source, the placement tool checks the

criticality of the nets to which it is connected. Ostensibly, this approach would like to disturb the original

packing only when it senses that the current arrangement is limiting the options of the placement tool to use

a register to evenly distribute delay. Thus, the placement tool only has the potential to perform a flip-flop

level move to separate the register from its host CLB if the register is connected to a net that has a

criticality equal to or larger than the FF-level placement criticality threshold. If the register is along a

highly critical path, the probability of performing the separation is controlled by the FF-level placement

69

separation probability. If either the net criticality or separation probability checks fail, a conventional

CLB-level move is performed.

On the other hand, as seen in lines 17-22, if a flip-flop is selected that is not in the same CLB as its source,

the placement tool has the potential to explicitly reunite the two. This probability is controlled by the FF-

level placement homing probability. Again, although packing a register into the same CLB as its source is

generally advantageous, once the two have been separated it is comparatively hard for them to find each

other again. The homing probability factor can increase the likelihood that the register will return to the

same CLB as its source. However, if the system does not elect to return the register to the same CLB as its

source, it simply swaps with some other flip-flop within the movement window.

6.3.2: Retiming

As mentioned earlier, although Leiserson/Saxe retiming has some unique optimality characteristics, it is

likely that the key to better overall results is a more incremental approach that can be better integrated into

the placement process. Thus, the second part of this new simulated annealing-based physical re-synthesis

approach borrows many concepts from the technique in [36]. However, this new approach leverages the

inherent optimization aspects of simulated annealing and applies it to retiming. Here, conditional

incremental retiming moves are applied alongside standard placement moves as an integral part of the

annealing process. Of course to accomplish this, basic simulated-annealing retiming moves must be

defined and multiple issues must be addressed.

First, how does the placement tool actually implement an annealing-based retiming move? Essentially, the

retiming itself can operate much like the incremental retiming moves in [36], in that individual registers are

either pushed or pulled one by one through a single level of logic. However, it is integrated much more

fully into the placement process itself because instead of using the complicated cost structure from [37] to

determine whether or not a given register will likely cause legalization problems, the cost of the new

retimed placement is simply evaluated using the same method as any other placement move. Stated more

plainly, after each retiming move is made, the wire and timing costs of the new retimed placement are

compared with the costs of the old placement. The retiming move is either accepted or rejected using the

same probabilistic technique as conventional placement moves.

This approach can use a unified cost function because it deals with newly created registers slightly

differently. For example, moving between Figure 6.6a and Figure 6.6b, two new registers are created on

the inputs of LUT B to retime the register backwards. Unlike the approach in [36], before the placement

tool attempts this move, it first ensures that the retiming is feasible. It is entirely possible that there are not

enough register locations available in the architecture to support the new registers needed to perform the

70

retiming. If this is the case, rather than creating an illegal placement, the annealer will not attempt this

retiming move at all. However, if it is a feasible move, it places these new registers into the closest

available legal register locations to the source of their respective signals. However, retiming does not

necessarily have to create a new register. For example, moving between Figure 6.6c and Figure 6.6d, one

of the inputs to LUT B can share the input to LUT C. In either case, because each retiming move is

required to produce a legal placement and is evaluated individually based upon the change in cost, the

placement tool will likely retime the netlist as much or as little as the prevailing conditions will allow.

The second obvious question is how and when should the annealer attempt a retiming move versus a

placement move? While the placer could simply flip a coin each time it selects an eligible logic block, the

computational ramifications of performing a retiming move should also be considered. Specifically, as

discussed in Chapter 5, the underlying placement tool that this approach is built on relies on the more

accurate timing information provided by the incremental slack analysis approach. Therefore, the impact

that retiming moves have on the accuracy of timing information should be examined.

It is likely that retiming moves will disrupt the system more than conventional placement swaps.

Furthermore, retiming moves specifically focus on improving the critical path delay of the existing

placement. These two factors together indicate that retiming should probably be performed using the most

accurate timing information possible. However, completely accurate timing information can only be

obtained by performing a relatively computationally expensive static timing analysis. Thus, similar to the

issues brought up in Chapter 5, this means that static timing analysis cannot be performed before and after

each incremental retiming move. Of course, this problem becomes worse as the number of registers in the

netlist gets larger. Thus, to maximize the accuracy of the timing information while minimizing the

LUT
A

LUT
B

LUT
C

c) d)
LUT

A

LUT
B

LUT
C

LUT
A

LUT
B

LUT
C

a) b)
LUT

A

LUT
B

LUT
C

Retiming

Retiming

Figure 6.6: Incorporating New Registers Created By Retiming

71

computational cost, much like the approach in [36], the placement tool bundles multiple retiming moves

together. Full static timing analysis is performed once before the retiming moves are attempted, and once

after the series has completed.

Following the spirit of the improved placement tool in Chapter 5, the timing information of the system can

be incrementally updated between each retiming move. Consider the example in Figure 6.7. The

placement tool will update the slack on all of the labeled nets. The slack on nets 1’ and 2’ are obvious

because the departure time of sources do not change and the required time of all registers is equal to the

current critical path delay of the system. However, updating the slack on nets 4’, 5, and 6 is a bit more

complicated. This is because the placement tool has to recalculate the departure and required times of LUT

B. Since the departure time of all registers is zero, the departure time of LUT B can be calculated as:

),(LUT 65outpu clock toTime Departure t DelayDelayMaxFFB += (6.1)

Furthermore, the required time of whatever LUT B drives also does not change. Thus, the required time of

LUT B can be calculated as:

 '4Time RequiredTime Required Sink LUT DelayB −= (6.2)

If the retiming was reversed and the registers from the inputs of LUT B were pushed forwards to the output,

a similar incremental computation could be performed to recalculate the departure and required times of

LUT B.

As seen in the pseudo-code in Figure 6.8, this integrated retiming and placement technique takes 3 new

placement parameters: a retiming activation point, criticality threshold, and frequency. Lines 4-6 show

that the retiming activation point functions much like the FF-level placement activation point from the

previous section. Essentially, this parameter controls when the placement tool will begin to attempt

retiming and placement, as opposed to placement only. Again, since the annealing begins with an arbitrary

initial placement, the early portions of the placement process can change the system dramatically. Thus,

LUT
A

LUT
B

a) b)
LUT

A

LUT
B

1

2
4

1’ 5

Retiming

3
2’

4’
6

Figure 6.7: Updating Timing Information for New Retiming Registers

72

Placement with Integrated Retiming Moves
0 numMovesPerRetiming = numAnnealMovesPerTemp / retiming frequency
1 randomly place logic blocks onto architecture
2 determine initial temperature
3 while(!done)
4 if range limit window <= (retiming activation point * max window size)
5 activate retiming placement
6 end if
7 for i = 0 to numAnnealMovesPerTemp
8 if retiming active && (i%numMovesPerRetiming == 0)
9 update critical path delay
10 for all logic blocks
11 if max input criticality >= retimeCrit && can retime backwards
12 try to retime once backwards
13 accept or reject retiming(∆Cost, currTemp)
14 end if
15 if max output criticality >= retimeCrit && can retime forwards
16 try to retime once forwards
17 accept or reject retiming(∆Cost, currTemp)
18 end if
19 end for
20 update critical path delay
21 end if
22 attempt placement move
23 accept or reject move(∆Cost, currTemp)
24 end for
25 update critical path delay
26 update currTemp
27 update range limit window
28 evaluate exit criteria
29 end while

Figure 6.8: Pseudo-Code for Simulated Annealing-Based Retiming

retiming is unlikely to contribute much during these early stages. Rather, the extra noise retiming creates in

the netlist would probably only serve to create problems for the placement tool. Instead, it is likely better

to wait until the placement begins to settle down, and leave retiming to the later stages of the placement

process. Similarly, the retiming criticality threshold plays the same role as the FF-level placement

criticality threshold. As shown in lines 11 and 15, the retiming criticality threshold filters logic blocks that

are eligible for retiming based upon the maximum criticality of their input or output connections.

Obviously, the more critical a given path is, the more important it becomes to retime the logic blocks along

it. Since it is probably best to disrupt the placement as little as possible, the placement tool avoids retiming

logic blocks that are not along highly critical paths. Lastly, as shown in lines 0 and 8, the retiming

frequency factor controls how often the placement tool attempts to perform a concentrated suite of

conditional retiming moves.

6.4: Testing and Results

Like the placement approach in Chapter 5, this new simultaneous placement and physical re-synthesis

approach was tested using the MCNC netlists provided with VPR. However, because this approach focuses

on the packing and retiming of registers, obviously the 11 purely combinational MCNC circuits are not

suitable. Thus, these circuits were not part of the testing process. Furthermore, while the same 22 depth =

1 netlists used in Chapter 5 were part of the testing of this new tool, 22 depth = 0.33 netlists were also

73

created. These netlists have at least 3 flip-flops after each LUT, rather than only 1. This set of benchmarks

simulate an application developer’s attempt to not only pipeline the logic of a circuit but also encourage the

system to pipeline the interconnect wires. These netlists were created in a very similar manner to the depth

= 1 netlists. Specifically, each netlist was minimally pipelined, C-slowed and Leiserson/Saxe retimed such

that the maximum logical depth of the circuit was a single LUT. In addition, a single register was placed

on each of the primary input pins. After this, the entire netlist was 3-slowed to provide 3 flip-flops on each

connection along the critical path. Additional information regarding these benchmarks can be found in

Appendix A.

These three groups of netlists were also placed onto a new architecture. While the single LUT/single flip-

flop/unit-length wire architecture used in the previous chapter provided a very simple platform for testing

and tuning the incremental timing analysis placement approach, this does not necessarily accurately reflect

the types of resources present in modern commercial FPGAs. Thus, this new tool was tested using a much

more realistic architecture with four 4-LUTs, 4 flip-flops, 20 input pins, and 8 output pins per CLB and

length 4 interconnect wires. While not exactly the same as the resources available in recent Altera devices,

this does provide a reasonable analog of commercial architectures and is very similar to the architecture

suggested by [1].

Testing began by first performing CLB-level placement using the enhanced timing placement technique

described in Chapter 5. This provided a good baseline for comparison. Each of the netlists were packed

using T-VPack and routed using timing-driven PathFinder. The primary placement parameters (λ and

criticality exponent) used to gather these results were set to values suggested by the testing in Chapter 5.

Although the exact parameters found during this earlier testing were used for the original sequential MCNC

netlists (λ = 0.3, criticality exponent = 12), due to the discussion in Section 5.6, the best criticality exponent

= 12 parameters were used for the depth = 1 netlists (λ = 0.025, criticality exponent = 12). The same

parameters were also used for the depth = 0.33 netlists. These λ and criticality exponent values were

maintained throughout the rest of the testing process.

The first round of testing focused on determining good values to use for the new FF-level placement

parameters: the activation point, criticality threshold, separation probability, and homing probability. Due

to the very large number of potential axes, two simplifications were made to the exploration process. First,

rather than testing with all 55 benchmarks, 9 relatively small representational benchmarks were selected – 3

from each group of logic depths. These included s1423, diffeq, and bigkey. Second, some preliminary

testing was performed to gather reasonable values for all of the parameters before more detailed testing was

implemented on each individually. This preliminary testing found that reasonable results were obtained

74

with an activation point of 0.9, a criticality threshold of 0.9, a separation probability of 0.1 and a homing

probability of 0.01.

As seen in Table 6.1, the FF-level placement activation point was first swept through a range of values

while holding the criticality threshold at 0.9, the separation probability at 0.1 and the homing probability at

0.01. Four activation points were selected for testing. First, 1.0 started FF-level placement from the

beginning of the annealing process. The activation points of 0.9 and 0.0001 started FF-level placement

when the movement window reached a value of 90% the overall size of the array and 1, respectively.

These activation points roughly represent beginning the FF-level placement one-third or two-thirds of the

way through the placement process. An activation point of 0.0 waited until the conventional placement was

finished and then restarted the annealing at a slightly higher temperature for an additional short FF-level

placement phase. This typically gave the annealer another 5 - 10 temperature iterations to improve the

placement with FF-level moves.

The results of this testing are shown in Table 6.1. All 9 of the exploratory netlists were placed and routed 3

times for each set of placement parameters. The placement with the smallest routed critical path delay for a

given setting was selected as the best placement. Table 6.1 shows the geometric mean normalized wire

cost and post-routing critical path delay for all three netlists within each group of benchmarks. Beginning

FF-level placement at an activation point of 0.9 produced the best FF-level placements for all three groups

of benchmarks. Thus, this activation point was used for all subsequent testing.

As seen in Table 6.2, the FF-level placement criticality threshold was tested next. Here, the criticality

threshold was swept through a range of values while holding the activation point at best value found by the

previous experiment (0.9), the separation probability at 0.1 and the homing probability at 0.01. This testing

showed that performing FF-level placement on registers that were connected to nets that were 90% critical

or more produced the best results for the original sequential and depth = 1 netlists used for exploration. A

criticality threshold of 80% or greater produced the best results for the depth = 0.33 netlists tested. Again,

these values were passed on to the subsequent rounds of testing. Finally, as seen in Table 6.3 and Table

6.4, the FF-level placement separation probabilities and homing probabilities were tested. Here, a

separation probability of 0.1 and a homing probability of 0.1 produced the best results for all of the groups

of netlists.

The best FF-level placement parameters discovered by the initial round of testing were used to place all of

the 11 original sequential MCNC netlists, the 22 depth = 1 netlists and the 22 depth = 0.33 netlists. This is

shown in Table 6.5. Looking at these results, the original sequential netlists do not seem to respond to FF-

level placement. The routed critical path delay for these circuits actually degraded very slightly (1.007x).

75

In some sense, this is to be expected since packing via traditional methods makes sense given the small

number of registers in these applications. However, the depth = 1 and depth = 0.33 netlists do seem to

benefit quite a bit from performing FF-level placement. The depth = 1 netlists obtain an average of 0.870x

Table 6.1: FF-Level Placement Activation Point Exploration (Clustered Architecture)
 Original Sequen. Netlists

Crit. Thres. = 0.9
Sep. Prob. = 0.1

Homing Prob = 0.01

Depth = 1
Crit. Thres. = 0.9
Sep. Prob. = 0.1

Homing Prob = 0.01

Depth = 0.33
Crit. Thres. = 0.9
Sep. Prob. = 0.1

Homing Prob = 0.01

Activation

Point
Norm.

Wire Cost
Norm.
Routed
CPD

Norm.
Wire Cost

Norm.
Routed
CPD

Norm.
Wire Cost

Norm.
Routed
CPD

CLB-Level Placement - 1.000 1.000 1.000 1.000 1.000 1.000
From Beginning 1.0 0.999 1.011 0.915 0.959 0.859 0.633

From 1/3 Complete 0.9 0.998 1.007 0.916 0.957 0.842 0.631
From 2/3 Complete 0.0001 0.997 1.031 0.954 0.966 0.910 0.724

Post-Processing 0.0 0.997 1.031 0.954 0.966 0.910 0.724
Best of 3 placement and routing attempts

Table 6.2: FF-Level Placement Criticality Threshold Exploration (Clustered Architecture)
 Original Sequential Netlists

Activation = 0.9
Sep. Prob. = 0.1

Homing Prob = 0.01

Depth = 1
Activation = 0.9
Sep. Prob. = 0.1

Homing Prob = 0.01

Depth = 0.33
Activation = 0.9
Sep. Prob. = 0.1

Homing Prob = 0.01

Norm.

Wire Cost
Norm.

Routed CPD
Norm.

Wire Cost
Norm.

Routed CPD
Norm.

Wire Cost
Norm.

Routed CPD
CLB-Level Placement 1.000 1.000 1.000 1.000 1.000 1.000
Crit. Threshold = 0.95 0.999 1.013 0.911 0.982 0.860 0.639
Crit. Threshold = 0.9 0.998 1.007 0.916 0.957 0.842 0.631
Crit. Threshold = 0.8 1.004 1.011 0.909 0.963 0.872 0.622

Best of 3 placement and routing attempts

Table 6.3: FF-Level Placement Separation Probability Exploration (Clustered Architecture)
 Original Sequential Netlists

Activation = 0.9
Crit. Thres. = 0.9

Homing Prob = 0.01

Depth = 1
Activation = 0.9
Crit. Thres. = 0.9

Homing Prob = 0.01

Depth = 0.33
Activation = 0.9
Crit. Thres. = 0.8

Homing Prob = 0.01

Norm.

Wire Cost
Norm.

Routed CPD
Norm.

Wire Cost
Norm.

Routed CPD
Norm.

Wire Cost
Norm.

Routed CPD
CLB-Level Placement 1.000 1.000 1.000 1.000 1.000 1.000

Separation = 0.1 0.998 1.007 0.916 0.957 0.872 0.622
Separation = 0.2 1.004 1.007 0.913 0.965 0.874 0.622
Separation = 0.4 1.001 1.014 0.911 0.970 0.891 0.689

Best of 3 placement and routing attempts

Table 6.4: FF-Level Placement Homing Probability Exploration (Clustered Architecture)
 Original Sequential Netlists

Activation = 0.9
Crit. Thres. = 0.9
Sep. Prob = 0.1

Depth = 1
Activation = 0.9
Crit. Thres. = 0.9
Sep. Prob = 0.1

Depth = 0.33
Activation = 0.9
Crit. Thres. = 0.8
Sep. Prob = 0.1

Norm.

Wire Cost
Norm.

Routed CPD
Norm.

Wire Cost
Norm.

Routed CPD
Norm.

Wire Cost
Norm.

Routed CPD
CLB-Level Placement 1.000 1.000 1.000 1.000 1.000 1.000

Homing = 0.001 1.015 1.023 1.053 1.048 1.113 0.917
Homing = 0.01 0.998 1.007 0.916 0.957 0.872 0.622
Homing = 0.1 1.001 1.006 0.892 0.949 0.750 0.608

Best of 3 placement and routing attempts

76

Table 6.5: FF-Level Placement Results (Clustered Architecture)
 Original Sequential Netlists

Activation = 0.9
Crit. Thres. = 0.9
Sep. Prob = 0.1

Homing Prob = 0.1

Depth = 1
Activation = 0.9
Crit. Thres. = 0.9
Sep. Prob = 0.1

Homing Prob = 0.1

Depth = 0.33
Activation = 0.9
Crit. Thres. = 0.8
Sep. Prob = 0.1

Homing Prob = 0.1

Norm.

Wire Cost
Norm.

Routed CPD
Norm.

Wire Cost
Norm.

Routed CPD
Norm.

Wire Cost
Norm.

Routed CPD
e64 0.937 0.903 0.830 0.622
ex5p 0.926 0.889 0.762 0.749
apex4 0.971 0.959 0.760 0.732
misex3 0.919 0.945 0.726 0.744

alu4 0.946 0.929 0.726 0.786
des 0.916 0.930 0.682 0.610
seq 0.925 0.993 0.704 0.740

apex2 0.912 1.008 0.701 0.642
spla 0.896 0.887 0.655 0.512
pdc 0.899 0.823 0.642 0.623

ex1010 0.852 0.890 0.604 0.315
s1423 1.001 1.026 0.916 0.938 0.871 0.719
tseng 0.999 0.959 0.837 1.008 0.722 0.700
dsip 0.997 1.004 0.993 0.907 0.709 0.572

diffeq 0.996 0.982 0.845 0.924 0.714 0.573
bigkey 0.998 1.014 0.976 1.010 0.677 0.545
s298 1.007 1.006 0.847 0.975 0.717 0.685
frisc 0.992 1.000 0.735 0.864 0.576 0.588

elliptic 0.991 1.015 0.804 1.006 0.632 0.634
s38584.1 0.998 1.018 0.666 0.475 0.575 0.330
s38417 0.983 0.983 0.682 0.442 0.538 0.532
clma 0.992 1.068 0.747 0.798 0.584 0.363

Geo Mean 0.996 1.007 0.865 0.870 0.682 0.588
Best of 3 placement and routing attempts

better critical path delay with 0.865x better wire cost. The depth = 0.33 netlists respond even more

positively with an enormous 0.588x improvement in critical path delay and 0.682x better wire cost. This

behavior clearly shows the difficulties that a large number of registers pose to existing packing approaches.

The next phase of testing examined the benefits of adding simultaneous retiming on top of FF-level

placement. A similar testing methodology was used to tune this aspect of the tool, but here only the

retiming activation point was explored. This is because, first, the exploration into FF-level placement

provided a great deal of information regarding how nets of different criticalities interact. Thus, it makes

sense to use the same criticality threshold parameters found in Table 6.2 for retiming. Second, the retiming

frequency was pegged to 1. This represents attempting to retime one set of registers either backward or

forwards through each logic block per simulated annealing temperature iteration. This mimics the behavior

of the tool in [36].

Table 6.6 shows the exploration of different retiming activation points from 0.9 to 0.0. Similar to the FF-

level placement activation point, a retiming activation point of 0.9 begins retiming moves when the

placement window has reached 90% the maximum size of the array, a retiming activation point of 0.0001

77

Table 6.6: Retiming Activation Point Exploration (Clustered Architecture)
 Original Sequential

Netlists
Crit. Thres. = 0.9

Retiming Freq. = 1.0

Depth = 1
Crit. Thres. = 0.9

Retiming Freq. = 1.0

Depth = 0.33
Crit. Thres. = 0.8

Retiming Freq. = 1.0

Activation

Point
Norm.

Wire Cost
Norm.
Routed
CPD

Norm.
Wire Cost

Norm.
Routed
CPD

Norm.
Wire Cost

Norm.
Routed
CPD

CLB-Level Placement - 1.000 1.000 1.000 1.000 1.000 1.000
Best FF-Level

Placement
- 1.001 1.006 0.892 0.949 0.750 0.608

From 1/3 Complete 0.9 1.044 1.018 0.919 0.987 0.771 0.634
From 2/3 Complete 0.0001 1.007 1.030 0.909 0.966 0.769 0.642

Post-Processing 0.0 1.002 0.999 0.914 0.983 0.759 0.615
Best of 3 placement and routing attempts

Table 6.7: Simultaneous Retiming and Placement Results (Clustered Architecture)
 Original Sequential Netlists

Activation = 0.0
Crit. Thres. = 0.9

Retiming Freq. = 1.0

Depth = 1
Activation = 0.0001

Crit. Thres. = 0.9
Retiming Freq. = 1.0

Depth = 0.33
Activation = 0.0
Crit. Thres. = 0.8

Retiming Freq. = 1.0

Norm.

Wire Cost
Norm.

Routed CPD
Norm.

Wire Cost
Norm.

Routed CPD
Norm.

Wire Cost
Norm.

Routed CPD
e64 0.904 0.882 0.830* 0.622*
ex5p 0.926* 0.889* 0.762* 0.749*
apex4 0.971* 0.959* 0.781 0.732
misex3 0.919* 0.945* 0.726* 0.744*

alu4 0.946* 0.929* 0.726* 0.786*
des 0.897 0.885 0.682* 0.610*
seq 0.903 0.966 0.701 0.701

apex2 0.885 1.000 0.701* 0.642*
spla 0.864 0.844 0.666 0.505
pdc 0.858 0.797 0.642* 0.623*

ex1010 0.852* 0.890* 0.604* 0.315*
s1423 1.007 0.991 0.905 0.922 0.869 0.705
tseng 0.999 0.959 0.840 1.002 0.720 0.700
dsip 0.997 1.000 0.993* 0.907* 0.709* 0.572*

diffeq 0.998 0.982 0.845* 0.924* 0.734 0.573
bigkey 0.998* 1.014* 0.976 1.003 0.677* 0.545*
s298 1.007* 1.006* 0.847* 0.975* 0.708 0.678
frisc 0.992* 1.000* 0.735* 0.864* 0.571 0.588

elliptic 0.995 0.978 0.800 1.000 0.631 0.586
s38584.1 0.998* 1.018* 0.645 0.473 0.570 0.330
s38417 0.983* 0.983* 0.645 0.431 0.538* 0.532*
clma 0.999 1.045 0.747* 0.798* 0.584* 0.363*

Geo Mean 0.998 0.998 0.854 0.860 0.683 0.583
Best of 3 placement and routing attempts. *Indicates result reverted to values from FF-level placement.

begins retiming moves when the placement window has reached 1 and a retiming activation point of 0.0

runs an additional post-placement retiming and annealing phase. This retiming was performed on top of

FF-level placement with the best parameters suggested by Table 6.4. Again, this initial testing was

performed by placing and routing each of the 9 exploratory benchmarks 3 times for each set of placement

parameters. The placement with the smallest routed critical path delay for a given setting was selected as

the best placement. Table 6.6 shows the geometric mean wire cost and routed critical path delay

normalized to the results produced by performing CLB-level placement.

78

Unfortunately, looking at these results, it appears as though the addition of retiming does not greatly

improve upon the performance of only applying FF-level placement. While retiming with an activation

point of 0.0 very slightly helped the original sequential MCNC netlists used for exploration, even the best

setting of retiming actually degraded the results for the depth = 1 and depth = 0.33 netlists compared to

only performing FF-level placement. These mediocre results were further confirmed when testing was

expanded to the full set of benchmarks, as shown in Table 6.7. It should be noted that the results reported

here are actually a mixture of the results obtained by performing only FF-level placement and retiming on

top of FF-level placement. Since the retiming activation point suggested by the testing in Table 6.6 for the

original sequential and the depth = 0.33 netlists is actually after normal placement has been completed, any

degradation caused by the retiming can be eliminated by simply reverting the system to the placement

found before retiming was activated. These corrected results are denoted with an asterisk. While a bit

more difficult for the depth = 1 netlists, since the best retiming activation point found during the previous

testing was 0.0001, a similar correction can be made by performing two partial placement runs once the

movement window reaches 1 – once implementing retiming and once without. That said, despite best

attempts, the benefits of retiming seem relatively small compared to only performing FF-level placement.

Performing retiming did not seem to improve critical path delay by more than about 1%.

These results are somewhat surprising. The testing in [37] and [36] showed a 0.838x and 0.930x

improvement in critical path delay for their respective integrated retiming approaches. However, when

comparing the results of this new technique to previous results, the baseline that these previous papers used

should also be kept in mind. Both of these papers only compared their retiming approach to relatively

classical placement techniques. On the other hand, the technique suggested here is compared to a highly

enhanced placement approach and a placement tool that implements FF-level placement. This change in

comparison target creates two fundamental differences between the results from these previous works and

the results gathered here.

First, since the incremental slack analysis placement approach described in Chapter 5 already obtains such

good results compared to conventional placement techniques, from the viewpoint of this toolflow, the

baseline placements used for comparison in previous work likely contain a lot of room for improvement.

Stated another way, incremental slack update placement already improves performance so much that it may

subsume the gains reported by previous retiming efforts just by itself. For that matter, this also makes it

much more difficult for any retimer built on top of this placement algorithm to achieve further gains.

Second, although very little is known about the placement tool used for comparison in [36], VPR certainly

does not change the packing of a netlist during placement. Thus, in some sense the results reported include

the gains provided by FF-level placement. This is because the legalization phases of both the tools in [37]

79

and [36] migrate registers between different CLBs in order to make room for the new registers created by

retiming. These legalization tools specifically seek out registers based upon net criticality, so it is possible

that a large portion of their respective gains are specifically due to changes in CLB packing, not necessarily

the retiming itself.

However, this is not to say that retiming during placement should be ignored. Rather, the results indicate

that there are other forces at work in the testing performed thus far. First, placement with more accurate

timing information improves circuit quality significantly. Second, packing is a much more pressing issue

when mapping netlists with a large number registers to architectures with multiple BLEs per CLB. Lastly,

there is likely some characteristic that these new architectures have that makes retiming after placement

less fruitful.

The impact of a placement tool that has a more accurate way of tracking timing is relatively easy to

quantify. This can be done by simply repeating placement with a VPR-style timing update approach.

Unfortunately though, evaluating the contribution of changing the packing of the system is a bit more

difficult. However, this factor can be minimized by mapping to an architecture that only has one BLE per

CLB. While retiming can still be performed on applications mapped to this kind of architecture, it does not

pose a very large packing problem since each flip-flop must be mapped to its own CLB. Although some

flip flops must still be packed into CLBs with LUTs, the system does not have to worry about the initial

packing limiting the placement because it put registers from different parts of the circuit into the same

CLB. This problem can be further reduced by eliminating the very heavily registered depth = 0.33 netlists.

Finally, it is likely that retiming was less effective on the architectures used for the testing in Table 6.7

because they had multi-segment wires. Longer wires are generally incorporated into FPGAs because they

allow the system to make connections using fewer programmable wire segments. However, this also

means that each logic block can reach a much larger number of other logic blocks with a single wire delay.

Consider the two architectures in Figure 6.9. While each logic block can reach four others with a single

wire delay in the architecture with unit-length wires, each logic block can reach 26 others with a single wire

delay in an architecture with length-4 wires. By the same token, the number of logic blocks that can be

reached with two wire delays is 8 for an architecture with unit-length wires and 116 for an architecture with

length-4 wires.

This much larger number of locations that can be reached quickly means that the timing-driven placement

problem is easier. In turn, this makes retiming after placement less critical. On a unit-length wire

architecture, certain wires have to be made longer because not every block can fit next to the other blocks

80

a) b)

Figure 6.9: Logic Blocks Reachable with 1 Wire Segment

to which it is connected. These longer wires make certain connections slower than others. However,

which connections are going to be the slow ones, and by how much, is impossible to determine without

information about the placement. This makes retiming after placement very important. However, with

length-4 wires, and further compounded by clustered CLBs, a much larger fraction of the blocks can be

close to the other blocks to which they are connected. This strongly reduces the need for long, slow wires

and makes the delay of all the connections in the system much more predictable.

This behavior can be seen by repeating the testing of both FF-level placement and retiming placement, this

time mapping to an unclustered, unit-length wire architecture. As seen in Table 6.8 and Table 6.9, as

expected, FF-level placement plays a much smaller role on these architectures. The critical path delay is

only reduced by 0.991x for the original sequential netlists and by only 0.980x for the depth = 1 netlists.

However, retiming improves critical path delay by a much larger amount, 0.947x for the original sequential

netlists and 0.952x for the depth = 1 netlists. This testing not only shows that simultaneous retiming and

placement can improve critical path delay, it also suggests that the benefit can be somewhat architecture

dependent. Furthermore, it is also obvious that while the incremental slack analysis placement approach

described in Chapter 5 produces much better placements than VPR, there is still a small amount of room for

further improvement.

The effect that the architecture has on retiming can also be seen Table 6.10. Here, the fastest

implementations found by FF-level placement were retimed using the Leiserson/Saxe method. However,

unlike the Leiserson/Saxe retiming applied before placement, this retiming was performed using the actual

wire delays in the final placement. Of course, the critical path delay reported by retiming netlists in this

81

way is wildly optimistic. Not only does this run into the problems discussed earlier regarding finding

enough registers and disturbing the existing placement, this “optimal” retiming also assumes that registers

Table 6.8: Comparison of FF-Level Placement and Retiming Placement
(Unclustered Architecture) – Original Sequential MCNC Netlists

 VPR CLB-Level
Placement

Incremental Slack CLB-
Level Placement

FF-Level Placement Retiming Placement

 Wire CPD Wire CPD Wire CPD Wire CPD
s1423 1.028 0.914 1.000 1.000 1.004 0.953 0.996 0.898
tseng 1.046 1.042 1.000 1.000 0.988 0.942 0.988* 0.942*
dsip 0.837 1.333 1.000 1.000 1.008 0.887 1.027 0.755

diffeq 1.051 1.119 1.000 1.000 1.001 1.052 0.998 1.012
bigkey 0.876 1.538 1.000 1.000 0.997 0.965 1.004 0.951
s298 1.079 0.990 1.000 1.000 0.997 0.985 0.997* 0.985*
frisc 1.081 1.067 1.000 1.000 0.999 0.986 1.010 0.961

elliptic 1.067 1.205 1.000 1.000 0.994 1.057 1.008 0.980
s38584.1 0.985 1.258 1.000 1.000 0.997 0.984 0.997 0.968
s38417 1.011 1.205 1.000 1.000 1.001 0.989 1.009 0.964
clma 1.053 1.451 1.000 1.000 1.025 1.125 1.023 1.022

Geo Mean 1.007 1.179 1.000 1.000 1.001 0.991 1.005 0.946
Best of 3 placement and routing attempts. *Indicates result reverted to values from FF-level placement.

Table 6.9: Comparison of FF-Level Placement and Retiming Placement
(Unclustered Architecture) – Depth = 1 MCNC Netlists

VPR CLB-Level

Placement
Incremental Slack CLB-

Level Placement
FF-Level Placement Retiming Placement

 Wire CPD Wire CPD Wire CPD Wire CPD
e64 1.055 1.818 1.000 1.000 1.000 1.042 1.000* 1.042*
ex5p 1.057 1.619 1.000 1.000 0.997 1.059 0.996 1.026
apex4 1.065 1.608 1.000 1.000 1.005 1.002 1.004 1.002
misex3 1.146 1.445 1.000 1.000 1.005 0.983 1.007 0.863

alu4 1.162 1.366 1.000 1.000 0.998 1.002 0.995 1.000
des 1.048 1.756 1.000 1.000 1.029 0.906 1.018 0.906
seq 1.076 1.784 1.000 1.000 1.001 1.053 1.001 1.052

apex2 1.100 1.721 1.000 1.000 0.997 0.971 0.997 0.970
spla 1.081 1.213 1.000 1.000 1.014 0.921 0.997 0.730
pdc 1.080 2.104 1.000 1.000 0.999 1.002 0.995 0.940

ex1010 1.107 1.479 1.000 1.000 1.007 1.093 1.000 1.085
s1423 1.038 2.002 1.000 1.000 1.012 0.910 1.014 0.876
tseng 1.076 1.853 1.000 1.000 1.027 0.908 1.027 0.908
dsip 1.242 1.245 1.000 1.000 1.013 0.970 1.036 0.919

diffeq 1.051 1.870 1.000 1.000 1.031 0.939 1.051 0.918
bigkey 1.152 1.547 1.000 1.000 1.011 0.979 1.011* 0.979*
s298 1.108 1.484 1.000 1.000 0.997 0.942 0.990 0.922
frisc 1.000 2.452 1.000 1.000 0.997 0.973 0.997 0.971

elliptic 1.097 1.761 1.000 1.000 1.007 0.962 1.007 0.962
s38584.1 1.158 1.226 1.000 1.000 1.018 1.017 1.025 1.016
s38417 1.031 2.060 1.000 1.000 0.992 0.974 1.028 0.917
clma 1.109 1.350 1.000 1.000 0.997 0.991 0.999 0.984

Geo Mean 1.091 1.643 1.000 1.000 1.007 0.980 1.009 0.951
Best of 3 placement and routing attempts. *Indicates result reverted to values from FF-level placement.

Table 6.10: Effect of Architecture on Leiserson/Saxe Retiming After Placement
 Clustered Architecture

Four BLEs, Length-4 Wires
Unclustered Architecture

One BLE, Unit-Length Wires
Depth = N Netlists 0.936 0.717
Depth = 1 Netlist 0.734 0.639

Results normalized to critical path delay found after FF-level placement.

82

can be placed wherever they are needed – potentially in the middle of wires rather than in discrete CLB

locations. That said, this “theoretical” retiming offers some upper bound on how much room for

improvement there is after placement. While the depth = N netlists could only be improve by an average of

0.936x when placed on the clustered, length-4 wire architecture, they could be improved by an average of

0.717x when placed on the unclustered, unit-length wire architecture. Similarly, the depth = 1 netlists

could only be improve by an average of 0.734x when placed on the clustered, length-4 wire architecture,

they could be improved by an average of 0.639x when placed on the unclustered, unit-length wire

architecture. Although these results are purely theoretical, they suggest that the placer can better balance

delay along the critical path in netlists mapped to the clustered, length-4 wire architecture. This means that

retiming after placement is probably less essential when mapping to more sophisticated architectures rather

than simpler devices.

6.5: Conclusions and Future Research

This chapter investigated how classical packing, retiming and placement tools interact. While the

conventional toolflow works relatively well for lightly registered applications, its highly

compartmentalized and purely feed-forward nature can cause problems when attempting to deal with more

heavily registered netlists.

Packing is particularly vulnerable to some of these issues because the conventional approach that tools like

VPR use generally applies packing to a netlist followed by strictly CLB-level placement. Because

traditional packing techniques tend to put registers into the same CLB as their source LUT, this can limit

the capability of the system to use these registers to balance delay along long connections. Furthermore,

when attempting to handle netlists with signals that have multiple registers, conventional packing tools can

fuse unrelated parts of the circuit together. This makes the placement problem much more difficult, both

from the standpoint of reducing wiring cost and improving critical path delay.

However, solving this problem is not simply a matter of opening the placement tool to FF-level annealing

moves. Doing so can not only dramatically increase the time required for simulate annealing, it can create

problems for the basic achievable quality as well. Moving flip-flops and LUTs strictly separate from each

other can prevent the system from making larger-scale moves. Simply put, the placement tool needs to

have the capability to perform both CLB and FF-level moves. This allows the system to change the

packing of CLBs while still maintaining the ability to make coarser changes to the placement. Towards

that end, this chapter introduces a new hybrid placement approach that gives the placement tool the

capability to either move an entire CLB, or individually migrate highly critical flip-flops.

83

Retiming also presents a problem to the conventional toolflow. Since retiming can create or delete registers

within a netlist, the most obvious point to apply it is before packing and placement. However, the

optimizations that can be made at this point are very limited since very little is known about the potential

delay required by the interconnect. Unfortunately, it is also not obvious how retiming could be applied

after placement when more is known about the criticality of each of the nets. This is because retiming can

change the netlist significantly, necessitating a brand new placement that may or may not have the same

timing characteristics as the original. Although there have been multiple previous research attempts to deal

with this problem, the majority of these approaches have still struggled with the same basic issue: how to

support aggressive retiming without creating a problem for timing convergence.

Essentially, the problem is that it is unreasonable to expect that the system will be able to clean itself up

satisfactorily when the retimer makes major and sudden changes to the netlist. Thus, this chapter also

introduced a new integrated retiming and placement approach. This technique differs from previous work

in three main ways. First, rather than performing retiming as a single, highly disruptive step, it applies

multiple stages of more incremental annealing-based retiming moves. Second, the new registers created by

these much smaller retiming steps are then integrated into the rest of the placement with a hybrid CLB/FF-

level placement approach. Third, this technique avoids issues with CLB input and output legalization by

never creating an illegal placement in the first place.

Unfortunately, determining how well this new integrated placement and physical re-synthesis approach

performs was a bit difficult. Largely, this is because the problems that packing and retiming face are

greatly dependant on the characteristics of both the incoming netlist and target architecture. Specifically,

conventional packing works very well when the number of registers in a netlist is relatively low or when

mapping to an architecture with few BLEs in each CLB. At best, the FF-level placement technique

suggested in this chapter only provided a vanishingly small improvement for the original sequential MCNC

netlists on both the clustered and unclustered architectures, as compared to CLB-level placement. This is

because these netlists do not have enough registers to create a problem for conventional packing. The

improvement for more heavily registered circuits is also relatively small for unclustered architectures.

Compared to CLB-level placement, the depth = 1 netlists only obtained a 0.980x improvement in critical

path delay when mapped to a single LUT/single flip-flop architecture. This is because the packing tool for

an unclustered architecture does not inherently bundle enough LUTs and flip-flops together in a single CLB

to greatly restrict the subsequent placement step. However, when the number of registers in a netlist is

relatively high and there are multiple BLEs in each CLB of the architecture, packing becomes a much

larger problem. The depth = 1 and depth = 0.33 netlists obtained a 0.890x and 0.625x improvement in

critical path delay, respectively, when mapped to a four 4-LUT/four flip-flop architecture using the FF-

level placement approach described in this chapter, as opposed to a CLB-level only technique.

84

Retiming has a similar issue regarding dependence on the architecture. Here, it is likely that the placement

problem for the netlists used in this study was not hard enough to truly present a challenge on architectures

with longer wire segments and clustered CLBs. At best, retiming provided a few percent critical path delay

improvement for placement on architectures with length-4 wires and four BLEs in each CLB. This is

probably because the logic blocks in these architectures can reach a dramatically larger number of other

logic blocks with relatively few wires. This makes these architectures inherently faster and, perhaps more

importantly, the delay of different nets more predictable, even prior to placement. However, retiming plays

a much larger factor on architectures with shorter wires and unclustered CLBs. Retiming during placement

on a unit-length wire architecture with one BLE per CLB improved delay by a factor of 0.954x for the

original sequential MCNC netlists and by a factor of 0.970x for the depth = 1 netlists as compared to a FF-

level placement approach without retiming.

Looking to the future, it is likely that the issues surrounding packing will only get worse. This has some

interesting implications for the runtime of placement. First, as consumers demand more complex and

higher performance devices, it is likely that the number of LUTs and registers in applications will go up.

For that matter, recent trends in commercial devices tend towards using CLBs that incorporate a larger

number of BLEs. Thus, while the hybrid CLB/FF-level placement approach described in this chapter

appeared to work very well, the runtime of any algorithm based solely upon simulated annealing will likely

be extremely long for future applications. However, as mentioned in Chapter 5, many commercial

placement tools use a fast, but relatively inaccurate approach to provide a global placement. The natural

speed advantage of these tools makes low-level placement far more tractable. It would be interesting to see

how a non-simulated annealing global placement tool could interact with a hybrid CLB/FF-level placement

tool.

Furthermore, there is a large body of work that has considered another kind of physical re-synthesis: logic

duplication. Like retiming, logic duplication can cause problems for the classical toolflow. As discussed

in [24], logic duplication attempts to replicate portions of a netlist that limit performance due to fanout.

Consider the example in Figure 6.10. After placement, the original netlist on the left has a long wire to

connect LUT A and LUT C. This type of situation could occur for a variety of reasons, but most likely the

placement of the blocks that connect to LUTs B and C pull these blocks in opposite directions. However, as

seen on the right, duplicating LUT A could reduce the number of long wires in the system. Of course,

duplicating parts of the circuit restructures the netlist and increases the area requirements, so this must be

done very carefully. Unfortunately, determining which nets present a bottleneck can only really be

performed after placement, so logic duplication can suffer from the same type of problems regarding timing

closure as retiming.

85

However, similar to retiming, the effect of logic duplication is also likely architecture dependent. In

preliminary testing that attempted to replicate timing critical registers on an architecture with length-4

wires, the potential improvement in critical path delay was relatively minor. It is possible that this is due to

the fact that architectures with longer wire segments do not need as much duplication, but some additional

investigation is necessary to more fully explore the possibilities and limitations of duplication on modern

architectures.

LUT

A
LUT

B

LUT

C

LUT

A
LUT

B

LUT

C

LUT

A’

Figure 6.10: Logic Duplication

86

Chapter 7: Register-Aware Routing

Although all of the tools in a netlist compilation CAD flow play some role in determining the performance

of an application mapped to an FPGA, addressing timing concerns during the routing process is particularly

important. This is because routing sets the exact communication paths between different logic blocks. The

communication in an FPGA-based application is critical because the delay accumulated in the interconnect

contributes so heavily to the overall timing of the system. However, while Section 4.4 discussed a classical

algorithm for timing-driven routing, this type of approach cannot necessarily be used to map applications to

all FPGAs. This is because the register resources that some architectures provide pose a fundamentally

different routing problem, breaking some of the basic assumptions necessary to use classical techniques.

This chapter will discuss the nature of some of these architectural design decisions and describe how the

connectivity of the registers in an FPGA can affect the CAD algorithms needed to effectively use these

resources. This will lead to a discussion of the pipelined routing problem and an introduction to the only

two known heuristics that address it: PipeRoute and QuickRoute. Unfortunately, both of these algorithms

are purely congestion-driven, and this chapter will outline some of the issues that prevent these approaches

from borrowing existing timing-driven routing methodologies. Finally, this chapter will suggest a new

timing-driven pipelined routing algorithm that avoids these problems and can significantly improve circuit

performance for architectures that require pipelined routing.

7.1: Registers with Limited Connectivity

Some FPGA architectures may limit the accessibility of some of the registers in the system. For example,

in the registered track-graph FPGA discussed in the last chapter [38], the flip-flops embedded in the

communication network are only connected to a maximum of four wires. As seen in Figure 6.2c, the

incoming and outgoing signals of each of these registers must be routed on one specific wire domain.

Thus, to use one of these registers, it must be driven from one of four wires coming from either the top,

bottom, left or right of the switchbox. The registered output can then leave on one of the wires on the

remaining three sides. This extremely limited connectivity is a stark contrast to the accessibility of the

more conventional registers found inside CLBs. Flip-flops within logic blocks are generally connected to

all or most of the wires inside the channels that surround each CLB. Since the wire channels in modern

FPGAs contain hundreds of individual wires, the routing flexibility of registers inside logic blocks is

extremely high.

However, limited register accessibility is common on architectures that attempt to increase the number of

registers they provide. In general, this is because these systems would like to introduce as many additional

registers as they can while minimally disturbing the rest of the system. From an area and performance

standpoint, an architecture like in [38] cannot afford to connect the registers embedded in the

87

communication network to all of the wires that enter or exit its switchbox. As seen on the left of Figure

7.1, fully connecting even one register can require extremely wide input multiplexers and output

demultiplexers. As seen on the right of Figure 7.1, FPGA architecture designers would rather increase the

number of registers but decrease the communication flexibility of each one.

This architectural choice has a subtle but very important impact on the CAD tools. Specifically, the placer

cannot map flip-flops in a netlist in the traditional way to registers in an architecture that have limited input

and output connectivity. Although the placement tool can temporarily map flip-flops to these locations

during the annealing process to get a general idea of local register supply versus demand, these assignments

cannot be binding like the placement of LUTs and registers with a high degree of connectivity.

In the conventional toolflow, after placement is completed the locations of all the LUTs and flip-flops in

the netlist are fixed. However, if the placement of flip-flops mapped to registers with limited connectivity

is fixed after annealing, this can interfere with basic routability of the system. This is because fixing the

location of these registers during placement also forces the system to use specific wires to get in and out of

these resources. In some sense, because these registers are connected to so few wires, this also fixes the

routing for these signals. This characteristic effectively blocks the capability of the router to choose the

path of these signals. Unlike the more conventional registers mapped to logic block locations, the router

cannot change the wires it uses to get to these registers to resolve congestion. This can dramatically affect

the routability of netlists that make use of registers with low degrees of connectivity. Thus, to maintain the

routability of the device, the CAD tools must be able to reassign the locations of flip-flops mapped to

registers with limited connectivity after placement is completed.

1

2

3

4

134

1

2

3

4

2 134 2

Figure 7.1: Impact of Connectivity on Area and Number of Switchbox Registers

88

7.2: Pipelined Routing Problem

In a way, the CAD tool flow described in [38] and discussed in Section 6.2 avoids this problem entirely on

their architecture by only assigning flip-flops in a netlist to the registers in the interconnect after placement

and routing has been completed. However, as mentioned, this severely limits the usability of these registers

and makes it impossible for the system to map flip-flops that are not generated by retiming to these

interconnect registers. This leads to poor register utilization.

A new CAD approach is necessary to more efficiently use registers with limited connectivity. While the

discussion in the previous section suggests that the CAD tools should assign these registers during the

routing process, this fundamentally changes the nature of routing itself. No longer is it simply a matter of

finding the cheapest path between a source and sink, the router now needs to find a path between a source

and sink that goes through exactly N registers. Formally introduced in [34], this problem is officially

known as the N-Delay Routing problem and has been proven to be NP-Complete.

While PathFinder [28] and its predecessors demonstrated that the conventional routing problem of

congestion resolution for multi-terminal, multi-net circuits is very difficult on most modern FPGA

architectures, it breaks down into much simpler sub-problems. For example, ignoring congestion,

Dijkstra’s shortest-path algorithm can be used to quickly find routes for all two-terminal nets. The

difficulty of the N-delay routing problem stems from the fact that the additional latency constraint on a

signal precludes the use of Dijkstra’s algorithm. This is a large handicap since conventional routing

techniques generally use some form of Dijkstra’s algorithm as a foundation.

The N-delay routing problem breaks Dijkstra’s in two ways. First, the lowest cost path from source to the

sink may not meet the specified latency requirement. More importantly, the cheapest path to any given

node along the way may not be the best path, since it may not even form the prefix of any legal route. This

issue is clearly illustrated in Figure 7.2. In this example, the router would like to find a path between the

source S and the sink K that goes through exactly one pipelining register. Assuming a unit cost model,

Dijkstra’s algorithm fails to find a valid one-latency path. Obviously, (S, d, e, f, K) is the cheapest path, but

it does not meet the one clock cycle latency requirement.

S
d

f
c

K
e

a X

X
S

d
f

c
K

e

abb bb

Figure 7.2: Failure of Dijkstra’s Algorithm for the N-Delay Routing Problem

89

Of greater concern, though, is why Dijkstra’s fails. The reason that Dijkstra’s does not find the valid path

through register b is because node f is explored first by the zero-latency search from (S, d, e). Since

Dijkstra’s algorithm marks all nodes when they are visited, this prevents the initially more expensive (S, a,

b, c) route from continuing on to the sink. This problem becomes even more complicated when

considering multi-terminal, multi-latency nets and the need for congestion resolution.

The two following sections describe the only known algorithms to address the N-Delay routing problem:

PipeRoute and QuickRoute. Details of these algorithms are discussed and their advantages and

disadvantages are examined.

7.2.1: PipeRoute

PipeRoute [33] was the first heuristic designed to confront the N-delay routing problem. Although it is NP-

Complete, the authors prove in [34] that a one-latency route can be found in polynomial time. They begin

by showing that a normal Dijkstra’s breadth-first search is not sufficient given the difference between the

input and output nets of a register. As seen in Figure 7.3, if S is both the source and sink, the router will not

find a valid one-latency path if it simply marks nodes visited or not visited. This is because neither search

can complete a path around the ring. Assuming a unit-cost model, the search from (S, a, b, c) cannot

continue to node f because it has already been visited by the other half of the search through (S, d, e). By

the same token, the search from (S, d, e, f) cannot continue to node c because it has already been visited by

the other half of the search through (S, a, b). To solve this problem the router must also note the associated

latency when a node is explored. That is, a post-register wave (latency=1) can expand to a given node even

if it has already been explored by a pre-register wave (latency=0) and vice versa. This is called a

Combined-Phased Breath-First Search.

However, the authors go on to show that even this is not entirely adequate. Consider the example in Figure

7.4. Even if the router allows nodes to be visited both at latency zero and latency one separately, it can

enter a similar deadlock if the graph is slightly different. Here, the latency 0 search through (S, d, e, c)

cannot continue to node b because it has already been explored at latency 0 through (S, a). However, the

ca
S

fd e
XX

bbca
S

fd e

bb ca
S

fd e

bb

0 0 1

0 0 0

√√√√0

1 √√√√

Figure 7.3: Combined-Phase Breadth-First Search

90

ca
S

ed

bb

ff

ca
S

ed

bb

ff

0 0

X

0 0

ca
S

ed

bb

ff

0 0 0,1

X
0

1
0,1

X

0

Figure 7.4: Failure of Combined-Phase BFS and Need for 2 Combined-Phase BFS

aa

ee

gg jj

S d

c

Kf

b

hh ii

aa

ee

gg jj

S d

c

Kf

b

hh ii

aa

ee

gg jj

S d

c

Kf

b

hh ii

aa

ee

gg jj

S d

c

Kf

b

hh ii

Figure 7.5: Greedy Accumulation of Multiple-Latency Routes

ca
S

fd
S

fd

cab

e

ca
S

fd

b

e e

b

Figure 7.6: PipeRoute and Self Intersection

latency 1 search through (S, a, b, c) cannot continue to node e because it has already been explored at

latency 1 through (S, d, f) and the latency 1 search through (S, d, f, e) cannot continue to node c because it

has already been explored at latency 1 through (S, a, b). In [34] the authors prove that these problems can

be avoided and they can guarantee optimality if the router allows nodes to be visited once at latency zero

and twice at latency one. This is called a 2Combined-Phased BFS.

PipeRoute uses this 1-delay router to iteratively form multiple latency paths. As seen in Figure 7.5, to find

a two-latency path from the source S to the sink K, PipeRoute first attempts to find a one-latency path. If

this initial single-register route elects to use register e, as in the top right of Figure 7.5, the next step is to

attempt to replace either the link from S to e or e to K with its own one-latency route. As shown in the

bottom left of Figure 7.5, PipeRoute would select the lowest cost alternative between the routes (S, a, e, f,

K) and (S, d, e, j, K). Unfortunately, this is a greedy accumulation process. For example, if the netlist

91

required a four-latency route and PipeRoute selected an interim three-latency path through (S, a, e, j, K), it

would be unable to find a valid route. This is because there is no way for any of the links (S→a), (a→e),

(e→j), or (j→K) to be replaced with its own single latency link.

PipeRoute uses this iterative multi-latency search technique to replace Dijkstra’s algorithm in PathFinder.

It maintains PathFinder’s iterative routing scheme and cost formulation in an outer loop to gradually

resolve congestion. Unfortunately, this approach has some subtle yet serious limitations. Although the

authors prove that their 1-delay router is optimal, their definition of an optimal path allows a route to cross

over itself. For example, on the left side of Figure 7.6, if S is both the source and sink, PipeRoute realizes

that the shortest one-latency path is the route (S, d, e, f, d, S). Unfortunately, this path visits a register and

then doubles back onto itself. This is clearly not a valid physical route since one node must simultaneously

carry a value from the current clock cycle and the previous one.

The authors justify their definition of an optimal path by indicating that since they use PathFinder in their

outer loop, its natural congestion avoidance will resolve these problems over multiple routing iterations.

Unfortunately, PathFinder may not be able to discourage this type of path self-intersection on many

common architectures. First, present sharing cost, or the pn term in Equation 4.7, cannot play any role in

preventing self-intersection regardless of architecture design. This is because, as seen in Figure 4.4,

PathFinder does not update the present sharing of any node until it has found a complete route from a

source to sink. Thus, an exploration will not feel the effects of present sharing between the phase zero and

phase one routes until after it has already completed the search. Furthermore, PathFinder cannot update

present sharing during a routing exploration itself since a phase one search has no efficient way of

distinguishing between when it is wrapping back onto itself versus attempting to explore a node that was

used at latency zero by an unrelated exploration. Likewise, this problem cannot be resolved by history

cost, the hn term in Equation 4.7. Consider a symmetrical architecture as shown in the right side of Figure

7.6. Here, the self-intersecting problem will simply alternate between the top and bottom loop, never

realizing that a valid alternative exists.

This characteristic makes PipeRoute unsuitable for many FPGA architectures. First, the interconnect

flexibility of modern devices will encourage the self-intersecting path problem. In other words, the

generally high connectivity within the communication fabric allows a routing node to easily re-discover

itself after going through a register. If modern FPGAs were purely directional devices (outputs could only

drive inputs that were to the right or below a given location, for example), this might not be a problem.

Second, the majority of interconnection networks have a great deal of symmetry. One routing track is

92

S
b d

Kf h

X

aa

ee

cc

gg S
b d

Kf h

aa

ee

cc

gg

S
b d

Kf h

aa

ee

cc

gg

Figure 7.7: QuickRoute and Self-Intersection

S
b d

K

f h

aa

ee

cc

gg
S

b d

K

f h

aa

ee

cc

gg

X

X

Figure 7.8: QuickRoute and Self Blocking

likely to have the same access to pipelining resources as neighboring tracks. This will encourage

explorations to fold all available options back onto themselves and prevent valid non-overlapping routes

from being found.

7.2.2: QuickRoute

QuickRoute [23] was the second heuristic to address the N-delay routing problem. Like PipeRoute, it also

retains an outer loop of PathFinder congestion resolution and simply replaces Dijkstra’s algorithm to

perform the inner loop searches. However, unlike PipeRoute it attempts to find full N-latency paths

directly. Although performed for latencies larger than one, it is similar to the Combined-Phased BFS from

PipeRoute in that the router must record the phase of an exploration when a node is visited. In QuickRoute,

a wave is allowed to explore a given node if the node has been visited by fewer than k other waves at the

same latency. For example, in the top right figure of Figure 7.7, if the router is trying to find a 2-register

path from S to K, assuming k=2, the paths (S, a, b) and (S, e, b) would both be considered. However, unlike

PipeRoute, QuickRoute does not allow paths to intersect themselves. To accomplish this, it records the

path back to the source for every exploratory wave and does not allow an exploration to revisit a node

already used by itself earlier in the search. In the bottom left illustration of Figure 7.7, a path that goes

through node b will not consider it again for subsequent exploration. This multi-latency search process is

continued until the sink is discovered at the appropriate latency.

93

QuickRoute
0 while(!all signals routed || congestion exists)
1 for all nets N
2 if N is nota pipelined net, use PathFinder
3 else
4 clear N.routing tree
5 put source of N into N.routing tree
6 sort sinks by non-decreasing latency
7 for all sinks of N
8 for all nodes in architecture, for all latencies L, set visited[L] = 0
9 put all nodes in routing tree into priority queue PQ at cost C, path P, latency L
10 while(PQ.head not sink[i] of N && PQ not empty)
11 remove head of PQ H at cost C, path P, latency L
12 if(H.visited[L] < k)
13 set H.cost[L] to C
14 add H to P
15 increment H.visited[L]
16 if (neighbor of H is not register && neighbor of H.visited < k && neighbor not in P)
17 put neighbor into PQ at cost C + neighbor cost + edge cost, path P, latency L
18 else if (neighbor of H is register && neighbor of H.visited < k && neighbor not in P)
19 put neighbor into PQ at cost C + neighbor cost + edge cost, path P, latency L+1
20 end if
21 end if
22 end while
23 if(PQ is empty)
24 net unroutable, exit
25 else if(PQ.head is sink[i] of net N)
26 mark sink found
27 add new parts of P to N.routing tree
28 clear PQ
29 update cost of congested nodes
30 end if
31 end for
32 end if
33 end for
34 update critical path delay and sink criticalities
35 end while

Figure 7.9: Pseudo-Code for QuickRoute

Of course, since the problem is still NP-Complete, QuickRoute cannot guarantee a solution. For example,

if a slight modification is made to the routing graph, as in Figure 7.8, the router will run into problems.

Assuming k=1 and the router needs to go from S to K accumulating two registers, it will fail to find a

solution. This is because node b is initially used by the doomed route through (S, a, b, c, d) that, in turn,

prevents the correct route through (S, e, f, g, h) from exploring node d. Unfortunately, no matter how large

k is made, it is possible to construct a routing graph that will cause QuickRoute to self-block by adding

additional 1-register paths between b and d.

However, QuickRoute still holds multiple advantages over PipeRoute. Not only does QuickRoute defend

itself from the self-intersection problem of PipeRoute, it has the flexibility to improve its routing ability by

increasing the k factor. Pseudocode for QuickRoute is shown in Figure 7.9.

7.3: Timing-Driven Pipelined Routing

Although both PipeRoute and QuickRoute do address the basic N-Delay routing problem, they also share a

critical shortcoming: neither implements timing-driven routing. This is surprising for two reasons. First,

94

registers are generally added to a netlist because the application developer seeks better critical path delay.

Thus, not considering the timing concerns of an application during the routing process can nullify much of

the advantags these registers might provide. Second, as discussed in Chapter 4, PathFinder already has a

timing-driven mode that simultaneously balances congestion and delay very nicely. However, PipeRoute

and QuickRoute cannot leverage PathFinder’s timing-driven formulation because of multiple differences

between the conventional routing problem and the pipelined routing problem. The following sections will

discuss the nature of these issues and introduce some new solutions.

7.3.1: Determining Link Criticality

Returning to Equation 4.8, Pathfinder determines the cost of a path based upon Aij, the criticality of the

source/sink pair as found during the last routing iteration. One key problem that prevents previous

pipelined routing algorithms from using PathFinder’s timing-driven methodology stems from the fact that,

in the classical CAD sense, they continuously change the very nature of the netlist during the routing

process. This makes using the criticality information from one routing iteration in the next unreliable.

As shown in top illustration of Figure 7.10, conventional CAD tools map registers to logic block locations.

Since the placement process determines the location of all the blocks before routing begins, it can achieve

relatively consistent iteration-to-iteration net criticality. This allows the classical PathFinder cost

formulation to function well. In this example, the placement tool has decided that CLB a must route to

CLB b before going to CLB c. As routing progresses, Pathfinder can use the criticality of the last route

found to determine the next route. In this way, PathFinder relies on the fact that the routing will not

drastically change between iterations. In other words, it assumes that it is unlikely that consecutive routing

iterations will choose vastly faster or slower routes from a to b or b to c. However, if this does occur, the

router will over or under-penalize the congestion versus delay contribution to the overall path cost. For

example, if the last routing iteration resulted in a timing-critical path for the link from a to b, but the

present routing iteration manages to find a much faster path, the cost of the route will greatly over-penalize

delay while erroneously ignoring congestion.

Pipelined routing differs strongly from classical routing because it must find the location of registers in the

netlist during the routing process. These registers are not locked into position by the placement tool.

While this is a hard problem in itself, it also presents a completely new issue for timing optimization. Since

registers are the start and end points of a clock cycle, their placement is naturally very important to the

timing of the nets to which they are attached. However, since a pipelined router determines the placement

of at least some portion of the registers in the netlist during routing, the timing significance of a given net

can change dramatically depending on the location chosen by a given routing iteration. Looking at the

pipelined routing problem from the standpoint of conventional routing, it is as if the placement of all the

95

a c1

ii

i

a

c

a cbb
a

b c

Figure 7.10: Timing Implications for Conventional Routing Versus Pipelined Routing

registers that need to be found during routing can change every routing iteration. This makes it very easy

to use the wrong criticality value and over or under-penalize the congestion versus delay contribution of the

overall path cost.

Consider the same netlist used before, but in a pipelined routing framework. This is shown in bottom

illustration of Figure 7.10. Notice that the register has been replaced by a latency annotation on the edge

between a and c. In this situation, LUT a must be connected to LUT c by a single latency link, but the

router must find the register as part of the routing process itself. However, the criticality of the individual

links between a and the register and the register and c will heavily depend upon the registering location that

is chosen. The relative criticality of these links will change completely if the router chooses to register at i

versus ii . However, the system cannot anticipate this change between routing iterations, so it can only

follow the classical PathFinder methodology and forward criticality information calculated in one iteration

for use in the next. However, potential inaccuracy regarding the criticality of the nets will result in possibly

grossly miscalculating the true cost of a path. Ultimately, this will lead to timing oscillations as opposite

sides of a register along critical or nearly critical paths vie for dominance.

If the first iteration chooses to register at i, the second iteration will choose to register at ii , despite that fact

that it would be more advantageous, from a timing standpoint, to select a register closer to the center of the

array. This problem occurs because the pre-register link will have a very low criticality, making delay on

this segment during the next routing iteration very inexpensive. Conversely, the post-register link will have

96

a b1
c

1
a b

c
a b

c

Figure 7.11: Multi-Terminal Criticality Problem

a very high criticality, making delay very costly during the next routing iteration. Thus, ignoring

congestion for the moment, the post-register link will want to become as short as possible at the expense of

the pre-register link. For similar reasons, a third routing iteration will return to the register at i. This means

that the router will alternately select equally poor register locations and never find a better solution.

Essentially, this type of behavior occurs because the router utilizes old, and dramatically incorrect net

criticality information to determine future routes. The criticality of a link to a register used in one routing

iteration has little relevance in the next if the router selects a different register. Notice that the mismatch

that occurs between the real criticality of a link and the criticality used for calculating the cost of a path is

very reminiscent of the problem encountered during the placement of registered netlists discussed in

Section 5.4. For that matter, the fundamental cause of this problem is also the same: the technique that

conventional timing-driven routers use implicitly assumes that the criticality of any connection in the

system will not change significantly between routing iterations. However, if the criticality does change

significantly, the algorithm can produce degenerate solutions.

This problem becomes even further complicated considering multi-terminal and multi-latency nets. As

shown in Figure 7.11, there are certain situations in which sinks may want to share registers to reduce

congestion. However, depending upon their relative placements and if this net becomes critical or near

critical, each sink might wish to use a separate register. Unfortunately, it becomes unclear what criticality

to assign any of the nets to allow these “zipped” and “unzipped” paths to exist in consecutive iterations and

still produce high-quality results. Should the criticality of all latency-N segments be averaged? Should the

worst criticality of any segment define the criticality of all links? This becomes an issue because the router

can fundamentally changing the nature of the netlist during routing. Similar to before, from the viewpoint

of a conventional router it is as if a limited form of logic synthesis or, at the very least, register duplication

can be performed between every routing iteration.

7.3.2: Assumed Criticality Searching

Clearly, if a pipelined router is to obtain high quality results, it cannot use criticality information gleaned

from previous routing iterations to guide future exploration. However, PathFinder has shown that there still

97

needs to be some mechanism to allow more timing-significant links to trade higher congestion for lower

delay, and less important signals to trade additional delay for less congestion. A potential solution? Allow

each exploration to discover its own criticality.

While the router would normally obtain the timing importance of the signal from the previous routing

iteration, this cannot be done for pipelined signals. One possible alternative is for an exploration to build

its own criticality based upon the delay it has seen thus far. In this scenario, the router would start with a

very low criticality at the source when the exploration has not accumulated any delay, and gradually

increase the timing significance as the search continues and paths becomes slower. Unfortunately, while

this may work for low and mid-criticality links, this will not perform well on high criticality segments.

This is because the early portion of searches may meander to avoid congestion. As the path becomes

longer, the search will opt for more direct routes to the sink. Unfortunately for critical nets, the damage has

already been done and they will never obtain the congestion-blind routes that they should.

Instead, it is possible for an exploration to decide the proper criticality for a route at the only point that the

decision can actually be made – when it arrives at a sink. In this formulation, the router starts AC

independent waves from the source, each assuming the net has a different criticality, ranging from 1/AC to

1.0. In this manner, the system will have multiple simultaneous searches that each emphasizes delay versus

congestion in a slightly different way. The first exploration to reach the sink will be the least expensive

and, thus, represent approximately the proper balance of congestion versus delay. Furthermore, the router

can trade runtime for further timing accuracy or vice versa by adjusting AC. This technique is called an

Assumed Criticality Search.

However, assumed criticality searching could still lead to grossly incorrect routing. Looking back at

Equation 4.8, this is because high criticality nets always emphasize low delay and low criticality nets

always emphasize low congestion. This relationship makes it possible for assumed criticality searches to

degenerate to always selecting either the lowest or highest assumed criticality for all nets. For example, if

the delay values along most paths from the source to the sink are coincidentally smaller in magnitude than

their congestion counterparts, searches that assume a criticality of 1.0 will always be the cheapest,

regardless as to whether they are truly timing critical. A similar situation occurs for the minimum assumed

criticality if the relative values are reversed. While this problem could be addressed by ensuring that the

delay and congestion values are always balanced, this is not a feasible solution as the congestion values

must be able to grow as the routing progresses – PathFinder relies on gradually escalating congestion costs

to resolve sharing.

To deal with this problem the assumed criticality router needs to incorporate the real criticality of a path

back into the cost calculation. This can be accomplished by using the assumed criticality values to

98

calculate the cost of route up to, but not including, the sink or register. Then, just as the router reaches this

node, it can determine the real criticality of the route that it actually found. At this point the router can re-

calculate the cost of the path based upon the actual criticality. This will ensure that a sink is only pushed

into the search queue with the true cost of the path. This will prevent the scenario in which low assumed

criticality searches rush ahead along uncongested, but slow links and form an unnecessarily high criticality

path. This is because just as these searches are about to reach the sink or register, they will calculate the

real criticality of the paths found. The cost of these searches will then rise dramatically to reflect their

newly revealed high delay and high criticality. This will allow higher assumed criticality searches, which

will presumably find faster, slightly more congested paths, to catch up and have the opportunity to form a

more appropriate mid-criticality link.

The complete assumed criticality search methodology, as seen in Figure 7.12, has several attractive

features. First, it solves the problem of routing inaccuracy due to iteration-to-iteration variance in path

criticality. Second, this approach does not dramatically increase the computational effort of routing.

Obviously, if the router conducted AC completely independent searches for each source/sink pair, this

would only invoke PathFinder’s inner loop AC-1 additional times. However, the router can also easily run

all of these searches simultaneously and prune non-productive explorations along the way. Of course, once

one search has reached the sink, the router can end all exploration. However, it can even prune incomplete

Assumed Criticality Breadth-First Search
0 for i = 1 to AC
1 put source into priority queue PQ at cost = 0, crit= i/AC
2 end for
3 while(PQ.head not sink && PQ not empty)
4 remove head of PQ H at cost C, crit CR, previous node P
5 if(H not visited at crit[CR])
6 mark H visited at crit[CR]
7 set H.cost[CR] to C
8 set H.previous node[CR] to P
9 for each neighbor of H
10 if neighbor is not sink
11 if CR != 1.0 && neighbor.delay > (CR + 1/AC) * critical path
12 continue
13 else
14 put unvisited neighbor of H into PQ at cost C + neighbor cost + edge cost, crit CR,

 previous node H
15 end if
16 else if neighbor is sink
17 calculate actual criticality of current path
18 recalculate cost of path
19 put sink into PQ at updated cost, crit CR, previous node H
20 end if
21 end for
22 end if
23 end while
24 if(PQ is empty)
25 sink is unroutable, exit
26 else if(PQ.head is sink)
27 add path net’s routing tree
28 end if

Figure 7.12: Assumed Criticality Searching

99

searches. For example, for AC=5 the router will launch five explorations with criticalities (0.2, 0.4, 0.6,

0.8, 1.0). If the current critical path is 10, paths with a delay of 4 or more do not need to be explored by the

0.2 assumed criticality wave. Those paths will be better serviced by the 0.4 assumed criticality exploration.

Thus, with the exception of the highest criticality wave, the router can prune a search when the current path

delay would make the exploration’s criticality larger than the next higher assumed criticality search.

7.3.3: New Cost Formulation

Another issue that appears concerns the congestion versus timing cost formulation itself. As mentioned in

the previous section during the discussion of the potential pitfalls of the assumed criticality methodology,

the lowest cost path obtained by using Equation 4.8 heavily depends upon the relative values of an

architecture’s delay and congestion costs. Unfortunately, this can cause further undesirable behavior when

considering pipelined routing.

Consider the scenario in Figure 7.13. Here, there are two potential one-latency paths from S to K. If the

notation in the figure is (delay cost:congestion cost), and the cost of a path is considered to be the some of

the congestion and delay costs of all of it links, both paths have the same total congestion and delay.

However, the top path is a comparatively poor choice because the post-register path is both highly critical

and highly congested. Using Equation 4.8 as a cost function, the cost of the top and bottom paths are shown

in Equations 7.1 and 7.2, respectively. For mathematical simplicity, the critical path delay of the system is

assumed to be 10d for the moment. The effect of system critical path delay will be further examined in

Section 7.6.

 cdcdcd 8.12.8)9(1.0)9(9.0)(9.0)(1.0 +=+++ (7.1)

 c dcdc)(.d)(. 55)5(5.0)5(5.0550550 +=+++ (7.2)

Based on these equations, the selection of balanced versus unbalanced paths depends entirely upon the

relative values of c and d, an architecture’s average base congestion and delay cost. In this example, the

more balanced path is only selected if c < d. However, maintaining this relationship is very difficult. Even

if the router were to scales the base cost of all routing nodes so that it initially selected more balanced

paths, the natural congestion cost escalation of PathFinder will cause later iterations to tend toward worse

selections. Not only do these unbalanced paths create a more difficult timing problem, they actually work

contrary to PathFinder’s own attempts at congestion resolution. This is because as the router enters the

later stages of routing, the average congestion cost will rise to resolve sharing. However, based upon the

observation here, the router will actually tend towards more extreme congestion options.

100

KS
1d:1c 9d:9c

5d:5c 5d:5c

Figure 7.13: Congestion vs. Timing Concerns For Pipelined Routing

This problem occurs because the delay and congestion contributions to the overall path cost are linked.

While the Aij versus (1-Aij) terms guarantee that paths can trade delay for congestion and vice-versa, this

intertwines the two components, making their relative values very sensitive. To address this issue, a subtle

change can be made that removes this vulnerability. Equation 7.3 is obtained by dividing both sides of

Equation 4.8 by (1-Aij).

 nn
ij

ij

ij

nij

ij

nij

ij

n
cd

A

A

A

cA

A

dA

A

C +
−

=
−

−+
−

=
− 11

)1(

11
 (7.3)

While this change scales all path costs by 1/(1-Aij), since all explorations compete with each other

simultaneously, this likely does not change path selection for conventional non-pipelined routing.

However, this does change the behavior for pipelined signals. Revisiting the example from Figure 7.13 but

substituting the new cost formulation, the cost of the unbalanced top path and balanced bottom path are

shown in Equations 7.4 and 7.5, respectively.

 c dcdc(d)cdcd 1011.819)9(911.09)(
1.0

9.0
)(

9.0

1.0 +=+++=+++ (7.4)

 c dcdcd)(dddd 10105)5(15515)5(
5.0

5.0
5)5(

5.0

5.0 +=+++=+++ (7.5)

Since both the congestion and delay costs are necessarily positive numbers, more balanced paths are now

always selected over unbalanced paths without the need to meticulously adjust the relative values of an

architecture’s congestion and delay costs. However, the router still has the option of selecting the

unbalanced path should this path become less congested in future routing iterations.

One concern that might arise regarding Equation 7.3 is that the criticality of a connection, Aij, is divided by

1 minus the criticality, or (1-Aij). This term could become undefined for connections that are along the

critical path since Aij is 1.0, resulting in a division by zero. However, this does not occur because timing-

driven routers generally cap the criticality used to calculate routing costs to 0.99 [2]. Looking back at

Equation 4.8, the reason that the criticality is only allowed to reach a maximum of 0.99 is because routers

101

do not want to create situation in which paths can entirely ignore congestion. If Aij were equal to 1.0, (1-

Aij) would equal zero, allowing a path to solely focus on delay with absolutely no concern for congestion.

Thus, two critical paths that fight over a single resource would never be able to resolve their conflict. This

cap on a path’s criticality helps the router better resolve congestion.

This limit also has an effect on routes slower than the current critical path. For example, it is possible that

in an attempt to resolve congestion, the system considers a slower route for some connections. Without a

cap on the criticality of a connection, the assumed criticality methodology could find a route with a

criticality larger than 1.0, causing the congestion term to become negative. This might actually cause the

system to use highly congested paths, just to receive the cost benefit. However, with the limit in place, the

router can still feel the effects of slower paths since the delay term is larger, but without potentially creating

a problem for congestion resolution.

7.4: Armada

The assumed criticality search technique and the new cost function can be integrated into the QuickRoute

algorithm. This new pipelined routing algorithm is called Armada [10]. As shown in Figure 7.14, Armada

launches a series of multi-criticality searches from the source. In this example the router would like to find

a one-latency path between S and K. The first series of searches expand from the source. When one of

these waves encounters a register, it recalculates the path cost based upon the real criticality required to

reach the register along the given path. When the cheapest path to the register is popped from the priority

queue, it launches a new series of assumed criticality searches of its own at latency one. Notice that

although all zero-latency searches may reach the register and push it into the priority queue, only one path

will be deemed the least expensive and, thus, the best way to use this particular register. Only this path will

continue on with one-latency explorations.

However, this example brings up the issue of defining the cost of a multiple latency route. In Figure 7.14,

eventually both registers in the architecture will launch their own set of one-latency explorations. As they

near K, the router needs to determine which path best balances not only the congestion and delay of their

zero and one-latency paths individually, but the combination of the two. Since each time the router

encounters a register it determines the actual criticality of the link, the cost of an L-latency path can be

S KKS

Figure 7.14: QuickRoute with Assumed Criticality Searching

102

defined as the total of the timing and congestion costs of all zero to L-latency segments. This is shown in

Equation 7.6.

)Costcongestiont(timingCos
0

ii

L

i

C +=∑
=

 (7.6)

Furthermore, as seen in line 6 of the pseudocode in Figure 7.16, Armada borrows a concept from

QuickRoute and sorts the sinks of each net it is responsible for routing. To give priority to higher criticality

links, it sorts each net’s sinks first by non-decreasing order of latency (# of registers required on the path),

then by non-increasing order of maximum link criticality found in the previous routing iteration. In this

way, the most timing-critical sinks with the fewest chances to amortize path delay over multiple clock

cycles determine the earliest stages of the routing tree.

To build successive multi-terminal routes, Armada must also define how pre-existing routes should

initialize the priority queue. As seen in Figure 7.15, after the router has found a one-latency route to K, the

router pushes this existing route into the priority queue to reflect all of the possible routing options to the 2-

latency sink J. This can be seen in lines 9-17 of the pseudocode in Figure 7.16. While building a link from

b would allow for the maximum register sharing and will likely cause the minimum congestion impact,

developing a wholly new path may offer some timing benefits. Borrowing a concept from timing-driven

PathFinder, Armada considers existing routes to be free in terms of congestion, and it only consider their

delay impact on further sinks. Based upon the model discussed in Equation 7.6, Armada pushes nodes

along existing routes into the priority queue by summing only the timing cost of all upstream zero to L-

latency segments. For the example in Figure 7.15, to combine this concept with the assumed criticality

searching technique, all nodes along a would be pushed into the priority queue AC times using different

assumed criticalities to determine their timing cost. While all nodes along b would also be added to the

priority queue AC times, they would all share some common portion of their cost – the zero-latency timing

cost incurred along a.

KS

J

a b

Figure 7.15: Re-initializing PQ for Multi-Terminal Nets

103

Armada
0 while(!all signals routed || congestion exists)
1 for all nets N
2 if N is not pipelined net, use PathFinder
3 else
4 clear N.routing tree
5 put source of N into N.routing tree
6 sort sinks by non-decreasing latency, non-increasing criticality
7 for all sinks of N
8 for all nodes in architecture, for all latencies L, for all assumed criticalities CR set visited[L][CR] = 0
 Initialize priority queue PQ with existing routing tree
9 for all CR = 1/AC to 0.99
10 for all nodes X in routing tree
11 if CR != 0.99 && X.delay > (CR + 1/AC) * critical Path
12 continue // prune search for starting points
13 else
14 put X into PQ at cost C, path P, latency L, assumed criticality CR
15 end if
16 end for
17 end for
18 while(PQ.head notsink[i] of N && PQ not empty) // search for L-latency route to sink
19 remove head of PQ H at cost C, path P, latency L, assumed criticality CR
20 if(H.visited[L][CR] < k)
21 set H.cost[L][CR] to C
22 add H to P
23 increment H.visited[L][CR]
24 for each neighbor of H
25 if neighbor is not sink
26 if CR != 1.0 && neighbor.delay > (CR + 1/AC) * critical path
27 continue // prune searches
28 else if neighbor of H.visted ≥ k || neighbor in P
29 continue // don’t explore visited or loopback neighbors
29 else if (neighbor of H is not register)
30 put neighbor into PQ at cost C + neighbor cost + edge cost, path P,

 latency L, assumed criticality CR
31 else if (neighbor of H is register)
32 calculate actual criticality of current path
33 recalculate cost of path
34 put neighbor into PQ at updated cost + neighbor cost + edge cost, path P,

 latency L+1, assumed criticality CR
35 end if
36 else if neighbor is sink
37 calculate actual criticality of current path
38 recalculate cost of path
39 put sink into PQ at updated cost, path P, latency L, assumed criticality CR
40 end if
41 end for
42 end if
43 end while
44 if(PQ is empty)
45 net unroutable, exit
46 else if(PQ.head is sink[i] of net N)
47 mark sink found
48 add new parts of P to N.routing tree
49 clear PQ
50 update cost of congested nodes
51 end if
52 end for
53 end if
54 end for
55 update critical path delay
56 end while

Figure 7.16: Pseudo-Code for Armada Timing-Driven Pipelined Routing

104

7.5: Testing and Results

As described in [34], the pipeline routing problem was first inspired by the RaPiD [9] architecture. Thus,

to determine the effectiveness of the Armada algorithm it was tested with RaPiD architectures and RaPiD

netlists. RaPiD is a coarse-grain, one-dimensional reconfigurable array with a word-width interconnect

network. As seen in Figure 7.17, logic blocks populate the top of the array with a mixture of short and

long-distance routing wires below. Although short wires cannot be concatenated to make longer routes and

are not connected to specialized interconnect registers, long wires can be concatenated for up to chip-wide

routes and can acquire between zero and three register latencies at each switchpoint, also known as a bus

connector. Bus connectors are represented with small squares between long wire segments. Furthermore,

multiple RaPiD cells can be abutted side by side to construct larger arrays.

In the existing RaPiD toolflow, a high-level language compiler produces a retimed netlist that must be

mapped to a device given specific latency requirements on each connection. Although RaPiD architectures

contain a wealth of register locations, any specific bus connector can only communicate with the wires

immediately to its left and right. Because of this connectivity, register assignment cannot be performed

during placement. This is because, like the registered track-graph architecture in [38], deciding exactly

which registers should be used for a given signal also mostly determines the detailed routing for that net.

Unfortunately, deferring register assignment until routing also presents a problem since it is not obvious

how to find routes that contains exactly the correct number of pipelining registers. A conventional router

cannot be used because the architecture has limited pipelining resources that determine the overall

characteristics of each path. For example, logic blocks that are placed physically close to each other may

not be able to be connected via the most direct route. If the connection between these blocks requires

multiple pipelining delays, the router may need to take a more circuitous path to acquire sufficient

registering.

Testing was performed using nine RaPiD netlists that represent a wide range of pipeline register

requirements. These netlists, detailed in Appendix A, were mapped to three different RaPiD architectures:

the original architecture that contains 16 logic blocks per cell, length-4 short wires, length-16 long wires,

and three optional registers at each bus connector, and two other architectures that are similar, but

substitute long wires of length 8 and 4.

The Armada router was compared to both PipeRoute and QuickRoute. PipeRoute was represented by a

slightly augmented version from [32] that added a rudimentary timing-driven formulation to the original

PipeRoute algorithm. In the new PipeRoute methodology, the maximum criticality encountered by any

link between a given source and sink determined the overall net criticality during the following routing

iteration. Of course, this technique introduces some inaccuracies into the system. Not only does this

105

Figure 7.17: Illustration of a RaPiD Cell

methodology suffer from the problem associated with determining the correct relative cost between

congestion and timing that inspired the modified cost formulation, it also suffers from the false link

criticality predictions that was addressed with the assumed criticality approach. As for QuickRoute’s k

term, as suggested by [23], k = 1 was used. Armada also used k = 1 and arbitrarily set AC = 10 for the

initial round of testing.

Before the quality of these routers could be evaluated, they required the benchmark netlists to be placed.

All nine netlists were placed using the placement tool built into PipeRoute [33]. This provided a fixed,

pipelining-aware placement as a starting point for all three algorithms. While conventional placement tools

always attempt to group interconnected blocks as closely as possible, this is not necessarily favorable on

architectures that require pipelined routing such as RaPiD. This is because, as mentioned earlier, high

latency connections may need to take a circuitous route if there are not enough pipelining resources

between the logic blocks to acquire the appropriate registering. The PipeRoute placer attempts to take this

into account by explicitly placing both logic blocks and registers during annealing. However, unlike a

conventional placement tool, the placement of the registers in the system is not binding and new register

locations are determined during the routing process.

Testing began with the original RaPiD architecture. Six independent PipeRoute placement and routing runs

were performed, and the placement with the lowest routed critical path delay as found by PipeRoute was

passed on to evaluate the other routers. These placements were routed using congestion-driven

QuickRoute, the Armada algorithm, and the Armada algorithm with the original PathFinder cost

formulation substituted in.

106

In Table 7.1 to Table 7.3, the Best Track Count results are the average normalized track requirements,

circuit timing and router runtime when each tool searched separately for the minimum routable architecture

for each of the nine netlists. Notice that this is slightly different than the testing used to evaluate the

placement tools from the previous chapters, but provides good insight into the true quality of the routing

algorithms. Match PipeRoute Track Count results were obtained when each tool was given the same

number of tracks that PipeRoute required for a given netlist. Match QuickRoute Track Count results were

obtained when each tool was given the maximum number of tracks required by any of the QuickRoute-

derivative tools (QuickRoute, Armada or Armada with PathFinder’s cost function) for a given netlist.

Match QuickRoute Track Count results do not include results for PipeRoute as the available codebase does

not allow the placement and routing steps to be separated. Given a different architecture, PipeRoute will

also change the placement.

Although a precise relationship cannot be made due to the wide range of benchmark complexity, these

tables also include un-normalized average router runtime to give a general sense of algorithm effort. All

results were gathered on 3.2GHz Intel Xeon machines with 2GB of RAM. Unfortunately, runtime is only

reported for the three QuickRoute-derivative routers because differences in code execution prevented

meaningful comparisons to be made with the PipeRoute codebase. This said, the original QuickRoute

algorithm is likely to perform as fast or faster than PipeRoute since it does not perform multiple piecewise

searches.

As seen in Table 7.1, the first surprise is that the original congestion-driven QuickRoute algorithm actually

achieves nearly the same critical path delay as the improved timing-driven PipeRoute formulation.

QuickRoute produced a normalized critical path delay of 1.64x while PipeRoute’s critical path delay was

somewhat faster with a 1.56x critical path delay. Although based upon the tests performed in [23] one

would expect QuickRoute to provide marginally better track counts than PipeRoute, the very similar timing

results indicate that the technique used to make PipeRoute timing-driven is largely ineffective. As

predicted, it is likely that inaccuracies within the timing-driven formulation itself greatly limit its ability for

optimization.

In contrast, though, Armada finds vastly superior timing results with slightly better routability. PipeRoute

produced 1.56x worse critical path with 1.09x worse track count and QuickRoute produced 1.64x worse

critical path delay with 1.04x worse track count. This improvement in track count is likely due to the fact

that the timing-driven cost formulation provides additional direction to the QuickRoute-like searches,

avoiding some occurrences of self-blocking. However, as expected given the AC = 10 factor, Armada runs

approximately 10x slower than QuickRoute. Furthermore, it is also clear that the new timing-driven cost

107

formulation functions as intended. When PathFinder’s cost function is substituted back into the Armada

algorithm, it produces 1.18x worse critical path delay.

Of course, it may be unfair to compare the critical path delay of netlists mapped to architectures with

different track counts. Thus, as seen in the bottom two sections of Table 7.1, testing was repeated using the

same architecture for all of the routing algorithms. However, the results are largely the same – Armada still

produces vastly superior critical path delay compared with all of the other approaches, but requires

approximately 10x the runtime of QuickRoute.

Table 7.1. Normalized Results for Length-16 Long Wire Architecture
Best Track Count Tracks Crit. Path Delay Runtime Avg. Runtime

PipeRoute-TD 1.09 1.56 - -
QuickRoute 1.04 1.64 0.10 133 s

Armada 1.00 1.00 1.00 1721 s
Armada, PathFinder Cost 1.03 1.18 7.65 7982 s

Match PipeRoute Track Count Tracks Crit. Path Delay Runtime Avg. Runtime
PipeRoute-TD 1.09 1.56 - -
QuickRoute 1.09 1.75 0.08 113 s

Armada 1.09 1.00 0.94 1752 s
Armada, PathFinder Cost 1.09 1.19 5.21 5329 s

Match QuickRoute Track Count Tracks Crit. Path Delay Runtime Avg. Runtime
QuickRoute 1.05 1.73 0.11 138 s

Armada 1.05 0.99 1.05 1826 s
Armada, PathFinder Cost 1.05 1.20 7.45 7705 s

All results normalized to the Armada results with the smallest track count

Table 7.2. Normalized Results for Length-8 Long Wire Architecture
Best Track Count Tracks Crit. Path Delay Runtime Avg. Runtime

PipeRoute-TD 1.00 1.66 - -
QuickRoute 0.96 1.65 0.10 66 s

Armada 1.00 1.00 1.00 1357 s
Armada, PathFinder Cost 1.02 1.30 3.11 3068 s
Match QuickRoute Track Tracks Crit. Path Delay Runtime Avg. Runtime

QuickRoute 1.03 1.71 0.08 45 s
Armada 1.03 1.00 0.88 841 s

Armada, PathFinder Cost 1.03 1.31 3.12 3075 s
All results normalized to the Armada results with the smallest track count

Table 7.3. Normalized Results for Length-4 Long Wire Architecture
Best Track Count Tracks Crit. Path Delay Runtime Avg. Runtime

PipeRoute-TD 1.01 1.59 - -
QuickRoute 1.02 1.54 0.11 76 s

Armada 1.00 1.00 1.00 2637 s
Armada, PathFinder Cost 1.05 1.21 2.75 2976 s
Match QuickRoute Track Tracks Crit. Path Delay Runtime Avg. Runtime

QuickRoute 1.05 1.55 0.10 41 s
Armada 1.05 0.99 0.84 1593 s

Armada, PathFinder Cost 1.05 1.21 2.75 2976 s
All results normalized to the Armada results with the smallest track count

108

As seen in Table 7.2 and Table 7.3, this trend continues when the netlists are mapped to architectures that

present a more difficult pipelined routing problem. The testing methodology used on the original RaPiD

architecture was repeated on architectures with double and quadruple the number of pipelined switch

opportunities. On the length-8 architectures, PipeRoute and QuickRoute produce 1.66x and 1.65x worse

critical path delay respectively. On the length-4 architectures, PipeRoute and QuickRoute produce 1.59x

and 1.54x worse critical path delay respectively. As a note, since the gap between the track counts of

PipeRoute and the QuickRoute-derivatives mostly closes, the Match PipeRoute Track Count results are no

longer shown.

Although this testing proved that Armada produces significantly better pipelined routing results than its

predecessors, there are two other outstanding questions regarding its effectiveness. First, as mentioned

earlier, the maximum visitation factor used in this initial testing was suggested by the original QuickRoute

paper (k = 1). Even though the routing algorithm is still operating within the same architectural framework,

the timing-driven nature of the Armada approach might make more thorough explorations attractive. As

seen in Table 7.4, there is some correlation between larger values of k and higher quality results, but the

change is relatively minor. The small potential improvement in critical path delay (up to 0.95x) or track

count (up to 0.98x) is likely not worth the increase in algorithm runtime. However, since larger values of k

primarily help combat self-blocking, this behaviour is probably highly architecture-specific.

The second issue is that the number of assumed criticality searches that were performed in the initial round

of testing was completely arbitrarily chosen (AC=10). Since the assumed criticality entirely controls how

paths weigh congestion versus delay for the majority of a given route, it is likely that the quality of the

critical path timing heavily depends upon the granularity of the assumed criticality searches. However,

looking at Table 7.5, although there is a marked runtime improvement, dramatically decreasing the number

of assumed criticality searches does not necessarily affect the overall quality of the routing. In fact, there is

no real decline in quality even if the number of searches is reduced to merely two (only assume criticalities

of 0.5 and 0.99). With AC = 2, the critical path delay for the original length 16 long wire architecture is

0.97x better with the same track count and a 0.36x shorter runtime, the critical path delay for the length 8

long wire architecture is only 1.04x worse with the same track count and a 0.29x shorter runtime, and the

critical path delay for the length 4 long wire architecture is only 1.01x worse with a 1.04x worse track

count and a 0.31x shorter runtime.

Although this may seem counter-intuitive, examining the routed results found by Armada more closely, this

is likely an artifact of the RaPiD architecture’s design philosophy. In almost all cases, the critical path

reaches some architectural limit – two to three bus connector-to-bus connector delays or less. Considering

that RaPiD was built to be an architecture for heavily pipelined netlists, this should not be particularly

109

Table 7.4. Normalized Results for Armada, k=1, 2, 4
Length-16 Architecture Tracks Crit. Path Delay Runtime Avg. Runtime

k = 1 1.00 1.00 1.00 1721 s
k = 2 0.99 0.95 1.67 2454 s
k = 4 0.98 1.02 3.24 5634 s

Length-8 Architecture Tracks Crit. Path Delay Runtime Avg. Runtime
k = 1 1.00 1.00 1.00 1357 s
k = 2 0.99 1.00 1.29 1757 s
k = 4 0.98 1.00 6.48 21725 s

Length-4 Architecture Tracks Crit. Path Delay Runtime Avg. Runtime
k = 1 1.00 1.00 1.00 2637 s
k = 2 1.01 1.00 1.77 4414 s
k = 4 1.00 0.98 3.93 9452 s

All results normalized to the Armada results with the smallest track count

Table 7.5. Normalized Results for Armada, AC=10, 8, 6, 4, 2
Length-16 Architecture Tracks Crit. Path Delay Runtime Avg. Runtime

AC = 10 1.00 1.00 1.00 1721 s
AC = 8 0.98 1.04 0.96 1168 s
AC = 6 1.00 0.97 0.67 785 s
AC = 4 0.99 1.02 0.52 573 s
AC = 2 1.00 0.97 0.36 354 s
AC = 1 1.11 1.20 0.35 300 s

Length-8 Architecture Tracks Crit. Path Delay Runtime Avg. Runtime
AC = 10 1.00 1.00 1.00 1357 s
AC = 8 0.98 1.01 0.79 910 s
AC = 6 0.98 1.01 0.43 576 s
AC = 4 1.00 1.01 0.56 692 s
AC = 2 1.00 1.04 0.29 307 s
AC = 1 1.08 1.37 0.32 217 s

Length-4 Architecture Tracks Crit. Path Delay Runtime Avg. Runtime
AC = 10 1.00 1.00 1.00 2637 s
AC = 8 1.01 0.99 0.75 1802 s
AC = 6 0.99 1.00 1.05 1803 s
AC = 4 0.99 0.98 0.60 1014 s
AC = 2 1.04 1.01 0.31 342 s
AC = 1 1.60 1.51 0.67 1080 s

All results normalized to AC=10 values

surprising. Because of this, Armada merely finds exactly the types of routes that the original designers had

anticipated. When the router achieves such an extremely low critical path delay, all signals actually

become either 50% or 100% critical, making AC = 2 work exceedingly well. It is only when AC is reduced

to 1 and all signals are considered critical that the router is not accurate. However, as with determining k,

the AC behaviour is also likely highly architecture dependent. The majority of FPGAs do not have the

extremely predictable routing characteristics of the RaPiD architecture. Thus, more conventional FPGAs

are likely more sensitive to the number of assumed criticality searches.

7.6: Conclusions and Future Research

This chapter delved into the details of a relatively new CAD problem: pipelined routing. FPGA

architectures that contain a large number of registers often limit the input and output connectivity of many

of them due to area concerns. This architectural characteristic makes efficiently using these registers

somewhat difficult since the placement tool cannot assign flip-flops in a netlist to these registers in the

110

traditional manner. This is because mapping a flip-flop to a register with very limited connectivity also

largely determines the routing needed to connect this register to the rest of the circuit. This can make the

subsequent routing problem much more difficult, particularly if a netlist requires a large number of

registers.

One manner of dealing with this issue is to assign register locations during the routing process itself.

However, this fundamentally changes the nature of the routing problem because signals must find paths

that satisfy an additional constraint – valid paths must traverse a very specific number of registers. This

new routing problem is called the N-Delay Routing problem. Although there have been two prior research

efforts to address the N-Delay Routing problem, neither of these heuristics can effectively implement

timing-driven routing. Primarily, the timing-driven N-Delay Routing problem is difficult because, from the

viewpoint of conventional CAD tools, it contains aspects of both register placement and physical re-

synthesis that must be solved simultaneously within the normal timing-driven routing problem. Attempting

to apply conventional timing-driving methodologies can lead to poor solutions, largely because the

criticality of registered connections can change dramatically between different routing iterations.

This chapter suggested two new techniques that address some of the instabilities that can form during the

timing-driven pipelined routing process. First, this chapter presented an approach that allows the router to

determine the criticality of a given connection without any a priori knowledge. Second, this chapter

introduced a new timing-driven cost formulation that guides the router towards better pipelined paths.

These two techniques were combined with aspects from previous routers to form the Armada timing-driven

pipelined routing algorithm. On three different architectures this algorithm was shown to provide roughly

0.6x better average critical path delay without compromising routability. While more computationally

intensive than previous pipelined routing algorithms, Armada remains competitive, especially given the

large improvement in circuit timing.

Although these results are promising, looking into the future there is still room for improvement. One

concern is the quality obtained using the new cost function. A large portion of Section 7.3.3 was devoted

to analyzing the routing problem in Figure 7.13. In this example, the traditional PathFinder cost function

was shown to potentially favor paths that had both highly critical and highly congested links over paths that

had lower criticality and less congested connections. Which paths were selected largely depended upon the

relative cost of an architecture’s average base congestion and delay cost. The new cost function suggested

in this chapter was shown to remove this dependency and favor more balanced paths. However, the

behavior of this new cost function can change depending upon the critical path delay of the system found

during the last routing iteration. It turns out that the new cost function can prefer less balanced paths under

certain conditions. Of specific interest is what occurs when the critical path delay of the last routing

111

iteration was relatively low, because this provides some idea of what happens when the router encounters

congestion and begins exploring slower paths.

As shown in Table 7.6 and Table 7.7, the same calculations as performed in Equations 7.4 and 7.5 for the

example in Figure 7.13 can be repeated for different system critical path delays. The criticality and (1-

criticality) terms of the expanded equations on the left sides of 7.4 and 7.5 can be found in Table 7.6 in the

CPD = 10d row. Similarly, the d and c multiplier terms on the right side of Equations 7.4 and 7.5 can be

found in Table 7.7 in the CPD = 10d row.

While, as expected, the new cost function causes the router to always prefer the balanced bottom path when

the previous critical path delay was greater than 6d, the router will always prefer the unbalanced top path

when the previous critical path delay was between 2 and 5 inclusively. Most troubling, this means that

when the previous critical path was 5, the router will not find the balanced path that maintains this critical

path delay during the next routing iteration. Rather, it will find the unbalanced route that will make the

Table 7.6: Capped Link Criticality of Connections in Figure 7.13
 Unbalanced Top Path Balanced Bottom Path
 Pre Register Post Register Pre Register Post Register

CPD Crit 1-Crit Crit 1-Crit Crit 1-Crit Crit 1-Crit
1d 0.99 0.01 0.99 0.01 0.99 0.01 0.99 0.01
2d 0.50 0.50 0.99 0.01 0.99 0.01 0.99 0.01
3d 0.33 0.67 0.99 0.01 0.99 0.01 0.99 0.01
4d 0.25 0.75 0.99 0.01 0.99 0.01 0.99 0.01
5d 0.20 0.80 0.99 0.01 0.99 0.01 0.99 0.01
6d 0.17 0.83 0.99 0.01 0.83 0.17 0.83 0.17
7d 0.14 0.86 0.99 0.01 0.71 0.29 0.71 0.29
8d 0.13 0.88 0.99 0.01 0.63 0.38 0.63 0.38
9d 0.11 0.89 0.99 0.01 0.56 0.44 0.56 0.44
10d 0.10 0.90 0.90 0.10 0.50 0.50 0.50 0.50
11d 0.09 0.91 0.82 0.18 0.45 0.55 0.45 0.55
12d 0.08 0.92 0.75 0.25 0.42 0.58 0.42 0.58

CPD refers to the critical path delay of the system during the last routing iteration.

Table 7.7: Effect of Critical Path Delay on Revised Cost Function
 Unbalanced Top Path Balanced Bottom Path

CPD Delay Term * d Congestion Term * c Delay Term * d Congestion Term * c
1d 990.00 10.00 990.00 10.00
2d 892.00 10.00 990.00 10.00
3d 891.50 10.00 990.00 10.00
4d 891.33 10.00 990.00 10.00
5d 891.25 10.00 990.00 10.00
6d 891.20 10.00 50.00 10.00
7d 891.17 10.00 25.00 10.00
8d 891.14 10.00 16.67 10.00
9d 891.12 10.00 12.50 10.00
10d 81.11 10.00 10.00 10.00
11d 40.60 10.00 8.33 10.00
12d 27.09 10.00 7.14 10.00

CPD refers to the critical path delay of the system during the last routing iteration.

112

critical path delay 9. Although the current cost formulation seemed to function well enough in the testing

performed thus far, removing this vulnerability may improve Armada’s results. While solving this problem

will require more extensive investigation, one area that may be worth looking into as a possible solution is

re-evaluating the way the existing system saturates net criticality at 0.99.

An additional concern is that the Armada algorithm has only been tested on RaPiD architectures.

Unfortunately, RaPiD’s routing structure is considerably simpler than more conventional FPGAs. Both the

overall number of wires and the interconnect flexibility of the system as a whole is much lower than a

traditional island-style FPGA. This leads to several concerns looking into the future, primarily revolving

around the runtime of the algorithm.

Although the testing that has been performed so far showed that the assumed criticality search technique

was computationally efficient on the RaPiD architecture, this was only because the simple routing

resources allowed the use of relatively few different assumed criticalities while still obtaining high quality

results. The routability and achievable critical path delay did not truly change even when using only two

independent explorations. Although unproductive searches are pruned when possible, the number of

independent searches launched has a nearly linear relationship with algorithm runtime. Furthermore, since

the assumed criticality completely controls how paths weigh congestion versus delay for the majority of a

given route, it is likely that the quality of the router on most FPGA architectures will heavily depend upon

the granularity of the assumed criticality searches. Thus, Armada may need to launch far more searches to

get similar critical path timing improvement on an architecture with a more sophisticated communication

structure. To avoid creating a computationally intractable problem, several alternatives can be explored to

lower the computational needs of the system as a whole.

The first possibility is to launch fewer, but more relevant searches. The current algorithm divides the

spectrum of criticalities used for exploration into AC evenly spaced pieces. However, it is possible that it is

sufficient to merely split signals into groups of those that are significant in terms of timing, and those that

are not. Thus, instead of launching twenty searches with criticalities evenly spaced from 0.05 to 1.0, it is

possible that four searches, perhaps at 1.0, 0.95, 0.5 and 0.1 may be enough to capture the timing and

congestion needs of the system.

The second manner of reducing the router’s computational needs is to avoid or reduce the size of the

pipelined routing problem whenever possible. Even without the assumed criticality methodology,

QuickRoute itself is already computationally demanding. Unlike Dijkstra’s algorithm, it can visit each

node in the graph multiple times – k times at each latency between 1 and L. Thus, the computational needs

of the router can be considerably reduced if either the use of Armada is limited outright, or, at the very

least, the latency depth of the searches is made smaller.

113

The use of Amada can be eliminated on some nets entirely. While using conventional placement and fixing

the location of some of the registers in the architecture can lead to potential routability problems, many

circuits may only have congestion problems in certain local regions of the device. Rather than ignoring the

placement of registers throughout the system, it may be possible to analyse the congestion profile of a

placement and only use Armada for nets that need to traverse potentially sensitive areas. The remaining

nets could be routed using PathFinder since the placement of the registers outside of these regions can be

fixed before routing begins.

Furthermore, the number of registers that need to be found on a given net can also be reduced. Although it

is likely that the best results will be obtained by using Armada for a full L latency path, high latency

connections could be broken into shorter, lower latency links. The runtime of most routers is highly

correlated with the distance between the source and sink. This is because the searches expand in a wave-

like manner and the number of nodes within the search radius for most architectures generally goes up

quadratically as the radius is increased. This is particularly important for Armada because the runtime of

the router is also affected by the target latency of the sink. Each node between the source and sink can be

visited separately by each latency between 0 and L. However, if high latency routes are split into multiple

sections by fixing the placement of some of the registers along the way, this would create “waypoints” for

the router and considerably decrease the runtime. For example, for an 11 register path, the placement of

registers 4 and 8 could be fixed. Rather than finding a single, long 11-register path, Armada would only

have to find three shorter 3-register paths.

Perhaps the most vital aspect that affects the demands placed on the router is the architecture itself.

Pipelined routing can be required on architectures that limit the connectivity of the registers it provides.

However, as will be discussed in the next chapter, if a large number of highly connected registers could be

efficiently introduced into an FPGA, the need for pipelined routing can be eliminated or drastically

reduced.

114

Chapter 8: Register-Enhanced Architectures

While the previous chapters focused on improving FPGA CAD tools, the target device itself ultimately

determines how fast applications will run and how much silicon area they will require. Thus, although

pipelining, retiming and C-slowing can greatly improve the performance of an application, this can be

largely dependent upon how well the underlying FPGA supports netlists with a large number of registers.

This chapter will focus on how future FPGAs can efficiently incorporate additional registers. This

discussion begins by examining how the area requirements and performance profile of a netlist change as it

is pipelined or C-slowed. This chapter continues with some background on several previous research

efforts that attempted to increase the density of registering resources within FPGA architectures and a

discussion of the potential drawbacks of these systems. This will lead to an analysis of the underlying

components of existing FPGAs and a discussion of the potential benefits of adding registers to both the

interconnect network and the logic blocks.

8.1: Scaling of CLB Requirements and Performance

As seen in Figure 8.1 and Figure 8.2, the critical path delay of a netlist roughly scales linearly with the

amount of pipelining or C-slowing performed on the circuit. The vertical axis of these two figures show

the post-routing critical path delay when a circuit was placed and routed onto the four 4-LUT, four flip-

flop, length-4 wire architecture used in Chapter 6. The horizontal axis indicates the logical depth of the

netlist. Each of the 11 combinational and 11 sequential MCNC netlists were pipelined/C-slowed and then

Leiserson/Saxe retimed such that the maximum logical depth of the circuit ranged from the original logic

depth of the MCNC netlist to at least three registers following each LUT. Thus, the rightmost point of each

line represents the original MCNC netlist, and the leftmost point represents the depth = 0.33 netlist used in

Chapter 6. Although the slope of the line differs slightly for each netlist, the impact of additional

registering on the achievable critical path delay is relatively clear.

Although this performance gain is encouraging, Figure 8.3 and Figure 8.4 show this does come at a price.

Specifically, as more registers are introduced into the various netlists, the number of required CLBs also

rises to accommodate the extra registers. As seen in Figure 8.3, the area overhead is relatively low for the

majority of originally purely combinational circuits when the logic depth of the circuit is 1 or greater.

These netlists generally require less than 1.5x the number of CLBs required by the unpipelined circuit.

These benchmarks can be efficiently handled because the target architecture has one optional flip-flop per

LUT inside each logic block. As seen in Figure 8.5a and Figure 8.5b, the registers in these moderately

pipelined combinational circuits can largely piggyback on the flip-flops that are on the output of each LUT.

However, as seen in Figure 8.5c, this area overhead can become very large when the logic depth of the

115

0.00E+00

5.00E-09

1.00E-08

1.50E-08

2.00E-08

2.50E-08

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Max Logical Depth

P
o

st
-R

o
u

ti
n

g
 C

P
D

e64
ex5p
apex4
misex3
alu4
des
seq
apex2
spla
pdc
ex1010

Figure 8.1: Combinational MCNC Netlists Critical Path Delay

0.00E+00

5.00E-09

1.00E-08

1.50E-08

2.00E-08

2.50E-08

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Max Logical Depth

P
o

st
-R

o
u

ti
n

g
 C

P
D

s1423
tseng
dsip
diffeq
bigkey
s298
frisc
elliptic
s38584.1
s38417
clma

Figure 8.2: Sequential MCNC Netlists Critical Path Delay

116

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Max Logical Depth

N
o

rm
al

iz
ed

 #
 C

L
B

s

e64

ex5p

apex4

misex3

alu4

des

seq

apex2

spla

pdc

ex1010

Figure 8.3: Combinational MCNC Netlists CLB Requirements

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Max Logical Depth

N
o

rm
al

iz
ed

 #
 C

L
B

s

s1423

tseng

dsip

diffeq

bigkey

s298

frisc

elliptic

s38584.1

s38417

clma

Figure 8.4: Sequential MCNC Netlists CLB Requirements

117

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

a b

c

d e

Figure 8.5: Effect of Pipelining and Netlist Topology on CLB Requirement

circuit dips below 1. This is because although each new register added beyond one per LUT allows the

system to better pipeline potential interconnect delay, it also requires an additional BLE. Thus, a depth =

0.33 netlist will require approximately 3x the number of CLBs as a depth = 1 implementation.

However, pipelining or C-slowing more sophisticated circuits to a depth of even one LUT can potentially

require a large number of additional CLBs. As seen in Figure 8.4, the area overhead is much higher when

adding registers to the sequential MCNC netlists. For these circuits, pipelining or C-slowing to a depth of

one LUT generally requires 2-4x the number of CLBs as the original circuit. This is because, to pipeline or

C-slow a circuit without changing the functionally, all paths through the system must add the same number

of registers. However, as seen in Figure 8.5d and Figure 8.5e, if the original circuit has a non-uniform

logical depth, some connections will accumulate more registers than others to match the latency of the

longest path. These additional registers require new BLEs.

The CLB overhead associated with pipelining or C-slowing these netlists matches the behavior reported in

previous research. The radio cross-correlator in [41] indicated that the best circuit found by hand-

pipelining and hand-placing registers required 4x the number of CLBs as the unpipelined circuit. This

118

means that at least ¾ of the CLBs in the system were being used only for their flip-flops and not for their

logical resources. Thus, while heavily registering a circuit can considerably boost performance, this can

require a significantly larger FPGA. Furthermore, a large portion of the LUTs in the underlying fabric may

sit idle as these netlists require a much larger ratio of registers to logic than commercial architectures

typically provide.

8.2: Previous Register-Rich FPGAs

Multiple research groups have noticed that conventional FPGA architectures can have trouble

implementing heavily registered applications. Thus, several research efforts have attempted to address

these concerns by increasing the number of registering resources inside the logic blocks and embedding

pipelining resources within the interconnect network itself. Unfortunately, all of the systems suggested so

far restrict the types of circuits mapped to these devices or have significant overheads inappropriate for

many applications.

Although they differ in several key ways, HSRA [40] and SFRA [42] both provide vast pipelining

resources in each logic block. Each input of the LUTs in these architectures has a large bank of optional

flip-flops. In addition, some fraction of the programmable switchpoints inside their routing switchboxes

have optional registers. Although these resources allow for very fast, fixed-frequency operation, these

devices provide so many registers that they also suffer a 2-4x area penalty compared with conventional

FPGAs. This kind of overhead is unacceptable for applications that cannot make use of these resources.

Furthermore, these architectures also require extremely high levels of C-slowing or pipelining. The authors

of [40] and [42] needed to pipelined or C-slowed their applications somewhere between five to 67 times in

order for them to be suitable amenable to these architectures. However, as mentioned in Chapter 3, even

applications that could potentially be sped up by some pipelining or C-slowing typically cannot be that

deeply registered due to their input and output protocols. Thus, while an architecture such as HSRA or

SFRA can be useful for some very specific applications, the area overhead and registering requirements are

likely far too large for a mass-market FPGA.

Alternatively, some systems have been developed that, while not insisting that their mappings be heavily

registered, provide support for such computations by adding registers to the interconnect. Again, although

they differ in several key ways, RaPiD [9] and CHESS [27] both offer optional registers in their

switchboxes. Even though computations do not need to be pipelined to be efficiently implemented, the

opportunity exists if application developers desire. Unfortunately, both of these systems are also optimized

to very specific types of computation. The underlying logic and interconnect resources that they provide

can make implementing more generic computation very difficult.

119

All of these architectures significantly compromise their general-purpose use. This largely goes against

one of the guiding philosophy of FPGAs themselves: provide a versatile and cheap alternative to ASICs.

The limited widespread appeal of existing register-centric systems hampers their ability to leverage

economies of scale and Moore’s Law, ultimately restricting their quality and availability.

8.3: New Potentials for Increasing Register Capabilities

Looking into the future, one question is how to improve the performance of FPGAs for heavily registered

applications while not seriously affecting the area and performance characteristics of the device for more

classical applications. No matter what the advantages are for specialized deeply pipelined and C-slowed

netlists, it is difficult to justify changes that can significantly degrade the area or timing profile of an

architecture for netlists that cannot use these resources. Thus, rather than drastically changing the well-

established characteristics of current FPGAs by completely revamping their organization, it may be better

to make minimally invasive architectural changes that, while offering significant benefit to suitable

register-rich circuits, will disrupt the general-purpose use of the device as little as possible.

The following sections will investigate the potential advantages and disadvantages of introducing

additional register resources into modern island-style FPGAs. This will begin with an analysis of

architectures with registers in the interconnect network and will continue with a discussion of the feasibility

of adding registers into the logic blocks.

8.3.1: Potential of Registered Switchboxes

Research efforts such as the registered-track graph FPGA in [38] and RaPiD [9] have suggested embedding

registers with limited connectivity within interconnect switchboxes. These registers are attractive because

they can be introduced with relatively little additional area and can pipeline long wires without adding the

delay associated with entering and exiting a CLB. However, as described in Chapter 7, the CAD tools

necessary to efficiently map flip-flops to these registers may not be entirely straightforward. More

importantly, as will be shown in this section, the potential critical path delay advantages for heavily

registered applications on these types of architectures may be relatively small.

Ignoring signals that are associated with the I/O pins of a device, the critical path in any FPGA design will

either begin at a flip-flop and end at another flip-flop, or begin at a flip-flop, pass though one or more LUTs

and end at another flip-flop. Since this dissertation is primarily concerned with heavily registered circuits,

for simplicity, signals that perform computation will assume to be pipelined or C-slowed such that they

only pass though a single LUT.

120

In a conventional FPGA, flip-flops are only available inside logic blocks. This means that the critical path

of a circuit will begin at one CLB, go through some number of interconnect wires and switchboxes and end

at another CLB. The delay required by such a signal can be broken up into multiple pieces. Although the

precise area and performance numbers of commercial architectures are not publicly available, the

architecture files provided by the VPR [3] toolflow and the toolflow itself can be mined for some

reasonable information regarding a modern 0.65nm FPGA with four 4-LUT BLEs per CLB and length-4

wires. As seen in Figure 8.6, there are seven numbers that are particularly significant: the clock to output

delay of a flip-flop, the delay required to exit a CLB and enter a wiring channel, the delay through a single

wire segment, the switching delay between wire segments, the delay required to enter a CLB through the

Logic Block

SB

LB

SB

SB SB

LB

SB SB

LB

SB

SB

LB

SB

LB

SB

SB

LB

SB

1 2 3 4

1 2 3 4

1

2

3

4

1

2

3

4

LUT

I
O

I
O

I
O

I
O

IO IO IO

IO IO IO

A
B

C

D

C

E

F

G

A FF clock to Q delay 1.261E-10
B CLB demultiplexer delay 6.562E-11
C 1 wire segment delay 1.390E-9
D Switchbox delay 6.562E-11
E CLB input multiplexer delay 2.478E-10
F LUT propagation delay 1.679E-10
G FF setup time 1.280E-10

Figure 8.6: Significant Delay Numbers for an Island-Style FPGA
Information taken from 65nm four 4-LUT, length-4 wire FPGA architecture

121

input multiplexers, the propagation delay of a LUT and the setup time for a flip-flop. These delay numbers

can be used to perform some rough calculations and estimate the anticipated critical path delay of a mapped

circuit.

The delay for a signal on a conventional architecture that goes between one flip-flop and another without

passing though a LUT is shown in Equation 8.1. Here, the signal will exit a flip-flop, exit the CLB,

traverse N wire segments and (N - 1) switchboxes, enter a CLB and finish at another flip-flop. Similarly,

the delay of a signal on a conventional architecture that goes from one flip-flop to another through one

LUT is shown in Equation 8.2. In this case, the signal will exit a flip-flop, exit the CLB, traverse N wire

segments and (N - 1) switchboxes, enter a CLB, pass through a LUT and finish at another flip-flop.

 GEDNCNBACPD ++−+++=]*)1[()*((8.1)

 GFEDNCNBACPD +++−+++=]*)1[()*((8.2)

Since the only difference between these two equations is the F term, when traveling through an equal

number of wires, a signal that uses a LUT will be slightly slower. Of course, for the application to actually

perform computation, some signal in the circuit must use a LUT. Thus, Equation 8.2 will likely be the

critical path.

As shown in Figure 8.7, an architecture with interconnect registers has flip-flops in both the logic blocks

and the switchboxes. The hope is that these additional registers can make the system faster by removing

the time to exit/enter a CLB (delay B and E in Figure 8.6) and reduce the number of wires between registers

(the N terms in the previous equations). There are eight possible scenarios for the critical path on these

kinds of devices.

The first two possibilities are identical to the situation in an architecture without switchbox registers, that a

signal begins at a flip-flop inside a CLB, either goes through or does not go though a LUT and ends at

another flip-flop inside a CLB. Thus, the delay on these signals will be the same as described in Equations

8.1 and 8.2.

The second two possibilities are that a signal begins at a flip-flop inside a switchbox, either goes through or

does not go though a LUT, and ends at a flip-flop inside a CLB. Assuming that the delay associated with

the output demultiplexer on a register embedded inside a switchbox is the same as the delay of the switch

between two wire segments, the delay of a signal that begins at a switchbox register and ends at a CLB

122

Logic Block

SB

LB

SB

SB SB

LB

SB SB

LB

SB

SB

LB

SB

LB

SB

SB

LB

SB

LUT

I
O

I
O

I
O

I
O

IO IO IO

IO IO IO

A
B

C

C

E

F

G

1
2
3
4

3 421

D

AG

D

Figure 8.7: Significant Delay Numbers for an Island-Style FPGA with Registered Switchboxes

register without passing though as LUT is shown in Equation 8.3. The delay of a similar signal that goes

through a LUT is shown in Equation 8.4.

 GEDNCNDACPD ++−+++=]*)1[()*((8.3)

 GFEDNCNDACPD +++−+++=]*)1[()*((8.4)

The third two possibilities on an architecture with registered switchboxes are that a signal begins at a flip-

flop inside a CLB, either goes through or does not go though a LUT, and ends at a flip-flop inside a

switchbox. Assuming that the delay associated with the input multiplexer on a register embedded inside a

switchbox is the same as the delay of the switch between two wire segments, the delay of a signal that

begins at a CLB and ends at a switchbox register without passing though as LUT is shown in Equation 8.5.

The delay of a similar signal that goes though a LUT is shown in Equation 8.6. Notice that Equation 8.6 is

optimistic in that assumes that a flip-flop in one BLE can directly feed a LUT in another BLE within the

same logic block. Since most LUTs will require multiple inputs, it may not be possible to register all of the

incoming signals within the same CLB as the actual computation.

123

 GDDNCNBACPD ++−+++=]*)1[()*((8.5)

 GDDNCNBFACPD ++−++++=]*)1[()*((8.6)

The last two possibilities for this device are that a signal both begins and ends at a flip-flop inside a

switchbox, either going through or not going though a LUT. Using the same conventions as before, the

delay of a signal that does not go through a LUT is shown in Equation 8.7. The delay of a similar signal

that goes though LUT is shown in Equation 8.8.

 GDDNCNDACPD ++−+++=]*)1[()*((8.7)

 GDBFEDNCNDACPD +++++−+++=]*)1[()*((8.8)

Looking at these eight possible situations, many of them can be eliminated from consideration. For

example, while a signal that begins and ends at registers inside a CLB could indeed be the critical path of a

circuit mapped to an architecture that has interconnect registers, this does not use the primary feature of the

system. Erring on the optimistic side, the hope is that the tools will be able to use the interconnect registers

available and these situations will not be the critical path of a mapped application. By the same token, the

delay of a signal shown in Equation 8.8 that begins at a switchbox register, passes though a LUT and ends

at another switchbox register is slower than a similar length signal on an architecture that does not have

switchbox registers. Largely, this is because such a path still enters and exits a CLB, but also must contend

with the input and output multiplexing on switchbox registers. This leaves five possible scenarios, three

paths that do not pass though a LUT (Equations 8.3, 8.5, and 8.7) and two paths that do (Equations 8.4 and

8.6). Between these different possibilities, Equations 8.4 and 8.6 have the largest likelihood of being on the

critical path since they perform computation.

These three equations (Equations 8.2, 8.4, and 8.6) can be used to compare the potential critical path delay

of netlists mapped to both FPGAs that only have registers inside CLBs and architectures that have registers

inside both CLBs and switchboxes. Table 8.1 applies the delays shown in Figure 8.6 to Equation 8.2 for

values of N between 1 and 4 wire segments. This shows the critical path delay and resulting maximum

clock frequency for an application mapped to a device with only CLB registers. Similarly, Table 8.2 shows

the results of Equations 8.4 and 8.6 on an FPGA with interconnect registers when the critical path either

goes from a register inside a switchbox to a register inside a CLB (left side) or from a register inside a CLB

to a register inside a switchbox (right side).

124

Table 8.1: Estimated Critical Path Delay of Conventional FPGA
Wire Segments on Critical Path Critical Path Delay MHz

1 2.128E-9 470.02
2 3.585E-9 278.91
3 5.043E-9 198.29
4 6.501E-9 153.82

Table 8.2: Estimated Critical Path Delay of Island-Style FPGA with Registered Switchboxes
 Switchbox Reg to CLB Reg CLB Reg to Switchbox

Wire Segments on
Critical Path

Critical Path Delay MHz Norm.
Speed

Critical Path Delay MHz Norm.
Speed

1 2.128E-9 470.02 1.000 1.945E-9 514.02 0.914
2 3.585E-9 278.91 1.000 3.403E-9 293.84 0.949
3 5.043E-9 198.29 1.000 4.861E-9 205.72 0.964
4 6.501E-9 153.82 1.000 6.319E-9 158.26 0.972

Comparing these results, when the critical path goes from a register inside a switchbox to a register inside a

CLB, for any given value of N wire segments, an application mapped to an architecture with interconnect

registers is no faster than on an architecture without interconnect registers. This is because, comparing

Equations 8.2 and 8.4, the only difference between these two arrangements is that B is traded for D. Stated

another way, the delay through a CLB demultiplexer is replaced by the delay through a switchbox register

demultiplexer. However, since D equals B in the VPR model, the architecture with interconnect registers is

no faster. Even if delay though a switchbox register demultiplexer were reduced to zero (D � 0), this

would only remove 6.562E-11 seconds of delay from the critical path. In the best case, where there is one

wire segment on the critical path, this would make an architecture with interconnect registers only

([2.128E-9 - 6.562E-11] / 2.128E-9 = 0.969x) faster.

Furthermore, when the critical path goes from a register inside a CLB to a register inside a switchbox, for

any given value of N wire segments, an application mapped to an architecture with interconnect registers is

only marginally faster than on an architecture without interconnect registers. Comparing Equations 8.2 and

8.6, the only difference is that E is traded for D, or that the delay through a CLB input multiplexer is

replaced by the delay though a switchbox register input multiplexer. However, this only represents a

saving of (2.478E-10 - 6.562E-11 = 1.8218E-10) seconds. As shown on the right side of Table 8.2, at best

this results in an architecture with interconnect registers being 0.914x faster. Unfortunately, this may not

be a large enough performance benefit to justify modifying the architecture and opening the door for

problems with the CAD tools. For perspective, according to Xilinx’s datasheets [45], the performance

difference between only one device speed grade is approximately 0.91x. On top of this, the advantage also

quickly decreases as the number of wire segments along the critical path is increased. At two wire

segments, the registered switchbox architecture is only 0.949x faster. This is particularly concerning since

two wire segments are often required even in the most heavily registered circuits to allow the system to turn

a corner and connect logic blocks or switchboxes in different rows or columns.

125

0.0E+00

5.0E-10

1.0E-09

1.5E-09

2.0E-09

2.5E-09

No Registered
Switchboxes

Switchbox -> CLB CLB -> Switchbox

CLB -> Wire
Registered Switch delay
Wire -> CLB
LUT delay
1 wire delay
DFF setup
DFF Clk->Q

Figure 8.8: Delay Contribution of Best-Case Scenarios (1 Wire Segment) for Registered Switchboxes

Looking at Figure 8.8, it is clear why architectures with registered switchboxes have such a small

performance advantage over more conventional devices. Regardless of the architecture, there is very little

that can be done about four components of the critical path delay: the clock to Q delay of a flip-flop, the

setup time of a flip-flop, the delay through a single wire segment and the delay of a LUT. These portions

alone comprise over 85% of the critical path delay, even in the best case of a single wire segment between

the source and sink registers. Thus, even if the overhead associated with getting in or out of a register

inside a switchbox were reduced to zero, such an architecture is limited to an approximately 15%

performance improvement. However, it should be noted that the largest portion of this “unavoidable” delay

is caused by the delay through the wire segments themselves. If an FPGA were to use very high strength

drivers or some other technique to drastically reduce the delay of the wires, the potential advantage of these

kinds of architectures might go up. That said, it is expected that the delay through wires will only become

a larger portion of overall delay in future process generations.

Of course, though, this analysis makes one critical assumption: that the number of wire segments along the

critical path of a netlist mapped to the two architectures is the same. In practice, this may not be the case

since registered switchboxes increase the ratio of registers to logic in the architecture. A heavily registered

netlist mapped to a register-enhanced architecture will likely be more densely arranged than when mapped

85.3% of

the delay

126

to a conventional device. This is because the implementation mapped to a classical FPGA will probably

need to spread out over more CLBs for all of the signals to accumulate the necessary flip-flops. At the very

least, this could mean that the average wirelength of the nets in the circuit will be longer, if not the

wirelength along the critical path.

To get any notable speedup, architectures that have registered switchboxes must rely on the fact that the

additional registers in the system can generally reduce the number of wire segments along the critical path.

Without this feature, these architectures are not really intrinsically faster. However, as mentioned earlier,

these architectures also contain registers with very limited input and output connectivity, changing the

fundamental problem presented to placement and routing tools. As will be explored in the next section, it

may be better to find a way to adding inexpensive but highly connected registers to the system. These can

be incorporated into the CLBs. This would allow an architecture to obtain short wires without creating a

problem for the CAD tools.

8.3.2: Enhancing Logic Blocks with Additional Registers

Although incorporating registers into the interconnect network of an island-style FPGA may not provide a

large performance benefit, additional registers need to be placed somewhere in the architecture to improve

the support for heavily registered applications and keep the number of wires along the critical path

relatively low. Although increasing the register capacity of the logic blocks is the obvious alternative, this

must be done relatively carefully to avoid seriously affecting the area or performance of netlists that are

lightly registered. This problem is made even more difficult since it is highly preferable that any additional

registers have the same high connectivity as existing registers to prevent issues with CAD tools.

From a practical standpoint, there are two different issues regarding how heavily registered netlists map to

conventional architectures. Although these problems are somewhat intertwined, the nature of these issues

can be largely separated and addressed independently. The first issue is that a large portion of the silicon

resources in a conventional FPGA architecture cannot be used when mapping a heavily registered

application. While heavily registered circuits require a large number of additional BLEs, the LUTs in the

majority of these blocks are entirely ignored and only the flip-flops are used. These unused LUTs actually

contain a large amount of registering resources that could be made available with some relatively minor

architectural modifications. The second issue is that the register density of conventional architectures may

not be high enough to efficiently map heavily registered circuits. Pipelining or C-slowing a circuit can

cause a netlist to spread out so that the necessary registers can be accumulated. However, this can also

cause the circuit to slow down because the average wirelength of each net may go up. Thus, for the system

to increase the operational frequency of an application beyond a certain point, it is likely necessary to

increase the number of available registers in computationally dense regions. While enhancements to

127

improve one of these issues can improve the other as a side effect, the nature of the architectural changes

that will be suggested are distinct.

8.3.2.1: Using LUTs as Shift Registers

Not being able to use the majority of the LUTs in an FPGA is wasteful in two ways. First, CLBs devote a

significant amount of area to multiplexing the inputs and outputs of their LUTs. Second, as discussed in

Chapter 2, LUTs are actually built from small memories. Putting these two characteristics together, each

BLE actually has the basic building blocks to potentially register multiple signals if the LUT is not needed

for a logic function. However, conventional architectures only provide the capability to register one signal

using the flip-flop.

Some commercial FPGAs already unlock a portion of this potential. As shown on the left of Figure 8.9, a

conventional 4-LUT consists of 16 individual memory cells. The content of these cells is programmed

when a circuit is downloaded to the device. During normal operation, the values held in these cells are

selected through a multiplexer to implement a logic function. However, modern Xilinx devices expose the

underlying memory cells within half of their LUTs to allow them to be used either as a conventional LUT

or as a 1 to 16-bit shift register. Although the exact mechanism Xilinx uses to provide this functionality is

not publicly known, the illustration on the right of Figure 8.9 shows one possibility. This shift register

capability can be provided by adding a small number of additional components to each BLE: twenty 2:1

multiplexers and four memory cells. 16 of the 2:1 multiplexers are added to the input of each of the

original memory cells to control whether the value written into the cell comes from the programming logic

or, when forming a shift register, from the previous memory cell. The remaining four multiplexers are

added to the address lines of the 16:1 multiplexer to control whether the address comes from the outside

world, to implement a logic function, or from a static address that is defined when the BLE is programmed

as a shift register.

This modification adds a huge raw number of registers into the architecture because every previously

unused LUT in the device can implement up to sixteen registers. For example, if a purely combinational

circuit requires N LUTs, this can be mapped to N BLEs. A deeply pipelined version of this circuit may add

4N registers. On an architecture that offers one LUT and one flip-flop in each BLE, this will require (N +

3N = 4N) BLEs. The first N registers can be packed into a BLE with a LUT, but the other 3N registers

must be assigned to their own BLEs. The same circuit on an architecture that offers one flip-flop and one

LUT that can be turned into a 1 to 16-bit shift register in each BLE could theoretically only require (N +

3/17 N ≈ 1.18 N) BLEs. This is because every BLE beyond the original N does not use the LUT for logic.

This makes it available for use as a 16-bit shift register. Combined with the flip-flop, this allows each BLE

with an unused LUT to implement 17 registers.

128

4-LUT

M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M

16:1 MUX

P
ro

gra
m

m
in

g
 Inp

u
ts

16:1 MUX

P
ro

gram
m

ing
 In

pu
ts

M

M

M

M

M

M

M

M

M

M M M M

4-LUT
or

1 to 16
Shift Reg

Figure 8.9: Conventional BLE (left) and LUT/16-bit Shift-Register BLE (right)
“M” denotes a memory cell

However, the number of truly useful registers is likely considerable lower. This is because although

heavily registered netlists require a large number of pipelining resources, the distribution of these demands

is relatively even throughout the circuit. For example, in the heavily pipelined and C-slowed benchmarks

in [40], 99% of signals require eight or fewer registers while 95% require four or fewer. Thus, the majority

of nets simply cannot use deep, monolithic register banks. For that matter, even if a net requires a large

number of registers between the source and sink, it is unlikely that it is a good idea to group all of the

registers in a single location from a performance standpoint. This is because one of the primary advantages

of adding registers into a netlist is the capability to break very long paths into smaller parts. Thus, shift

registers will only be used for one or two registers rather than the full 16. If the system is able to map an

average of 1.5 registers to each shift register, the number of required BLEs would be (N + 3/2.5 N = 2.2 N).

129

M

M

M

M

M

M

M

M

8:1
MUX

M M

M M

P
ro

gra
m

m
in

g Inp
u

ts

M

M

M

M

M

M

M

M

M

8:1
MUX

P
ro

gra
m

m
in

g Inp
u

ts

M

2:1
MUX

4-LUT
or 2x
1 to 8

Shift Reg

Figure 8.10: LUT/Two 8-bit Shift-Register BLE
“M” denotes a memory cell

The large number of low latency signals in typical netlists indicates that it is likely more useful to add the

capability to register multiple different signals by a smaller amount rather than a single signal by a large

amount. As shown in Figure 8.10 and Figure 8.11, a single large shift register can be split into two or four

130

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

4:1
MUX

4:1
MUX

4:1
MUX

4:1
MUX

4:1
MUX

M M

M M

M M

M M

P
ro

gram
m

ing
 In

pu
ts

P
ro

gram
m

ing
 In

pu
ts

P
ro

gram
m

ing
 In

pu
ts

P
ro

gram
m

ing
 In

pu
ts

4-LUT
or 4x
1 to 4

Shift Reg

Figure 8.11: LUT/Four 4-bit Shift-Register BLE
“M” denotes a memory cell

smaller shift registers. Assuming that the 16:1 multiplexer in Figure 8.9 can be broken into smaller

multiplexers with little to no overhead, splitting a 16-bit shift register into two 8-bit shift registers will

131

likely require two additional 2:1 multiplexers and additional two memory cells. Similarly, splitting a 16-bit

shift register into four 4-bit shift registers will require four additional 2:1 multiplexers and four additional

memory cells.

That said, there is another cost associated with splitting a LUT into smaller shift registers. Adding the

capability of turning a LUT into a single 1 to 16-bit shift register likely incurs relatively little overhead.

This is because although additional multiplexers and memory cells are needed, the input and output

connectivity of the larger CLB does not require any changes – the input and output of the shift register

simply borrow the connections already needed to use the LUT for logic. However, splitting a shift register

into two or four smaller shift registers requires one or three additional outputs, respectively. Providing full

connectivity for these new outputs to the external channel wires could significantly affect the area of the

CLB and associated connection blocks.

8.3.2.2: Adding Independent Flip-Flops

The fact that registers are generally evenly distributed throughout circuits also contributes to the second

issue that this section would like to address – that the achievable clock frequency of a circuit may be

limited by the number of registers within specific areas of the device. This phenomenon can be most easily

seen in Figure 8.1 and Figure 8.2 for circuits with a logical depth below one LUT. While the critical path

delay of most of the circuits goes down as more registers are added, the critical path delay for some of the

circuits stays constant or even goes up. This likely occurs because these very heavily registered circuits

require a higher density of registers than the architecture provides in order to improve the critical path

delay.

Taking a step back for a moment, consider a different scenario. When a purely combinational circuit is

mapped to an FPGA, each of the individual logic blocks must fight with the others to be as close as

possible to the other logic blocks to which they are connected. Assuming that routing congestion is not an

issue, the operational frequency of the resulting implementation is largely determined by how close these

logic blocks are able to get. Thus, it is expected that a larger combinational circuit will have a higher

critical path delay, even if the logical depth is the same as the smaller circuit. This is because more logic

blocks will interfere with each other in the larger circuit and prevent them from getting as close to the logic

blocks to which they are connected. However, this can be mitigated by increasing the logical density of the

architecture. For example, if this netlist is mapped to an FPGA that has twice as many LUTs in each CLB,

each LUT will be able to be “near” twice as many other LUTs. Ignoring for a moment the effect this

architectural change might have on the speed of the interconnect wires, this will allow the circuit to run

faster.

132

A similar situation occurs for the registers in a netlist. Beginning with a purely combination circuit, each

LUT will try to be as close as possible to the other LUTs to which it is connected. As registers are

gradually added to the circuit, they are able to make the system faster because the logical depth of the

circuit is reduced. Furthermore, these registers are relatively easy to find. Assuming that the netlist has a

uniform logic depth across all paths, until the maximum logic depth of the circuit dips below one, these

registers can simply be placed in the same BLE as their source LUT. Thus, the placement of the LUTs in

the system is still very dense and the critical path delay is improved dramatically. However, once the logic

depth of the circuit dips below one LUT, additional registers require additional BLEs. Since the registers

are relatively evenly distributed throughout the circuit, the LUTs in the system must spread out to make

room for the required registers. This can nullify any potential advantage of adding the registers in the first

place.

This phenomenon is shown in the example in Figure 8.12. As shown in Figure 8.12a, there are two paths in

the circuit that must cross each other. The first inverter takes an input from the left of the device and sends

the output to the right. The second inverter takes an input from the right of the device and sends the output

to the left. For simplicity, this circuit is initially mapped to an architecture with one LUT and one flip-flop

per CLB and unit-length interconnect wires. As shown in Figure 8.12b, pipelining this circuit once

improves the critical path delay. Rather than traversing one wire segment, propagate through a LUT, and

traversing three more wire segments, the new critical path delay is the time required to traverse three wire

segments. However, as seen in Figure 8.12c, further pipelining does not improve the critical path delay

because the entire netlist must be spread out to make room for these additional registers. The only way to

reduce the critical path delay to one wire segment is to increase the number of registers in each CLB. As

shown in Figure 8.12d, this can be accomplished by mapping the circuit to an architecture with two

independently accessible flip-flops per CLB. Figure 8.13 shows the BLE of such an architecture.

Notice that adding additional independent flip-flops to each BLE affects the system differently than

allowing LUTs to be used as shift registers. While both modifications increase the total number of

potentially available registers in the architecture as a whole, since shift registers are built from unused

LUTs, inserting them into a computationally dense area still requires the placement tool to spread out the

LUTs in a netlist to provide whitespace. On the other hand, introducing additional flip-flops into each CLB

increases the number of registers in computationally dense regions without any need to change the density

of mapped LUTs. Thus, while shift registers can potentially provide denser register resources, additional

independent flip-flops are more likely to improve critical path delay.

133

INV

INV
I/O

a b

c d

I/O

I/O I/O

I/O
I/O

I/O I/O

INV

INV

INV

INV

INV

INV

Figure 8.12: Registered Netlists and Effect of Architecture Register Density on Critical Path Delay

4-LUT

Figure 8.13: BLE with Two Independent Flip-Flops

That said, adding flip-flops to a CLB also requires more inputs and outputs. The shift register architecture

suggested in Figure 8.9 added up to 16 registers without requiring any additional inputs or outputs. The

split shift registers in Figure 8.10 and Figure 8.11 also added up to 16 registers and require 1 and 3

additional CLB outputs, respectively. However, each additional independently accessible flip-flop added to

a CLB requires its own input and output. This means that although independently accessible flip-flops

might be more flexible, they are also potentially more expensive.

The difference between independently accessible flip-flops and shift registers can also be seen in how they

provide registers to applications. The number of BLEs that a netlist requires can be estimated using

Equation 8.9.

 −+==

 ≥
ULReg

L(IndFFR
L otherwiseLBLEs required of #

IndFF

R
LIf

)*
,, (8.9)

This equation assumes that each BLE consists of one LUT that may or may not have the capability to

implement one or more shift registers (if it is not needed for logic), along with some number of

independently accessible flip-flops. L is the number of LUTs in the netlist, R is the number of registers in

the netlist, IndFF is the average number of independently accessible flip-flops available in each BLE in the

134

target architecture and ULReg is the average number of registers that can be mapped to each BLE with an

unused LUT.

Since each BLE contains a single LUT and IndFF number of independently accessible flip-flops, if the

number of registers in a netlist is relatively low, the number of LUTs defines the minimum number of

BLEs needed to implement the circuit. However, if the number of registers in the circuit is large enough,

the registers will determine the number of required BLEs. Since each LUT will require its own BLE, the

first (L* IndFF) flip-flops in the netlist can use the registers in BLEs occupied by a LUT. However,

registers beyond this number will require additional BLEs. Each of these extra BLEs with an unoccupied

LUT will be able to implement ULReg registers. As shown in Equation 8.10, the average number of

registers that can be mapped to a BLE with an unoccupied LUT equals the average number of independent

flip-flops in each BLE plus the average number of registers can be implemented using the LUT as one or

more shift registers. The average number of registers can be implemented using an unoccupied LUT is

ANSR, the average number of shift registers per BLE, multiplied by RegPerSR, the average number of

registers that can be mapped to each shift register.

)*(RegPerSRANSRIndFFULReg += (8.10)

8.4: Evaluation and Results

These equations can be used to gain some basic insight regarding how efficiently heavily registered

applications can be mapped to different register-enhanced architectures. As shown in Table 8.3, the initial

round of testing investigated how effectively shift register reduce the number of required BLEs compared

to independently accessible flip-flops. This testing included fifteen architectures. The first set of five all

contain one independently accessible flip-flop per LUT. Architecture I-0A is the basic four 4-LUT, four

flip-flop architecture described in previous chapters. Since each BLE in this architecture contains one flip-

flop, IndFF = 1. Since the LUTs in this architecture cannot be used as shift registers, ANSR = 0. This

makes ULReg = 1, since all the BLEs in the systems can provide one register, regardless as to whether or

not the LUT is occupied.

Architecture I-0B adds the capability for one of the four 4-LUTs in each CLB to be used as a 1 to 16-bit

shift register (abbreviated as SR-16). Since each BLE in this architecture still contains one independently

accessible flip-flop, IndFF = 1. Since one in four of the LUTs in the system can be used as a shift register,

ANSR = 0.25. At this point, the average number of registers that can be mapped to a shift register becomes

important. While each shift register can be used to implement at least one register, the hope is that at least

some of the shift registers will be able to be filled with more registers. Although this is largely netlist

dependent, 1, 1.5 and 2 seem to be reasonable estimates for RegPerSR. These values for RegPerSR result

135

in three values for ULReg: 1.25, 1.375, and 1.5 respectively. RegPerSR = 1 results in ULReg = 1.25

because each BLE with an unused LUT has one independently accessible flip-flop and 0.25 shift registers

that can be used to implement one register on average. RegPerSR = 1.5 results in ULReg = 1.375 because

each BLE with an unused LUT has one independently accessible flip-flop and 0.25 shift registers that can

be used to implement 1.5 registers on average. Architectures I-0C through I-0E add more hardware to

allow two through all four of the 4-LUTs in each CLB to be used as SR-16s. As mentioned earlier, modern

Xilinx devices provide one independent flip-flop per BLE and allow half of the LUTs in the system to be

used as SR-16s. This is similar to the resources provided by architecture I-0C.

Table 8.3: Architectures Used in Testing Phase I –
Adding Independent Flip-Flops and 1 to 16-bit Shift Registers

Arch Description – Contents of Each CLB
I-0A 4x normal LUTs, 4x FFs (default architecture)
I-0B 3x normal LUTs, 1x LUT with SR-16 mode, 4x FFs (one LUT in each CLB can be used as a 1 to16-bit shift register)
I-0C 2x normal LUTs, 2x LUTs with SR-16 mode, 4x FFs (two LUTs in each CLB can be used as a 1 to 16-bit shift register)
I-0D 1x normal LUT, 3x LUTs with SR-16 mode, 4x FFs (three LUTs in each CLB can be used as a 1 to 16-bit shift register)
I-0E 4x LUTs with SR-16 mode, 4x FFs (all four LUTs in each CLB can be used as a 1 to 16-bit shift register)
I-2A 4x normal LUTs, 5x FFs (adds 1 additional independent FF per CLB)

I-2B
3x normal LUTs, 1x LUT with SR-16 mode, 5x FFs

(one LUT in each CLB can be used as a 1 to 16-bit shift register and adds 1 additional FF per CLB)

I-2C
2x normal LUTs, 2x LUTs with SR-16 mode, 5x FFs

(two LUTs in each CLB can be used as a 1 to 16-bit shift register and adds 1 additional FF per CLB)

I-2D
1x normal LUT, 3x LUTs with SR-16 mode, 5x FFs

(three LUTs in each CLB can be used as a 1 to 16-bit shift register and adds 1 additional FF per CLB)

I-2E
4x LUTs with SR-16 mode, 5x FFs

(all four LUTs in each CLB can be used as a 1 to 16-bit shift register and adds 1 additional FF per CLB)
I-4A 4x normal LUTs, 6x FF (adds 2 additional independent FF per CLB)

I-4B
3x normal LUTs, 1x LUT with SR-16 mode, 6x FFs

(one LUT in each CLB can be used as a 1 to 16-bit shift register and adds 2 additional FFs per CLB)

I-4C
2x normal LUTs, 2x LUTs with SR-16 mode, 6x FFs

(two LUTs in each CLB can be used as a 1 to 16-bit shift register and adds 2 additional FFs per CLB)

I-4D
1x normal LUT, 3x LUTs with SR-16 mode, 6x FFs

(three LUTs in each CLB can be used as a 1 to 16-bit shift register and adds 2 additional FFs per CLB)

I-4E
4x LUTs with SR-16 mode, 6x FFs

(all four LUTs in each CLB can be used as a 1 to 16-bit shift register and adds 2 additional FFs per CLB)

Arch Normal LUTs
/CLB

SR-16
LUTs/CLB

FF/CLB IndFF ANSR RegPerSR ULReg Additional
IO Pins

I-0A 4 0 0 - 1
I-0B 3 1 0.25 1,1.5, 2 1.25, 1.375, 1.5
I-0C 2 2 0.5 1, 1.5, 2 1.5, 1.75, 2
I-0D 1 3 0.75 1, 1.5, 2 1.75, 2.125, 2.5
I-0E 0 4

4 1

1 1, 1.5, 2 2, 2.5, 3

0

I-2A 4 0 0 - 1.25
I-2B 3 1 0.25 1, 1.5, 2 1.5, 1.625, 1.75
I-2C 2 2 0.5 1, 1.5, 2 1.75, 2, 2.25
I-2D 1 3 0.75 1, 1.5, 2 2, 2.375, 2.75
I-2E 0 4

5 1.25

1 1, 1.5, 2 2.25, 2.75, 3.25

2

I-4A 4 0 0 - 1.5
I-4B 3 1 0.25 1, 1.5, 2 1.75, 1.875, 2
I-4C 2 2 0.5 1, 1.5, 2 2, 2.25, 2.5
I-4D 1 3 0.75 1, 1.5, 2 2.25, 2.625, 3
I-4E 0 4

6 1.5

1 1, 1.5, 2 2.5, 3, 3.5

4

136

Architecture I-2A returns to the basic four 4-LUT architecture but adds one additional flip-flop per CLB,

bringing the total to five independently accessible flip-flops. This requires 2 additional I/O pins to each

CLB. Since each BLE in this architecture contains 1.25 flip-flops, IndFF = 1.25. Since the LUTs in this

architecture cannot be used as shift registers, ANSR = 0. This makes ULReg = 1.25. As with the I-0B

through I-0E architectures, architectures I-2B through I-2E add the capability for some of the LUTs in each

CLB to be used as an SR-16. In a similar manner, architecture I-4A adds two additional flip-flops per CLB

to the basic architecture and architectures I-4B through I-4E allow some of the LUTs in the device to be

used as SR-16s.

The architectures used in this testing stop at two additional flip-flops per CLB because this requires four

additional CLB I/O pins. All of the architectures discussed in this chapter add four or fewer additional

CLB inputs or outputs because the basic architecture requires 28 CLB inputs and outputs (16 inputs/4

outputs for the four 4-LUTs and 4 inputs/4 outputs for the four flip-flops). An additional four CLB I/O

pins result in 14% more signals for the connection blocks to deal with. Since the fundamental philosophy

this chapter began with tries to limit the impact of any architectural modifications, limiting the number of

additional CLB inputs and outputs to 14% will likely cover all of the architectures that are of interest.

The efficiency of these fifteen architectures in mapping heavily registered netlists was tested by applying

Equations 8.9 and 8.10 to the 22 depth = 1 netlists and 22 depth = 0.33 netlists used in the previous

chapters. Figure 8.14 and Figure 8.15 show the geometric mean number of BLEs that these netlists require

when mapped to each of the various architectures. All of these values are normalized to the number of

BLEs required by the depth = N netlists.

Although all of these architectures reduce the number of BLEs that these netlists require, adding the

capability of using some of the LUTs in the device as SR-16s has a much larger effect than adding

additional flip-flops. As shown in Figure 8.15, adding SR-16 capabilities to all four LUTs in each CLB

(architecture I-0E) halves the number of BLEs that are required by the basic system for the depth = 0.33

netlists (3.133x versus 6.172x the number of BLEs required by the original netlists represents a 0.508x

improvement, assuming that an average of 1.5 registers can be mapped to each shift register). This is a feat

that even adding 2 additional flip-flops per CLB (architecture I-4A) cannot achieve. The I-4A architecture

only reaches a 0.667x improvement over the basic I-0A architecture. Furthermore, adding SR-16

capabilities does not require adding any additional I/O pins. Largely, this behavior occurs because

although the I-0E architecture has a smaller IndFF value than the I-4A architecture (1 versus 1.5), it has a

larger ULReg value (between 2 and 3 versus 1.5). Since the depth = 0.33 netlists have so many BLEs with

an unoccupied LUT, the ULReg value has a much larger impact on the number of BLEs that is required.

1
3

7

1.954

1.585
1.476

1.366
1.316

1.279
1.249

1.436
1.403

1.310
1.350

1.727
1.590

1.498
1.432

0.0

0.5

1.0

1.5

2.0

2.5

4x FF per CLB (I-0A)

+ 1x SR16 per CLB
(I-0B)

+ 2x SR16 per CLB
(I-0C)

+ 3x SR16 per CLB
(I-0D)

+ 4x SR16 per CLB
(I-0E)

+1x FF per CLB (I-
2A)

+1x FF + 1x SR16
per CLB (I-2B)

+1x FF + 2x SR16
per CLB (I-2C)

+1x FF + 3x SR16
per CLB (I-2D)

+1x FF + 4x SR16
per CLB (I-2E)

+ 2x FF per CLB (I-
4A)

 +2x FF+ 1x SR16
per CLB (I-4B)

 +2x FF+ 2x SR16
per CLB (I-4C)

 +2x FF+ 3x SR16
per CLB (I-4D)

 +2x FF+ 4x SR16
per CLB (I-4E)

0
2

4

o
f A

d
d

itio
n

al C
L

B
 I/O

 P
in

s R
eq

u
ired

Normalized # of BLEs Required

A
N

S
R

 =
 1

A
N

S
R

 =
 1.5

A
N

S
R

 =
 2

F
igure 8.14: T

esting P
hase I – E

ffect of A
dditional Independent F

lip-F
lops and

S
hift R

egisters on D
epth =

 1 N
etlists

N
u

m
b

ers p
rovid

ed
 indicate

A
N

S
R =

 1
.5

 resu
lts

6.172

4.938

4.115

2.611
2.828

3.116
3.517

2.848
3.125

3.505

4.058

3.133

3.493

4.006

4.795

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

4x FF per CLB (I-0A)

+ 1x SR16 per CLB
(I-0B)

+ 2x SR16 per CLB
(I-0C)

+ 3x SR16 per CLB
(I-0D)

+ 4x SR16 per CLB
(I-0E)

+1x FF per CLB (I-
2A)

+1x FF + 1x SR16
per CLB (I-2B)

+1x FF + 2x SR16
per CLB (I-2C)

+1x FF + 3x SR16
per CLB (I-2D)

+1x FF + 4x SR16
per CLB (I-2E)

+ 2x FF per CLB (I-
4A)

 +2x FF+ 1x SR16
per CLB (I-4B)

 +2x FF+ 2x SR16
per CLB (I-4C)

 +2x FF+ 3x SR16
per CLB (I-4D)

 +2x FF+ 4x SR16
per CLB (I-4E)

0
2

4

o
f A

d
d

itio
n

al C
L

B
 I/O

 P
in

s R
eq

u
ired

Normalized # of BLEs Required

A
N

S
R

 = 1
A

N
S

R
 = 1.5

A
N

S
R

 = 2

F
igure 8.15: T

esting P
hase I – E

ffect of A
dditional Independent F

lip-F
lops and

S
hift R

egisters on D
epth =

 0.33 N
etlists

N
u

m
b

ers p
rovid

ed
 indicate

A
N

S
R =

 1
.5

 resu
lts

138

This phenomenon can also be seen elsewhere in Figure 8.15. For the depth = 0.33 netlists, adding the

capability for one of the LUTs in each CLB to be used as a SR-16 (architecture I-0B) produces

approximately the same results as adding one additional flip-flop (architecture I-2A). Again assuming that

an average of 1.5 registers can be mapped to each shift register, the I-0B architecture requires an average of

4.795x the number of BLEs in the original netlists while the I-2A architecture requires an average of

4.938x. Furthermore, adding the capability for two of the LUTs in each CLB to be used as SR-16s

(architecture I-0C) produces approximately the same results as adding two additional flip-flops

(architecture I-4A). The I-0C architecture requires an average of 4.006x the number of BLEs in the original

netlists while the I-4A architecture requires an average of 4.115x. This makes sense because for the BLEs

in the system with an unoccupied LUT, having one SR-16 is essentially the same as having one extra flip-

flop, even assuming the worse case where RegPerSR = 1. Both architectures have ULReg = 1.25.

Similarly, having two SR-16s in each CLBs is essentially the same as having two extra flip-flops. Again,

even assuming the worse case, both architectures have ULReg = 1.5.

However, this characteristic only applies to BLEs that have an unoccupied LUT. The depth = 1 netlists

shown in Figure 8.14 require far fewer additional BLEs. Thus, these netlists have a much smaller ratio of

BLEs with unoccupied LUTs. This affects the results. For these netlists, to produce approximately the

same results as adding one additional flip-flop (architecture I-2A), two of the LUTs in each CLB need SR-

16 capabilities (architecture I-0C). Assuming that an average of 1.5 registers can be mapped to each shift

register, the I-0C architecture requires an average of 1.590x the number of BLEs in the original netlists

while the I-2A architecture requires an average of 1.585x. Similarly, to produce approximately the same

results as adding two additional flip-flops (architecture I-4A), all four of the LUTs in each CLB need SR-16

capabilities (architecture I-1E). The I-0E architecture requires an average of 1.432x the number of BLEs in

the original netlists while the I-4A architecture requires an average of 1.436x. More SR-16s are required to

match the results produced by adding additional flip-flops because the number of BLEs with unoccupied

LUTs in the depth = 1 netlists no longer dwarfs the number of BLEs with an occupied LUT. This makes

the ULReg value less important and the IndFF value more significant. That said, the benefit of allowing

LUTs to be used as SR-16s is still impressive, particularly because this does not increase the number of

CLB I/O pins.

Adding independent flip-flops or allowing LUTs to be used as SR-16s are not the only ways of adding

additional register resources. Although it requires addition CLB output pins, it is also possible to allow

each LUT to be used as two 1 to 8-bit shift registers (SR-8s) or four 1 to 4-bit shift registers (SR-4s). Thus,

the next phases of testing investigated the efficiency of architectures that had these types of resources. This

testing was divided into 3 separate parts. The second phase of testing assumed that each CLB could

support converting one LUT in each CLB into one SR-16, two SR-8s or four SR-4s. The third and fourth

139

phases assumed that each CLB could support converting two or four of the LUTs in each CLB,

respectively, into shift registers. Again, each of these LUTs could be used as one SR-16, two SR-8s or four

SR-4s. The testing was divided in this manner because adding the basic components required to convert a

LUT into any kind of shift register might be costly. This may be the reason that Xilinx devices only allow

half of their LUTs to be used as SR-16s. As mentioned earlier, adding the capability to turn a 4-LUT into

even a SR-16 could require twenty additional 2:1 multiplexers and four additional memory cells.

Depending upon the structure used for the basic LUT and the necessary transistor sizing that is required,

this may be significant. Thus, each of the subsequent phases of testing explored what could be

accomplished by adding shift registers and additional flip-flops to the system while limiting the number of

modified LUTs.

As shown in Table 8.4, the second phase of testing compared the mapping efficiency of seven architectures.

Four of the architectures are from the first phase of testing: I-0A, I-0B, I-2B, I-4B. Listed first is the default

architecture, I-0A. Next comes all of the architectures that can be made that do not require any additional

I/O pins and have exactly one modified LUT per CLB. One architecture can be made that has one LUT in

each CLB that can be used as a SR-16, architecture I-0B from the first round of testing. Next comes all of

the architectures that can be made that require one additional I/O pin and have exactly one modified LUT

per CLB. Only one architecture can be made, II-1A, an architecture that allows one of the LUTs in each

CLB to be used as two SR-8s. This process continues for two, three and four additional I/O pins per CLB.

As seen in Figure 8.16 and Figure 8.17, for architectures in which one unoccupied LUT can be converted

into one or more shift registers, increasing the number of I/O pins in each CLB is relatively compelling.

While adding the capability of converting one LUT per CLB into a SR-16 provides some benefit (0.884x

improvement over the default architecture for the depth = 1 netlists and 0.777x improvement over the

default architecture for the depth = 0.33 netlists), a larger improvement comes from mapping the circuits to

architectures that have CLBs with additional I/O pins (up to a 0.699x improvement over the default

architecture for the depth = 1 netlists and up to a 0.508x improvement over the default architecture for the

depth = 0.33 netlists). However, for the depth = 1 netlists, the benefits of creating more sophisticated

architectures largely drops off at architecture II-3A, a device with one additional flip-flop and one LUT that

can be converted into two SR-8s per CLB. Architecture II-3B, a system with one LUT that can that be

converted into four SR-4s per CLB is less compelling. While architecture II-3A improved the number of

BLEs required by 0.718x compared to the default architecture (1.403x versus 1.954x, again assuming that

an average of 1.5 registers can be mapped to each shift register), the II-3B architecture only improve the

number of BLEs by 0.733x (1.432x versus 1.954x). This is largely because the depth = 1 netlists do not

require a huge number of BLEs with unoccupied LUTs. Thus, having a larger IndFF is preferable to a

larger ULReg. (when RegPerSR = 1, IndFF = 1.25 and ULReg = 1.75 versus IndFF = 1 and ULReg = 2)

140

However, for the depth = 0.33 netlists, architecture II-3B provides better performance than architecture II-

3A. Architecture II-3B improved the number of required BLEs by 0.508x while architecture II-3A only

improved the number of required BLEs by 0.568x. This is because the depth = 0.33 netlists require more

registers, creating a larger fraction of BLEs with unoccupied LUTs. That said, architecture I-4B can be

essentially disregarded. This is because while it requires more additional I/O pins than either II-3A or II-

3B, it does not produce dramatically better results than II-3A for the depth = 1 netlists (1.366x versus

1.403x) and produces worse results than II-3B for the depth = 0.33 netlists (3.517x versus 3.133x).

As shown in Table 8.5, the third phase of testing compared the mapping efficiency of ten architectures.

Again, four of the architectures are from the first phase of testing: I-0A, I-0C, I-2C, I-4C. The remaining

six were generated using the same methodology as in the second testing phase: all of the architectures that

Table 8.4: Architectures Used in Testing Phase II –
Adding Independent Flip-Flops and Shift Registers, 1 Modified LUT/CLB

Arch Description – Contents of Each CLB
I-0A* 4x normal LUTs, 4x FFs (default architecture)
I-0B* 3x normal LUTs, 1x LUT with SR-16 mode, 4x FFs (one LUT in each CLB can be used as a 1 to 16-bit shift register)

II-1A
3x normal LUTs, 1x LUT with 2x SR-8 mode, 4x FFs

(one LUT in each CLB can be used as two 1 to 8-bit shift registers)

I-2B*
3x normal LUTs, 1x LUT with SR-16 mode, 5x FFs

(one LUT in each CLB can be used as a 1 to 16-bit shift register and 1 additional FF per CLB is added)

II-3A
3x normal LUTs, 1x LUT with 2x SR-8 mode, 5x FFs

(one LUT in each CLB can be used as two 1 to 8-bit shift registers and 1 additional FF per CLB is added)

II-3B
3x normal LUTs, 1x LUT with 4x SR-4 mode, 4x FFs

(one LUT in each CLB can be used as four 1 to 4-bit shift registers)

I-4B*
3x normal LUTs, 1x LUT with SR-16 mode, 6x FFs

(one LUT in each CLB can be used as a 1 to 16-bit shift register and 2 additional FFs per CLB are added)

Arch Normal
LUTs
/CLB

SR-16
LUTs
/CLB

2x SR-8
LUTs
/CLB

4x SR-4
LUTs
/CLB

FF
/CLB

IndFF ANSR RegPerSR ULReg Extra
IO Pins

I-0A* 4 0 0 0 4 1 0 - 1

I-0B* 3 1 0 0 4 1 0.25
1

1.5
2

1.25
1.375
1.5

0

II-1A 3 0 1 0 4 1 0.5
1

1.5
2

1.5
1.75

2
1

I-2B* 3 1 0 0 5 1.25 0.25
1

1.5
2

1.5
1.625
1.75

2

II-3A 3 0 1 0 5 1.25 0.5
1

1.5
2

1.75
2

2.25

II-3B 3 0 0 1 4 1 1
1

1.5
2

2
2.5
3

3

I-4B* 3 1 0 0 6 1.5 0.25
1

1.5
2

1.75
1.875

2
4

* Denotes architecture from Phase I testing

141

1.954

1.476 1.3661.4321.403

1.727
1.590

0.0

0.5

1.0

1.5

2.0

2.5

4x
 F

F
 p

er
 C

LB
 (

I-
0A

)

+
 1

x
S

R
16

 p
er

C
LB

 (
I-

0B
)

+
 2

x
S

R
8

pe
r

C
LB

(I
I-

1A
)

+
1x

 F
F

 +
 1

x
S

R
16

pe
r

C
LB

 (
I-

2B
)

+
 1

x
F

F
 +

 2
x

S
R

8
pe

r
C

LB
 (

II-
3A

)

+
 4

x
S

R
4

pe
r

C
LB

(I
I-

3B
)

 +
2x

 F
F

+
 1

x
S

R
16

pe
r

C
LB

 (
I-

4B
)

0 1 2 3 4

of Additional CLB I/O Pins Required

N
o

rm
al

iz
ed

 #
 o

f
B

L
E

s
R

eq
u

ir
ed

ANSR = 1
ANSR = 1.5
ANSR = 2

Figure 8.16: Architecture Exploration on Depth = 1 Netlists, 1 LUT/CLB has Shift Register(s)
Numbers provided indicate ANSR = 1.5 results

6.172

3.5173.133

3.505

4.058
4.006

4.795

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

4x
 F

F
 p

er
 C

LB
 (

I-
0A

)

+
 1

x
S

R
16

 p
er

C
LB

 (
I-

0B
)

+
 2

x
S

R
8

pe
r

C
LB

(I
I-

1A
)

+
1x

 F
F

 +
 1

x
S

R
16

pe
r

C
LB

 (
I-

2B
)

+
 1

x
F

F
 +

 2
x

S
R

8
pe

r
C

LB
 (

II-
3A

)

+
 4

x
S

R
4

pe
r

C
LB

(I
I-

3B
)

 +
2x

 F
F

+
 1

x
S

R
16

pe
r

C
LB

 (
I-

4B
)

0 1 2 3 4

of Additional CLB I/O Pins Required

N
o

rm
al

iz
ed

 #
 o

f
B

L
E

s
R

eq
u

ir
ed

ANSR = 1
ANSR = 1.5
ANSR = 2

Figure 8.17: Architecture Exploration on Depth = 0.33 Netlists, 1 LUT/CLB has Shift Register(s)
Numbers provided indicate ANSR = 1.5 results

142

require one through four additional I/O pins that have exactly two modified LUTs per CLB were

investigated.

As seen in Figure 8.18 and Figure 8.19, for architectures in which two unoccupied LUTs can be converted

into two or more shift registers, increasing the number of I/O pins in each CLB is still relatively

compelling. Although adding the capability of converting two of the LUTs in each CLB into SR-16s

provides the largest benefit (by itself a 0.814x improvement for the depth = 1 netlists and a 0.649x

improvement for the depth = 0.33 netlists), mapping to architectures that have CLBs with additional I/O

pins also produces a relatively significant improvement (up to 0.670x improvement for the depth = 0.33

netlists and up to 0.431x improvement for the depth = 0.33 netlists). That said, as with the architectures in

the previous round of testing, the benefits of creating more sophisticated architectures largely drops off at

three additional I/O pins. All three architectures with two modified LUTs and four additional I/O pins per

CLB can likely be eliminated from consideration since they do not provide enough benefit to justify the

additional I/O pins required.

The architectures that worked best in this testing also showed the same netlist dependence as in the

previous round of testing. While the depth = 1 netlists preferred architectures I-2C and III-3A for devices

with 2 and 3 additional I/O pins respectively, the depth = 0.33 netlists preferred architectures III-2A and III-

3B. The I-2C and III-3A architectures provided a 0.718x and 0.691x improvement, respectively, for the

depth = 1 netlists and the III-2A and III-3B architectures provided a 0.508x and 0.464x improvement,

respectively, for the depth = 0.33 netlists. Again, this is because the depth = 1 netlists prefers architectures

that trade a slightly higher IndFF for a slightly lower ULReg while the depth = 0.33 netlists prefer

architectures that trade a slightly higher ULReg for a slightly lower IndFF.

As shown in Table 8.6, the last phase of testing compared the mapping efficiency of twelve architectures

that had four modified LUTs per CLB. As seen in Figure 8.20 and Figure 8.21, these architectures showed

the most improvement by simply allowing all four of the LUTs in each CLB to be used as SR-16s. By

itself, this represented a 0.733x improvement over the default architecture for the depth = 1 netlists and a

0.508x improvement for the for the depth = 0.33 netlists. However, as with the previous two tests, both the

depth = 1 and depth = 0.33 netlists showed marked improvement for architectures that added up to three

additional I/O pins. Again, architectures with four modified LUTs and four additional I/O pins per CLB

can likely be eliminated from consideration since they do not provide a sizeable benefit over the

architectures that require three additional I/O pins. Furthermore, also like the previous round of testing, the

architectures that showed the best performance for the depth = 1 netlists had a slightly higher IndFF and

the architectures that showed the best performance for the depth = 0.33 netlists had a slightly higher

ULReg.

143

Table 8.5: Architectures Used in Testing Phase III –
Adding Independent Flip-Flops and Shift Registers, 2 Modified LUTs/CLB

Arch Description – Contents of Each CLB
I-0A* 4x normal LUTs, 4x FFs (default architecture)

I-0C*
2x normal LUTs, 2x LUTs with SR-16 mode, 4x FFs

(two LUTs in each CLB can each be used as a 1 to 16-bit shift register)

III-1A
2x normal LUTs, 1x LUT with SR-16 mode, 1x LUT with 2x SR-8 mode, 4x FFs

(one LUT in each CLB can be used as a 1 to 16-bit shift register and
one LUT in each CLB can be used as two 1 to 8-bit shift registers)

I-2C*
2x normal LUTs, 2x LUTs with SR-16 mode, 5x FFs

(two LUTs in each CLB can each be used as a 1 to 16-bit shift register and 1 additional FF per CLB is added)

III-2A
2x normal LUTs, 2x LUTs with 2x SR-8 mode, 4x FFs

(two LUTs in each CLB can each be used as two 1 to 8-bit shift registers)

III-3A
2x normal LUTs, 1x LUT with SR-16 mode, 1x LUT with 2x SR-8 mode, 5x FFs

(one LUT in each CLB can be used as a 1 to 16-bit shift register,
one LUT in each CLB can be used as two 1 to 8-bit shift registers, and 1 additional FF per CLB is added)

III-3B
2x normal LUTs, 1x LUT with SR-16 mode, 1x LUT with 4x SR-4 mode, 4x FFs

(one LUT in each CLB can be used as a 1 to 16-bit shift register
and one LUT in each CLB can be used as four 1 to 4-bit shift registers)

I-4C*
2x normal LUTs, 2x LUTs with SR-16 mode, 6x FFs

(two LUTs in each CLB can each be used as a 1 to 16-bit shift register and 2 additional FFs per CLB are added)

III-4A
2x normal LUTs, 2x LUTs with 2x SR-8 mode, 5x FFs

(two LUTs in each CLB can each be used as two 1 to 8-bit shift registers and 1 additional FF per CLB is added)

III-4B
2x normal LUTs, 1x LUT with 2x SR-8 mode, 1x LUT with 4x SR-4 mode, 4x FFs

(one LUT in each CLB can be used as two 1 to 8-bit shift registers
and one LUT in each CLB can be used as four 1 to 4-bit shift registers)

Arch Normal
LUTs
/CLB

SR-16
LUTs
/CLB

2x SR-8
LUTs
/CLB

4x SR-4
LUTs
/CLB

FF
/CLB

IndFF ANSR RegPerSR ULReg Extra
IO Pins

I-0A* 4 0 0 0 4 1 0 - 1

I-0C* 2 2 0 0 4 1 0.5
1

1.5
2

1.5
1.75

2

0

III-1A 2 1 1 0 4 1 0.75
1

1.5
2

1.75
2.125
2.5

1

I-2C* 2 2 0 0 5 1.25 0.5
1

1.5
2

1.75
2

2.25

III-2A 2 0 2 0 4 1 1
1

1.5
2

2
2.5
3

2

III-3A 2 1 1 0 5 1.25 0.75
1

1.5
2

2
2.375
2.75

III-3B 2 1 0 1 4 1 1.25
1

1.5
2

2.25
2.875
3.5

3

I-4C* 2 2 0 0 6 1.5 0.5
1

1.5
2

2
2.25
2.5

III-4A 2 0 2 0 5 1.25 1
1

1.5
2

2.25
2.75
3.25

III-4B 2 0 1 1 4 1 1.5
1

1.5
2

2.5
3.25
4.0

4

* Denotes architecture from Phase I testing

1
4

4

1.954

1.316
1.310

1.342
1.350

1.382
1.432

1.403
1.498

1.590

0.0

0.5

1.0

1.5

2.0

2.5

4x FF per CLB (I-
0A)

+ 2x SR16 per
CLB (I-0C)

+ 2x SR8 + 1x
SR16 per CLB (III-

1A)

+1x FF + 2x SR16
per CLB (I-2C)

+ 4x SR8 per CLB
(III-2A)

+1x FF + 2x SR8
+ 1x SR16 per
CLB (III-3A)

+ 4x SR4 + 1x
SR16 per CLB (III-

3B)

 +2x FF+ 2x SR16
per CLB (I-4C)

+1x FF+ 4x SR8
per CLB (III-4A)

+ 2x SR8 + 4x
SR4 per CLB (III-

4B)

0
1

2
3

4

o
f A

d
d

itio
n

al C
L

B
 I/O

 P
in

s R
eq

u
ired

Normalized # of BLEs Required

A
N

S
R

=
1

A
N

S
R

=
1.5

A
N

S
R

=
2

F
igure 8.18: A

rchitecture E
xploration on D

epth =
 1 N

etlists, 2 LU
T

s/C
LB

 have S
hift R

egister(s)
N

u
m

b
ers p

rovid
ed

 indicate
A

N
S

R =
 1

.5
 resu

lts

6.172

2.659
2.848

3.116
2.866

3.125
3.133

3.505
3.493

4.006

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

4x FF per CLB (I-
0A)

+ 2x SR16 per
CLB (I-0C)

+ 2x SR8 + 1x
SR16 per CLB (III-

1A)

+1x FF + 2x SR16
per CLB (I-2C)

+ 4x SR8 per CLB
(III-2A)

+1x FF + 2x SR8
+ 1x SR16 per
CLB (III-3A)

+ 4x SR4 + 1x
SR16 per CLB (III-

3B)

 +2x FF+ 2x SR16
per CLB (I-4C)

+1x FF+ 4x SR8
per CLB (III-4A)

+ 2x SR8 + 4x
SR4 per CLB (III-

4B)

0
1

2
3

4

o
f A

d
d

itio
n

al C
L

B
 I/O

 P
in

s R
eq

u
ired

Normalized # of BLEs Required

A
N

S
R

=
1

A
N

S
R

=
1.5

A
N

S
R

=
2

F

igure 8.19: A
rchitecture E

xploration on D
epth =

 0.33 N
etlists, 2 LU

T
s/C

LB
 have S

hift R
egister(s)

N
u

m
b

e
rs p

ro
vid

e
d

 ind
ica

te

A
N

S
R =

 1
.5

 re
sults

145

Table 8.6: Architectures Used in Testing Phase IV –
Adding Independent Flip-Flops and Shift Registers, 4 Modified LUTs/CLB

Arch Description – Contents of Each CLB
I-0A* 4x normal LUTs, 4x FFs (default architecture)
I-0E* 4x LUTs with SR-16 mode, 4x FFs (all four LUTs in each CLB can be used as a 1 to 16-bit shift register)

IV-1A
3x LUTs with SR-16 mode, 1x LUT with 2x SR-8 mode, 4x FFs

(three LUTs in each CLB can be used as a 1 to 16-bit shift register
and one LUT in each CLB can be used as two 1 to 8-bit shift registers)

I-2E*
4x LUTs with SR-16 mode, 5x FFs

(all four LUTs in each CLB can be used as a 1 to 16-bit shift register and 1 additional FF per CLB is added)

IV-2A
2x LUTs with SR-16 mode, 2x LUTs with 2x SR-8 mode, 4x FFs

(two LUTs in each CLB can be used as a 1 to16-bit shift register and
two LUTs in each CLB can be used as two 1 to 8-bit shift registers)

IV-3A
3x LUTs with SR-16 mode, 1x LUT with 2x SR-8 mode, 5x FFs

(three LUTs in each CLB can be used as a 1 to 16-bit shift register,
one LUT in each CLB can be used as two 1 to 8-bit shift registers, and 1 additional FF per CLB is added)

IV-3B
3x LUTs with SR-16 mode, 1x LUT with 4x SR-4 mode, 4x FFs

(three LUTs in each CLB can be used as a 1 to 16-bit shift register
and one LUT in each CLB can be used as four 1 to 4-bit shift registers)

IV-3C
1x LUTs with SR-16 mode, 3x LUT with 2x SR-8 mode, 4x FFs
(one LUT in each CLB can be used as a 1 to 16-bit shift register

and three LUTs in each CLB can be used as two 1 to 8-bit shift registers)

I-4E*
4x LUTs with SR-16 mode, 6x FFs

(all four LUTs in each CLB can be used as a 1 to 16-bit shift register and 2 additional FFs per CLB are added)

IV-4A
2x LUTs with SR-16 mode, 2x LUTs with 2x SR-8 mode, 5x FFs

(two LUTs in each CLB can be used as a 1 to16-bit shift register, two LUTs in each CLB can each be used as two 1 to 8-bit shift
registers and 1 additional FF per CLB is added)

IV-4B
2x LUTs with SR-16 mode, 1x LUT with 2x SR-8 mode, 1x LUT with 4x SR-4 mode, 4x FFs

(two LUTs in each CLB can be used as a 1 to16-bit shift register, one LUT in each CLB can be used as
two 1 to 8-bit shift registers and one LUT in each CLB can be used as four 1 to 4-bit shift registers)

IV-4C
4x LUTs with 2x SR-8 mode, 4x FFs

(all four LUTs in each CLB can be used as two 1 to 8-bit shift registers)

Arch

Normal
LUTs
/CLB

SR-16
LUTs
/CLB

2x SR-8
LUTs
/CLB

4x SR-4
LUTs
/CLB

FF
/CLB

IndFF ANSR RegPerSR ULReg Extra
IO Pins

I-0A* 4 0 0 0 4 1 0 - 1

I-0E* 0 4 0 0 4 1 1
1

1.5
2

2
2.5
3

0

IV-1A 0 3 1 0 4 1 1.25
1

1.5
2

2.25
2.875
3.5

1

I-2E* 0 4 0 0 5 1.25 1
1

1.5
2

2.25
2.75
3.25

IV-2A 0 2 2 0 4 1 1.5
1

1.5
2

2.5
3.25
4.0

2

IV-3A 0 3 1 0 5 1.25 1.25
1

1.5
2

2.5
3.125
3.75

IV-3B 0 3 0 1 4 1 1.75
1

1.5
2

2.75
3.625
4.5

IV-3C 0 1 3 0 4 1 1.75
1

1.5
2

2.75
3.625
4.5

3

I-4E* 0 4 0 0 6 1.5 1
1

1.5
2

2.5
3

3.5

IV-4A 0 2 2 0 5 1.25 1.5
1

1.5
2

2.75
3.5
4.20

IV-4B 0 2 1 1 4 1 2
1

1.5
2

3
4
5

IV-4C 0 0 4 0 4 1 2
1

1.5
2

3
4
5

4

* Denotes architecture from Phase I testing

1
4

6

1.954

1.284
1.284

1.252
1.249

1.311
1.311

1.278

1.342

1.310
1.382

1.432

0.0

0.5

1.0

1.5

2.0

2.5

4x FF per CLB (I-
0A)

+ 4x SR16 per
CLB (I-0E)

+ 2x SR8 + 3x
SR16 per CLB (IV-

1A)

+1x FF + 4x SR16
per CLB (I-2E)

+ 4x SR8 + 2x
SR16 per CLB (IV-

2A)

+ 1x FF + 2x SR8
+ 3x SR16 per
CLB (IV-3A)

+ 4x SR4 + 3x
SR16 per CLB (IV-

3B)

+ 6x SR8 + 1x
SR16 per CLB (IV-

3C)

 +2x FF+ 4x SR16
per CLB (I-4E)

+ 1x FF+ 4x SR8
+ 2x SR16 per
CLB (IV-4A)

+ 2x SR8 + 4x
SR4 + 2x SR16
per CLB (IV-4B)

+ 8x SR8 per CLB
(IV-4C)

0
1

2
3

4

o
f A

d
d

itio
n

al C
L

B
 I/O

 P
in

s R
eq

u
ired

Normalized # of BLEs Required

A
N

S
R

=1
A

N
S

R
=1.5

A
N

S
R

=2

F
igure 8.20: A

rchitecture E
xploration on D

epth =
 1 N

etlists, 4 LU
T

s/C
LB

 have S
hift R

egister(s)
N

u
m

b
ers p

rovid
ed

 indicate
A

N
S

R =
 1

.5
 resu

lts

6.172

2.361
2.361

2.469
2.611

2.495
2.495

2.636
2.659

2.848
2.866

3.133

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

4x FF per CLB (I-
0A)

+ 4x SR16 per
CLB (I-0E)

+ 2x SR8 + 3x
SR16 per CLB (IV-

1A)

+1x FF + 4x SR16
per CLB (I-2E)

+ 4x SR8 + 2x
SR16 per CLB (IV-

2A)

+ 1x FF + 2x SR8
+ 3x SR16 per
CLB (IV-3A)

+ 4x SR4 + 3x
SR16 per CLB (IV-

3B)

+ 6x SR8 + 1x
SR16 per CLB (IV-

3C)

 +2x FF+ 4x SR16
per CLB (I-4E)

+ 1x FF+ 4x SR8
+ 2x SR16 per
CLB (IV-4A)

+ 2x SR8 + 4x
SR4 + 2x SR16
per CLB (IV-4B)

+ 8x SR8 per CLB
(IV-4C)

0
1

2
3

4

o
f A

d
d

itio
n

al C
L

B
 I/O

 P
in

s R
eq

u
ired

Normalized # of BLEs Required

A
N

S
R

=1
A

N
S

R
=1.5

A
N

S
R

=2

F
igure 8.21: A

rchitecture E
xploration on D

epth =
 0.33 N

etlists, 4 LU
T

s/C
LB

 have S
hift R

egister(s)
N

u
m

b
ers p

rovid
ed

 indicate
A

N
S

R =
 1

.5
 resu

lts

147

8.5: Conclusions and Future Research

This chapter examined the potential benefits of increasing the number of registers that FPGAs provide.

Heavy pipelining and C-slowing can add a huge number of registers into a netlist. Although this can

improve the critical path delay significantly, this also considerably increases the number of BLEs that are

required. Since conventional architectures offer BLEs with one LUT and one flip-flop, circuits that have a

uniform logic depth can be pipelined or C-slowed to a logic depth of one LUT and not require a large

number of additional logic blocks. This is because the registers in these circuits can be put into the same

BLEs as the logic. However, many circuits have some paths that go though several layers of logic while

the rest of the circuit goes through relatively few. Since the number of registers added to all paths must be

the same to maintain the functionality of the circuit, deeply pipelining or C-slowing these non-uniform

netlists may tremendously increase the number of BLEs that are needed. This is because many registers

will have to be added to the short paths in order to fully pipeline the long paths. For that matter, FPGA

application developers often purposefully add multiple registers to signals in their circuits. This is done to

allow the delay through long wires to be broken up across multiple clock cycles.

There have been multiple previous research efforts that have investigated potential ways of increasing the

number of registers that FPGAs provide. Unfortunately, these systems typically impose strict limitations

on the types of circuits they can implement or have an unacceptably large area overhead when mapping

more conventional, lightly-registered applications. Since these architectures are not practical for the

majority of users, they are not commercially viable. This chapter addresses the problem of introducing

additional registers into an FPGA in a fundamentally different way. Rather than making drastic changes

that alter the basic usability of entire system, it is likely more reasonable to add small modifications that are

beneficial to heavily registered applications, but largely invisible to more conventional circuits.

There are two basic areas of an FPGA that additional registers can be incorporated: the routing network and

the logic blocks. While some previous architectures have added registers into the interconnect by

embedding registers inside switchboxes, this really introduces more problems than it solves. Adding

registers that are connected to all of the wires that enter and exit a switchbox is not practical due to area

concerns. However, introducing registers into the system that have more limited input and output options

changes the fundamental nature of the placement and routing problems. As discussed in the previous

chapter, this kind of architecture can require pipeline-aware routing algorithms.

From a performance standpoint, embedding registers in the interconnect switchboxes does not make the

system considerably faster compared to using registers that might be found in more conventional logic

block locations. Although signals that use registers in the interconnect do not incur the delay associated

with entering and exiting a CLB, they cannot escape the largest component of delay in modern FPGAs: the

148

delay though the wires themselves. Furthermore, it is likely that wire delay will become a larger part of the

overall delay in the system in future process technologies. Using the values provided by VPR for 0.65nm

FPGAs, devices with registers embedded in the interconnect not only require more complicated CAD tools,

they are likely less than 0.92x faster than more conventional architectures.

However, this is not to say that embedding registers within the routing fabric cannot help the performance

of any FPGA, only that it does not make sense to incorporate these kinds of resources in architectures that

only have conventional island-style routing wires. For example, in an architecture with dedicated local

connections, embedding registers along these wires could be quite helpful. If each CLB has a direct

connection to each of its 8 or 24 nearest neighbors, adding a register to split the delay through the wire

could make these connections much faster. Alternatively, this could allow the system to use smaller drivers

for these connections and still have them keep up with other faster routing resources in the architecture.

Furthermore, adding registers to these dedicated connections does not create a problem for the router. This

is because the endpoints of these connections are already fixed. Thus, these wires are not shared resources

that can run into congestion resolution problems if registers are assigned to these locations during

placement.

That said, focusing FPGA architects on incorporating additional registers into the logic blocks themselves

is probably a better idea. However, there are multiple ways that this could be accomplished. One option is

to simply add more independently accessible flip-flops to each CLB. Another way is to harness the

memory cells that already exist within the LUTs themselves. With a few minor modifications, any LUT

that is not needed to implement the logic of the circuit can be converted into one 1 to 16-bit shift register,

two 1 to 8-bit shift registers or four 1 to 4-bit shift registers.

However, there are several practical concerns that should be kept in mind when evaluating any

modifications to the system. First, there is the number of input and output pins that each of these various

enhancements add to the CLB in which they are placed. Each additional flip-flop that is added to a CLB

also adds one additional input pin and one additional output pin. Furthermore, while any LUT that is

converted into an SR-16 can utilize the existing CLB inputs and outputs, LUTs that are converted into two

SR-8s or four SR-4s require one or three additional output pins, respectively.

The next issue is the basic usability of shift registers. Although deeply pipelined and C-slowed circuits

contain a large total number of registers, they are generally evenly distributed throughout the circuit. The

majority of signals in even the most heavily registered netlists require less than four registers. For that

matter, for performance reasons these registers generally must be mapped to multiple locations between the

source and sink. Thus, each shift register will probably only be used to implement one or two registers.

149

For this reason, while splitting a LUT into multiple shift registers requires more resources, this might be a

good idea since this gives the LUT the capability to provide registers to multiple different signals.

The last issue concerns the difference in local availability between individual flip-flops and shift registers.

The ratio of logic to register resources within certain parts of the device likely limits the performance

benefits of heavily pipelining or C-slowing a netlist. This is because beyond a certain critical threshold of

pipelining or C-slowing, the circuit must spread out to accumulate all of the necessary registers in the

netlist. This can counteract the benefits of performing pipelining or C-slowing in the first place. Although

shift registers provide very dense register resources, they can only be implemented in LUTs that are not

used for logic. Thus, for these to be inserted into tightly knit computational kernels, the LUTs in the circuit

must be spread out to provide empty LUT locations. Fundamentally, while shift registers are good at

raising the average number of registers in the chip as a whole, they have a hard time increasing the local

density of register resources where they might be needed. On the other hand, adding independently

accessible flip-flops to CLBs inherently evenly raises the ratio of register resources to logic. This means

that although each register might be more expensive, they may be more useful.

These concerns regarding how different types of resources within potential target architectures interact with

each other and the characteristics of incoming netlists were captured using a few equations. These

equations considered basic attributes, like the number of LUTs and registers required by a circuit, along

with more subtle issues such as the average number of registers that an incoming netlist could map to shift

registers that might be in the architecture. These equations were used to evaluate how 32 different

architectures handled two different sets of heavily registered circuits, the 11 combinational and 11

sequential MCNC netlists pipelined, C-slowed and retimed to logic depth = 1 and logic depth = 0.33.

This testing showed that the largest gains could be achieved by giving as many LUTs as possible the ability

to be used as a 1 to 16-bit shift register. For the depth = 1 netlists, allowing half of the LUTs to be used as

SR-16s, like modern Xilinx devices, improved the number of BLEs required by 0.814x over the default

architecture that did not contain shift registers. Allowing all of the LUTs to be used as SR-16s reduced the

number of BLEs by 0.733x. Similarly, for the depth = 0.33 netlists, allowing half of the LUTs to be used

as SR-16s improved the number of BLEs required by 0.649x and allowing all of the LUTs to be used as

SR-16s reduced the number of BLEs by an enormous 0.508x.

Although adding additional flip-flops to the CLBs or splitting these shift registers into smaller banks could

potentially further improve the mapping efficiency of an architecture, the achievable improvements were

comparatively much smaller. Furthermore, these kinds of modifications increase the number of I/O pins

that each CLB needs, requiring more extensive changes to the system. Even adding four I/O pins to each

150

CLB could only improve the results obtained by allowing all four LUTs in each CLB to be used as an SR-

16 by 0.872x for the depth = 1 netlists and 0.754x for the depth = 0.33 netlists. Thus, from the standpoint

of layout and architectural design, the most important aspect to consider during the development process of

an FPGA is how to make the necessary modifications needed to use LUTs as SR-16s as cheap as possible.

This is far more important than designing the system to make additional CLB I/O pins inexpensive.

That said, the mapping efficiency of an architecture could possibly be justifiably improved if one or two

additional I/O pins could be added to each CLB. This would allow the architecture to split one or two of

the SR-16s into two SR-8s or add one additional flip-flop per CLB. For the depth = 1 netlists, adding one

additional I/O pin could improve the results by 0.942x over only having four SR-16s and adding two

additional I/O pins could improve results by 0.882x. For the depth = 0.33 netlists, adding one additional

I/O pin could improve the results by 0.915x over only having four SR-16s and adding two additional I/O

pins could improve results by 0.849x. Each additional I/O pin represents a 3.5% increase in the number of

inputs and outputs needed by a CLB with four 4-LUTs and four independently accessible flip-flops.

This testing also confirmed that how to best use additional I/O pins depends upon the characteristics of the

intended applications. Since shift registers can only be implemented in empty LUT locations, as the ratio

of registers to LUTs in a netlist goes down, it becomes more attractive to add independently accessibly flip-

flops rather than split shift registers. This is because the number of empty LUT locations in these netlists is

naturally smaller, allowing fewer of the shift registers to actually be used. For architectures with the same

number of I/O pins, allocating the internal resources differently could result in a 1.119x difference in the

number of required BLEs. A corollary to this is the observation that adding or splitting shift registers in an

architecture can never allow a heavily registered application to map to exactly the same number of BLEs as

an unregistered version. This is because additional BLEs are always necessary in order to provide empty

LUT locations that can be used to implement shift registers.

While this insight is a good start, there are still many open questions regarding how different architectures

affect the mapping of applications. The most pressing issue is that the number of BLEs required by a

netlist was the only metric used to evaluate different architectures. However, this information by itself is

not enough to constitute a rigorous architecture exploration. Specifically, more precise area and delay

values are necessary. That said, getting this information requires a large amount of additional work.

Although the number of BLEs that a netlist requires strongly affects its silicon footprint and this chapter

provided some basic analysis of the relative cost of adding or splitting shift registers and adding flip-flops,

exact area numbers for the architectures were never given. Largely, this is because accurately estimating

the area of a device requires additional information regarding the transistor and wire-level realities of the

151

various architectural options. Although it is impractical to expect entire FPGAs to be laid out while still at

the architectural exploration phase, the basic pieces of candidate systems must be implemented in some

way to build a meaningful area model. At the very least, transistor schematics must be made for all of

components in an FPGA: LUTs, flip-flops, memory cells, multiplexers, etc. These schematics could be

used to build a very rudimentary transistor count area model. However, to be truly useful such a model

must account for differences in transistor sizing. While the transistors within a memory cell can likely be

close to minimum size, the transistors that drive long interconnect wires will probably need to be much

larger. Even better, while entire FPGAs cannot be laid out, specific pieces of the system could be laid out

to create a relatively accurate area model.

However, applying this area model in a meaningful way also requires netlists to actually be placed and

routed on these architectures. This is because the number of logic blocks in an architecture is only one

component of the area requirement of the system as a whole. The interconnect network represent

somewhere between 50-90% of the area in modern FPGAs. Since changing some of the fundamental

characteristics of the underlying architecture will also likely change the channel width that mapped

applications require, this can have a large effect on the overall area of the device.

For that matter, placement and routing is also needed to determine the achievable clock frequency of

mapped circuits. Architectural modifications can change the critical path delay of applications in three

ways. First, the physical length of each interconnect wire will change because the logic blocks will get

bigger or smaller as the contents is varied and the switch boxes will get bigger or smaller as the channel

width of the system goes up and down. Since longer wires are naturally slower than shorter wires, this can

affect the delay of the entire FPGA. Second, the density of mapped circuits will change. Any increase in

the amount of register resources in the system will also allow circuits to be mapped to a smaller number of

logic blocks. Since the circuits can fit into a smaller region, this may speed up the achievable clock

frequency. Third, as touched on earlier, the specific types of register resources provided by the architecture

will alter the logic density that netlists can achieve. For example, it is likely that an architecture with more

independent flip-flops will allow logic-constrained netlists to run faster than an architecture with shift

registers because additional flip-flops allow the LUTs in computational kernels to be placed more closely

together.

Unfortunately, altering the architecture itself can also change the demands on the placement and routing

tools. Since an architecture can only perform as well as the CAD tools allow, addressing any issues that

arise is crucial to getting an accurate idea of the advantages or disadvantages of an architecture. Some of

these problems are relatively straightforward to address, but potentially difficult to actually solve. For

example, different architectures may need different placement or routing tuning parameters to produce

152

good results. While the techniques needed to test different parameters are obvious, the tests themselves

may require a huge amount of computational resources to evaluate multiple architectures across multiple

sets of benchmarks.

Other problems present more fundamental issues. For example, it is not obvious how to fairly evaluate the

required size of an application when mapped to an architecture that contains shift registers. Heavily

registered circuits, such as the depth = 0.33 netlists, may have many signals with multiple registers. These

netlists could be mapped to a very small architecture if all of the registers on each signal are mapped to a

single shift register. However, this severely limits the capability of the system to distribute delay along

long wires because all of the registers in the netlist are packed into dense register resources. The placement

tool cannot break these registers out into separate locations because there are so few empty registers

available in the device. Thus, while such an implementation is small, it may be very slow. Conversely, the

netlist could be mapped to a very large architecture if only one register is initially mapped to each shift

register. This gives the placement tool plenty of options to improve critical path delay, but also artificially

increases the size of the required device. Of course, the best mixture of size and speed of the application

probably lies between these two extremes, but finding this implementation is not obvious. For that matter,

it is unclear which of these implementations an FPGA architect should use to compare this architecture to

others.

153

Chapter 9: Conclusions and Future Research

This dissertation provided a detailed look at the potential advantages and disadvantages of heavily

pipelining, C-slowing and retiming FPGA-based applications. Heavily registered circuits are important to

the future of FPGAs because they can address one of the largest drawbacks that typically plagues today’s

reconfigurable devices: a relatively low operating frequency. However, these circuits also present special

challenges to FPGA CAD tools and put unique demands on the architectures themselves. Finding solutions

to these issues is critical because they can dramatically affect the achievable clock rate and area

requirements of mapped netlists. Towards this goal, this dissertation focused on four primary problems:

how to make timing-driven placement more effective, the implications of packing and retiming registers on

placement, how registers can affect routing and how to efficiently incorporate more register resources into

existing FPGA architectures.

Chapter 5 provided an in-depth look at timing-driven FPGA placement. The well-established and often-

cited technique used by VPR was shown to have a significant shortcoming in the fundamental way that it

tracks the timing information of a netlist during the annealing process. Simply put, performing static

timing analysis once every thousand or hundred thousand moves is simply not enough to insure that the

timing information remains relevant. It was demonstrated that this can lead to disappointing results,

particularly for heavily registered netlists since they are inherently more sensitive to changes in the

placement. Although forcing the annealer to simply perform static timing analysis more often can improve

the results, this comes with some risks. Not only does this dramatically increase placement runtime, it can

potentially cause the annealer to fail entirely.

Chapter 5 solved this problem by introducing a new incremental criticality update technique that allowed

the annealer to efficiently estimate changes in net criticality between every single annealing move. This

approach was paired with a new cost function that enabled the system to take advantage of more up-to-date

timing information. For conventional combinational and lightly registered sequential netlists, this

technique produced 0.888x faster post-routing critical path delay without affecting wire cost. For heavily

registered benchmarks, it generated placements that were 0.581x faster with 0.951x better wire cost.

While this performance benefit is impressive, perhaps more importantly, the timing-driven placement

approach suggested in Chapter 5 only requires a few small changes to the basic placement algorithm. Thus,

it can likely easily be incorporated into existing placement tools and provide immediate benefits for many

different applications across many different FPGA architectures.

Speaking more broadly, this new timing-driven placement technique is interesting because it shows that it

is possible to make dramatic improvements to VLSI CAD tools, even in areas that are thought to be

154

essentially mature, solved problems. Since changing the smallest detail can have a huge effect on the

performance of an algorithm, hopefully this work will inspire future research to more closely examine

classical FPGA CAD tools and techniques. For that matter, this approach also showed that merely

estimating the timing of nets during placement is enough to improve post-routing critical path delay. This

lends credence to the possibility for much faster CAD tools in the future. Rather than performing costly

exact calculations, good estimates may be sufficient to maintain the quality of results and might even lead

to significant improvements if applied carefully.

Chapter 6 began by investigating the difficulties in packing heavily registered applications. Packing a

netlist that has a large number of registers was shown to be problematic because conventional algorithms,

such as T-VPack, assume that a register will always want to be in the same BLE as its source LUT. This

limits the options available to the placement tool to use registers to distribute delay along long wires.

Furthermore, conventional packing tools simply have no idea what to do when a signal has multiple

registers on it and they will likely combine unrelated portions of the circuit together, making the placement

problem unnecessarily difficult.

To address these problems, Chapter 6 introduced a new hybrid CLB and flip-flop level placement approach

that added the capability to efficiently re-assign registers to new CLBs during the placement process.

When targeting a four 4-LUT, four flip-flop architecture, this technique improved critical path delay by

0.870x and wire cost by 0.865x for benchmarks that were pipelined/C-slowed and retimed to have a

minimum of one register on the output of each LUT. This approach improved critical path delay by 0.588x

and wire cost by 0.682x for benchmarks that were pipelined/C-slowed and retimed to have a minimum of

three registers after each LUT.

Since packing is such an ingrained part of the traditional CAD toolflow, like the issue surrounding the

accuracy of timing information in conventional placement algorithms discussed in Chapter 5, simply

making the observation that packing can be inherently flawed is somewhat of a revelation. Also like the

approach in Chapter 5, this technique is particularly valuable because it can easily be incorporated into

existing toolflows. Heavily registered applications will likely cause similar packing problems on any

FPGA that has multiple BLEs in each CLB. Looking into the future, this problem will probably get worse

since the trend in commercial FPGAs is to build devices with larger and larger CLBs.

Although traditional packing was shown to work acceptably for lightly registered applications, and it is

probably a necessary part of the toolflow since it significantly reduces the placement problem size, the hope

is that this work will encourage FPGA CAD developers to examine their general approach more carefully.

For example, rather than packing the entire netlist and forcing the placement tool to either accept the

155

potential limitations or, as with the new technique discussed in this dissertation, discover for itself where

the problems are, it may be better to only pack the LUTs and flip-flops in the netlists that have strong

relationships. Although packing the entire netlist might be necessary to simply get an initial placement, the

packer can forward information to the placer regarding which components have a known reasonable

packing versus those that were combined arbitrarily. If this is done, the placement tool will have a much

better idea of which registers should be moved independently and which are better to move as an entire

CLB. Although this approach requires altering the existing toolflow more extensively, it may achieve even

better results than the technique suggested here.

Chapter 6 also looked at how retiming can be incorporated into the netlist compilation process. Retiming

can be difficult to apply because when it is performed before placement, the system does not have any

information regarding the delay accumulated in the interconnect. On the other hand, since retiming

restructures the netlist, applying it after placement can be disruptive and lead to problems with timing

closure.

Chapter 6 borrowed concepts from multiple previous research efforts to develop a technique to more fully

incorporate retiming into the placement process. This retiming approach gradually introduces new registers

into the system and leverages the power of simulated annealing optimization to integrate them into an

existing placement. Unfortunately, the results of the testing performed in this chapter seem to indicate that

retiming is not essential for circuits mapped to more sophisticated architectures. In the presence of a good

placement tool, retiming only improved critical path delay by a few percent on architectures with clustered

CLBs and long interconnect wires. This result was largely confirmed by the work in [36].

Basically, sophisticated integrated placement and retiming techniques do not provide a large benefit on

these architectures because retiming a netlist before placement is actually very effective. The need for

retiming after placement is only partially a CAD problem. It is also a symptom of a larger architectural

problem. Specifically, retiming is necessary when a lack of resources in an architecture makes the delay of

potentially sensitive nets unpredictable. If the device does not have sufficient fast connectivity between

different logic blocks in timing-sensitive regions of a netlist, the placement tool has no choice but to make

some of the wires it knows to be timing critical long. This creates a mismatch in the system between nets

that the placer could optimize versus those that it could not. However, more sophisticated modern FPGA

architectures put quite a bit of effort into providing dense logic blocks and fast interconnect resources. This

eases the pressure put on the placement tool and reduces the need for retiming.

However, this is not to say that retiming during or after placement, when more accurate timing information

is available, is entirely irrelevant. The MCNC netlists available for testing in this dissertation are quite

156

small by today’s standards and applications will only get larger in the future. Since larger applications

naturally have a more complex structure, they could place higher demands on the target architecture. This

may make retiming more important. Furthermore, this general trend also places the burden on FPGA

architects. They must insure that the interconnect resources provided by their FPGAs stays ahead of the

needs of application developers. While FPGA architects already consider the effect that interconnect

resources have on routing congestion, the nature of the problem presented by retiming is somewhat

different. Rather than routing channel capacity, the concern is the number of logic blocks that can be

reached with a certain delay. Of course, there are physical limitations that prevent every logic block from

having a fast connection to every other logic block in the device, so the problem of retiming may be

unavoidable when devices and applications scale beyond a certain critical threshold.

Chapter 7 dealt with the difficulties of pipelined routing. As discussed in [32], this problem occurs on

FPGA architectures that contain registers with very limited input and output connectivity. Assigning flip-

flops in a netlist to register locations on these types of architectures during placement can also force these

signals to use specific routing wires. This can seriously affect the routability of circuits that contain a large

number of registers. Thus, registers must be found during the routing process on these architectures.

Chapter 7 analyzed the only two known algorithms that address the pipelined routing problem and

discussed why pipelined routers cannot use the existing timing-driven formulation suggested by

PathFinder. Largely, the issue is that PathFinder forwards net criticality information from one routing

iteration to the next. This subtly relies on the fact that the criticality of a net cannot drastically change

between routing iterations. However, this assumption is not true for pipelined routing since the locations of

registers in the system are not fixed by the placement. Much like the problems encountered in Chapter 5,

forwarding criticality information from one routing iteration to the next can cause a pipelined router to

favor degenerate solutions.

To solve this problem, Chapter 7 introduced assumed criticality searching. This technique performs

multiple simultaneous waves of exploration that each assume that a net has a slightly different criticality.

This approach removes the need for any a priori knowledge and discovers better possible routes under the

prevailing conditions by allowing the system to more accurately balance delay and congestion. When

combined with QuickRoute to form the Armada algorithm, compared to the congestion-only original

QuickRoute technique, this approach improved critical path delay by approximately 0.6x without affecting

the number of required routing tracks.

However, while this result is significant, particularly because it provides greater insight into a very new and

relatively poorly explored CAD problem, the results found in Chapter 8 seem to indicate that timing-driven

pipelined routing may not be necessary on future FPGAs. As mentioned earlier, the pipelined routing

157

problem is caused by registers in an architecture that have limited input and output connectivity. However,

the results in Chapter 8 suggest that these types of registers may not provide a compelling benefit for

island-style FPGAs. Since commercial FPGAs generally follow a basic island-style structure, this may

limit the applicability of pipelined routing algorithms.

That said, while commercial architectures may not require pipelined routing, they may benefit from more

extensive use of assumed criticality searching. Modern architectures generally contain a wide range of

interconnect resources, ranging from unit-length wires to wires that span the entire length of the device.

These extremely diverse routing resources make it possible for the delay of a net to significantly change

from one routing iteration to the next, even in the conventional routing problem, by simply moving a signal

to a different type of wire resource. This variability could cause timing-driven routers to generate poor

solutions on existing architectures. Since the assumed criticality technique evaluates the criticality of a net

for each individual path largely independently, it can likely handle heterogeneous wires much more

gracefully.

As alluded to earlier, Chapter 8 investigated different ways of increasing the amount of register resources in

island-style FPGAs. This was shown to be a compelling question because while increasing the amount of

pipelining and C-slowing performed on an application nearly linearly improved critical path delay, it also

drastically increased the number of registers in the netlist. These circuits could have between 3-20x more

registers than LUTs. Since conventional FPGAs only contain one register per LUT, these circuits require a

huge number of additional BLEs. Although multiple previous research efforts have looked into solving this

problem, the systems that they have suggested have largely been very specialized devices with limited

commercial feasibility. Thus, Chapter 8 attempted to address the issue with a different basic philosophy:

how can existing FPGAs be modified to benefit heavily registered applications while not disturbing the

characteristics of the device for lightly registered applications?

The first part of Chapter 8 evaluated the benefits of adding registers with limited connectivity to the

switchboxes in the interconnect. Although this possibility has been suggested in prior research as an

efficient way of incorporating additional registers into an FPGA, using delay estimates from a 0.65nm

device, it was shown that this could only reduce critical path delay by 0.914x over an architecture that

restricted registers to the CLBs. Thus, due to the CAD implications this introduces for placement and

routing, it is unlikely that it is worth incorporating registers into the interconnect.

A better alternative was explored in the second part of Chapter 8. This section looked at the possibilities of

adding inexpensive register resources to the CLBs. Specifically, Chapter 8 investigated the impact of

allowing unused LUTs to be turned into one or more shift registers and adding independent flip-flops. The

158

potential usability of these resources was captured in a few equations. These equations were applied to

roughly estimate the potential mapping efficiency of different architectures. This testing found that

because allowing a 4-LUT to be used as a 1 to 16-bit shift register does not require adding any additional

inputs or outputs to the system, this is likely the kind of modification that will provide the largest benefit to

heavily registered applications, with the lowest impact to lightly registered netlists. Allowing all the LUTs

in an FPGA to be used as SR-16s could reduce the number of required BLEs by up to 0.508x compared to

architectures without any shift register capabilities. Allowing all the LUTs in an FPGA to be used as SR-

16s could improve the mapping efficiency over Xilinx-style devices that allow half of the LUTs to be used

as SR-16s by up to 0.783x.

Although the necessary schematics and layouts needed to determine the implications of adding I/O pins to

each CLB were not available, this testing did show that more extensive CLB modifications could further

improve mapping efficiency. That said, it also showed that netlists with a lower amount of pipelining and

C-slowing preferred architectures with extra independent flip-flops, while netlists with a higher amount of

pipelining and C-slowing preferred systems with shift registers that were split into smaller independent

banks. Largely, this is because although shift registers provide more register locations, they can only be

implemented in BLEs with unoccupied LUTs.

Taken as a whole, this dissertation provides a glimpse into the future of FPGAs. As FPGAs are expected to

implement more complex applications at a higher clock rate, pipelining and C-slowing will become a

necessary part of the application development process. This has been shown to have serious implications

for packing, placement and routing tools, along with the efficiency of the underlying architecture. The

large number of registers in heavily pipelined and C-slowed circuits changes many of the basic

characteristics of the netlists and creates different kinds of CAD problems compared to purely

combinational or lightly registered applications. Failing to recognize these intrinsic shifts can easily

increase the critical path delay and area of an application by a factor of two. That said, based upon the

analysis and experiments in this dissertation, many of these issues can be dealt with by making relatively

minor changes to existing CAD tools and FPGA architectures.

Looking into the future, the need for registered applications must be more fully acknowledged by CAD tool

developers. Along these lines, tools must be developed that can assist programmers in determining the

bottlenecks in their applications. Currently, pipelining and C-slowing must be applied manually. After

placement and routing, application developers must carefully inspect their circuits to determine which

signals fail to meet timing specifications. At that point, they must edit their HDL code to insert registers,

hopefully avoiding making mistakes that change the functionality of their circuit. This process is

unnecessarily difficult and haphazard. Visualization tools could help developers better understand

159

problematic areas of their circuits, and automatic pipelining and C-slowing could prevent unnecessary

errors.

Simply highlighting the critical and near critical paths in the circuit and indicating which lines in the HDL

code generated these portions of the netlist would provide extremely useful feedback. Since HDL code is

sent through logic synthesis and technology mapping routines largely hidden from the user, it can often be

difficult to determine the relationship between structures in a mapped FPGA implementation and the source

code.

Furthermore, once the developer has decided to pipeline or C-slow a section of their circuit, registers could

be added automatically. While it can be time consuming to add registers to HDL code manually, it is

relatively straightforward for a CAD tool to pipeline or C-slow specific sections of a circuit at the LUT

level. The HDL code can then be automatically updated to reflect these changes. Although extensive

testing would be necessary to determine the real-world usability of such a tool, this might make developing

high-speed circuits considerably faster and easier.

In addition, while registered applications clearly change the problems presented to the CAD tools and the

FPGAs themselves, the netlists and architectures explored here were relatively simplistic. More detailed

testing must be done using larger benchmarks mapped to more sophisticated FPGAs. For example, the

largest circuits in this testing only require about 1/20 the logic provided by a medium to large Xilinx

device. Since larger circuits are naturally more complex, they also present different problems to the CAD

tools.

For that matter, the flagship FPGAs of both Xilinx and Altera contain much more sophisticated logic

resources. While they include specialized resources such as fast carry-chains and dedicated multipliers,

they have also migrated from 4-LUTs to 5 and 6-LUTs. These type of resources change the way that

netlists are mapped to FPGAs and affect the realities of the physical layouts. For example, while fast carry

chains provide low delay, direct connections between CLBs, these connections currently do not have access

to registers. Thus, using these resources has repercussions on the pipelining or C-slowing capabilities of

the circuit. Furthermore, implementing logic using larger LUTs changes the ratio of logic to registers in the

device. While this certainly has an effect on how circuits are mapped to the system, this also changes the

area implications for using LUTs as shift registers or adding I/O pins.

Future fabrication technologies also present some interesting issues for FPGA architectures. For example,

3-D semiconductor structures might make it much easier to provide fast interconnect wires between

different logic blocks. While this can make FPGAs simply run faster, as discussed earlier, this also has

160

ramifications on the effectiveness of retiming. For that matter, this can also dramatically increase the

amount of available transistor area. This may make enhancements such as including additional registers in

each CLB significantly less expensive. Looking even further into the future, silicon nano-wire and carbon

nano-tube devices have fundamentally different fabrication implications. Although some research has been

done into reliability and testing issues of FPGA-like structures built from these technologies, some of the

possible manufacturing techniques also have interesting ways of building extremely small state-holding

components. This can have an interesting effect on the cost of introducing more registers into the system.

161

Bibliography
[1] V. Betz and J. Rose. “FPGA Routing Architecture: Segmentation and Buffering to Optimize Speed

and Density”, ACM/SIGDA Symposium on Field-Programmable Gate Arrays, 1999: 37-46.

[2] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-Submicron FPGAs, Kluwer
Academic Publishers, 1999.

[3] V. Betz and J. Rose, “VPR: A New Packing, Placement and Routing Tool for FPGA Research”,
International Conference on Field-Programmable Logic and Applications, 1997: 213-22.

[4] W. Chow and J. Rose. “EVE: A CAD Tool for Manual Placement and Pipelining Assistance of
FPGA Circuits”, International Symposium on Field-Programmable Gate Arrays, 2002: 85-94.

[5] J. Cong and S. Lim, “Physical Planning with Retiming”, International Conference on Computer-
Aided Design, 2000: 2-7.

[6] J. Cong and C. Wu, “FPGA Synthesis with Retiming and Pipelining for Clock Period Minimization
of Sequential Circuits”, Design Automation Conference, 1997: 644 - 649.

[7] J. Cong and X. Yuan, “Multilevel Global Placement with Retiming”, Design Automation
Conference, 2003: 208-13.

[8] T. Cormen, C. Leiserson, and R. Rivest, Introduction to Algorithms, MIT Press, Cambridge, MA,
1990.

[9] C. Ebeling, D. Cronquist and P. Franklin. “RaPiD - Reconfigurable Pipelined Datapath”,
International Workshop on Field-Programmable Logic and Applications, 1996: 126-35.

[10] K. Eguro and S. Hauck. “Armada: Timing-Driven Pipeline-Aware Routing for FPGAs”,
ACM/SIGDA Symposium on Field-Programmable Gate Arrays, 2006: 169-78.

[11] K. Eguro and S. Hauck. “Enhancing Timing-Driven FPGA Placement for Pipelined Netlists”,
Design Automation Conference, 2008: 34-7.

[12] K. Eguro and S. Hauck. “Simultaneous Retiming and Placement for Pipelined Netlists”, IEEE
Symposium on Field-Programmable Custom Computing Machines, 2008.

[13] K. Eguro, S. Hauck, A. Sharma, "Architecture-Adaptive Range Limit Windowing for Simulated
Annealing FPGA Placement", Design Automation Conference, 2005: 439-44.

[14] H. Eisenmann and F. Johannes, “Generic Global Placement and Floorplanning”, Design Automation
Conference, 1998: 269-74.

[15] H. Gao, Y. Yang, X. Ma, and G. Dong, “Analysis of the Effect of LUT Size on FPGA Area and
Delay Using Theoretical Derivations”, IEEE Symposium on Quality of Electronic Design, 2005:
370-4.

[16] S. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, and R. Taylor, “PipeRench: A
Reconfigurable Architecture and Compiler”, IEEE Computer, 2000: 70 - 6.

[17] S. Kirkpatrick, C. Gelatt and M. Vecchi, “Optimization by Simulated Annealing”, Science, vol. 220,
no. 4598, May 13, 1983: 671-80.

162

[18] J. Kleinhans, G. Sigl, F. Johannes and K. Antreich, “GORDIAN: VLSI Placement by Quadratic
Programming and Slicing Optimization”, IEEE Transactions on Computer-Aided Design, vol. 10,
no. 3, March 1991: 356-65.

[19] I. Kuon and J. Rose, “Measuring the Gap Between FPGAs and ASICs”, ACM/SIGDA Symposium
on Field Programmable Gate Arrays, 2006: 21-30.

[20] J. Lam and J. M. Delosme, "Performance of a New Annealing Schedule", Design Automation
Conference, 1988: 306-11.

[21] C. Leiserson, F. Rose, and J. Saxe, "Optimizing synchronous circuitry by retiming", Caltech
Conference on VLSI, 1983: 87-116.

[22] C. Leiserson and J. Saxe, “Retiming Synchronous Circuitry”, Algorithmica, Vol. 6, 1991: 5-35.

[23] S. Li and C. Ebeling. “QuickRoute: A Fast Routing Algorithm for Pipelined Architectures”, IEEE
International Conference on Field-Programmable Technology, 2004: 73-80.

[24] J. Lillis, C. K. Cheng and T. T. Y. Lin, “Algorithms for Optimal Introduction of Redundant Logic
for Timing and Area Optimization”, International Symposium on Circuits and Systems, 1996: 452-
5.

[25] A. Marquardt, V. Betz and J. Rose, “Timing-Driven Placement for FPGAs”, ACM/SIGDA
Symposium on Field Programmable Gate Arrays, 2000: 203-13.

[26] A. Marquardt, V. Betz, and J. Rose, “Using Cluster-Based Logic Blocks and Timing-Driven
Packing to Improve FPGA Speed and Density”, ACM/SIGDA Symposium on Field-Programmable
Gate Arrays, 1999: 37-46.

[27] A. Marshall, T. Stansfield, I. Kostarnov, J. Vuillemin, and B. Hutchings, “A Reconfigurable
Arithmetic Array for Multimedia Applications”, ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, 1999: 135-43.

[28] L. McMurchie and C. Ebeling. “PathFinder: A negotiation-based performance-driven router for
FPGAs”, ACM/SIGDA Symposium on Field-Programmable Gate Arrays, 1995: 473-82.

[29] P. Pan, “Continuous Retiming: Algorithms and Applications”, International Conference on
Computer Design, 1997: 116 - 21.

[30] K. Rajagopal, T. Shaked, Y. Parasuram, T. Cao, A Chowdhary and B, Halpin, “Timing Driven
Force Directed Placement with Physical Net Constraints”, International Symposium on Physical
Design, 2003: 60-6.

[31] R. Seidl, K. Eckl, and F. Johannes, “Performance-directed Retiming for FPGAs using Post-
placement Delay Information”, Design, Automation and Test in Europe Conference, 2003: 770-5.

[32] A. Sharma, Development of a Place and Route Tool for the RaPiD Architecture, M.S. Thesis,
University of Washington, Dept. of EE, 2001.

[33] A. Sharma, C. Ebeling and S. Hauck. "PipeRoute: A Pipelining-Aware Router for FPGAs",
ACM/SIGDA Symposium on Field-Programmable Gate Arrays, 2003: 68-77.

[34] A. Sharma, C. Ebeling, S. Hauck, "PipeRoute: A Pipelining-Aware Router for FPGAs", University
of Washington, Dept. of EE Technical Report UWEETR-2002-0018, 2002.

163

[35] D. Singh and S. Brown, “Incremental Placement for Layout-Driven Optimizations on FPGAs”,
International Conference on Computer-Aided Design, 2002: 752-9.

[36] D. Singh and S. Brown, “Incremental Retiming for FPGA Physical Synthesis”, Design Automation
Conference, 2005: 433-8.

[37] D. Singh and S. Brown, “Integrated Retiming and Placement for Field Programmable Gate Arrays”,
ACM/SIGDA Symposium on Field Programmable Gate Arrays, 2002: 67-76.

[38] D. Singh and S. Brown, “The Case for Registered Routing Switches in Field Programmable Gate
Arrays”, ACM/SIGDA Symposium on Field-Programmable Gate Arrays, 2001: 161-9.

[39] J. Swartz, V. Betz and J. Rose, “A Fast Routability-Driven Router for FPGAs”, ACM/SIGDA
International Symposium on FPGAs. 1998, 140-9.

[40] W. Tsu, K. Macy, A. Joshi, R. Huang, N. Walker, T. Tung, O. Rowhani, V. George, J. Wawrzynek,
and A. DeHon. "HSRA: High-Speed, Hierarchical Synchronous Reconfigurable Array",
ACM/SIGDA Symposium on Field Programmable Gate Arrays, 1999: 125-34.

[41] B. Von Herzen, “Signal Processing at 250MHz using High-Performance FPGA’s”, ACM
International Symposium on FPGAs. 1997, 62-8.

[42] N. Weaver, J. Hauser, and J. Wawrzynek, “The SFRA: A Corner-Turn FPGA Architecture”,
ACM/SIGDA International Symposium on Field Programmable Gate Arrays, 2004: 3-12.

[43] N. Weaver, Y. Markovskiy, T. Patel, and J. Wawrzynek, “Post-Placement C-slow Retiming for the
Xilinx Virtex FPGA”, ACM/SIGDA Symposium on Field-Programmable Gate Arrays, 2003: 185-
94.

[44] Wilton, Steven J. E. “Architecture and Algorithms For Field-Programmable Gate Arrays with
Embedded Memory,” Ph.D. Thesis, University of Toronto, 1997.

[45] Xilinx Inc., “Virtex-II Platform FPGAs Complete Data Sheet” Version 3.5, 2007 downloaded from
http://www.xilinx.com

[46] Xilinx Inc., XC4000XL 3.3V Field Programmable Gate Array Product Specification Version 2.1,
1998 downloaded from http://www.xilinx.com

164

Appendix A

Conventional MCNC Netlists
Combinational

Circuits
Input
Pins

Output
Pins

LUTs FFs Required
BLEs

Logical
Depth

Pipeline
Amt

C-slow
Amt

e64 65 65 273 0 273 4 0 1
ex5p 8 63 1064 0 1064 7 0 1
apex4 9 19 1261 0 1261 6 0 1
misex3 14 14 1397 0 1397 7 0 1

alu4 14 8 1522 0 1522 7 0 1
des 256 245 1591 0 1591 6 0 1
seq 41 35 1750 0 1750 7 0 1

apex2 38 3 1878 0 1878 8 0 1
spla 16 46 3690 0 3690 8 0 1
pdc 16 40 4575 0 4575 9 0 1

ex1010 10 10 4598 0 4598 8 0 1

Sequential
Circuits

Input
Pins

Output
Pins

LUTs FFs Required
BLEs

Logical
Depth

Pipeline
Amt

C-slow
Amt

s1423 18 5 220 74 220 14 0 1
tseng 52 122 1046 385 1046 8 0 1
dsip 229 197 1362 224 1362 3 0 1

diffeq 64 39 1494 377 1494 10 0 1
bigkey 229 197 1699 224 1699 3 0 1
s298 4 6 1930 8 1930 15 0 1
frisc 20 116 3539 886 3539 8 0 1

elliptic 131 114 3602 1122 3602 8 0 1
s38584.1 38 304 6156 1260 6156 9 0 1
s38417 29 106 5974 1463 5974 11 0 1
clma 62 82 8364 33 8364 16 0 1

Depth = 1 MCNC Netlists

Combinational
Circuits

Input
Pins

Output
Pins

LUTs FFs Required
BLEs

Logical
Depth

Pipeline
Amt

C-slow
Amt

e64 65 64 273 409 409 1 3 1
ex5p 8 63 1064 1472 1472 1 6 1
apex4 9 18 1261 1348 1348 1 5 1
misex3 14 14 1397 1714 1714 1 6 1

alu4 14 8 1522 1867 1867 1 6 1
des 256 245 1591 2838 2838 1 5 1
seq 41 35 1750 2235 2235 1 6 1

apex2 38 3 1878 2413 2413 1 7 1
spla 16 46 3690 4596 4596 1 7 1
pdc 16 40 4575 5767 5767 1 8 1

ex1010 10 10 4598 5796 5796 1 7 1

Sequential
Circuits

Input
Pins

Output
Pins

LUTs FFs Required
BLEs

Logical
Depth

Pipeline
Amt

C-slow
Amt

s1423 17 4 220 1486 1486 1 13 14
tseng 51 122 1046 4202 4202 1 0 8
dsip 228 189 1362 1544 1544 1 2 2

diffeq 63 39 1494 6304 6304 1 0 10
bigkey 228 190 1699 2114 2114 1 2 3
s298 3 6 1930 4555 4555 1 3 15
frisc 19 116 3539 13600 13600 1 7 8

elliptic 130 114 3602 12877 12877 1 0 8
s38584.1 31 189 6156 17928 17928 1 8 9
s38417 28 52 5974 23589 23589 1 4 11
clma 61 66 8364 18158 18158 1 4 16

165

Depth = 0.33 MCNC Netlists
Combinational

Circuits
Input
Pins

Output
Pins

LUTs FFs Required
BLEs

Logical
Depth

Pipeline
Amt

C-slow
Amt

Post -
Retiming
C-slow

e64 65 64 273 1614 1614 0.33 4 1 3
ex5p 8 63 1064 4629 4629 0.33 7 1 3
apex4 9 18 1261 4125 4125 0.33 6 1 3
misex3 14 14 1397 5226 5226 0.33 7 1 3

alu4 14 8 1522 5667 5667 0.33 7 1 3
des 256 245 1591 10017 10017 0.33 6 1 3
seq 41 35 1750 6933 6933 0.33 7 1 3

apex2 38 3 1878 7362 7362 0.33 8 1 3
spla 16 46 3690 13974 13974 0.33 8 1 3
pdc 16 40 4575 17469 17469 0.33 9 1 3

ex1010 10 10 4598 17448 17448 0.33 8 1 3

Sequential
Circuits

Input
Pins

Output
Pins

LUTs FFs Required
BLEs

Logical
Depth

Pipeline
Amt

C-slow
Amt

Post -
Retiming
C-slow

s1423 17 4 220 4521 4521 0.33 14 14 3
tseng 51 122 1046 12858 12858 0.33 1 8 3
dsip 228 189 1362 5913 5913 0.33 3 2 3

diffeq 63 39 1494 19107 19107 0.33 1 10 3
bigkey 228 190 1699 7596 7596 0.33 3 3 3
s298 3 6 1930 13683 13683 0.33 4 15 3
frisc 19 116 3539 41502 41502 0.33 8 8 3

elliptic 130 114 3602 39411 39411 0.33 1 8 3
s38584.1 31 189 6156 54021 54021 0.33 9 9 3
s38417 28 52 5974 70908 70908 0.33 5 11 3
clma 61 66 8364 54855 54855 0.33 5 16 3

RaPiD Benchmarks

Netlist # of Required RaPiD Cells Min # of Registers Max Latency of Any Sink

firtm 16 20 16
fft16 12 40 3
sobel 18 49 5

matmult4 16 129 31
cascade 16 226 21

firsymeven 16 377 31
imagerapid 14 149 11

sort_g 11 159 32
sort_rb 11 159 31

166

CURRICULUM VITAE
Kenneth Eguro

Education
Ph.D., Electrical Engineering
1/2003 – 10/2008

University of Washington – Seattle, WA
Supporting High-Performance Pipelined Computation in Commodity-
Style FPGAs
Advisor – Prof. Scott Hauck

M.S., Electrical Engineering
6/2001 – 12/2002

University of Washington – Seattle, WA
RaPiD AES: Developing an Encryption-Specific FPGA Architecture
Advisor – Prof. Scott Hauck

Graduate Work
9/2000 – 5/2001

University of Illinois – Champaign, IL
Coursework on computer architecture & parallel programming

B.S., Computer Engineering
9/1996 – 6/2000

Northwestern University – Evanston, IL
Concentration in VLSI and Computer Aided Design
Honors Thesis – synFPGA: Application Specific FPGA Synthesis

Research Experience
Researcher
11/2008 –

Microsoft Research – Redmond, WA
Work focusing on the application of hardware-based accelerators

Research Assistant
6/2001 – 10/2008

EE Dept., University of Washington – Seattle, WA
Member of Adaptive Computing Machines and Emulators Lab,
investigating FPGA architectures and CAD algorithms

Intern
8/2005 – 11/2005
6/2004 – 9/2004

Microsoft Research, Hardware Device Group – Redmond, WA
Development of applications and a graphical programming language to
explore a prototype reconfigurable computing platform

Undergraduate Researcher
1/1999 – 6/2000

9/1998 – 9/1999

ECE Dept., Northwestern University – Evanston, IL
Research in fast placement and routing algorithms with Prof. Majid
Sarrafzadeh.
Research into applications of reconfigurable logic in high-performance
computing with Prof. Scott Hauck

Teaching Experience
Instructor
9/2007 – 12/2007
9/2006 – 12/2006
3/2006 – 6/2006
1/2006 – 3/2006

EE Dept., University of Washington – Seattle, WA
Course Instructor for EE471 – Computer Design and Organization
Course Instructor for EE471 – Computer Design and Organization
Course Instructor for EE471 – Computer Design and Organization
Course Instructor for EE541 – Automatic Layout for Integrated Circuits

Teaching Assistant
9/2004 – 12/2004
9/2000 – 6/2001

EE Dept., University of Washington – Seattle, WA
Teaching assistant and guest lecturer for EE540 – VLSI Testing
ECE Dept., University of Illinois – Champaign, IL
Conducted weekly lectures for ECE290 - Introduction to Computer
Engineering

Research Mentor
6/2001 – 12/2002

EE Dept., University of Washington – Seattle, WA
Managed 12 undergraduate students to assist with research in FPGA
applications

Tutor
9/1998 – 6/1999

Athletics Dept., Northwestern University – Evanston, IL
Tutoring C/C++ and digital design multiple times per week

Honors
Academic & Research
2003 – 2004 Academic Year
2002 – 2003 Academic Year
1999 – 2000 Academic Year

Finalist, Microsoft Research Fellowship
Nominated, UW EE Dept. Yang Research Award
Graduated first in class, Computer Engineering curriculum
Winner, Northwestern ECE Dept. IEC Everitt Award

167

Teaching
2007 – 2008 Academic Year

2006 – 2007 Academic Year

2005 – 2006 Academic Year

2000 – 2001 Academic Year

University of Washington
Winner, College of Engineering Teaching Assistant Innovator Award
Nominated, EE Dept. Outstanding Teaching Assistant Award
Winner, EE Dept. Outstanding Teaching Assistant Award
Nominated, College of Engineering Teaching Assistant Innovator Award
Nominated, EE Department Outstanding Teaching Award
University of Illinois
Nominated, ECE Dept. Harold L. Olesen Teaching Assistant Award

Publications
Book Chapter and Patent

• K. Eguro and S. Hauck, “Fast Compilation Techniques” In S. Hauck and A. Dehon (Eds.)
Reconfigurable Computing: The Theory and Practice of FPGA-Based Computation, Morgan
Kaufmann/Elsevier, 2008.

• Provisional US Patent #4178-Inv-0001P.1USPRO, Enhancing Timing-Driven Placement, filed
12/10/2007.

Refereed Publications
• K. Eguro and S. Hauck “Simultaneous Retiming and Placement for Pipelined Netlists”, IEEE

Symposium on Field-Programmable Custom Computing Machines, 2008, 139-48.
• K. Eguro and S. Hauck, “Enhancing Timing-Driven FPGA Placement for Pipelined Netlists”,

Design Automation Conference, 2008, 34-7.
• K. Eguro, “Supporting Heavily Pipelined Reconfigurable Computing on Commodity Devices”,

SIGDA Ph.D. Forum at Design Automation Conference, 2006.
• K. Eguro and S. Hauck, "Armada: Timing-Driven Pipeline-Aware Routing for FPGAs",

ACM/SIGDA Symposium on Field-Programmable Gate Arrays, 2006, 169-78.
• K. Eguro and S. Hauck, "Resource Allocation for Coarse Grain FPGA Development", IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems. Vol. 24, No. 10, Oct
2005, 1572-81.

• K. Eguro, S. Hauck and A. Sharma, "Architecture-Adaptive Range Limit Windowing for
Simulated Annealing FPGA Placement", Design Automation Conference, 2005, 439-44.

• K. Eguro and S. Hauck, “Issues and Approaches to Coarse-Grain Reconfigurable Architecture
Development”, IEEE Symposium on Field-Programmable Custom Computing Machines, 2003,
111-20.

• M. Wang, X. Yang, K. Eguro, and M. Sarrafzadeh, "Multi-Center Congestion Minimization
during Placement", ACM International Symposium on Physical Design, 2000, 147-52.

• X. Yang, M. Wang, K. Eguro, and M. Sarrafzadeh, "A Snap-On Placement Tool", ACM
International Symposium on Physical Design, 2000, 153-58.

Technical Reports
• S. Hauck, K. Compton, K. Eguro, M. Holland, S. Phillips, A. Sharma, "Totem: Domain-Specific

Reconfigurable Logic", University of Washington, Dept. of EE Technical Report, 2006.
• K. Eguro and S. Hauck, "Issues of Wirelength Cost Models in Routing-Constrained FPGAs",

University of Washington, Dept. of EE Technical Report UWEETR-2004-0006, 2004.
• K. Eguro and S. Hauck, “Decipher: Architecture Development of Reconfigurable Encryption

Hardware”, University of Washington, Dept. of EE, Technical Report, 2002.
• K. Eguro and S. Hauck, “synFPGA: Application Specific FPGA Synthesis”, Northwestern

University, Dept. of ECE Technical Report, 2000.
Invited Presentations

• “Incremental Timing Analysis for FPGA Placement”, Simon Fraser University, 8/8/2008.
• “Reconfigurable Computing: Architectural and Design Tool Challenges”, Microsoft Corporation,

5/8/2008.
• “Simultaneous Retiming and Placement”, Achronix Corporation, 4/16/2008.
• “Timing Concerns of Pipeline-Aware Placement and Routing”, Dept. of Energy Tech. Review,

12/11/2007.

168

• "Pipeline and Retiming-Aware Placement", Cascadia Workshop on FPGAs, 8/10/2007.
• "Pipelining Commodity Reconfigurable Devices", University of British Columbia, 9/22/2006.
• “Timing-Driven Pipeline-Aware Routing", Actel Corporation, 7/28/2006.

Research Interests
• The exploration of innovative, high-performance computing architectures
• Application of reconfigurable computing platforms
• Design automation and fast CAD algorithms
• Encryption and cryptanalysis

Professional Activities
Reviewer
4/2008 – present
12/2005 – present
12/2005 – present

IEEE Transactions on Computers
IEEE Transactions on Circuits and Systems I
EURASIP Journal on Embedded Systems

Professional Societies
3/2003 – present
9/1999 – 6/2000

Student Member of IEEE
Treasurer, Eta Kappa Nu Honor Society – Beta Tau Chapter

