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Abstract 

Supporting High-Performance Pipelined Computation in Commodity-Style FPGAs  

Kenneth Eguro 

Chair of the Supervisory Committee: 
Professor Scott Hauck 
Electrical Engineering 

 

Although the popularity of Field Programmable Gate Arrays, or FPGAs, is a testament to their unique 

mixture of flexibility and ease of use, this adaptability can come at price.  The programmable nature of 

FPGAs introduces significant inefficiencies that can limit the maximum clock frequency of mapped 

circuits.  While there are multiple techniques developers apply to mitigate this performance penalty, these 

enhancements can generate an enormous number of additional registers.  These heavily registered circuits 

have fundamentally different characteristics and create significant problems for many different aspects of 

FPGA application development.  This dissertation investigates the concerns that arise for both FPGA 

physical design tools and the architectures themselves. 

 

FPGA Development Tools: High quality compilation tools are necessary to create fast and efficient FPGA-

based applications.  However, heavily registered circuits can confuse existing packing, placement, retiming, 

and routing tools.  This dissertation examines the roots of these problems and suggests new timing-driven 

and register-aware physical design techniques.  These new approaches are shown to significantly improve 

achievable results, potentially doubling the speed of mapped circuits. 

 

FPGA Architectures: Heavily registered applications can also overwhelm the register resources provided 

by classical FPGA architectures.  While there have been previous research efforts to build FPGAs with 

better register support, most have suggested very specialized systems that depart significantly from 

conventional architectures and toolflows.  This dissertation explores a different approach and investigates 

the practical advantages of making minimally invasive architectural changes to both FPGA logic blocks 

and interconnect resources.  These architectural choices can affect the required area of implemented 

designs by a factor two. 

 

This dissertation shows that netlists with a large number of registers can significantly change the problems 

presented to CAD tools and the demands placed on FPGA architectures.  Failing to acknowledge these 

changes can be costly.  That said, some problems are likely more pressing than others.  Furthermore, 

although this dissertation identifies many of the aspects of an FPGA architecture that can dramatically 

affect the required area of deeply pipelined or C-slowed applications, this work merely scratches the 

surface and much more research is necessary to determine what future FPGAs should look like. 
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Chapter 1: Introduction 

Field Programmable Gate Arrays (FPGAs) are programmable semiconductor devices that can provide high 

performance computing with low engineering effort for a large variety of applications.  This has proved to 

be a powerful combination, and FPGAs have grown into a multi-billion dollar market in the two decades 

since their introduction.  FPGAs offer this fast and easy-to-use computation by providing a large array of 

relatively small programmable logic elements that can be connected to each other through a flexible 

communication network to form more complex calculations.  Although there are some notable exceptions, 

the majority of FPGAs use SRAM to configure both the logical elements and the interconnect structure.  

This not only allows them to implement arbitrary computation, but also gives them the capability to be 

programmed and re-programmed to perform multiple different functions. 

 

For many applications, the large programmable computational fabric FPGAs offer provides multiple 

advantages over both conventional microprocessors and Application-Specific Integrated Circuits (ASICs).  

Unfortunately, although the programmable nature of FPGAs represents the greatest advantage they hold 

over other technologies, it also contributes to one of the most serious disadvantages: a much lower 

achievable clock frequency.  FPGA application developers often try to reduce the impact of this inherent 

performance overhead by breaking their computations into smaller, faster sections using registers.  One 

issue this can cause is that adding registers to an application can fundamentally change its characteristics 

and the demands it places on the underlying system.  As designers demand higher and higher throughput 

from their FPGA-based applications, the number of registers in their circuits will also rise.  This further 

compounds the issues that these types of circuits can present.  This proliferation of heavily registered 

applications raises concerns for at least two areas of FPGA research, the primary topics of this dissertation.   

 

First, FPGA application developers rely on a large range of sophisticated Computer Aided Design (CAD) 

tools to map their computations to a physical device.  The effectiveness of these development tools is 

extremely important to produce efficient, high performance implementations.  However, circuits with a 

large number of registers present multiple problems that existing CAD algorithms do not address.  These 

issues can cause poor circuit performance, instability within specific compilation tools, or even instability 

in the entire toolflow.  Dealing with these concerns can allow developers to obtain much better results. 

 

Second, from the perspective of the architectures themselves, adding registers to a circuit puts a larger 

burden on the flip-flop resources provided by the device.  Increasing the number and accessibility of the 

registering resources can drastically improve an FPGA’s support for heavily registered applications.  

Although there is a large body of academic work looking into improving these attributes, many of the 

proposed systems create serious problems for applications that do not have a large amount of registers.  

This makes general-purpose computing very difficult on these specialized devices and prevents them from 
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benefiting from the same technology scaling and economies of scale that have been an essential part of the 

success of mainstream FPGAs. 

 

This dissertation discusses the nature of heavily registered applications, introduces CAD tools to handle 

them, and lays the groundwork for a new generation of high-performance FPGA system.  It is organized as 

follows: 

 

• Chapter 2: Field Programmable Gate Arrays provides background on classic FPGA 

architectures and discusses some inherent design tradeoffs. 

• Chapter 3: Pipelining, Retiming and C-Slowing describes how registers can be introduced into 

an application to improve circuit speed. 

• Chapter 4: FPGA Development Tools offers details of traditional FPGA physical design 

techniques and discusses some of the problems that heavily registered circuits can pose. 

• Chapter 5: Enhanced Timing-Driven Placement discusses a fundamental limitation of existing 

timing-driven placement algorithms and offers a new technique that dramatically improves critical 

path delay. 

• Chapter 6: Register-Aware Placement illustrates some of the difficulties that the conventional 

toolflow encounters with heavily-registered circuits and presents two new techniques to improve 

performance. 

• Chapter 7: Register-Aware Routing describes existing register-centric routing algorithms and 

presents a new timing-driven approach. 

• Chapter 8: Register-Enhanced Architectures concentrates on the potential register resource 

limitations of conventional FPGA architectures and discusses several prospective improvements. 

• Chapter 9: Conclusions and Future Research summarizes the contributions of this dissertation 

and suggests some potential topics that warrant further investigation. 
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Chapter 2: Field Programmable Gate Arrays 

Although FPGAs have evolved considerably over the last two decades, the fundamental benefits, tradeoffs, 

and characteristics of the hardware remains largely the same.  FPGAs offer a large sea of programmable 

logic blocks embedded in a flexible communication network and their unique computational fabric can 

offer multiple advantages over competing technologies.  This chapter will outline the architectural 

components of a modern FPGA and compare FPGAs to other computational systems. 

 

2.1: Conventional FPGA Architectures 

The most popular FPGA arrangement today is the island-style architecture.  As seen in Figure 2.1, it is 

named for the characteristic that its computational resources are divided into small islands of logic blocks 

that are surrounded by a sea of interconnect wires and programmable communication resources.   

 

Each logic block can generally implement any function of N inputs through the use of Look-Up Tables 

(LUTs).  LUTs are simply small memories that use the inputs of the logic block to address a read-only 

memory.  By filling the contents of a LUT with different values when configuring the device, the user can 
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Figure 2.1: Conventional Island-Style FPGA 
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change the behavior to calculate any arbitrary function.  FPGAs also offer the opportunity to implement 

sequential logic by providing an optional flip-flop on the output of its LUTs.  This LUT/flip-flop pair is 

sometimes referred to as a basic logic element (BLE).  To create a denser computation fabric modern 

FPGAs often cluster multiple BLEs into a single logic block. 

 

The communication resources provided by island-style FPGAs can be separated into three main 

components: channels, connection blocks and switchboxes.  Channels are simply groups of individual wires 

logically organized into bundles by their physical location.  The architecture shown in Figure 2.1 has 

channels of width four since four independent wires surround each logic block.  Connection blocks manage 

the movement of data in and out of channels by controlling which wires within a channel receive a logic 

block output or primary input, and which wires drive a logic block input or primary output.  Switchboxes 

are responsible for connecting wires in different channels together.  Although there are many different 

types of switchbox, Figure 2.1 shows one possibility.  Here, each wire in a channel has the capability of 

connecting directly across the switchbox to make longer connections in the same direction or turning 90 

degrees left and right. Similar to logic block configuration, connection blocks and switchboxes are built 

from programmable elements that make arbitrary communication possible. 

 

The most sophisticated FPGAs today often also include specialized communication, logic, and memory 

features.  In addition to the single-length interconnect wires shown in Figure 2.1, they generally have 

longer segments that span multiple logic blocks, even up to the entire chip’s length.  Although less flexible 

than unit-length wires, longer segments improve the speed of long distance communication since signals 

that use these resources need to traverse fewer programmable switch points.  FPGAs may also include 

dedicated carry chains.  These are specific logic and directional connections between blocks in the same 

row or column that can improve the speed of wide additions.  These dedicated connections supplement the 

generic communication network and are considerably faster than sending signals out on to shared 

interconnect channels.  By a similar token, FPGAs that offer multiple BLEs clustered within a single logic 

block often have an internal interconnect system within each logic block that allows BLEs to be cascaded 

together without using external wires. 

 

The logic structures themselves also often have some specialized resources or unique operating modes.  

Modern Xilinx devices, for example, have the capability of exposing the memory bits within their LUTs so 

that they can be used as very small RAMs or shift registers [45].  FPGA architectures might also replace 

some of the LUT-based logic blocks altogether.  Dedicated coarse-grain functional units such as large 

memories, fast multipliers or even simple microprocessors are common.  These hard cores supplement the 

generic logic fabric by implementing functions that are very slow or expensive to implement using LUTs.    
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Although not all applications might make use of these sophisticated resources, they are used commonly 

enough that commercial FPGA companies often include this type of specialized feature to improve the 

performance of their devices for the bulk of customer applications.  As will be discussed in more detail in 

Chapter 8, maintaining the general-purpose performance and efficiency of FPGAs is critical.  This means 

that while changes can be made to an architecture, any modifications must have one of two characteristics.  

If the change is costly in terms of silicon area, as in the case of embedded multipliers or microprocessors, it 

must add a great deal of functionality or boost performance dramatically for a large number of end users.  

Alternatively, if a given architectural change is only useful for some applications, it must minimally affect 

the area and performance of the FPGA for applications that cannot use the new feature.  The implications 

of this fundamental design decision is central to the discussion in Chapter 8. 

 

2.2: FPGAs, Microprocessors and Application-Specific Integrated Circuits 

The programmable computation fabric that FPGAs offer give them some clear advantages over both 

microprocessors and ASICs for many applications.  Compared to traditional general-purpose 

microprocessors, FPGAs provide two capabilities: the ability to implement customized computation and the 

ability to execute many calculations in parallel. 

 

Although both software running on a microprocessor and a circuit implemented on an FPGA allow a user 

to perform arbitrary computation, the degree of flexibility between the two platforms differs considerably.  

A program written for a microprocessor must be compiled down to a fixed set of instructions dictated by 

the processor’s instruction set. On the other hand, the developer of an application on an FPGA has the 

capability to generate specialized pieces.  For example, if a particular application does not use any floating-

point computation, the transistors devoted to a floating-point unit on a modern processor will sit idle.  

However, since the instructions that a processor provides are fixed and many applications use floating point 

extensively, the processor must have dedicated hardware to support this.  Conversely, an FPGA can be 

configured to implement one specific application, so all of the available resources can be devoted to the 

task at hand.  Similarly, the individual instructions that a microprocessor supports are largely determined by 

legacy compatibility and what “anticipated” programs require.  Thus, while common operations such as 

simple addition and multiplication will be implemented in the instruction set directly, less common 

operations will need to be broken down into a series of instructions that the processor does support.  A 

good example of this is the bit-wise operations popular in encryption algorithms. Although very simple 

transformations, these functions require multiple instructions to accomplish on a modern processor.  On the 

other hand, FPGAs have the capability to implement custom computations and can directly implement any 

necessary operations. 
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Furthermore, the performance of microprocessors is limited on many applications by their sequential 

execution model. Classically, instructions are fetched and executed one at a time, and even modern 

superscalar processors only have the capability of executing a small handful of instructions simultaneously.  

FPGAs, however, have the capability to exploit massive parallelism.  For example, if a user has a list of N 

numbers to sum together, a microprocessor will fetch each one individually and keep a running tally.  This 

will require on the order of N clock cycles to complete because the sequential execution model of the 

processor limits the amount of parallelism the system can implement.  Conversely, the parallelism that can 

be exploited on an FPGA is only limited by the size of the device.  If an adder tree with N leaf nodes can fit 

on a given FPGA, the computation can be performed in log N time. 

 

FPGAs are also often used as an alternative to Application-Specific Integrated Circuits.  As the name 

suggests, ASICs are custom-fabricated chips designed to perform a specific computation extremely 

quickly.  Since they are specialized hardware devices, like FPGAs they are able to avoid the overhead and 

limited parallelism of microprocessor-based implementations.  However, unlike FPGAs, they are not 

programmable circuits and generally cannot be repurposed for any other application.  Since each new 

design must be developed and manufactured independently, new devices present an extremely high 

economic and intellectual hurdle.  Not only must a design go through months of development and 

verification before fabrication can begin, even highly related devices will have completely unique sets of 

fabrication masks, packaging concerns and testing requirements. 

 

FPGAs have a distinct advantage over ASICs because one chip can be used to produce a wide range of 

different applications.  Once a single FPGA has been designed, manufactured and tested, applications 

mapped to that chip can be developed and debugged at a much more intuitive functional block level.  

Combined with the fact that fabrication and packaging costs are divided among all the designs that use that 

platform, using FPGAs results in a much faster time-to-market and smaller engineering cost.  Companies 

such as Xilinx and Altera specialize in producing commodity FPGAs that provide a versatile and 

inexpensive pathway to producing hardware-based applications. 

 

Although all of these factors seem to indicate that FPGAs are inherently superior to both microprocessors 

and ASICs, this heavily depends on the desired application.  First, computations that do not benefit from 

custom operators or do not have inherent parallelism are generally far more efficiently implemented on 

conventional microprocessors.  Obviously, if a computation cannot exploit any of the advantages that an 

FPGA has over a microprocessor, these devices become far less attractive.  Furthermore, FPGAs are only 

economically advantageous compared to ASICs if the desired volume of chips is relatively low.  In high 

volume, the initial engineering costs become less important since they are amortized over so many chips.  
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On the other hand, the overhead presented by the flexibility of an FPGA creates a larger overall die, 

increasing the per-unit manufacturing cost.  

 

Furthermore, the universal nature of the logic elements, combined with the flexibility built into the 

communication network, means that all of the netlists mapped to an FPGA are merely “emulated” on the 

hardware and running through a level of indirection.  For example, if we would like to add two numbers 

together on either a microprocessor or an ASIC, the physical adder that this computation is executed on can 

be built from dedicated transistors communicating via directly connected wires.  This means that the entire 

operation can be carefully designed and optimized specifically for high performance.  Conversely, an 

addition performed on an FPGA must be built from much more generic logical pieces that are connected 

through much slower, shared communication channels.  Thus, although the underlying hardware is capable 

of performing a wider range of different functions, this flexibility limits the operational efficiency.  The 

next chapter introduces some techniques that application developers can apply to their circuits to minimize 

the impact of this intrinsic performance penalty. 
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Chapter 3: Pipelining, Retiming and C-Slowing 

Despite the potential economic and engineering advantages FPGAs hold, the generic programmable logic 

and interconnect offered by an FPGA can be far less efficient at implementing a specific computation than 

specialized, finely tuned wires and transistors.  As discussed in [19], it can be expected that an application 

mapped to an FPGA will lag an ASIC counterpart by up to 40 times in terms of silicon area, 4.3 times in 

terms of critical path delay and 12 times in terms of dynamic power consumption.  Although minimizing 

area and power consumption is certainly important, the technical specifications of many applications 

dictate a required throughput.  That is, for the device to function correctly it must reach a specified data 

rate.  Thus, this chapter will focus on three techniques that application developers can apply to a circuit that 

can improve the operational frequency:  pipelining, retiming and C-slowing. 

 

Pipelining is a very simple technique in which a datapath is separated into multiple stages.  As shown in 

Figure 3.1, by breaking a function into smaller pieces we can decrease the longest path in the circuit.  

However, this increases the latency, or number of clock cycles between when data enters the circuit and 

when completed results are seen on the output.  Although this increased latency makes it unsuitable for 

applications that are sensitive to this, the additional latency can often be offset with a higher clock rate if 

the computation is split into relatively equal parts.   

 

For example, disregarding the interconnect delay for a moment and assuming an adder to have a delay of 

10 units and the setup times of a register to be 1 unit, the unpipelined circuit on the left of Figure 3.1 will 

have a delay of 20 units and a latency of one clock cycle.  The pipelined circuit on the right, however, will 

have a delay of 11 units and a latency of two clock cycles.  Thus, although the pipelined circuit only 

requires 2 extra units of time to complete the first result (20 units of delay vs. 2 x 11 = 22), it will produce 

new results nearly twice as fast as the unpipelined circuit (20 units of delay versus 11).   

 

However, to achieve this large performance benefit with small additional latency, pipelining requires that 

the individual stages be relatively balanced in terms of delay.  Considering either of the pipelined circuits in 

Figure 3.2, for example, both have increased the latency of the netlist (21 units) without decreasing the 

critical path delay (still 20 or 21 units).  This is where retiming can be applied. 

 

+

+

+

+

+

+

 

Figure 3.1: Clock Frequency and Latency Effects of Pipelining 
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Retiming is a technique used in conjunction with pipelining in which registers can be “pushed” or “pulled” 

through computational blocks to better balance the delay of different stages.  First discussed in [21], this 

relies on the concept that registers can generally be migrated either from each of a block’s inputs to the 

block’s output or from a block’s output to each of the block’s inputs without changing the logical operation 

performed by the circuit.  The circuit on the left of Figure 3.2 can be transformed into the optimal pipelined 

circuit in Figure 3.1 by simply combining the two registers on each of the adders’ inputs to a single register 

on the output.  Similarly, the circuit on the right of Figure 3.2 can be improved by replacing the register on 

the adder’s output with a registers on each of the adder’s inputs.   

 

The most famous method to implement retiming is the Leiserson/Saxe approach [22].  While the authors of 

this paper actually discuss multiple different formulations of their technique, all of them are iterative 

processes that operate on a netlist, given a specific target critical path delay.   These Leiserson/Saxe 

techniques gradually push registers around the circuit and can determine whether or not the system can be 

retimed to reach the target delay given the current amount of registering in the system.  By performing a 

binary search on the target critical path delay, a user can reach the provably maximum clock frequency for 

a given input netlist.   

 

While retiming can help balance delay across multiple clock cycles, this is not to say that retiming can 

overcome all limitations.  First, not all pipelined applications can be retimed because debugging, testing 

and proper initialization of the circuit can become much more difficult after retiming is performed.   In 

addition, there is also a theoretical limit imposed by circuits with feedback.  For example, consider a circuit 

that has a feedback loop, as in Figure 3.3.  Although registers can be migrated forwards (Figure 3.3a and 

Figure 3.3b) or backwards (Figure 3.3c and Figure 3.3d) through the chain of adders, the number of 

registers on the loop itself cannot be changed.  This limits the achievable clock frequency to at least four 

adder delays.  The original authors of the work done on retiming [22] discussed the limitation of not being 

able to increase the number of registers on a loop and suggested an alternative: C-slowing.  C-slowing adds 

additional registers onto feedback loops by duplicating all registers in the netlist C times.  This increases 

the retiming capability by interleaving C completely separate computations.  The original netlist in 
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Figure 3.2: Two Examples of Unbalanced Delay Between Pipelining Registers  
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Figure 3.3: Limitations of Retiming and Demonstration of C-Slowing 
 

Figure 3.3a or Figure 3.3c can be “2-slowed” to produce the netlist in Figure 3.3e.  As seen in retimed 

netlist in Figure 3.3f, this approximately doubles the achievable clock frequency.  Unfortunately, C-slowing 

can have limited use since it interleaves multiple independent, partially completed calculations.  Thus, the 

nature of the application itself and its I/O protocol must be amenable to this kind of parallelization.  

Computations that require iterative computation on a single set of data may not be able to take advantage of 

C-slowing. 
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Despite the restrictions associated with pipelining, retiming and C-slowing, developers often utilize these 

techniques whenever the netlists and application specifications allow.  However, determining how to best 

apply these techniques given a specific circuit and a target architecture can be challenging.  Although these 

concepts will be discussed in far more detail in the following chapters, these issues can be grouped into two 

basic types of problems. 

 

First, the pipelining, retiming and C-slowing discussed up to this point has only considered the delay 

though the logic portion of a circuit.  However, the delay accumulated in the communication network is a 

significant part in the overall delay of a system and the distribution of this interconnect delay can vary 

greatly from one net to another once it has been mapped to a physical architecture.  Thus, the manner in 

which registers could be best distributed is highly dependant upon the arrangement of the rest of the 

system, but that can be difficult for application mapping tools to evaluate faithfully.  This problem is 

discussed further in Chapters 4 – 7. 

 

Second, as shown in Figure 3.3d and Figure 3.3f, pipelining, retiming and C-slowing can dramatically 

increase the amount of registers in a circuit.   However, the number and availability of physical flip-flop 

locations offered by the classical FPGAs discussed in Chapter 2 is relatively limited.  This is largely 

because FPGA applications have traditionally not required a large number of registers.  That said, for the 

reasons outlined earlier, future applications will likely require a growing number of registers.  Chapter 8 

discusses several ways of efficiently increasing architectural support for heavily registered applications. 
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Chapter 4: FPGA Development Tools 

Just as the quality of a software compiler plays a major role in determining the speed of code running on a 

microprocessor, FPGA CAD tools fundamentally affect the achievable performance of an application 

mapped to a reconfigurable fabric.  This chapter will provide details regarding the traditional FPGA CAD 

toolflow and discuss some of the issues that heavily pipelined, retimed and C-slowed applications can 

present. 

 

4.1: FPGA CAD Toolflow 

The logic and communication resources that FPGAs offer obviously pose a different problem to both 

developers and development tools compared to programming for conventional microprocessors.  Even so, 

despite significant differences in the underlying framework, the process of creating applications for modern 

FPGAs can be thought of much like developing software for a microprocessor.  Applications generally 

begin with a Hardware Description Language (HDL) specification.  Much like C or C++, this is a largely 

platform independent representation of the application that must be compiled to a specific FPGA.  

Compilation for an FPGA consists of five primary steps: logic synthesis, technology mapping, packing, 

placement, and routing. 

 

Logic synthesis takes the high-level constructs in the HDL code and turns them into a netlist of basic gates 

such as NANDs, NORs and flip-flops.  The technology mapping phase uses this generic gate representation 

and determines how these pieces could be efficiently translated to the hardware given the specific LUTs 

and fixed resources offered by the target FPGA.  The packing tool then takes these mapped pieces and 

attempts to merge LUTs and flip-flops into groups of logic blocks.  The placement tool then determines the 

physical location of each logic block in this packed netlist so as to minimize the amount of communication 

required.  Finally, routing determines how the blocks in the placed netlist communicate with each other by 

assigning signals to specific wires.  This routed netlist can then be turned into a configuration bitstream to 

program the FPGA. 

 

While logic synthesis and technology mapping are essential parts of a modern FPGA compiler, this 

dissertation primarily focuses on the effect netlist and architectural characteristics have on packing, 

placement and routing.  Thus, the discussion here will feature background on these three physical design 

phases. 

 

4.2: Packing 

The most popular academic FPGA packing tool today is VPack [26].  VPack uses a two-step approach in 

which flip-flops are first mated with appropriate LUTs to map to the fewest BLEs, and then these BLEs are  
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LUT LUT LUT

 

Figure 4.1: Packing Restrictions [2]  
 

combined to form logic blocks if the architecture implements clustered logic.  The first stage examines the 

way that each flip-flop is used to determine how to pack LUTs and flip-flops together.  Some architectures 

may restrict the output of a BLE.  In the case shown in Figure 2.1, a LUT/flip-flop pair has the capability to 

output either the raw LUT output or the registered LUT output, but not both.  Thus, as seen on the left of 

Figure 4.1, if the rest of the netlist only uses the registered output of a LUT, the optional flip-flop attached 

to the host LUT can be used and they can be mapped to a single BLE.  However, as seen on the right of 

Figure 4.1, if both the gated and non-gated output is needed the LUT and flip-flop must be mapped to 

separate BLEs.   

 

The second portion of the packing process attempts to combine BLEs into the fewest number of clustered 

logic blocks, subject to the limitations of the architecture.  Although the architecture might have multiple 

LUTs grouped within a single CLB, some FPGAs attempt to reduce the hardware needed to implement the 

connection blocks by offering fewer independent inputs than the maximum number that could be required 

by the cluster.  For example, if an architecture is built from clusters of four 4-input BLEs, each logic block 

might only have twelve, not sixteen, inputs.  FPGA architects do this because they realize that logic blocks 

do not necessarily require independent inputs for all BLEs.  Multiple BLEs within a logic block may share 

common inputs, BLEs may be cascaded together and use communication resources internal to the logic 

block, or the function mapped to a LUT may use fewer than the maximum number of inputs. 

 

VPack iteratively clusters BLEs with one of two techniques.  It first simply selects an unassigned BLE to 

seed a cluster.  Other BLEs are then added to the cluster to completely fill the logic block.  Potential 

cluster-mates are ranked based on their “attraction” to the current cluster – how many inputs and outputs 

they share.  VPack iteratively gathers BLEs with the highest attraction to the current cluster until the CLB 

is full.  Occasionally, though, a cluster may run out of independent inputs before all BLEs are occupied.  

These situations are forwarded to a second technique.  Here, clustering is repeated, but BLEs are added to 

the cluster based on minimizing the number of inputs. 

 

VPack has also been extended with a timing-driven formulation, T-VPack.  This tool is very similar to 

VPack, but attempts to consider critical path timing during the clustering process.  Although it cannot 

necessarily estimate the delay encountered in the interconnect, T-VPack evaluates how likely it is that each 

BLE lies on the netlist’s critical path based upon the maximum number of consecutive LUTs, or the logical 
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depth, of the logic using the BLE.  BLEs along paths that have multiple consecutive LUTs without 

registering are given special priority.  Since communication between BLEs in the same cluster is generally 

very fast compared to utilizing external routing resources, the tool adjusts its attraction scheme to prefer 

BLEs that are more likely to be timing sensitive. 

 

Packing is also very useful on architectures that do not limit the input or output connectivity of the LUTs 

and flip-flops within their CLBs.  This is because combining multiple LUTs and registers into a single 

atomic unit via packing decreases the number of movable blocks.  In turn, this dramatically simplifies the 

following placement process.  For example, take a very small netlist consisting of 20 4-LUTs.  If a 

placement tool is attempting to map this netlist to the minimum-sized architecture that consists of five 4-

LUT CLBs, there are roughly 3.6x1012 different possible placements1.  Obviously, searching such a large 

solution space is extremely difficult.  However, if the LUTs in the netlist are first packed into five groups of 

four 4-LUTs, there are only 120 different possible placements2.  Of course, this simplification of the 

placement problem means that the vast majority of the potential possible placements are never examined.  

While that is true, packing is a natural step for most netlists because the placement problem specifically 

tries to put interconnected blocks as close together as possible.  Since the packing tool groups tightly 

coupled LUTs and registers together into the same CLB, it is likely that the placement tool will still be able 

to approach the optimal arrangement. 

 

4.3: Placement 

The most common algorithm used for FPGA placement is simulated annealing.  The basic premise of 

simulated annealing likens the process of determining physical locations for all the logic blocks in a netlist 

to nature finding a low-energy atomic arrangement for the atoms in a crystal.  The authors of [17] recount 

basic metallurgy: if an iron bar is thoroughly heated, then quickly cooled in water, the result is very brittle 

and prone to cracking.  This is because the small, high-energy crystals that make up the bar contain large 

amounts of internal strain.  A quick cooling process forces atoms into whatever arrangements they can 

manage before they freeze.  However, if the metal is allowed to cool slowly in air, the result is much more 

                                                           

 

 

 

 

 
1 This calculation assumes that the individual LUTs within each CLB of the array are functionally equivalent.  Thus, there are 5 
possible different CLB locations for the first LUT to go into.  Since one LUT does not fill the first CLB location to capacity, there are 
still 5 possible CLB locations for the second LUT, etc.  This makes the number of possible solutions (516*4*3*2 ≈ 3.6x1012) 
2  There are 5 possible CLB locations in which to map the first packed CLB, 4 possible CLB locations to map the second packed CLB, 
etc.  This makes the number of possible solutions (5! = 120). 
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flexible and resilient.  This is because the slow cooling process allows the atoms to move around freely and 

arrange themselves into large, low-energy state crystals. 

 

This phenomenon is mirrored in logic block placement in several ways.  First, the random motion available 

to atoms while the metal hot is paralleled by iterative random swaps between logic blocks.  Next, the 

energy state of an atomic arrangement is represented by a cost function that can determine the quality of a 

given placement.  The most basic cost function used in FPGA CAD is the total rectilinear, or Manhattan, 

distance between connected logic blocks.  Finally, a temperature is associated with each iteration of the 

process that allows the system to gradually move towards better and better solutions.   

 

Placement begins with an arbitrary initial placement and a very high system temperature.  Optimization is 

achieved by conditionally accepting or rejecting moves while slowly decreasing the temperature of the 

system.  Swaps that provide a better placement are always allowed, while movements that provide a worse 

placement are probabilistically allowed depending upon the current system temperature and how much 

worse the movement would make the placement as a whole.  In [3], the authors suggest that “bad” 

movements should be accepted with a probability shown in Equation 4.1. 

 

 e
eTemperatur/ deltaCost 

]1,0[number  random
−<  (4.1) 

 

Since the probability of accepting a move for the worse is directly related to the temperature and inversely 

related to the change in quality, we are likely to accept virtually all moves early in the annealing process 

and gradually tend towards only accepting changes for the better as placement continues.  While 

performing changes that make the placement worse seems counter-productive, only accepting good moves 

is similar to the quenching of metal, which results in local minima and poor placements.  As it turns out, 

permitting solutions that temporarily make the system worse actually encourages better overall placements.  

This is because the placement tool often needs to transition through “bad” solutions in order to make larger-

scale improvements. 

 

The fact that the probability of accepting a move for the worse is dependant upon temperature makes 

controlling the rate at which the system cools very important.  In addition, determining the initial 

temperature and the total number of moves attempted is also critical.  The work in [2] suggests a 

sophisticated scheme in which these factors are somewhat tied together.  First, the initial temperature is 

determined by performing N random moves on the initial placement, where N is approximately 100 times 

the number of blocks in the incoming netlist.  Since the initial placement is already arbitrary, these swaps 

are unconditionally accepted.  However, the costs of these moves are recorded and the initial temperature 
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of the annealing is set to 20 times the standard deviation.  This insures that virtually all moves are accepted 

at the beginning of the annealing. 

 

The subsequent placement is divided into temperature iterations.  During each iteration, the number of 

moves attempted is based upon the size of the incoming netlist as calculated in Equation 4.2. 

 

 3
4

)(*10Iteration eTemperaturPer  Moves ksNumberBloc=  (4.2) 

 

At the end of each temperature iteration a new system temperature is calculated based upon the number of 

moves accepted during the previous iteration.  This is shown in Equation 4.3 and Table 4.1. 

 

 eTemperatur Old * eTemperatur New γ=  (4.3) 

 

After the system temperature is updated, the termination condition shown in Equation 4.4 is evaluated. 

 

 
NumberNets

TotalCost
*005.0 eTemperatur<  (4.4) 

 

This adaptive temperature schedule allows the annealer to operate for a short period of time at a high 

temperature to facilitate large-scale changes to the placement, and spend the bulk of its operation 

performing medium-scale improvements and small-scale refinements. 

 

This type of relationship is often further reinforced with the addition of movement windowing.  First 

suggested in [20], the annealing begins by allowing any logic block to swap with any other logic block in 

the array.  However, as placement continues, it slowly decreases the range that a logic block can move in a 

single swap by only attempting to change places with a location within an imaginary frame surrounding 

that block.  This window slowly shrinks over time until we only allow nearest-neighbors to exchange 

places.  This can be seen in Figure 4.2. 

 

This enhancement is particularly effective because it encourages the system to continue optimization 

through a larger portion of the annealing.  Late in the annealing process we have largely determined most  

 

Table 4.1: Temperature Update Schedule 
Acceptance Rate > 0.96 γ  = 0.5 

0.8 < Acceptance Rate ≤ 0.96 γ  = 0.9 
0.15 < Acceptance Rate ≤ 0.8 γ  = 0.95 

Acceptance Rate ≤ 0.15 γ  = 0.8 
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of the placement.  Therefore, long distance moves are not liable to be accepted because they are unlikely to 

improve the placement but rather disturb the arrangement we have already carefully set up.  On the other 

hand, shorter distance moves are both far more likely to improve the placement and, if they are a change for 

the worse, any degradation will also naturally be smaller.  Thus, windowing prevents the annealing from 

stagnating during the later stages of the process by guiding the system towards shorter, more incremental 

changes. [13] 

 

Similar to the cooling rate, the size of this movement window can also be determined in an adaptive 

manner.  The work in [2] suggests updating the window size at the end of each temperature iteration with 

Equation 4.5.  Obviously, this value is subsequently clamped between one and the maximum size of the 

array. 

 

 Rate) Acceptance  0.44 - (1 * Size  WindowOldSize  WindowNew +=  (4.5) 

 

Since the interconnect represents such a large portion of the overall delay in FPGA designs, placement also 

plays a vital role in determining a netlist’s critical path.  Although discussed in more detail in Chapter 8, the 

authors of [3] incorporate both Manhattan distance and delay estimation into their simulated annealing cost 

function.  When their placer is initialized, the system first performs a point-to-point routing between all 

logic blocks in the target architecture.  This allows the system to fill a look-up matrix with the delay of the 

fastest connection between each pair of logic blocks.  These values are then used during annealing to 

estimate the delay and timing criticality of every connection in the netlist for a given placement.  This is 

shown in Equation 4.6. 

 

 ExponentCrticalityjiyCriticalitjiDelayji _),(*),(),(tTiming_Cos =  (4.6) 

 

High temperature window

Low temperature window

 

Figure 4.2: Simulated Annealing Windowing 
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Conventional VPR Placement 
0 randomly place logic blocks onto architecture 
1 determine initial temperature 
2 while(!done) 
3  for I = 0 to numAnnealMovesPerTemp 
4   select random CLB 
5   swap CLB with random CLB in move window 
6   accept or reject move(∆Cost, currTemp) 
7  end for 
8  update critical path delay 
9  update currTemp 
10  update range limit window 
11  evaluate exit criteria 
12 end while 

Figure 4.3: Pseudo-Code for VPR Timing-Driven Placement 
 

In this equation Timing_Cost(i, j) represents the cost of the link between blocks i and j.  The slower and the 

more timing-critical the link, the more expensive delay becomes.  On top of this, by increasing the 

criticality exponent, the placer can further emphasize reducing delay on the most critical segments.  In a 

similar manner to the way the movement window is adaptively changed, the criticality exponent is 

generally set to one at the beginning of the annealing process and slowly increased as the annealing 

continues. 

 

This timing cost can then be combined with a more traditional Manhattan distance-based cost to evaluate 

the overall quality of the placement.  This will encourage the placement tool to gather the most timing-

critical blocks close together at the expense of lengthening less critical connections.  Pseudo-code for the 

entire placement process is shown in Figure 4.3. 

 

4.4: Routing 

FPGA routing is generally handled with the PathFinder algorithm [28].  PathFinder is an iterative 

technique that allows signals to negotiate with each other for control over communication resources.  The 

guiding principle behind this approach is that each signal “bids” on the routing resources that it wants.  

Over time, the “price” of popular resources goes up, encouraging signals that can use less scarce 

commodities to do so and leave more restricted resources for the signals that truly need them. 

 

PathFinder begins by representing all of the logic and routing resources offered by the target architecture as 

a directed graph of vertices and edges.  Each logic block and wire is converted to a vertex, while the 

programmable connections offered by the connection blocks and switchboxes are converted into directional 

edges linking these vertices.  The placed netlist is then mapped to this abstract graph.  This means that 

connecting two logic blocks in our netlist is simply a matter of finding a path, or series of connected 

vertices, between the nodes that represent the logic blocks in our graph.  Since a given physical wire can 

only carry a single signal, the challenge PathFinder must solve is to connect all of the signals in our netlist 

such that no node is congested, or allocated to too many nets. 
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An essential part of PathFinder is Dijkstra’s algorithm [8].  This is a fast and optimal technique that finds 

the lowest-cost path between two vertices in a directed graph.  Dijkstra’s begins by starting a wave of 

exploration at the source vertex.  The neighbors of this node are then added to a list that is sorted by the 

total cost of the path to these nodes. The source node is marked as “visited” and the router selects a new 

vertex – the lowest cost node in the list.  The unvisited neighbors of this node are then added to the sorted 

list and the process continues until we find the target vertex or empty the list of routing nodes.  PathFinder 

also uses a slightly enhanced version of Dijkstra’s algorithm to find multi-terminal routes by stopping and 

reinitializing the search each time a sink is found, considering the entire routing tree built thus far as the 

source. 

 

The PathFinder algorithm uses this basic search while encouraging congestion resolution between different 

nets.  It begins by initializing the cost associated with each vertex to a small base cost.  All signals in the 

netlist can then be routed using the approach from above.  At this point, PathFinder evaluates the use or 

occupancy of each vertex in the graph.  If all of the nets have been connected and no vertices are congested, 

the routing is valid and the algorithm is complete.  However, if any vertices are congested, the cost of these 

nodes is increase and another routing iteration is attempted.  By gradually increasing the cost of overused 

vertices over time, the use of these nodes is slowly discouraged.  This frees them to be used by other paths.   

The cost of a node during a given iteration is shown in Equation 4.7. 

 

 nnnn phbc *)( +=  (4.7) 

 

Here, bn is the base cost of using the node, hn is a term that reflects the historical congestion of the node, 

and pn is a term that reflects the current congestion of the node. 

 

Of course, for most applications it is extremely important to consider critical path timing.  The authors of 

[28] also suggest a timing-driven formulation of PathFinder that uses a slightly modified cost function to 

improve performance.  This allows timing-critical nets to follow fast, but possibly congested paths while 

encouraging non-critical nets to seek slower, lower congestion alternatives.  This is shown in Equation 4.8.  

 

 nijnijn cAdAC )1( −+=  (4.8) 

 

Here, Aij represents the criticality of a source/sink pair as found during the last routing iteration, dn is the 

delay of a node and cn is the congestion-based cost function described above.  Since Aij falls between zero 

and one, a route along the critical path of the netlist (Aij=1) only considers the delay of a node without 

considering its congestion cost.  In this way, it will naturally seek the fastest possible path.  However, a less  
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Timing-Driven PathFinder Routing 
0 while(!all signals routed || congestion exists) 
1  for all nets N 
2   clear N.routing tree 
3   put source of N into N.routing tree 
4   sort sinks in decreasing order of criticality (for iteration #1, set all criticalities to 1.0) 
5   for all sinks of N 
6    for all nodes in architecture clear visited flag 
7    put all nodes in routing tree into priority queue PQ at cost C, previous node null 
8    while(PQ.head not sink[i] of N && PQ not empty) 
9     remove head of PQ H at cost C, previous node P 
10     if(H not visited) 
11      mark H visited 
12      set H.cost to C 
13      set previous node of H to P 
14      put unvisited neighbors of H into PQ at cost C + neighbor cost + edge cost, previous node H 
15     end if 
16    end while 
17    if(PQ is empty) 
18     net is unroutable, exit 
19    else if(PQ.head is sink[i] of N) 
20     mark sink found 
21     set previous node of sink to P 
22     set S to sink 
23     while (S not in routing tree of N) 
24      add S to routing tree 
25      set S to S.previous node 
26     end while 
27     clear PQ 
28     update cost of congested nodes 
29    end if 
30   end for 
31  end for 
32  update critical path delay and sink criticalities 
33 end while 

Figure 4.4: Pseudo-Code for PathFinder Routing 
 

critical net will consider both delay and congestion.  As Aij approaches zero, the congestion cost will play a 

larger role in determining which path is taken.  This formulation encourages less critical nets to find 

detours so that the most timing-sensitive links can use the fastest, most direct wires.   Pseudo-code for the 

entire timing-driven routing process is shown in Figure 4.4. 

 

4.5: Issues for Heavily-Registered Applications 

Pipelining, retiming and C-slowing an application introduces additional registers into the netlist with the 

hope that this will increase the overall throughput of the system.  However, as discussed in Chapter 3, since 

these new registers also increase the latency of the circuit these registers must be carefully positioned to 

evenly distribute delay.  This makes the effectiveness of timing-driven CAD tools crucial to the system as a 

whole.  However, the addition of a large number of registers into an application can fundamentally change 

its characteristics and, by extension, the optimization problem it presents to the CAD tools.  This 

potentially creates two unique challenges. 

 

First, a large number of registers in a netlist can confuse existing timing-driven placement and routing 

algorithms.  As will be discussed in Chapter 5 and Chapter 6, this is largely because the relative criticality 
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of different parts of a circuit can change much more quickly in a heavily-registered circuit as the placement 

and routing is performed.  This not only makes the timing information that the tools use to optimize the 

circuit much more difficult to keep up to date, the algorithms themselves are based upon iterative 

improvements that subtly rely on the fact that the criticality on individual links does not change very 

quickly.  Thus, when it does change rapidly when attempting to process heavily-registered applications, 

these algorithms can produce degenerate solutions. 

  

Second, a circuit with a large number of registers that need to be packed and retimed can exacerbate 

existing problems in the CAD toolflow.  As will be discussed in Chapter 7, the traditional compilation 

process described above is highly compartmentalized and solely feed-forward.  In some sense this causes 

problems already since design decisions that must be made by tools early in the flow, such as logic 

synthesis and technology mapping, dictate the netlist given to tools later in the flow, such as placement and 

routing. However, these early portions of the CAD process also have the least amount of information 

regarding the potential realities of the interconnect delay between logic blocks.  Thus, the accuracy of the 

optimizations performed by these early tools is limited, even though they potentially have the largest 

impact on the quality of the final result.  Packing circuits with a large number of registers can make this 

problem worse because traditional packing algorithms do not expect multiple registers on a LUT output.  

Thus, they can produce packed netlists that severely limit the options available to the placer and router.  

Retiming compounds these issues because it needs to restructure the netlist as it migrates registers through 

logical elements to balance delay.  However, the point in the toolflow in which this is most convenient is 

prior to packing.  Therefore, retiming is generally performed without considering the interconnect delay 

information only known after placement and routing.   
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Chapter 5:  Enhancing Timing-Driven Placement  

As discussed earlier, when pipelining, retiming and C-slowing are aggressively used they can insert a large 

number of registers into a netlist.  However, these registers make the circuit larger and increase the latency 

of the system, so obviously application developers would like to maximize the potential performance 

benefits of these additional registers as much as possible.  That said, while existing timing-driven 

placement tools have shown their advantages over purely wirelength-driven formulations [25], relatively 

little is known about the absolute performance of these types of algorithms.  Furthermore, they have 

generally only been tested on classical, relatively lightly registered circuits. 

 

This chapter will illustrate some potential shortcomings of the most popular timing-driven FPGA 

placement approach that can lead to instabilities in the simulated annealing placement itself.  In addition 

this chapter will outline some of the different characteristics that heavily registered netlists have that can 

prevent existing timing-driven placement approaches from attaining the maximum potential of these 

circuits.  This will lead to the introduction of a new technique for timing-driven placement that can 

significantly improve the performance of both lightly and heavily registered applications. 

 

5.1: Background on VPR Timing-Driven Placement 

VPR [3] is one of the most popular academic FPGA place and route tool suites.  As the de facto standard, it 

has served as both a building platform and comparison target for countless other research efforts.  VPR 

includes T-VPlace, a simulated annealing based timing-driven placement algorithm.  T-VPlace considers 

both a net’s wirelength and delay contribution during placement to achieve a good balance between overall 

netlist routability and critical path delay.  During simulated annealing, it calculates the cost of a move using 

Equation 5.1. 

 

 
iring_CostPrevious_W

_
*)1(

iming_CostPrevious_T

st∆Timing_Co
*C

CostWiring∆−+=∆ λλ   (5.1) 

 

In this way, VPR can emphasize maximum routability (λ = 0.0), minimum critical path delay (λ = 1.0) or, 

most likely, strike a balance between the two.  While the Wiring_Cost is essentially just a summation of all 

nets’ bounding boxes, calculating the Timing_Cost is a bit more complex.   

 

Before placement on a given architecture is started, VPR builds a distance vs. delay table that estimates the 

shortest path delay between each logic block and I/O pad in the array and every other logic block and I/O 

pad in the array.  VPR then uses this table throughout the annealing process to determine the source/sink 

delay of each connection in the netlist.  This allows VPR to estimate the delay of each connection in the 

netlist for a given placement.  Of course, due to routing congestion this estimate table cannot correctly 
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reflect the real delay of every link of any placement.  For example, if the annealing were stopped 

immediately and the immature placement sent to the router, the actual delay for any given connection as 

found by the router would likely be much larger than the shortest-path delay estimates used by the 

placement tool.  However, it is generally assumed that the congestion in the final placement will be 

relatively low and that the most critical signals will be able to take their fastest preferred path during 

routing.  Thus, these delay estimates offer the placement tool a relatively good idea regarding the timing 

implications of the placement as the annealing progresses. 

 

Calculating the timing cost of the current placement begins by performing a static timing analysis on the 

initial random placement.  As seen in Figure 5.1, static timing analysis uses the delay estimates from the 

distance vs. delay table and steps through the netlist from the inputs to the outputs in order to determine the 

critical path through the system.  As seen in Figure 5.1b, this begins by setting the arrival time of all 

primary inputs and registers to be 0.  Then, using the delay estimates of each connection, the maximum 

arrival time of all nodes is propagated throughout the netlist.  This is seen in Figure 5.1c. 

 

This process calculates Dmax, the overall maximum critical path delay of the current placement.  Based upon 

this information, the timing slack of each source/sink pair can also be calculated.  This is performed by 

determining the required time of each node.  As shown in Figure 5.1d, this begins by setting the required 

time of all primary outputs and registers to Dmax.  In a similar manner as before, the minimum required time 

for each node is propagated through the netlist.  This is shown in Figure 5.1e.  Finally, the timing slack for 

each connection can then be calculated.  As shown in Figure 5.1f, this is the required time of the sink minus 

the arrival time of the source minus the delay of the connection itself. 

 

The information from static timing analysis is then incorporated into the timing cost using Equations 5.2 

and 5.3.  As shown in Equation 5.2, first the relative criticality of each link in the netlist is calculated based 

upon Dmax and the timing slack. 

 
max

),(
1),(

D

jiSlack
jiyCriticalit −=   (5.2) 

 

 ExpCritjiyCriticalitjiDelayji _),(*),(),(tTiming_Cos =    (5.3) 

 

As shown in Equation 5.3, VPR then weights the impact of the delay between each source-sink pair based 

upon its criticality.  That is, delay along a path that has lots of timing slack is relatively cheap, while delay 

anywhere along the critical path is expensive.  An exponent is also sometimes included to further 

discourage high criticality links. 



24 

 

7

2 a b
c

1 2

1
7

2 a b
c

1 2

1

7

2 a b
c

1 2

1
7

2 a b
c

1 2

1

7

2 a b
c

1 2

1
7

2 a b
c

1 2

1

7

2 a b
c

1 2

1
7

2 a b
c

1 2

1

0

a

b

0
2 3

9 10

5
c

10

10
d

10

10
e

7

2 a b
c

1 2

1
7

2 a b
c

1 2

1

9

82

0

Delay of links from placement

Arrival time of primary inputs & 
registers set to 0

Propagation of arrival times forwards
AT i = max(AT of source + link delay)

Required time of primary outputs &
registers set to Dmax

Propagation of required times backwards
RTi = min(RT of source - link delay)

7/0

2/0 a b
c

1/5 2/5

1/0

f

Slack(i, j) = RT of sinkj - AT of sourcei
- link delay

 

Figure 5.1: Static Timing Analysis 
 

Finally, Equation 5.4 shows that the overall placement timing cost is calculated as the summation of the 

timing cost of each source/sink pair. 

 

 ),(tTiming_CostTiming_Cos ji∑=   (5.4) 

 

5.2: Implications of Static Timing Analysis 

While the intent of VPR’s timing-driven formulation is indeed very important, the realities of practical 

implementations can interfere with its effectiveness.  Focusing on Equations 5.2 and 5.3, VPR’s timing cost 

function is based upon the source/sink criticalities calculated during static timing analysis.  Unfortunately, 

static timing analysis is far too computationally expensive to perform after each annealing move.  Thus, by 

default VPR only performs a single timing analysis at the beginning of each temperature iteration.  It then 

uses these criticalities to calculate the quality of subsequent moves until the next temperature iteration.  
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This means that VPR generally performs less than a few hundred timing analysis runs instead of potentially 

several millions. 

 

Revisiting VPR’s basic cost function, this optimization can be captured formally.  In Equation 5.5, VPR 

calculates the criticality of each source/sink pair (i, j) at the beginning of temperature iteration k.   

 

 
)(

),,(
1),,(

max kD

kjiSlack
kjiyCriticalit −=    (5.5) 

 

For any given placement within the kth temperature iteration, Equation 5.6 can be used to calculate the 

timing cost.  This is simply the delay of the source/sink pair (i, j) at temperature iteration k, move number l 

multiplied by the criticality of the link as calculated at the beginning of the temperature iteration. 

 

 ExpCritkjiyCriticalitlkjiDelaylkji _),,(*),,,(),,,(tTiming_Cos =   (5.6)   

 

This makes the incremental timing cost as shown in Equation 5.7 simply the change in delay between of 

move (l-1) and move l multiplied by the criticality of the link at the beginning of the temperature iteration. 

 

 [ ] ExpCritkjiyCriticalitlkjiDelaylkjiDelaylkji _),,(*)1,,,(),,,(),,,(TC −−=∆  (5.7) 

 

Unfortunately, while performing static timing analysis only once per temperature iteration does make 

placement orders of magnitude faster, since the placement algorithm does not update the criticality nor 

critical path delay within a temperature iteration, the timing information that the annealer has slowly gets 

less and less accurate. This can lead to less than satisfying final results.  At the beginning of the annealing 

the placement tool calculates the critical path delay.  This value is then used to calculate the slack and 

criticality of each source/sink pair.  The problem occurs because, as the annealing begin to move blocks 

around, a gap forms between the real criticalities of the current placement and the values used to calculate 

the timing cost.  Since a single temperature iteration might attempt tens of thousands to hundreds of 

thousands of moves, the optimizations attempted towards the end of a temperature iteration can actually be 

self-defeating. 

 

Figure 5.2 illustrates this problem.  Here, the placer believes that the timing of the system will improve if it 

moves block a to reduce the delay on the critical path (a, c).  However, this particular move accomplishes 

this by adding delay to the previously non-critical path (a, b).  While this change actually increases the  
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Figure 5.2: Effect of Stale Criticality Information  
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Figure 5.3: VPR Placement with Stale Criticality Information 
 

critical path delay of the circuit from 10 to 11, the placement tool is unaware that this is a poor choice 

because, following Equation 5.7, the timing cost goes down from 11.5 to 8.5.  Unfortunately, this timing 

cost is inaccurate because it only looks at the changes in delay on connections, without considering the 

impact that this has on link criticality. 

 

Assuming for the moment that algorithmic runtime can be ignored, the advantages of more up-to-date 

criticality information is easily demonstrated.  Figure 5.3 shows two placement runs of a benchmark 

included with the VPR toolsuite, ex5p.  These placement runs were performed on the single 4-LUT, single 

flip-flop 4lut_sanitized architecture, also included with VPR.  Shown in black is the wirelength and 

estimated critical path delay calculated at the end of each temperature iteration when one static timing 

analysis (STA) is performed per temperature iteration.  Shown in gray are the results when 1000 static  
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Table 5.1. Benefits of VPR Placement with Frequent Static Timing Analysis for  
Conventional MCNC Netlists (Default λ, Default Criticality Exponent) 

Static Timing Analysis/Temp Normalized Wire Cost Normalized Routed CPD 
1 1.000 1.000 
10 1.029 0.904 
100 1.030 0.857 
1000 1.031 0.864 
10000 1.036 0.869 

 

timing analysis runs are performed per temperature iteration.  For a point of reference, in the case of ex5p 

this equates to roughly one static timing analysis for every 100 simulated annealing move attempts.  

Clearly, while the wirelength costs for both placement runs, denoted in squares, are very similar and 

smoothly decreasing, the critical path delay for the placement performed with the default settings, denoted 

in black triangles, fluctuates considerably.  This is particularly concerning since this oscillation persists 

even as the placer nears the end of the annealing process.  These oscillations represent a 20-30% swing in 

critical path delay, with no apparent guarantee whether the placement will end with a faster or slower 

circuit.  This oscillation is likely due to the fact that, with stale criticality information, the placement tool 

may not notice when it is increasing the critical path delay of the system.  On the other hand, the placement 

performed with frequent static timing analysis shows a much more stably decreasing critical path delay. 

 

This behavior can be demonstrated on the full suite of netlists provided by VPR, 22 of the largest MCNC 

benchmarks (11 combinational and 11 sequential circuits).  Additional information regarding these 

benchmarks can be found in Appendix A.  Table 5.1 shows the results when the amount of static timing 

analysis is increased during placement.  Reported are the normalized geometric mean final placement 

wirelength and post-routing critical path delay. Testing was performed on the 4lut_sanitized architecture 

using a commonly used methodology [1]: minimum sized square arrays with 1.2x the minimum channel 

width.  Stated more plainly, these netlists were mapped to the smallest square array they could fit on and 

routing was performed in two stages.  The first phase of routing searched in a binary fashion to find the 

minimum channel width architecture that the netlist would route successfully using the timing-driven 

PathFinder-based router built into VPR.  The second routing run used to produce the reported data 

increased this channel width by 20% to provide a slightly lower-stress routing problem.  This increase in 

channel width is commonly performed to provide slightly more realistic results that better evaluate the 

quality of the placement tool.  This is done for two reasons.  First, modern FPGA architectures generally 

have a very large number of communication channels to increase their flexibility.  Thus, designs are 

typically placed onto systems with very low congestion.  Second, this slightly relaxed routing problem 

avoids the potentially very poor solutions that routers can produce on heavily congested systems.  In this 

type of situation, much of the subtle differences in the quality between different placements are lost 

because the routed results include so many unpredictably circuitous paths. 
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These results were obtained with the A* optimizations [39] option turned off.  Although beyond the scope 

of this discussion, A* is meant to improve routing runtime, without impacting quality.  This option was not 

used because the aggressive implementation built into VPR increased the unpredictably of the routing. 

 

As seen in Table 5.1, simply increasing the amount of static timing analysis resulted in a relatively clear 

benefit to the average critical path delay.  This advantage also seems to get larger given 1 to 100 static 

timing analysis runs per temperature, peaking at a 0.857x speedup.  Updating more frequently than that did 

not seem to have measurable additional benefit in this testing.  That said, while this performance benefit is 

nice, there is the matter of placement runtime.  Although CPU runtime is notoriously difficult to accurately 

measure, in preliminary testing, placement with 100 static timing analysis runs per temperature iteration 

took 20x longer to produce than default placement.  This is because the time required to perform static 

timing analysis quickly begins to eclipse the runtime of the other necessary calculations associated with 

placement. 

 

Aside from the issue of runtime, this performance benefit also seems to come with a small average wire 

cost penalty.  Thus, it is possible that these placements are unfairly taking advantage of the wider 

communication channels used in this testing process to improve delay.  However, as seen in Equation 5.1, 

VPR has a parameter that can change the emphasis placed on wire cost versus critical path delay.  This is 

the λ term.  In addition, as seen in Equation 5.6, VPR also has a parameter that changes the progressive 

penalty placed on the highest criticality nets.  This is the criticality exponent.  While in some sense the 

default parameters suggested by such a rigorously tested toolsuite such as VPR are an interesting starting 

point, increasing the frequency of static timing analysis by such a large amount does change some of the 

basic assumptions likely made during the authors’ tuning process.  Thus, recalibrating the λ and criticality 

exponent terms seems reasonable.   

 

The testing process was repeated, this time both lowering the λ term to increase the emphasis placed on the 

wire cost and increasing the criticality exponent to place more pressure on high criticality nets.  The results 

of this testing can be seen in Figure 5.4, with more details in Table 5.2.  The default parameters used by 

VPR are (λ=0.5, crit. exponent = 8).  Therefore, the default values can be seen in Figure 5.4 indicated by 

the black line marked with black circles – the progressive points from the top left to the bottom right 

denoting 1 to 10,000 static timing analysis runs per temperature iteration.  During this testing λ was swept 

between 0.5 and 0.3 while the criticality exponent was swept between 8 and 12.  Based upon the results of 

this testing, VPR seems to obtain the best placements with the parameters (λ=0.3, crit. exponent = 12) and 

10, 000 static timing analysis runs per temperature iteration. Unlike the results obtained with the default 

parameters, these placements have a lower average wire cost (0.977x) despite their better critical path delay 

(0.873x).  However, this benefit comes with an even larger algorithmic complexity problem since it is 
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obtained with dramatically more static timing analysis.  Although annealing with such a large amount of 

static timing analysis is impractical in most situations, this does provide a point of reference to show what 

is possible with more accurate timing information. 
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Figure 5.4: VPR Placement λ and Criticality Exponent Tuning for Conventional M CNC Netlists 

The top left point of each line represents placement with 1 static timing analysis per temperature iteration.  Each subsequent 
point towards the bottom right denotes 10, 100, 1000 or 10,000 static timing analysis runs per temperature iteration. 
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Table 5.2: VPR Placement λ and Criticality Exponent Tuning for Conventional M CNC Netlists 
  Combinational Circuits Only Sequential Circuits Only All Circuits 

Crit Exp , λ STA Normalized 
Wire Cost 

Normalized 
Routed CPD 

Normalized 
Wire Cost 

Normalized 
Routed CPD 

Normalized 
Wire Cost 

Normalized 
Routed CPD 

8, 0.5 1 1.000 1.000 1.000 1.000 1.000 1.000 
 10 1.020 0.919 1.038 0.890 1.029 0.904 
 100 1.016 0.897 1.044 0.819 1.030 0.857 
 1000 1.017 0.938 1.045 0.795 1.031 0.864 
 10000 1.023 0.921 1.050 0.820 1.036 0.869 

10, 0.5 1 1.010 0.974 0.996 0.978 1.003 0.976 
 10 1.030 0.928 1.034 0.881 1.032 0.905 
 100 1.021 0.920 1.042 0.819 1.031 0.868 
 1000 1.025 0.894 1.044 0.810 1.034 0.851 
 10000 1.022 0.892 1.050 0.801 1.036 0.845 

12, 0.5 1 1.014 0.990 0.988 0.944 1.001 0.967 
 10 1.026 1.004 1.028 0.892 1.027 0.946 
 100 1.026 0.923 1.047 0.833 1.036 0.877 
 1000 1.027 0.893 1.041 0.767 1.034 0.827 
 10000 1.029 0.901 1.049 0.788 1.039 0.843 

8, 0.4 1 0.988 0.994 0.975 0.988 0.981 0.991 
 10 0.995 0.948 0.996 0.919 0.995 0.933 
 100 0.994 0.906 1.000 0.851 0.997 0.878 
 1000 0.994 0.937 1.010 0.827 1.002 0.880 
 10000 0.993 0.923 1.003 0.834 0.998 0.877 

10, 0.4 1 0.988 0.998 0.969 0.969 0.978 0.983 
 10 0.999 1.004 0.994 0.955 0.997 0.979 
 100 0.996 0.940 1.008 0.834 1.002 0.885 
 1000 1.005 0.919 1.008 0.819 1.006 0.867 
 10000 0.996 0.948 1.013 0.803 1.005 0.873 

12. 0.4 1 0.993 0.993 0.966 0.945 0.979 0.969 
 10 1.004 0.985 0.980 0.954 0.992 0.970 
 100 1.004 0.915 1.007 0.841 1.005 0.877 
 1000 1.001 0.887 1.013 0.837 1.007 0.861 
 10000 1.003 0.939 1.010 0.806 1.007 0.870 

8, 0.3 1 0.976 1.030 0.950 0.991 0.963 1.010 
 10 0.977 0.960 0.960 0.974 0.968 0.967 
 100 0.978 0.947 0.967 0.874 0.972 0.910 
 1000 0.975 0.931 0.963 0.862 0.969 0.896 
 10000 0.977 0.935 0.966 0.874 0.971 0.904 

10, 0.3 1 0.979 1.001 0.952 1.026 0.965 1.013 
 10 0.978 0.968 0.958 0.985 0.968 0.977 
 100 0.982 0.942 0.965 0.868 0.973 0.904 
 1000 0.980 0.921 0.976 0.844 0.978 0.882 
 10000 0.984 0.932 0.966 0.833 0.975 0.881 

12, 0.3 1 0.979 1.035 0.953 1.027 0.966 1.031 
 10 0.980 0.989 0.962 0.978 0.971 0.983 
 100 0.981 0.941 0.962 0.872 0.972 0.906 
 1000 0.983 0.931 0.965 0.848 0.974 0.888 
 10000 0.985 0.924 0.968 0.825 0.977 0.873 
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Figure 5.5: Discrepancy in VPR Placement for Conventional Combinational and  
Sequential MCNC Netlists, (λ = 0.3, Criticality Exponent = 12) 

 

5.3: Characteristics of Registered Applications 

One importation observation should be noted before moving on.  While essentially all of the benchmarks 

benefited from the increased accuracy in timing information afforded by a larger amount of static timing 

analysis during placement, as seen in Figure 5.5 the sequential circuits seemed to respond much more 

strongly than the purely combinational netlists.  Denoted in grey triangles, the improvement in routed 

critical path delay for the sequential benchmarks is 0.825x while, denoted in black triangles, the 

improvement for the combinational circuits is 0.924x. 

 

One possible explanation for this phenomenon is that the registers in these sequential benchmarks create 

some intrinsic characteristic that causes the timing of the system to change much more quickly for these 

circuits during the annealing process.  This would make increasing the accuracy of the timing information 

during placement far more important; the higher the accuracy, the better the results.  Conversely, it can be 

thought that placement performed in the classical manner can be far more detrimental to sequential circuits.  

Furthermore, it follows that increasing the number of registers in a netlists may cause this problem to get 

worse.  This is a potentially very significant concern and a concept central to this dissertation. 
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NOT FF

 

Figure 5.6: Timing Implications of Combinational Logic vs. Registers 
 

A simple thought experiment can illustrate this issue.  Consider the combinational circuit on the left of 

Figure 5.6.  If this device has unit-length communication wires, there is a large envelope of locations in 

which the placer can put the inverter that does not change the timing of the circuit.  Delay is simply shifted 

from the input of the inverter to the output.  However, the criticality of all of the nets and the overall timing 

situation of the system as a whole does not change.  Thus, as long as the placer does not elect to move the 

inverter outside of this window there is very little need to update the timing information.  However, for the 

sequential circuit on the right of Figure 5.6 this is not the case.  Here, there is a very small window in which 

the flip-flop can move that does not make the critical path delay worse.  For that matter, even moving the 

flip-flop to its alternate location changes the criticality of the input and output nets.  As will be discussed in 

the following sections, this makes two issues very important.  First, accurately tracking timing information 

is critical for registered circuits.  Second, this information must be carefully applied to obtain high quality 

placements. 

 

5.4: Registered Netlists & Placement Stability 

At first glance, the discussion in Section 5.3 would seem to indicate that computational complexity is the 

only hurdle for conventional placement with frequent static timing analysis.  Also, following the former 

line of thought, one would expect that it would be highly beneficial to increase the amount of static timing 

analysis as the number of registers in prospective circuits goes up.  However, in practice, heavily registered 

circuits can actually uncover a unique kind of degenerate situation during this kind of placement.  That is, 

conventional placement with frequent static timing analysis can induce serious annealing convergence 

problems for these types of netlists.  Furthermore, this problem can get worse as the frequency of static 

timing analysis is increased. 
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Figure 5.7: Registered Netlists & Placement Oscillation 
Notation on nets: delay / criticality 

 

As shown in Figure 5.7, consider what happens during the placement of a very simple registered circuit.  

For simplicity sake, the placement of the I/O pins will be fixed and the annealer will only try to find the 

best location for the register.  In this example, the initial placement shown in the top left sets the register 

slightly off center with regards to the input and output pins.  Thus, the input net is 100% critical and the 

output net is 50% critical.  VPR first performs static timing analysis to obtain criticality information.  The 

placer then performs a series of annealing moves based upon this information, and then static timing 

analysis is repeated to obtain new criticality values.  At this point the entire process begins again.  Thus, 

after the net criticalities of this initial placement are determined, the annealer is ready to consider random 

swaps.  Figure 5.7 shows three new possible locations for the register.  The bottom left is a placement with 

the register in the optimal location, the bottom right is a solution that is equally unbalanced in the opposite 

direction, and the top right shows an even less balanced solution.  Unfortunately, VPR will tend toward the 

arrangement on the top right which has the worst possible critical path delay. 

 

This occurs because the placement tool evaluates new possible locations for the register using old net 

criticalities.  In a similar situation as the example in Figure 5.2, this causes the placer to try and remove as 

much delay from slow connections as possible.  To compensate, this could mean adding as much “cheap” 

delay as possible to formerly fast connections.  This can cause the placement tool to favor increasingly 

extreme placements, as opposed to better, more moderate solutions.  Figure 5.7 shows that, based upon the 

timing cost of the three alternate placements, the annealer will tend towards the worst solution. 

 

While this can also occur with combinational circuits (it is possible to create a similar situation for the 

example shown in Figure 5.2), this becomes a larger concern and affects the overall stability of placement 

for registered netlists because, as discussed earlier, the criticalities of the nets in a registered circuit can 

change much more rapidly during placement as compared to a purely combinational netlist.  Thus, it is far 

more likely that the placer will find these degenerate situations while placing heavily registered netlists.  
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Furthermore, as soon as the system performs another timing analysis, the placement problem will reverse 

and the register will tend to head for the extreme solution in the other direction.  In some sense, the register 

will try to occupy two very different locations depending upon which net it believes is critical.  As timing 

analysis is performed more often, the preferred location of the register will oscillate faster. 

 

This instability in the “optimal” location for registers presents a very difficult, constantly moving target to 

the annealer and can destabilize the system enough to cause the placement to not converge.  This was less 

of a concern under the classical placement scheme with infrequent static timing analysis because although 

the placer was not necessarily optimizing towards the correct goal, at least the guiding forces in the 

placement within a given temperature iteration were consistent.  In that way it could always make forward 

progress, albeit to a potentially less than optimal destination. 

 

The problem with placement convergence can be demonstrated by repeating the static timing analysis 

testing on heavily registered circuits.  As seen in Appendix A, all 22 original MCNC benchmarks were 

converted into depth=1 versions.  That is, each circuit was pipelined, C-slowed, and Leiserson/Saxe 

retimed such that the maximum logical depth of the circuit was a single LUT.  To most faithfully simulate 

the modifications that an application developer might perform to optimize a netlist for better throughput, 

the minimum amount of pipelining and C-slowing was applied to obtain a depth of one LUT.  

 

Figure 5.8 shows two placement runs of the depth=1 ex5p netlist.  Just as in the example shown in Figure 

5.3, placement was performed with both the default one static timing analysis per temperature iteration 

(shown in black) and 1000 static timing analysis runs per temperature iteration (shown in gray).   For this 

testing the λ and criticality exponent parameters were left at their default values (λ = 0.5, crit. exponent = 

8).  Looking at this graph, the placement performed with very frequent timing analysis clearly suffers from 

convergence issues.  First, although the amount of static timing analysis was increased to improve the 

accuracy of the timing information, the critical path delay for this supposedly enhanced annealing approach 

never truly improves beyond that of the initial placement.  This is most likely due to the tendency for the 

annealer to pull registers from one degenerate solution to another. 

 

Of even greater concern, this oscillation also seems to affect the basic functionality of the annealer – 

wirelength optimization.  The criticality exponent used by VPR begins at one and is slowly increased 

during the placement process.  Judging by the sudden change in wire cost optimization that occurs around 

temperature iteration 45, when the system begins to seriously optimize for delay by increasing the 

criticality exponent, the entire placement process is disrupted.  Since the wire cost of the final placement 

performed with frequent static timing analysis is approximately two to three times that of the results from 

placement with the default parameters, not only does this placement have an extremely high critical path 
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delay, it will likely fail to route on any architecture with a reasonable channel width.  Thus, although a user 

may attempt to improve critical path delay by updating timing information more often, they may end up 

derailing the annealer entirely instead. 

 

The instability of placement with frequent timing analysis for all of the depth = 1 MCNC netlists is shown 

in Table 5.3.  As with the earlier testing, the netlists were packed with T-VPack, placed onto minimum-

sized 4lut_sanitized architectures with 1.2x the minimum channel width as found by default VPR and 

routed using the built-in VPR timing-driven routing tool with A* disabled.  Here, the problems began as 

soon as the amount of timing analysis is increased beyond the default amount.  While performing 10 static 

timing analysis runs per temperature iteration improves the routed critical path delay for most of the 

netlists, 3 fail to route due to annealing convergence problems.  This issue only gets worse as the amount of 
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Figure 5.8: VPR Placement Convergence Problem with Depth = 1 MCNC Netlist 

 

Table 5.3. Instability of VPR Placement with Frequent Static Timing Analysis for Depth = 1 MCNC 
Netlists (Default λ, Default Criticality Exponent) 

Static Timing Analysis/Temp Normalized Wire Cost Normalized Routed CPD 
1 1.000 1.000 
10 1.053* 0.952* (3 failed to route) 
100 1.031* 0.749* (5 failed to route) 
1000 1.106* 0.682* (16 failed to route) 

* Indicates that some of the netlists failed to route on the 1.2x minimum channel width architecture.   
The wire and routed critical path delay shown exclude the failed netlists. 
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static timing analysis is increased.  100 static timing analysis runs per temperature iteration cause 5 netlists 

to have problems and 1000 causes ¾ of the tested netlists to fail routing. 

 

Thus, to allow the placement tool to take advantage of more up-to-date timing information, something must 

be done to dampen the oscillations in the system.  Since these oscillations are caused by the timing 

optimizations performed by the annealer, reducing the emphasis on timing considerations could solve some 

of these problems.  While in some sense this counteracts the entire purpose of increasing the frequency of 

static timing analysis, to be completely fair every possibility should be explored.  Of the placement 

parameters available, a user could either reduce λ to emphasize wirelength more heavily or reduce the 

criticality exponent to lessen the impact of highly critical nets.  In a similar manner to the testing used for 

the conventional lightly registered benchmarks, testing for the depth = 1 circuits was repeated varying both 

the λ and criticality exponent.   

 

The first phase of testing, shown in Figure 5.9 with details in Table 5.4, investigated the possibility of 

reducing the criticality exponent from 8 to 1.  For a given λ and criticality exponent, the amount of static 

timing analysis was increased until two or more netlists failed to route on the provided architecture.  The 

testing performed in Table 5.3 is shown in Figure 5.9 with the black circle at (1.00, 1.00).  Since 

performing 10 static timing analysis runs per temperature iteration caused three of the netlists to fail to 

route, no further points are shown for the default values of  (λ = 0.5, crit. exponent = 8).   The next test kept 

the criticality exponent the same, but reduced λ (λ = 0.4, crit. exponent = 8) in the hope that this would 

achieve better results.  Shown in black squares, these parameters indeed performed much better.  However, 

although performing more static timing analysis runs per temperature iteration improved critical path delay 

significantly, it also encountered some convergence problems that increased the average normalized wire 

cost.  This caused one of the netlists to fail to route at 1,000 static timing analysis runs per temperature 

iteration and three netlists to fail at 10,000.   

 

Therefore, the next test reduced λ again (λ = 0.3, crit. exponent = 8).  Indicated in Figure 5.9 with black 

triangles, although the average wire cost for routable placements performing anywhere between 1 to 10,000 

static timing analysis runs per temperature iteration remains below 1.00, one of the placements obtained 

performing 1,000 static timing analysis runs per temperature iteration failed to route.  Thus, just as a 

precaution (λ = 0.2, crit. exponent = 8) was tested next.  These parameters produced routable placements 

for all of the tests.  However, as indicated with black diamonds, these parameters also begin to trade 

benefits in critical path delay for an average normalized wire cost far below 1.00.  Thus, the best results 

using a criticality exponent of 8 can probably be obtained with λ = 0.3 and 10,000 static timing analysis 

runs per temperature iteration. 
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Figure 5.9: VPR Placement λ and Criticality Exponent Tuning for Depth = 1 MCNC Netlists, Phase 1 
“X” denotes that a single netlist failed to route on the 1.2x minimum channel width architecture.  The wire and routed 

critical path delay shown exclude the failed netlist.  Results with more than one unroutable netlist are excluded entirely. 
 

The next round of testing began back at λ = 0.5, but reduced the criticality exponent to 4.  The testing 

methodology used to explore the benefits of reducing λ for a criticality exponent of 8 was repeated.  The 

best results with a criticality exponent of 4 that had an average wire cost below 1.00 were obtained with λ = 

0.3 and 10,000 static timing analysis runs per temperature iteration.  Similar testing was repeated for 

criticality exponents of 2 and 1.  Based on these results, a second phase of testing, shown in Figure 5.10 

and Table 5.5 explored the possibilities of reducing λ further, but increasing the criticality exponent.  A 

similar testing methodology was used to find the best critical path delay results for each criticality exponent 

from 8 to 12.  Like the previous testing, this focused on finding parameters that produced placements with 

an average normalized wire cost below 1.0. 

 

These two rounds of testing showed that VPR obtained the best placements with the parameters (λ=0.3, 

crit. exponent = 8) and 10,000 static timing analysis runs per temperature iteration.  Although very slow 

and potentially flirting with instability in the placement, this showed enormous potential.  The geometric 

mean routed critical path delay was improved by 0.618x while the geometric mean wire cost was improved 

by 0.984x.  Furthermore, this testing also corroborates the supposition made in Section 5.3 regarding the  
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Figure 5.10: VPR Placement λ and Criticality Exponent  
Tuning for Depth = 1 MCNC Netlists, Phase 2 

“X” denotes that a single netlist failed to route on the 1.2x minimum channel width architecture.  The wire and routed  
critical path delay shown exclude the failed netlist.  Results with more than one unroutable netlist are excluded entirely. 

 

way that registers affect circuit timing during placement.  As seen in Figure 5.11, the large discrepancy 

between the benefits seen by combinational and sequential circuits has largely evaporated.  This is likely 

because both sets of netlists now contain a large number of registers, making all of them relatively sensitive 

to stale timing information. 

 

Taking a step back for a moment, the difficulties encountered producing high-quality timing-driven 

placements, particularly for pipelined netlists, should not be surprising.  Placement for pipelined netlists has 

been a known difficult problem for some time.  For example, the deeply pipelined radio cross-correlator in 

[41] was laboriously hand-placed by the author to achieve good performance.  This painstaking process 

even inspired the authors of [4] to develop a specific tool to assist in manual pipelining and placement.  The 

extreme difficulty of such an endeavor, given the scale of even relatively small FPGA designs, is likely 

indicative of the complexities these netlists present to the design flow. 
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Table 5.4: VPR Placement λ and Criticality Exponent Tuning for Depth = 1 MCNC Netlists, Phase 1 
  Combinational Circuits Only Sequential Circuits Only All Circuits 

Crit Exp , λ STA Norm. 
Wire Cost 

Norm. 
Routed CPD 

Norm. 
Wire Cost 

Norm. 
Routed CPD 

Norm. 
Wire Cost 

Norm. 
Routed CPD 

8, 0.5 1 1.000 1.000 1.000 1.000 1.000 1.000 
 10 1.040 0.982 1.071* 0.911* (3) 1.053* 0.952* (3) 
 100 1.016 0.767 1.060* 0.719* (5) 1.031* 0.749* (5) 
 1000 1.176* 0.687* (9) 1.072* 0.680* (7) 1.106* 0.682* (16) 

8, 0.4 1 0.969 1.005 0.936 0.990 0.952 0.997 
 10 0.990 0.882 1.027 0.846 1.008 0.864 
 100 0.995 0.783 1.065* 0.740* (1) 1.028* 0.762* (1) 
 1000 1.047 0.707 1.084* 0.646* (1) 1.065* 0.677* (1) 
 10000 1.089 0.736 1.112* 0.585* (3) 1.099* 0.668* (3) 

8, 0.3 1 0.939 1.011 0.883 1.055 0.911 1.033 
 10 0.947 0.885 0.962 0.907 0.955 0.896 
 100 0.942 0.835 0.978 0.717 0.960 0.774 
 1000 0.963 0.733 1.014* 0.669* (1) 0.988* 0.702* (1) 
 10000 0.952 0.628 1.018 0.607 0.984 0.618 

8, 0.2 1 0.900 1.005 0.861 1.157 0.880 1.078 
 10 0.912 0.926 0.883 0.950 0.897 0.938 
 100 0.910 0.808 0.884 0.841 0.897 0.824 
 1000 0.909 0.722 0.911 0.772 0.910 0.747 
 10000 0.912 0.706 0.908 0.687 0.910 0.696 

4, 0.5 1 0.999 0.942 1.007 1.020 1.003 0.980 
 10 1.022 0.823 1.111* 0.835* (1) 1.061* 0.828* (1) 
 100 1.008 0.688 1.079* 0.624* (5) 1.033* 0.664* (5) 

4, 0.4 1 0.950 0.901 0.945 1.014 0.947 0.956 
 10 0.964 0.815 1.003 0.862 0.983 0.838 
 100 0.959 0.741 1.005 0.693 0.982 0.717 
 1000 0.965 0.682 1.054 0.652 1.008 0.666 
 10000 0.966 0.689 1.062 0.665 1.013 0.677 

4, 0.3 1 0.914 0.966 0.892 1.052 0.903 1.008 
 10 0.923 0.828 0.922 0.861 0.923 0.844 
 100 0.926 0.738 0.925 0.716 0.926 0.726 
 1000 0.924 0.715 0.942 0.708 0.933 0.712 
 10000 0.923 0.755 0.946 0.664 0.934 0.708 

2, 0.5 1 0.972 0.902 0.984 0.932 0.978 0.917 
 10 0.975 0.817 1.014 0.751 0.994 0.783 
 100 0.980 0.719 1.008* 0.668* (2) 0.993* 0.695* (2) 

2, 0.4 1 0.931 0.893 0.915 0.932 0.923 0.913 
 10 0.933 0.821 0.949 0.786 0.941 0.804 
 100 0.936 0.784 0.943 0.723 0.939 0.753 
 1000 0.940 0.793 0.950 0.741 0.945 0.766 
 10000 0.936 0.765 0.949 0.723 0.942 0.744 

2, 0.3 1 0.904 0.936 0.878 1.018 0.891 0.976 
 10 0.906 0.850 0.888 0.942 0.897 0.895 
 100 0.905 0.813 0.897 0.823 0.901 0.818 
 1000 0.908 0.850 0.889 0.807 0.899 0.828 
 10000 0.906 0.837 0.897 0.793 0.901 0.815 

1, 0.6 1 1.003 0.891 1.018 0.884 1.011 0.888 
 10 0.996 0.845 1.013* 0.810* (1) 1.004* 0.828* (1) 
 100 0.994 0.876 1.011* 0.867* (2) 1.002* 0.872* (2) 

1, 0.5 1 0.956 0.909 0.953 0.879 0.955 0.894 
 10 0.956 0.884 0.961 0.831 0.959 0.857 
 100 0.955 0.860 0.958 0.827 0.956 0.844 
 1000 0.958 0.875 0.950* 0.806* (1) 0.954* 0.842* (1) 
 10000 0.957 0.845 0.958* 0.810* (2) 0.957* 0.829* (2) 

1, 0.4 1 0.921 0.942 0.909 0.902 0.915 0.922 
 10 0.920 0.899 0.916 0.848 0.918 0.873 
 100 0.926 0.882 0.913 0.876 0.920 0.879 
 1000 0.923 0.889 0.917 0.875 0.920 0.882 
 10000 0.925 0.909 0.911 0.882 0.918 0.895 

*Indicates that some of the netlists failed to route on the 1.2x minimum channel width architecture provided.  The number of 
failed netlists is indicated in parenthesis.  The wire and routed critical path delay shown exclude the failed netlists. 
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Table 5.5: VPR Placement λ and Criticality Exponent Tuning for Depth = 1 MCNC Netlists, Phase 2 
  Combinational Circuits Only Sequential Circuits Only All Circuits 

Crit Exp , λ STA Norm. 
Wire Cost 

Norm. 
Routed CPD 

Norm. 
Wire Cost 

Norm. 
Routed CPD 

Norm. 
Wire Cost 

Norm. 
Routed CPD 

8, 0.5 1 1.000 1.000 1.000 1.000 1.000 1.000 
 10 1.040 0.982 1.071* 0.911* (3) 1.053* 0.952* (3) 
 100 1.016 0.767 1.060* 0.719* (5) 1.031* 0.749* (5) 
 1000 1.176* 0.687* (9) 1.072* 0.680* (7) 1.106* 0.682* (16) 

8, 0.4 1 0.969 1.005 0.936 0.990 0.952 0.997 
 10 0.990 0.882 1.027 0.846 1.008 0.864 
 100 0.995 0.783 1.065* 0.740* (1) 1.028* 0.762* (1) 
 1000 1.047 0.707 1.084* 0.646* (1) 1.065* 0.677* (1) 
 10000 1.089 0.736 1.112* 0.585* (3) 1.099* 0.668* (3) 

8, 0.3 1 0.939 1.011 0.883 1.055 0.911 1.033 
 10 0.947 0.885 0.962 0.907 0.955 0.896 
 100 0.942 0.835 0.978 0.717 0.960 0.774 
 1000 0.963 0.733 1.014* 0.669* (1) 0.988* 0.702* (1) 
 10000 0.952 0.628 1.018 0.607 0.984 0.618 

8, 0.2 1 0.900 1.005 0.861 1.157 0.880 1.078 
 10 0.912 0.926 0.883 0.950 0.897 0.938 
 100 0.910 0.808 0.884 0.841 0.897 0.824 
 1000 0.909 0.722 0.911 0.772 0.910 0.747 
 10000 0.912 0.706 0.908 0.687 0.910 0.696 

10, 0.4 1 0.968 1.005 0.930 1.070 0.949 1.037 
 10 0.994 0.898 0.992 0.936 0.993 0.917 
 100 0.991 0.818 1.063* 0.764* (2) 1.026* 0.793* (2) 

10, 0.3 1 0.935 0.988 0.889 1.152 0.912 1.067 
 10 0.951 0.898 0.960 0.927 0.955 0.912 
 100 0.946 0.795 0.984 0.757 0.965 0.775 
 1000 0.963 0.690 0.997* 0.616* (1) 0.980* 0.654* (1) 
 10000 0.969 0.675 1.003 0.585 0.986 0.629 

10, 0.2 1 0.900 1.049 0.861 1.154 0.880 1.100 
 10 0.916 0.904 0.885 0.988 0.901 0.945 
 100 0.923 0.910 0.896 0.830 0.910 0.869 
 1000 0.919 0.746 0.925 0.788 0.922 0.767 
 10000 0.923 0.720 0.926 0.661 0.925 0.690 

12. 0.4 1 0.966 1.031 0.919 1.079 0.942 1.055 
 10 0.990 0.919 0.997 0.980 0.994 0.949 
 100 0.988 0.846 1.034* 0.845* (1) 1.011* 0.846* (1) 
 1000 1.064 0.748 1.070* 0.633* (2) 1.067* 0.694* (2) 

12, 0.3 1 0.939 1.029 0.895 1.067 0.917 1.048 
 10 0.953 0.912 0.942 0.893 0.948 0.903 
 100 0.955 0.861 0.987* 0.724* (1) 0.971* 0.793* (1) 
 1000 0.978 0.648 0.995 0.662 0.987 0.655 
 10000 0.995 0.681 0.997 0.625 0.996 0.652 

12, 0.2 1 0.910 1.035 0.856 1.162 0.882 1.096 
 10 0.925 0.975 0.891 1.038 0.908 1.006 
 100 0.919 0.888 0.899 0.918 0.909 0.903 
 1000 0.921 0.678 0.932 0.746 0.926 0.711 
 10000 0.930 0.674 0.925 0.656 0.927 0.665 

* Indicates that some of the netlists failed to route on the 1.2x minimum channel width architecture provided.  The number of failed 
netlists is indicated in parenthesis.  The wire and routed critical path delay shown exclude the failed netlists. 
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Figure 5.11: Similarity in VPR Placement for Depth = 1 Combinational and  
Sequential MCNC Netlists, (λ = 0.3, Criticality Exponent = 8) 

 

5.5: Efficient and Stable Placement 

Looking back at the problems encountered during placement, two primary issues come forward.  First, to 

produce high quality placements the annealer must have up-to-date criticality information.  How can this be 

obtained without resorting to the computationally impractical solution of performing a full static timing 

analysis after each move?  Second, worrisome instability develops during the annealing process when fresh 

timing information is used during the placement of registered netlists.  What can be done to stabilize the 

system? 

 

Current timing information can be obtained with low computational effort by making simple incremental 

changes to link slack.  Although the methodology outlined in this section can only, in the worst case, 

estimate criticality, it does provide enough information to the placement tool to reveal shifts in timing 

significance.  While nothing can replace a full static timing analysis performed at the beginning of each 

temperature iteration, this approach can help maintain the relevance of criticality information in the 

meantime by reflecting changes in link delay on link slack.   

 

Each time an annealing move is made, VPR’s timing-driven placement algorithm already evaluates the 

change in link delay for all sources and sinks connected to the migrated blocks.  This is seen in Equation 

5.3.  However, as seen in Equations 5.9 and 5.10, if this change in link delay is subtracted from the link 
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slack, an estimated source/sink criticality for the new placement can be easily recalculated.  While less 

accurate than a complete timing analysis, this only requires two additional add/subtracts and one 

multiplication/division to preserve the majority of the accuracy of the netlist’s criticality information.   

 

 ),,,()1,,,(),,,( lkjiDelaylkjiSlacklkjiSlack ∆−−=    (5.9) 

 

 
)(

),,,(
1),,,(

max kD

lkjiSlack
lkjiyCriticalit −=    (5.10) 

 

The top left and top right illustrations of Figure 5.12 show this technique in action.  Here, the example from 

Figure 5.2 is revisited, but now the placement tool incrementally updates the slack and link criticality 

information.  The suggested move decreases the delay on (a, c) by six units from 7 to 1 and increases the 

delay on (a, b) by six units from 1 to 7.  To evaluate the quality of the new placement, this change is 

reflected on the links’ slacks.  Since (a, c) was on the critical path, the original slack was 0.  Thus, the six 

unit drop in delay can be accounted for and the new slack on this link becomes (0 - (-6) = 6).  This updated 

slack can then be easily turned into a new criticality.  In this case, the system still believes that the critical 

path is 10 units, so the new criticality of (a, c) is 0.4.  Similarly the six unit increase in delay on (a, b) can 

be accounted for by updating the slack to (5 -  6 = -1).  This makes the criticality of this link 1.1.  Finally, 

the timing cost of this new placement can be computed based upon the incrementally updated timing 

information.  From this the annealer can now see that the new placement is not as good as the previous one. 

 

Although this methodology does effectively address the large-scale problem of placement in the face of 

inaccurate timing information, it should be noted that this technique cannot guarantee perfect criticality 

7/0/1.0

If slack updated incrementally, then link criticality 
recalculated:
Timing Cost = (2+1)* 1.0 + 7*1.1 + 1*0.4 + 2*0.5 = 12.1
Still believes critical path is 10

2/0/1.0

2/0/1.0

Initial placement & static timing analysis:
Timing Cost = (2+7+1)*1.0 + (1+2)*0.5 = 11.5
Critical Path Delay = 10

1/0/1.0

a b

c

1/5/0.5 2/5/0.5

a

b

c

7/-1/1.1
2/5/0.5

1/6/0.4 1/0/1.0

2/0/1.0

If full timing analysis is run instead:
Timing Cost =(2+7+2)* 1.0 + (1+1)*0.36 = 11.72
Critical Path = 11

a

b

c

7/0/1.0

1/7/0.36 1/7/0.36

2/0/1.0

 

Figure 5.12: Incremental Slack, Criticality Updating and Accuracy 
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data – that would require true static timing analysis.  The bottom diagram of Figure 5.12 shows the link 

slack, criticality and timing cost of the new placement as calculated with exact static timing analysis 

information.  Comparing the details of calculations performed for the two techniques, there are at least two 

small problems.  First, the incremental slack approach does not realize that the current critical path delay 

for the system has changed.  Second, the emphasis placed on the links between blocks b and c and the 

output pads is incorrect.  However, the suggested estimates do track well, especially considering the 

extremely low computational requirements.  Furthermore, the accuracy of this technique is particularly high 

for heavily registered circuits.  The problem of inaccuracy mainly stems from the fact that this approach 

only updates the criticality information of the nets directly connected to the moved block.  However, the 

timing of the links between blocks b and c and the output pads changes because b and c are logic blocks.  If 

these were registers, the criticality of the connections to the output pads would not change unless the 

critical path delay of the entire system changed.  Thus, because the computation is broken into so many 

separate pieces in a heavily registered netlist, this technique largely correctly calculates link criticality, at 

least relative to the critical path delay found during the last static timing analysis. 

 

However, absolutely perfect timing information is not necessarily desirable.  Rather, relative criticality is 

far more important.  Figure 5.13 revisits the registered example from Figure 5.7, but calculates the timing 

cost before and after a move with completely correct timing information.  Using this methodology, the 

placement tool does shy away from the more unbalanced solution in the top right, but still tends towards the 

equally unbalanced solution on the bottom right.  The optimal solution on the bottom left is not chosen 

because both the input and output nets are critical.  Although the critical path delay is lower, two critical 

links become more expensive as compared to one critical and one semi-critical connection.  To prevent 

this, the placement tool must take into account the relative criticality of links before and after each move.  

Figure 5.14 again calculates the timing cost before and after a move, but now uses the old critical path 

delay to calculate the criticality of links in the new placement.  This technique allows the system to realize 

 

4/1.0 2/0.5 1/0.2 5/1.0

Timing Cost = 4*1.0 + 2*0.5 = 5.0 Timing Cost =1*0.2 + 5*1.0 = 5.2

3/1.03/1.0
Timing Cost = (3 + 3)*1.0 = 6.0 X

2/0.5 4/1.0

Timing Cost = 2*0.5 + 4*1.0 = 5.0

X

 

Figure 5.13: Problems with Perfect Timing Information 
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2/0.5 4/1.0
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Figure 5.14: Calculating Relative Change in Criticality 
 

that reducing the overall critical path delay can be far more important, even if this means creating multiple 

highly critical connections.  This type of behavior is naturally built into the incremental update technique. 

 

This discussion leads directly to the second issue – what is the source of the instability in the classical 

placement technique for registered circuits?  Essentially, the problems encountered were caused by the fact 

that even when the tool updated its timing information, it did not account for the change in criticality before 

and after a given move.  This created a mismatch between the real criticalities in the new placement and the 

criticalities used to calculate the cost of the new placement.  This caused the system to unwittingly prefer 

unbalanced delay, which opened the door for potential oscillation.  However, since the incremental 

criticality updating technique described above makes it possible to evaluate relative timing information 

after every single move, the placement tool can compare the cost of the old placement, calculated with the 

old criticalities, with the cost of the new placement, calculated with the new relative criticalities.  This leads 

to subtle, yet extremely importance difference in the cost function. 

 

More formally, given the incremental slack update approach in Equations 5.9 and 5.10, the new criticality 

of each source/sink link is determined after a move based upon the critical path delay of the system found 

at the beginning of the temperature iteration.  Since the delay of each source/sink pair is updated after each 

move, the timing cost of a given placement can be defined as the summation of all source/sink delays 

multiplied by their current estimated criticality.  This is shown in Equations 5.11 and 5.12 

 

 ExpCritlkjiyCriticalitlkjiDelaylkji _),,,(*),,,(),,,(tTiming_Cos =   (5.11) 

 

 ∑= ),,,(tTiming_Cos),t(Timing_Cos lkjilk    (5.12) 
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Balanced Delay
Delayx � FF � Delayx
Critical Path = Delayx

Imbalanced, Contracted Delay
Delayy � FF � Delayz
Critical Path = Delayz

Delayz > Delayx, but 2 * Delayx > Delayy + Delayz

FF

 

Figure 5.15: Example of Contraction and Imbalance 
 

Taking a look at how this affects the way changes between two placements actually manifest, the timing 

cost delta is now calculated in an inherently different way.  This is shown in Equation 5.13. Here, the 

previous delay is multiplied by the previous criticality and the new delay is multiplied by the new 

criticality.  This is quite different from the timing cost delta shown in Equation 5.3 and leans heavily 

towards the most accurate algorithm suggested by the example in Figure 5.14. 
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5.6: Delay Imbalance and Optimality 

One key feature of the approach described above is that it removes the tendency of the system to prefer 

unbalanced placements.  However, the examples shown thus far have made some assumptions regarding 

the underlying architecture.  If a netlist is placed on a device that provides different resources, this can 

change the behavior of the suggested technique and may cause the annealer to favor unbalanced 

placements. 

 

For example, the scenario in Figure 5.14 assumes that as long as the register is placed somewhere between 

the input and output pins, the total amount of delay on the input and output nets summed together will be 

the same regardless of the balance between these two connections.  That is, to make one link slower, 

another link must get faster by an equal amount.  While this is generally true, this is not necessarily the 

case, particularly in devices with longer wire segments.  This difference in total delay along a path can 

affect the way the placer deals with balanced versus unbalanced connections. 
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Consider the two placements in Figure 5.15 on an architecture with length-four wires.  The placement on 

the left is faster because the delay between the input and output connections is balanced.  However, the 

annealer may prefer the placement on the right because the total delay on the input and output nets is 

slightly smaller.  Rather than using four full wires, the placement on the right uses three full wires and a 

short length-one stub.  The timing cost for the two placements is shown in Equation 5.14 and Equation 

5.15. 
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Comparing these two equations and simplifying, the annealer will prefer the unbalanced placement if 

Equation 5.16 is true.  Thus, some obvious questions are: 1) for what values of Delayy and Delayz does this 

relationship hold, and 2) how much slower can Delayz be compared to Delayx? 

 

 )1_()1_()1_(*2 +++ +> ExpCrit
z

ExpCrit
y

ExpCrit
x DelayDelayDelay   (5.16) 

 

To answer these questions, the three delay terms can be related to each other by incorporating two 

additional variables: a contraction term and a balance term.  As seen in Equation 5.17, the contraction term 

defines how much smaller the total delay of the unbalanced placement is compared to the balanced 

placement.  As seen in Equation 5.18, the balance term determines how much larger Delayz is compared to 

Delayy. 

  

 xzy DelaynContractioDelayDelay *2*=+   (5.17) 

 

 zy DelayBalanceDelay *=   (5.18) 

 

Plugging Equations 5.17 and 5.18 into Equation 5.16 and solving for the contraction term results in 

Equation 5.19. 
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This equation can then be graphed varying both the balance and the criticality exponent terms.  This is 

shown in Figure 5.16.  Any contraction value below the indicated lines will cause the annealer to prefer the 

unbalanced placement.  For example, using a criticality exponent of 1 allows the system to prefer 

unbalanced placements with relatively little contraction.  Delayz can be twice as large as Delayy (balance = 

0.5) as long as the total amount of delay along the unbalanced placement is less than about 0.95x the total 

delay along the balanced placement (Delayz + Delayy ≤ 0.95 * [Delayx + Delayx]). 

 

These contraction and balance values can be plugged back into Equation 5.17 and 5.18 to get the values of 

Delayz, normalizing Delayx to 1.0.  This is shown in Figure 5.17.  In this case, the annealer will prefer the 

unbalanced placement if Delayz is below the values indicated by the various lines.  For the parameters used 

previously (crit exponent = 1, balance = 0.5, contraction ≈ 0.95), this means that Delayz can be nearly 1.27x 

Delayx. 

 

However, taking at closer look at Figure 5.16 and Figure 5.17, the potential sub-optimality of the placement 

tool cannot get very bad for typical criticality exponent values.  From the prospective of placement 

imbalance, the slope of the criticality exponent 8, 10 and 12 lines in Figure 5.16 is relatively high.  For 

example, an imbalance of (Delayx = 0.75 * Delayz) requires contraction factor of less than about 0.93x for 

any criticality exponent larger than 8.  However, it is unlikely that such paths will exist in real FPGAs.  

While there may be a slight difference between the fastest paths through different register locations in some 

architectures, this difference will likely be relatively small, perhaps no more than a few percent.  Therefore, 

it is unlikely that the placement tool will encounter a situation in which such a viable unbalanced placement 

exists.   

 

For that matter, this will also generally not affect the final critical path delay.  This is because, as seen in 

Figure 5.17, the maximum allowable values of Delayz drop very quickly as the criticality exponent is 

raised.  For criticality exponents of 8, 10 and 12, Delayz can only become about 1.08x, 1.07x, and 1.05x 

worse, respectively.  Thus, while the system may prefer unbalanced placements to a certain extent under 

some special circumstances, the potential for this to cause larger problems is likely relatively low.  This is 

particularly true if the criticality exponent is kept relatively high.  Although unbalanced placements will not 

genuinely affect the testing performed in this chapter since the architecture used has unit-length wires, it is 

likely best to keep the criticality exponent as high as possible.  This will become important in Chapter 6. 
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Figure 5.16: Total Delay Contraction as a Function of Criticality Exponent and Balance 
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Figure 5.17: Solving for Maximum Delayz Values 



49 

 

5.7: Testing and Results 

The improved timing-driven placement technique with incremental criticality updating and the 

reformulated cost function was tested using the same set of 22 classical and 22 depth = 1 MCNC netlists.  

With the exception of the placement tool, all other considerations were kept the same.  That is, the netlists 

were packed with T-VPack, placed onto minimum-sized 4lut_sanitized architectures with 1.2x the 

minimum channel width as found by default VPR and routed using the built-in VPR timing-driven routing 

tool with A* disabled.  Due to the fundamental changes made to the annealing structure, different λ and 

criticality exponent parameters were explored.  The results of this testing for the original MCNC netlists are 

shown in Figure 5.18 and the results for the depth = 1 netlists are shown in Figure 5.19.  More detailed 

results for this tuning process are provided in Table 5.6 and Table 5.7.  As with the earlier testing, to 

provide easy comparison with the results from VPR, all wire costs and post-routing critical path delays 

reported have been normalized to the default VPR results.  Also, as in the earlier testing, the best placement 

parameters were determined by selecting the results with the best geometric mean critical path that still 

maintained a geometric mean wire cost below 1.0. 

 

The most obvious result of this testing is that placement with the new cost formulation requires much 

smaller values of λ to produce good results.  While VPR obtained the best placements with (λ  = 0.3), this 

new tool required (λ  = 0.1) for the conventional MCNC netlists and (λ  = 0.025) for the heavily registered 

circuits.  Looking at Equations 5.9 and 5.10, the cause of this tendency becomes clear.  When the new 

placer reduces delay on a given link, from the standpoint of the classical VPR framework, the modified cost 

formulation somewhat double-counts this reduction.  This is because, unlike what VPR is expecting, the 

criticality of this link will also be updated to reflect the smaller delay.  Thus, when the two factors are 

multiplied together, the new delta timing cost is naturally much larger than the range that the existing VPR 

framework is expecting.  A similar situation holds true for when delay is increased on a given link. 

 

Looking at the results in Figure 5.18 and Table 5.6, the new incremental slack update technique combined 

with the reformulated cost function produces the best placements on the purely combinational or lightly 

registered original MCNC netlists when the parameters (λ  = 0.1, criticality exponent = 12) are used.  The 

new placement approach was able to produce an average critical path delay 0.888x faster than the default 

VPR placer with a slightly better 0.981x average wire cost.  Additional details of the placement results on 

the original MCNC netlists with the parameters (λ  = 0.1, criticality exponent = 12) are shown in Table 5.8.  

As an aside, it should be noted that while some of the placements performed with the new incremental 

update approach failed to route, unlike VPR with frequent static timing analysis, this is likely not due to 

convergence problems caused by instability within the placer itself but simply because the λ factor was too 

high, guiding the annealing towards placements with slightly larger wire costs. 
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Figure 5.18: Incremental Criticality Update Placement λ and Criticality  
Exponent Tuning for Conventional MCNC Netlists 

“X” denotes that a single netlist failed to route on the 1.2x minimum channel width architecture. 
The wire and routed critical path delay shown exclude the failed netlist. 

 

Table 5.6: Incremental Criticality Update Placement λ and Criticality Exponent  
Tuning for Conventional MCNC Netlists 

 Combinational Circuits Only Sequential Circuits Only All Circuits 

Crit Exp , λ Norm. 
Wire Cost 

Norm. 
Routed CPD 

Norm. 
Wire Cost 

Norm. 
Routed CPD 

Norm. 
Wire Cost 

Norm. 
Routed CPD 

8, 0.3 1.038 0.927 1.032* 0.885* (1) 1.036* 0.909* (1) 
8, 0.2 1.004 0.952 1.008 0.859 1.006 0.904 
8, 0.1 0.970 1.002 0.971 0.846 0.971 0.921 
10, 0.3 1.058 0.906 1.054* 0.816* (1) 1.056* 0.862* (1) 
10, 0.2 1.013 0.923 1.028 0.809 1.021 0.864 
10, 0.1 0.976 0.952 0.977 0.835 0.977 0.892 
12, 0.3 1.076 1.002 1.059* 0.813* (1) 1.068* 0.907* (1) 
12, 0.2 1.022 0.951 1.043 0.809 1.032 0.877 
12, 0.1 0.983 0.963 0.979 0.820 0.981 0.888 

       
Default VPR 1.000 1.000 1.000 1.000 1.000 1.000 
Best VPR w/ 

Frequent STA 
0.985 0.924 0.968 0.825 0.977 0.873 

* Indicates that some of the netlists failed to route on the 1.2x minimum channel width architecture.  The number of failed netlists is 
indicated in parenthesis.  The wire and routed critical path delay shown exclude the failed netlists. 

 

Looking at the results in Figure 5.19 and Table 5.7, the new placement technique produces the best results 

on the heavily registered depth = 1 MCNC netlists when the parameters (λ  = 0.05, criticality exponent = 8) 

are used.  This produced 0.581x better post-routing critical path delay compared to default VPR placement  
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Figure 5.19: Incremental Criticality Update Placement λ and 
Criticality Exponent Tuning for Depth = 1 MCNC Netl ists 

“X” denotes that a single netlist failed to route on the 1.2x minimum channel width architecture.  The wire and routed 
critical path delay shown exclude the failed netlist.  Results with more than one unroutable netlist are excluded entirely. 

 

Table 5.7: Incremental Criticality Update Placement λ and Criticality Exponent  
Tuning for Depth = 1 MCNC Netlists 

 Combinational Circuits Only Sequential Circuits Only All Circuits 

Crit Exp , λ Norm. 
Wire Cost 

Norm. 
Routed CPD 

Norm. 
Wire Cost 

Norm. 
Routed CPD 

Norm. 
Wire Cost 

Norm. 
Routed CPD 

8, 0.1 1.021 0.604 1.134* 0.530* (3) 1.067* 0.572* (3) 
8, 0.05 0.938 0.604 0.965 0.548 0.951 0.576 
8, 0.025 0.894 0.709 0.862 0.672 0.878 0.690 
10, 0.1 1.045 0.622 1.127* 0.490* (5) 1.073* 0.572* (5) 
10, 0.05 0.963 0.611 1.019* 0.526* (1) 0.989* 0.569* (1) 
10, 0.025 0.907 0.619 0.884 0.636 0.896 0.628 
12, 0.1 1.071 0.592 1.115* 0.453* (6) 1.085* 0.548* (6) 
12, 0.05 0.976 0.578 1.070* 0.461* (3) 1.017* 0.523* (3) 
12, 0.025 0.916 0.612 0.912 0.560 0.914 0.585 

       
Default VPR 1.000 1.000 1.000 1.000 1.000 1.000 

Best VPR  
w/Frequent STA 

0.952 0.628 1.018 0.607 0.984 0.618 

* Indicates that some of the netlists failed to route on the 1.2x minimum channel width architecture.  The number of failed netlists is 
indicated in parenthesis.  The wire and routed critical path delay shown exclude the failed netlists. 

 

with 0.951x better wire cost.  Additional details of the placement results on the depth = 1 MCNC netlists 

with the parameters (λ  = 0.05, criticality exponent = 8) are shown in Table 5.9. 
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Both of these results also compare favorably with the best results produced by VPR with frequent static 

timing analysis.  Perhaps most easily seen in Figure 5.20, the results for the purely combinational or lightly 

registered original MCNC netlists only differ from the results produced by VPR with 10,000 static timing 

analysis runs per temperature iteration by a few percent.  However, the new placement technique produces 

these results with several orders of magnitude less computation.  This is because the new placement method 

only performs one static timing analysis per temperature iteration with extremely fast incremental updates 

in between.  The depth = 1 netlists produce similar results.  In this case, both placement approaches 

produce dramatically faster circuits, but the results obtained by the incremental criticality update technique 

are not only slightly better, but are also free of the runtime and stability issues associated with the more 

traditional placement approach with performed frequent static timing analysis. 
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Figure 5.20: Comparison Between VPR and Incremental Criticality Update Placement 
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Table 5.8: Conventional MCNC Netlist Placement Comparison 

 
Default VPR 

λλλλ = 0.5, CritExp = 8.0 
Frequent STA VPR 

λλλλ = 0.3, CritExp = 12, 10K STA/Temp 
Incremental Slack 

λλλλ = 0.1, CritExp = 12 
   Raw Values Norm. Values Raw Values Norm. Values 

Netlist Wire CPD Wire CPD Wire CPD Wire CPD Wire CPD 
e64 30.21 3.12E-08 29.48 3.12E-08 0.976 1.001 29.81 3.18E-08 0.987 1.019 
ex5p 178.17 6.75E-08 171.49 6.78E-08 0.963 1.005 169.60 6.99E-08 0.952 1.037 
apex4 192.57 7.74E-08 189.14 7.49E-08 0.982 0.967 184.70 8.46E-08 0.959 1.093 
misex3 199.39 7.34E-08 196.62 6.91E-08 0.986 0.942 194.78 6.75E-08 0.977 0.920 
alu4 201.10 7.83E-08 199.62 7.72E-08 0.993 0.986 199.37 7.58E-08 0.991 0.969 
des 249.48 9.12E-08 245.25 7.10E-08 0.983 0.778 258.01 7.16E-08 1.034 0.785 
seq 259.92 7.90E-08 255.99 7.01E-08 0.985 0.887 254.12 8.12E-08 0.978 1.028 

apex2 280.18 9.66E-08 274.22 8.37E-08 0.979 0.867 272.07 8.61E-08 0.971 0.892 
spla 625.59 1.35E-07 634.98 1.48E-07 1.015 1.099 627.76 1.37E-07 1.003 1.019 
pdc 934.04 1.49E-07 912.37 1.33E-07 0.977 0.892 916.11 1.54E-07 0.981 1.035 

ex1010 678.37 1.81E-07 677.56 1.43E-07 0.999 0.791 663.71 1.52E-07 0.978 0.840 
s1423 16.37 5.82E-08 15.95 5.93E-08 0.974 1.020 15.56 7.05E-08 0.950 1.213 
tseng 102.62 5.53E-08 96.77 5.17E-08 0.943 0.936 95.51 5.58E-08 0.931 1.010 
dsip 199.69 7.34E-08 193.36 5.39E-08 0.968 0.734 228.00 4.82E-08 1.142 0.656 

diffeq 157.43 6.24E-08 149.72 6.47E-08 0.951 1.037 147.88 6.24E-08 0.939 1.001 
bigkey 206.92 7.56E-08 204.73 5.27E-08 0.989 0.697 237.22 4.32E-08 1.146 0.572 
s298 228.22 1.32E-07 217.23 1.28E-07 0.952 0.971 211.04 1.33E-07 0.925 1.009 
frisc 584.86 1.62E-07 557.68 1.26E-07 0.954 0.780 536.85 1.29E-07 0.918 0.798 

elliptic 502.36 1.11E-07 483.49 1.07E-07 0.962 0.964 465.58 9.55E-08 0.927 0.862 
s38584.1 678.84 1.06E-07 673.69 7.32E-08 0.992 0.694 686.95 7.14E-08 1.012 0.677 
s38417 693.47 1.02E-07 675.70 7.69E-08 0.974 0.751 663.02 8.10E-08 0.956 0.792 
clma 1481.57 2.42E-07 1472.54 1.50E-07 0.994 0.622 1424.74 1.59E-07 0.962 0.658 

Geometric Mean     0.977 0.873   0.981 0.888 
 

Table 5.9: Depth = 1 MCNC Netlist Placement Comparison 

 
Default VPR 

λλλλ = 0.5, CritExp = 8.0 
Frequent STA VPR 

λλλλ = 0.3, CritExp = 8.0, 10K STA/Temp 
Incremental Slack 

λλλλ = 0.05, CritExp = 8 
   Raw Values Norm. Values Raw Values Norm. Values 

Netlist Wire CPD Wire CPD Wire CPD Wire CPD Wire CPD 
e64 44.35 1.99E-08 41.59 1.17E-08 0.938 0.589 41.79 1.12E-08 0.942 0.560 
ex5p 224.83 2.65E-08 218.35 2.12E-08 0.971 0.799 216.26 1.64E-08 0.962 0.618 
apex4 213.56 3.24E-08 208.40 2.13E-08 0.976 0.658 204.83 1.87E-08 0.959 0.577 
misex3 269.73 3.53E-08 250.93 2.89E-08 0.930 0.817 242.11 2.30E-08 0.898 0.651 
alu4 291.84 3.83E-08 256.71 3.12E-08 0.880 0.814 258.31 2.64E-08 0.885 0.688 
des 352.68 4.65E-08 345.94 2.43E-08 0.981 0.522 347.54 2.05E-08 0.985 0.440 
seq 355.04 4.49E-08 331.02 2.42E-08 0.932 0.539 332.32 2.36E-08 0.936 0.525 

apex2 407.76 4.03E-08 372.87 2.43E-08 0.914 0.603 369.61 2.43E-08 0.906 0.602 
spla 846.56 5.33E-08 827.47 3.13E-08 0.977 0.587 806.31 6.08E-08 0.952 1.142 
pdc 1185.60 7.69E-08 1175.18 3.48E-08 0.991 0.453 1125.07 3.30E-08 0.949 0.429 

ex1010 876.20 5.40E-08 866.71 3.51E-08 0.989 0.649 825.82 3.46E-08 0.943 0.641 
s1423 75.38 2.24E-08 73.87 1.67E-08 0.980 0.745 68.83 9.90E-09 0.913 0.442 
tseng 308.53 4.55E-08 326.61 2.61E-08 1.059 0.573 318.98 2.64E-08 1.034 0.579 
dsip 259.39 4.31E-08 227.70 2.90E-08 0.878 0.672 235.66 2.58E-08 0.909 0.598 

diffeq 485.70 5.38E-08 507.69 2.67E-08 1.045 0.496 492.11 2.66E-08 1.013 0.495 
bigkey 269.51 4.70E-08 258.60 2.78E-08 0.960 0.590 254.68 3.30E-08 0.945 0.701 
s298 456.04 4.85E-08 442.93 3.60E-08 0.971 0.742 438.58 2.70E-08 0.962 0.556 
frisc 1427.26 7.17E-08 1554.43 2.79E-08 1.089 0.388 1454.20 2.78E-08 1.019 0.388 

elliptic 1430.86 8.41E-08 1453.92 4.52E-08 1.016 0.537 1395.34 4.76E-08 0.975 0.566 
s38584.1 1721.81 1.19E-07 1812.62 9.16E-08 1.053 0.769 1617.91 8.12E-08 0.940 0.681 
s38417 1976.38 7.21E-08 2399.60 4.74E-08 1.214 0.657 2006.69 3.40E-08 1.015 0.472 
clma 2414.58 9.42E-08 2329.40 5.91E-08 0.965 0.627 2167.83 6.11E-08 0.898 0.649 

Geometric Mean     0.984 0.618   0.951 0.576 
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5.8: Conclusions and Future Research 

This chapter identified a longstanding but relatively poorly understood problem surrounding FPGA 

placement.  Although previous research has shown that timing-driven placement can improve critical path 

delay for conventional netlists, existing methodologies have a fundamental shortcoming.  Specifically, 

classical placement relies solely on the link criticality information provided by static timing analysis.  

However, static timing analysis is too computationally expensive to perform very often, so the bulk of the 

optimizations performed by conventional annealing is done with stale and potentially very inaccurate 

timing information. 

 

Although this can be mitigated somewhat by simply running static timing analysis more often, not only 

does this dramatically increase the computational requirements of the placement tool, it does not truly 

address the larger scale problem.  Inherently, the placement tool must be able to accurately evaluate the 

change in timing considerations before and after each annealing move.  While increasing the amount of 

static timing analysis can improve the wider-scope accuracy of the timing information, conventional 

placement approaches still use old timing information on a move-by-move basis.  Although subtle, this 

approach makes the intrinsic assumption that the critically of any given connection in the system will not 

change very quickly.  However, as demonstrated, this is clearly not true, even for simple registered circuits.  

This very basic incorrect assumption can cause the system to prefer degenerate solutions.  While this limits 

the potential benefits of more accurate timing information, more seriously it can open the door for 

oscillations during the placement of heavily registered applications.  These oscillations can results in severe 

convergence problems that destroy the basic functionality of the placement tool.  Oddly enough, this is an 

issue that can also plague timing-driven routers and this concept will be revisited in Chapter 7 during the 

discussion of register-aware routing. 

 

This chapter suggests two modifications to the classic timing-driven placement approach that address these 

issues.  First, the accuracy of timing information can be maintained very efficiently by applying 

incremental changes during placement.  While this approach cannot guarantee completely accurate 

criticality information, this fundamental difference enables the system to evaluate the timing situation of a 

placement on a per-move basis.  This new capability naturally leads to a change in the cost function.  

Degenerate solutions and the accompanying oscillations can be avoided by reflecting potential changes 

made to link criticality in the cost of a move.  This new approach produces much higher quality placements 

without significant affecting the computational requirements. For conventional combinational or lightly 

registered netlists it produce placements that are on average 0.888x faster in terms critical path delay with 

no degradation in routability.  For heavily registered netlists it generated placements that are 0.581x faster 

with 0.951x better wirelength. 
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While this approach dramatically improves placement quality, this is not to say that this topic has 

necessarily been fully explored.  Because FPGAs have fixed, finite resources and because the placement 

tool directly affects the interconnect characteristics of the final system, placement is often a lynchpin in the 

CAD process. While the next chapter will discuss many of the timing-related issues concerning how the 

placement tool interacts with earlier parts of the netlist compilation flow, there are still open questions 

regarding how accurate timing information affects the system within the placement tool itself.   

 

For example, while it is obvious that updating link criticality before the cost of a new placement is 

evaluated is important, moderately registered netlists and applications with a low logic depth present a 

unique opportunity for a different approach.  One primary problem that has been discussed is that static 

timing analysis of the entire circuit is impractical to perform frequently during annealing.  However, it is 

possible to perform an incremental static timing analysis after each annealing move.  As discussed earlier, 

determining the new critical path of the system is not essential.  Rather, determining the change in relative 

criticality is much more important.  Thus, it is possible to propagate changes in the delay on a moved block 

forwards and backwards through the circuit in some limited fashion without evaluating the entire netlist.  

These changes would only have to spread along the fan-in and fan-out cone of the moved block until they 

reached a register or an I/O pin. 

 

Of course, one reason that the incremental timing update technique described above performs so well is that 

it is very fast and its error for heavily registered circuits is extremely low.  However, circuits with a 

moderate number of registers and applications with a small number of logic blocks along the deepest path 

are particularly amenable to updating with a limited static timing analysis.  This is because the number of 

logic blocks that would need to be updated after a move is relatively small. Thus, it is possible that a 

limited, but incremental static timing analysis can be performed very quickly and could provide even better 

accuracy.  Incorporating such a technique into the placer could lead to even better results. 

 

Furthermore, this chapter has focused on simulated annealing-based placement.  While the basic issues 

addressed in this chapter are important for virtually all placement algorithms, actually applying these 

techniques and the impact they will have is not necessarily clear for other placement techniques.  It is 

generally accepted that although simulated annealing produces good results, it generally comes at the cost 

of a large runtime.  Thus, while the discussion of computational requirement in this chapter is particularly 

relevant, many commercial systems to handle very large circuits often avoid simulated annealing as much 

as possible.  These types of tools use a two-stage placement process in which a faster, but less accurate 

approach is first used to obtain a global placement. This type of tool takes the place of the early high 

temperature annealing to determine the large-scale orientation of the blocks and leaves a much simpler 

detailed placement problem for a following annealing-based placer.  In this case, since only smaller 
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optimizations need to be made, the annealing is generally started at a much lower temperature.  This, of 

course, leads to a much shorter runtime. 

 

While the problem of inaccurate timing information would seem to be a problem for any iterative 

placement algorithm, the challenges that such a two-phase system faces may be different.  First, global 

placement tools such as quadratic placement [18]  or forced-directed placement [5] have dramatically 

different techniques to incorporate timing information during the placement process [30].  This in itself 

poses a problem because it is not obvious how these tools might integrate more up-to-date timing 

information.  However, the problem even changes somewhat within the secondary annealing-based 

placement phase.  Because the larger structure of the placement has already been determined by the global 

placer, the optimizations options that are available to the annealer are much more limited and any 

improvements must be done much more quickly.  While the basic issue of annealing with stale timing 

information still stands, it would be interesting to measure the effect the suggested improvements can have 

in such a different placement situation. 
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Chapter 6: Register-Aware Placement  

The enhanced timing-driven simulated annealing algorithm described in Chapter 5 showed the benefits of 

using more accurate timing information during placement.  However, in some sense there is still an 

inherent limit to the performance benefits that can be achieved because of systemic problems in the basic 

toolflow itself.  As discussed in Chapter 4, early portions of the netlist compilation tool chain, such as logic 

synthesis and packing, define the netlist that following tools, such as placement and routing, work with.  

However, these early tools must make design choices with very little information about the interconnect 

characteristics of the final implementation.  Since the traditional toolflow is purely feed-forward, 

conventional placement and routing tools have no opportunity to fix these errors, even once this 

information is known. 

 

This chapter will describe some of the basic limitations that applications developers can encounter with the 

traditional feed-forward CAD toolflow.  The discussion will further focus on how registers in a netlist can 

make these problems worse.  This will lead to a summary of existing attempts to address this problem and 

the introduction of a new technique for placement that incorporates aspects of physical synthesis.  Physical 

synthesis optimizations change parts of the netlist based upon information that can only be obtained late in 

the netlist compilation process.  By allowing the placement tool to modify a netlist during placement, the 

system is able to significantly improve both wire cost and critical path delay. 

 

6.1: Feed-Forward Design Flow – Implications for Packing, Retiming and Placement 

Similar to writing high-performance software, developing applications for an FPGA is generally a very 

iterative process.  Until the HDL code is compiled to a routed netlist, it is very difficult to determine the 

performance or area requirements of an application.  First, the logical requirements of a netlist cannot be 

accurately measured until the application has been through synthesis, technology mapping, and packing.  

However, even at this point the packed netlist only serves as a lower bound on the necessary FPGA size 

and an upper bound on the achievable clock frequency. 

 

This is only a lower bound on the FPGA area because the subsequent placement and routing may require a 

larger fabric to provide sufficient communication resources to connect all the logic blocks together.  This is 

because some applications may have many signals that need to traverse a specific area of the chip.  If the 

number of signals exceeds the communication capacity of that area, the netlist needs to be mapped to a 

larger FPGA so that the logic blocks in congested regions can be spread out, distributing traffic over more 

routing channels.   

 

Along the same lines, this is only an upper bound on the clock frequency of the design because while the 

delay through the necessary logic can be determined, this only represents a portion of the overall delay in 
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the final circuit.  The majority of the delay in a modern FPGA is accumulated in the programmable 

interconnect.  Since the precise path a signal will take is not determined until after routing is completed, it 

is very difficult to determine a large portion of a net’s timing requirement.  All of these factors combine 

and FPGA application developers must generally go through multiple iterations from HDL code to routed 

circuit to meet performance or device area specifications.   

 

While the long engineering and debug cycle of FPGA application design can complicate the development 

of high performance circuits, in some sense the tool chain itself is somewhat constrained by its highly 

compartmentalized and feed-forward nature.  For example, as discussed in Section 4.2, conventional CAD 

tools group registers and logic together during the packing process.  However, this limits the optimizations 

that the placement tool can perform since it can only move entire logic blocks around.  While this probably 

does not create a concern for conventional netlists, the large number of registers in heavily pipelined, C-

slowed and retimed applications can cause problems.  This is because packing algorithms such as T-VPack 

[1] implicitly assume that flip-flops will be driven by a LUT and the two should be packed into the same 

CLB whenever possible.  While this approach is likely sufficient if the number of registers in the circuit is 

relatively low, heavily registered netlists will likely have signals with many flip-flops. 

 

These multi-register connections create two problems.  Consider the example in Figure 6.1.  If this circuit is 

mapped to an architecture that has two LUTs and 2 flip-flops per CLB, the packing tool will wrap LUT A 

and two of its following flip-flops into a single atomic unit before placement.  This greatly limits the 

potential for the placer to use these registers to mitigate interconnect delay if the LUT’s output signal 

requires a long wire and ends up being timing critical.  Furthermore, packing can fuse unrelated logic 

blocks and flip-flops together.  The third register on the output of LUT A cannot fit into the same CLB as its 

source, so it will be arbitrarily combined with some other logic block before placement.  Not only does this 

limit the placer’s ability to use registers to distribute interconnect delay, this artificially ties unrelated parts 

of the circuit together, making the placement problem more difficult. 

 

Furthermore, following the conventional toolflow, operations that can restructure the netlist, such as 

retiming, must be performed prior to packing.  Unfortunately, since packing is performed before placement, 

this general approach can encounter problems.  First, the retiming may not be very effective.  Without any 

 

LUT
A

LUT
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Figure 6.1: Packing Implications for Heavily Registered Netlists 
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placement information the retiming tool can only very roughly estimate interconnect delay.  In general, it 

must retime using a simple unit delay model for logic blocks and largely ignore the potentially significant 

delay accumulated in the interconnect.   

 

On the other hand, once the circuit has gone all the way through the entire CAD toolflow, if the resulting 

implementation does not meet timing specifications an application developer might attempt to repeat 

retiming on the original netlist for another run of packing, placement and routing.  However, it is unclear 

how useful it might be to try and forward timing information from a previous placement and routing back 

to the retimer for another iteration of the CAD tools.  This is because there is no guarantee that this 

information would be accurate or relevant to the new implementation – the placement may change 

considerably in the meantime.  Nets that were timing critical in an earlier placement may not remain so.  

This holds true even if the netlist were not changed at all but simply re-placed.  Thus, a subsequent retiming 

may actually degrade the performance of the circuit instead of improving it.  This is referred to as a 

problem with timing closure. 

 

6.2: Previous Retiming-Aware Approaches 

Since the precise delay of each net cannot be known until the later stages of the CAD process, multiple 

research groups have taken steps towards applying retiming after placement or routing.  These efforts can 

be split into two general categories.   The first devises specific architectures that are particularly amenable 

to absorbing the registers generated by retiming.  In these systems, allocating new registers is easy due to 

the unique characteristics of the underlying hardware.  Thus, retiming can be applied after routing without 

changing the existing paths.   The second general approach relies on sophisticated CAD tools that 

incorporate the new registers caused by retiming into an existing placed netlist.  Although the precise delay 

of each net cannot be known for certain until after routing due to congestion concerns, as discussed in 

Chapter 5, the placement can generally give a relatively accurate idea of signal criticality.  Thus, while 

retiming can be applied with much more precision, the challenge that these tools face is merging the 

registers generated by retiming into the existing placement without changing the larger-scale 

characteristics.   

 

Unfortunately, in some sense all of these previous approaches still struggle with the same basic problems of 

the conventional approach.  That is, late in the toolflow it is much safer to apply retiming very 

conservatively.  However, this also makes the potential benefits quite limited.  On the other hand, if 

retiming is applied very aggressively, the new registers introduced into the system can overwhelm the 

register resources that are available and cause a dramatic or unpredictable change to the existing placement. 
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6.2.1: Previous Architectural Retiming Solutions 

Perhaps the most straightforward manner to deal with the problems associated with retiming is to modify 

the architecture itself to allow retiming to be performed after placement and routing, without disturbing the 

existing configuration.  In this way, the system can sidestep any problems with timing closure. 

 

For example, the system suggested in [38] is a registered track-graph FPGA.  A track-graph FPGA is 

unique because the entire communication network is split into completely separate, but overlaid routing 

domains.  If the switchbox architecture in Figure 6.2a is used, once a signal is routed onto a given wire, all 

of the other wires it can connect to are located in the same relative position in their respective routing 

channels.  Stated another way, all of the routing domain N wires are connected together, with no cross-

connections to the wires in other routing domains.  In Figure 6.2a, a signal that enters the switchbox on the 

first track from the left can only reach the first track in the routing channels exiting the top and bottom.  

Although for clarity only an edge case is shown, the same segregated connectivity is maintained throughout 

the rest of the FPGA.  Thus, this architecture will have 4 completely separate sets of communication  
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Figure 6.2: Track-Graph, Universal and Registered Track-Graph Switchboxes 
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resources that are merely sitting side-by-side.  In contrast, if the universal switchbox architecture in Figure 

6.2b is used, signals can connect to wires with different relative positions in their routing channel.  A signal 

that enters the switchbox on the first track from the left can reach multiple tracks exiting the top and 

bottom.  For that matter, the signal can even return out the left side on the bottom-most track.   

 

While the differences between these two routing architectures is somewhat subtle, as discussed in [44], 

more flexible switchboxes such as the universal design tend to improve the routability of the FPGA as a 

whole.  However, from a CAD standpoint track-graph architectures are attractive because signals on one 

routing domain cannot interfere with signals on another.  It is exactly this characteristic that the authors of 

[38] exploit to incorporate specialized retiming registers. 

 

The authors of [38] replace the conventional track-graph switchboxes with registered switchboxes like the 

one shown in Figure 6.2c.  In this case, the connections that use routing domain 4 have the option to enter a 

register at each switchbox.  The results in [38] suggest architectures should replace approximately 25-50% 

of the routing domains with registered connections.  The toolflow for this system encourages potentially 

timing-constrained connections to use registered track domains.  It begins with conventional timing-driven 

placement and routing, ignoring the registers embedded in the interconnect.  At this point, timing-critical 

links in the routed configuration are identified and singled out.  If they are not already connected via a wire 

domain that is outfitted with optional registers, the connection is swapped to an equivalent wire domain that 

does.  At this point, a restricted retiming algorithm is applied.  Instead of performing true Leiserson/Saxe 

retiming, this approach limits the number of registers that can be pushed onto a specific connection to the 

number of optional retiming registers that already exist along the current route.   

 

Unfortunately, while this is a simple solution, this greatly limits the optimizations available to the retimer.  

First, the retimer is specifically limited to only using the specialized retiming-specific registers added to the 

interconnect structure that are along the existing route.  This makes efficiently using the registers in the 

system very difficult.  For instance, this approach does not consider using the potentially large number of 

registers in switchboxes or logic blocks that are adjacent to, but not directly along, a given path because 

this would require changing the routing.  Furthermore, the system completely segregates flip-flops present 

in the original netlist and registers created by retiming.  Flip-flops within the CLB can only be used by 

registers in the original netlist and flip-flops embedded in the interconnect can only be used by registers 

moved by retiming.  This can lead to fragmentation between the two essentially identical resources.  The 

strict division in the CAD tools means that both a heavily registered netlist that does not require retiming or 

a relatively lightly registered netlist that requires extensive retiming will be unable to use all of the 

available registers in the system. 
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This problem with register efficiency leads to an even larger issue.  This approach makes the amount of 

retiming that the architecture can support heavily affected by the number of additional retiming registers 

put into the system.  Thus, providing sufficient resources to support applications with a lot of retimed 

registers is very expensive.  In some sense this merely pushes the design paradox associated with retiming 

from being a problem for the CAD tool to being a problem for the FPGA architect.  Adding too many 

retiming registers makes the overhead for the architecture very large.  However, adding too few artificially 

limits the options for aggressive retiming.  Of course, all of these issues are also on top of the more 

fundamental problem that this type of approach only works on a very specific and specialized registered 

interconnect structure. 

 

6.2.2: Previous CAD Retiming Solutions 

Efficiently supporting more general registering resources requires new CAD tools.  Towards this goal, 

there have been a number of research projects that have attempted to perform retiming after placement.  

These approaches generally use multiple stages of processing, with a specialized placement tool followed 

by a retiming phase. 

 

The work in [5] was among the first efforts to address retiming as a placement problem.  Although this 

work actually involved floorplanning, a precursor to placement that can be thought of as a very rough 

global placement, it laid the groundwork for the work in [7].  The authors of [7] clearly define a three-stage 

approach for retiming-aware placement.  This technique first borrows a cue from classical timing-driven 

placement by incorporating static timing analysis with a modified simulated annealing cost function to 

identify potentially critical nets.  It uses this information to keep these links as short as possible.  When the 

annealing is complete, they perform a classical retiming step to improve delay.  This is followed by a short 

simulated annealing process to re-distribute registers that are created or deleted and keep the logic blocks 

relatively even in size.  Unfortunately, this work targeted an ASIC development flow.  Since ASICs create 

completely custom chips, the CAD tools are able to largely create or delete resources at will.  Since FPGAs 

must use the finite resources offered by a specific architecture, there are strict limitations as to where the 

system can and cannot create a register.   

 

These FPGA-specific concerns were addressed in works such as [31], [43] and [37].  [31] suggested a very 

straightforward solution in which conventional placement is followed by a constrained retiming step.  

Similar to the architectural solution described earlier, the retimer can only push a limited number of 

registers onto a specific link.  In this case, the retimer could choose to either use or not use the flip-flops 

present in the BLEs already allocated by the placement phase.  Again, while this is a simple and closed-

form solution, like the approach in [38] this technique greatly limits the optimization available to the 
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retimer since this does not allow the system to incorporate the resources that might exist in neighboring 

unoccupied BLEs.   

 

In contrast, [43] explored the opposite end of the retiming problem.  In this approach, the authors still begin 

with a good timing-driven placement, but then retiming is performed without any restrictions on the 

number of registers that can be placed on a given link.  Although they include an algorithm to associate as 

many registers as possible with their host LUT to maximize the use of the flip flops in the same BLE, 

additional registers are allocated by simply searching in a spiral pattern for the closest unused register.  

Thus, this technique offers no guarantee of timing convergence since the retimer can create an unlimited 

number of registers in potentially very sensitive areas of the array, with no good way of cleaning up the 

placement.   

 

The approach discussed in [37] was the first technique that truly attempted to address the basic problem 

between balancing potential retiming improvements and issues with timing closure.  Their approach 

follows the work in [7] relatively closely with a three-stage retiming-aware placement process.  They first 

use a modified simulated annealing cost function to identify timing-sensitive nets, specifically targeting 

feedback loops and the relationship between critical paths and near-critical paths.  This is followed by a 

heuristic retiming step.  Primarily, this retimer tries to move registers in the netlist, keeping in mind CLB 

legalization issues.  CLB legalization is a problem because this work focused on architectures with logic 

blocks that do not have full input and output connectivity, like those in Figure 6.3a.  Retiming creates new 

registers that need to be integrated into the rest of the netlist.  Thus, this disturbs the original packing of the 

netlist.  This change in packing makes it possible that certain CLBs may not have enough input or output 

pins to accommodate the new contents.  The authors of [37] attempt to retime while minimizing this impact 

by estimating the cost associated with each potential retiming move.  They identified three possible 

situations in which they could insert a register into a net.  In order of preference, these cases are: 

 

1) Where a register is pushed onto a net very close to the output of the LUT and the entire net uses the 

registered result.   In this case, the LUT and flip-flop can share a BLE.   

2) Where a register is inserted somewhere between the output of a BLE and some of the sinks.  In this 

case they require an additional BLE, either because the flip-flop associated with the source LUT is 

already used or because the net requires access to both the pipelined and unpipelined LUT output.   

3) Where a register is pushed onto a net very close to one specific sink.  In this case not only is an 

additional BLE needed, this register is also only closely associated with one specific logic block.  

 



64 

 

4-LUT
4-LUT

a) b)

 

Figure 6.3: Non-Independently and Independently Accessible Flip-Flop Architectures 
 

Similar to [7], this FPGA-centric retiming step is followed by a very short iterative legalization phase.  This 

step is primarily concerned with resolving any illegal CLBs created by the retiming process.  Of course, 

because the retiming phase preferentially creates registers that can be easily absorbed by the source BLE, 

the tool generates relatively few registers that require new BLEs.  This lowers the demands on the 

legalization phase.   

 

Unfortunately, this approach still has two issues.  First, much of their work focuses on solving architecture-

specific CLB input and output legalization problems.  However, this is not necessarily a concern for 

modern devices.  Recent FPGAs such as the Virtex II [45] do not require cluster legalization.  This is 

because they not only provide independent access to LUTs and flip-flops (Figure 6.3b), they offer full CLB 

input and output connectivity.  For example, if there are eight 4-LUTs and eight flip-flops in a CLB, the 

logic blocks will have the capability to take 40 independent inputs (8 x 4 LUT inputs + 8 flip-flop inputs) 

and produce 16 independent outputs (8 LUT outputs + 8 flip-flop outputs). 

 

More importantly, this methodology still may not produce feasible or convergent placements.  This is 

because the retiming is still wholly decoupled from the legalization phase.  This means that the retimer may 

produce a netlist that requires registers in an area that currently does not have any available in the existing 

placement.  At this point, the post-processing step has to choose between producing an illegal placement or 

risk disrupting the timing of the system. This type of situation is particularly likely given netlists with a 

large number of registers, since, by the very nature of the netlist itself, there might be relatively few empty 

register locations in the array and many of the nets may be critical or nearly critical.  Thus, the retimer must 

be tuned very conservatively to specifically avoid these kinds of circumstances. 

 

Taking a step back, perhaps it is a better idea to consider the source of these problems.  All of the 

complications regarding retiming stem from the fundamental approach that has been used.  The problem is 

that retiming cannot be performed as an isolated, single-shot optimization step if the system is to retime as 

aggressively as possible while still maintaining the original placement that provided the timing information.  

Essentially, all of the approaches discussed so far are still fundamentally patchwork tools in that they rely 

on completely distinct placement and retiming phases.  To obtain the best results from heavily registered 

netlists, it is likely that retiming needs to be considered in a more holistic sense.  In other words, retiming 
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needs to be a far more integral part of the placement process itself.  This philosophy would allow the 

system to apply retiming more effectively and predictably.   

 

The work in [36] is the most encouraging work to date on FPGA retiming because it provides the most 

unified placement and retiming approach.  This technique begins much like the work in [37] with a 

relatively standard timing-driven placement.  However, after annealing, the placement is given to an 

iterative incremental retiming and placement tool.  Here, instead of performing a single traditional retiming 

run, such as Leiserson/Saxe, followed by a single legalization phase, the tool alternates multiple times 

between very short, incremental retiming steps and CLB legalization phases.  The retiming tool is 

incremental because it does not try to solve the timing problems of the entire circuit at once.  A systemic 

retiming can potentially move all of the registers in the system through multiple levels of logic in a single 

step.  Of course, such a drastic change to the netlist will entirely disrupt the existing placement.  Rather, 

this tool simply examines the effect of gradually pushing a register through one level of logic at a time.  It 

examines each of the registers in the netlist once in turn to see if its input or output net is critical or near 

critical.  If the output net is critical, the retimer attempts to push the register forwards through the logic 

blocks directly driven by its output net.  Conversely, if the input net is critical, the retimer attempts to pull 

the register backwards through the logic block that drives its input net.  Of course, this type of incremental 

retiming limits the scope of the improvements that can be made in a single step, but the retimer will have 

multiple chances to further improve the system.   

 

Each of these comparatively gentle retiming phases is followed by a greedy legalization phase.  Again, the 

primary goal of this tool is to eliminate the overuse of CLB input and output pins.  This legalization tool is 

referred to as greedy because while it attempts random swaps like simulated annealing, unlike annealing it 

only considers making moves that reduce the total number of illegal CLBs.  If the placement remains 

illegal after a relatively small number of attempts, the new retiming is considered un-placeable and the 

system reverts to the previous netlist.  This step-wise retiming and legalization process is repeated until no 

more improvements are made to the circuit’s critical path delay. 

 

6.3: Integrated Placement and Physical Synthesis 

While the approach described in [36] integrates retiming into the placement process far more than previous 

tools, it still uses a somewhat artificially segmented technique.  For example, although it begins with 

standard simulated annealing for placement, it uses a solely greedy post-retiming legalization phase to 

integrate new registers into the existing placement.  This shift in placement approaches seems largely 

unnecessary.  Since simulated annealing provides such a powerful optimization framework, it is ideal for 

merging new registers into the system gracefully.  For that matter, while the approach in [36] remains 

overwhelmingly preoccupied with CLB legalization, in some sense the basic philosophy that it uses does 
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not make this a priority.  When retiming, additional registers may need to be created.  However, rather than 

retiming first, putting new registers into CLBs that make the placement illegal and then trying to fix the 

problem later, it is likely safer to only retime the system when it is certain that reasonable legal locations 

are available.  This allows the natural optimization characteristics of the simulated annealing process to 

migrate registers into the proper locations without introducing additional legalization worries.  

Furthermore, this approach only considers retiming after annealing has finished.  It is entirely possible that 

retiming a particular register is a good idea, but to see this requires larger-scale changes to the system that 

can only occur during simulated annealing.  Finally, there is also the matter of CLB packing.  The approach 

in [36] does not address the two tendencies discussed in Section 6.1 in which the packing tool unnaturally 

combines multiple registers into a single CLB or fuses unrelated logic and registers together.  Dealing with 

this problem during placement is critical to producing good placements for heavily registered applications. 

 

This section introduces a new technique that addresses all of these concerns by performing simultaneous 

simulated annealing-based placement and physical re-synthesis.  This approach begins by first 

incorporating both traditional CLB-level moves and FF-level moves into the conventional placement 

framework.  FF-level placement moves give the annealer the ability to migrate individual registers 

separately from the rest of their host CLB.  This allows the placement tool to change the packing of 

registers and more effectively use them to distribute interconnect delay.  This approach continues by 

integrating retiming into placement.  Although similar to the work in [36], the technique presented here 

merges retiming moves more smoothly into placement by treating them as much as possible like 

conventional placement moves.  Essentially, retiming moves are accepted or rejected by the same 

temperature/cost/benefit structure as normal logic block swaps.  This level of integration allows the 

retiming to more fully leverage the power of simulated annealing placement. 

 

6.3.1: Packing and FF-Level Placement 

While packing reduces the problem size presented to the annealer, in some sense it also interferes with the 

optimizations that are made during placement.  As discusses earlier, this is because packing locks registers 

into specific logic blocks early in the compilation process.  However, dealing with this problem is not 

necessarily as simple as reverting to placement at the individual LUT and flip-flop level.  This is because 

such an approach raises several serious concerns.  While this has obvious dramatic implications for the 

annealing runtime, it can also lead to problems simply finding high quality placements.  For the majority of 

registers it makes sense for a LUT and its companion flip-flop to reside in the same CLB.  Specifically, this 

configuration is special because the connection between the LUT and flip-flop does not incur the delay or 

potential wiring congestion associated with exiting a CLB, traveling along shared interconnect wires, and 

re-entering another CLB.  However, if the placement tool is only able to move LUTs and flip-flops 
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independently from one another, it makes it very easy for a LUT and flip-flop to separate, but much more 

difficult for them to reunite. 

 

Consider the two possible states that a LUT and flip-flop can be in (together in the same CLB or apart in 

different CLBs), shown in Figure 6.4.  If the LUT and flip-flop are initially together within a 5x5 grid of 

CLBs, all possible moves of either the LUT or flip-flop will break them apart.  However, once in this state, 

only two in the 48 possible moves (24 possible new locations for the LUT and 24 possible new locations 

for the flip-flop) will bring them back together.  Furthermore, once they do reunite, after the annealing 

cools past a certain critical temperature it is unlikely that the placement tool will be able to move the 

LUT/flip-flop pair to any other CLB location.  This is because moving both would require the placement 

tool to first separate them, with some comparatively high cost, before reuniting them in the new CLB.  This 

will cause the placement tool to artificially stall out relatively early in the annealing process because it is 

unable to make further improvements. 

 

This problem can be addressed by adding a hybrid CLB-level/FF-level move function to the basic 

placement tool.  Since the incremental timing update placement approach from Chapter 5 produces such 

good results, this is an obvious platform to begin with.  As seen in lines 4, 12 and 18 of Figure 6.5, this 

technique requires four new placement parameters: a FF-level placement activation point, criticality 

threshold, separation probability, and homing probability.  These parameters allow this technique to 

compensate for the problems associated with FF-level placement. 

 

The FF-level placement activation point determines when the system turns on the capability to move 

registers in the netlist separately from their host CLBs.  Since the annealing begins with an arbitrary initial 

placement, the early portion of the annealing process is primarily devoted to simply roughing out the large-

scale structure of the netlist.  It is likely that moving registers separately during these early stages is not 

necessary or desirable since moving entire CLBs allows the system to settle down more rapidly.  As seen in 

lines 4-6 of Figure 6.5, this technique uses a built-in feature of the placement tool to determine how far the 

overall annealing has progressed - the range limit window.  The FF-level placement activation point is 

simply some fraction of the maximum annealing window size.  It could vary between the 1.0, beginning 
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Figure 6.4: Probability of LUT and Flip-Flop Separation Versus Reunion 
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Placement with CLB and FF-Level Moves 
0 randomly place logic blocks onto architecture 
1 determine initial temperature 
2 while(!done) 
3  for i = 0 to numAnnealMovesPerTemp 
4   if range limit window <= (FF-level activation point * max window size) 
5    activate FF-level placement 
6   end if 
7   select random LUT or FF in netlist 
8   if (selected LUT || !FF-level placement active) 
9    swap entire CLB contents with random CLB 
10   else 
11    if FF in same CLB as source 
12     if (FF max link criticality >= FF-level placement criticality thresehold) && 

         (rand <= FF-level placement separation probability) 
13      swap FF with random FF in move window 
14     else 
15      swap entire CLB contents with random CLB in move window 
16     end if 
17    else 
18     if rand <= FF-level placement homing probability 
19      swap FF with a FF in source CLB 
20     else 
21      swap FF with random FF in move window 
22     end if 
23    end if 
24   end if 
25   accept or reject move(∆Cost, currTemp) 
26  end for 
27  update critical path delay 
28  update currTemp 
29  update range limit window 
30  evaluate exit criteria 
31 end while 

Figure 6.5: Pseudo-Code for Incorporating FF-Level Placement Moves 
 

FF-level moves right from the start of placement, to 0.0, beginning FF-level moves very late in the 

annealing process.   

 

As seen in lines 7-10 of Figure 6.5, the move selection of this approach begins by selecting a random LUT 

or flip-flop in the netlist.  If a LUT is selected, or if FF-level placement has not been turned on yet, the 

entire contents of the host CLB is swapped with another random CLB within the movement window.  

However, if a flip-flop is selected and FF-level placement has been activated, the system performs several 

tests to determine what to do next. 

 

As seen in lines 11-16, if the register is in the same CLB as its source, the placement tool checks the 

criticality of the nets to which it is connected.  Ostensibly, this approach would like to disturb the original 

packing only when it senses that the current arrangement is limiting the options of the placement tool to use 

a register to evenly distribute delay.  Thus, the placement tool only has the potential to perform a flip-flop 

level move to separate the register from its host CLB if the register is connected to a net that has a 

criticality equal to or larger than the FF-level placement criticality threshold.  If the register is along a 

highly critical path, the probability of performing the separation is controlled by the FF-level placement 
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separation probability.  If either the net criticality or separation probability checks fail, a conventional 

CLB-level move is performed. 

 

On the other hand, as seen in lines 17-22, if a flip-flop is selected that is not in the same CLB as its source, 

the placement tool has the potential to explicitly reunite the two.  This probability is controlled by the FF-

level placement homing probability.  Again, although packing a register into the same CLB as its source is 

generally advantageous, once the two have been separated it is comparatively hard for them to find each 

other again.  The homing probability factor can increase the likelihood that the register will return to the 

same CLB as its source.  However, if the system does not elect to return the register to the same CLB as its 

source, it simply swaps with some other flip-flop within the movement window. 

 

6.3.2: Retiming 

As mentioned earlier, although Leiserson/Saxe retiming has some unique optimality characteristics, it is 

likely that the key to better overall results is a more incremental approach that can be better integrated into 

the placement process.  Thus, the second part of this new simulated annealing-based physical re-synthesis 

approach borrows many concepts from the technique in [36].  However, this new approach leverages the 

inherent optimization aspects of simulated annealing and applies it to retiming.  Here, conditional 

incremental retiming moves are applied alongside standard placement moves as an integral part of the 

annealing process.  Of course to accomplish this, basic simulated-annealing retiming moves must be 

defined and multiple issues must be addressed. 

 

First, how does the placement tool actually implement an annealing-based retiming move?  Essentially, the 

retiming itself can operate much like the incremental retiming moves in [36], in that individual registers are 

either pushed or pulled one by one through a single level of logic.  However, it is integrated much more 

fully into the placement process itself because instead of using the complicated cost structure from [37] to 

determine whether or not a given register will likely cause legalization problems, the cost of the new 

retimed placement is simply evaluated using the same method as any other placement move.  Stated more 

plainly, after each retiming move is made, the wire and timing costs of the new retimed placement are 

compared with the costs of the old placement.  The retiming move is either accepted or rejected using the 

same probabilistic technique as conventional placement moves. 

 

This approach can use a unified cost function because it deals with newly created registers slightly 

differently.  For example, moving between Figure 6.6a and Figure 6.6b, two new registers are created on 

the inputs of LUT B to retime the register backwards.  Unlike the approach in [36], before the placement 

tool attempts this move, it first ensures that the retiming is feasible.  It is entirely possible that there are not 

enough register locations available in the architecture to support the new registers needed to perform the  
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retiming.  If this is the case, rather than creating an illegal placement, the annealer will not attempt this 

retiming move at all. However, if it is a feasible move, it places these new registers into the closest 

available legal register locations to the source of their respective signals.   However, retiming does not 

necessarily have to create a new register.  For example, moving between Figure 6.6c and Figure 6.6d, one 

of the inputs to LUT B can share the input to LUT C.  In either case, because each retiming move is 

required to produce a legal placement and is evaluated individually based upon the change in cost, the 

placement tool will likely retime the netlist as much or as little as the prevailing conditions will allow. 

 

The second obvious question is how and when should the annealer attempt a retiming move versus a 

placement move?  While the placer could simply flip a coin each time it selects an eligible logic block, the 

computational ramifications of performing a retiming move should also be considered.  Specifically, as 

discussed in Chapter 5, the underlying placement tool that this approach is built on relies on the more 

accurate timing information provided by the incremental slack analysis approach. Therefore, the impact 

that retiming moves have on the accuracy of timing information should be examined.   

 

It is likely that retiming moves will disrupt the system more than conventional placement swaps.  

Furthermore, retiming moves specifically focus on improving the critical path delay of the existing 

placement.  These two factors together indicate that retiming should probably be performed using the most 

accurate timing information possible.  However, completely accurate timing information can only be 

obtained by performing a relatively computationally expensive static timing analysis.  Thus, similar to the 

issues brought up in Chapter 5, this means that static timing analysis cannot be performed before and after 

each incremental retiming move.  Of course, this problem becomes worse as the number of registers in the 

netlist gets larger.  Thus, to maximize the accuracy of the timing information while minimizing the  
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Figure 6.6: Incorporating New Registers Created By Retiming 
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computational cost, much like the approach in [36], the placement tool bundles multiple retiming moves 

together.  Full static timing analysis is performed once before the retiming moves are attempted, and once 

after the series has completed.   

 

Following the spirit of the improved placement tool in Chapter 5, the timing information of the system can 

be incrementally updated between each retiming move.  Consider the example in Figure 6.7.  The 

placement tool will update the slack on all of the labeled nets.  The slack on nets 1’ and 2’ are obvious 

because the departure time of sources do not change and the required time of all registers is equal to the 

current critical path delay of the system.  However, updating the slack on nets 4’, 5, and 6 is a bit more 

complicated.  This is because the placement tool has to recalculate the departure and required times of LUT 

B.  Since the departure time of all registers is zero, the departure time of LUT B can be calculated as: 

 

 ),(  LUT 65outpu clock toTime Departure t DelayDelayMaxFFB +=   (6.1) 

 

Furthermore, the required time of whatever LUT B drives also does not change.  Thus, the required time of 

LUT B can be calculated as: 

 

 '4Time RequiredTime Required Sink  LUT DelayB −=   (6.2) 

 

If the retiming was reversed and the registers from the inputs of LUT B were pushed forwards to the output, 

a similar incremental computation could be performed to recalculate the departure and required times of 

LUT B. 

 

As seen in the pseudo-code in Figure 6.8, this integrated retiming and placement technique takes 3 new 

placement parameters: a retiming activation point, criticality threshold, and frequency.   Lines 4-6 show 

that the retiming activation point functions much like the FF-level placement activation point from the 

previous section.  Essentially, this parameter controls when the placement tool will begin to attempt 

retiming and placement, as opposed to placement only.  Again, since the annealing begins with an arbitrary 

initial placement, the early portions of the placement process can change the system dramatically.   Thus,  
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Figure 6.7: Updating Timing Information for New Retiming Registers 
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Placement with Integrated Retiming Moves 
0 numMovesPerRetiming =  numAnnealMovesPerTemp / retiming frequency 
1 randomly place logic blocks onto architecture 
2 determine initial temperature 
3 while(!done) 
4  if range limit window <= (retiming activation point * max window size) 
5   activate retiming placement 
6  end if 
7  for i = 0 to numAnnealMovesPerTemp 
8   if retiming active && (i%numMovesPerRetiming == 0)  
9    update critical path delay 
10    for all logic blocks 
11     if max input criticality >= retimeCrit && can retime backwards 
12      try to retime once backwards 
13      accept or reject retiming(∆Cost, currTemp) 
14     end if 
15     if max output criticality >= retimeCrit && can retime forwards 
16      try to retime once forwards 
17      accept or reject retiming(∆Cost, currTemp) 
18     end if 
19    end for 
20    update critical path delay 
21   end if 
22   attempt placement move 
23   accept or reject move(∆Cost, currTemp) 
24  end for 
25  update critical path delay 
26  update currTemp 
27  update range limit window 
28  evaluate exit criteria 
29 end while 

Figure 6.8: Pseudo-Code for Simulated Annealing-Based Retiming 
 

retiming is unlikely to contribute much during these early stages.  Rather, the extra noise retiming creates in 

the netlist would probably only serve to create problems for the placement tool.  Instead, it is likely better 

to wait until the placement begins to settle down, and leave retiming to the later stages of the placement 

process.  Similarly, the retiming criticality threshold plays the same role as the FF-level placement 

criticality threshold.  As shown in lines 11 and 15, the retiming criticality threshold filters logic blocks that 

are eligible for retiming based upon the maximum criticality of their input or output connections.  

Obviously, the more critical a given path is, the more important it becomes to retime the logic blocks along 

it.  Since it is probably best to disrupt the placement as little as possible, the placement tool avoids retiming 

logic blocks that are not along highly critical paths.  Lastly, as shown in lines 0 and 8, the retiming 

frequency factor controls how often the placement tool attempts to perform a concentrated suite of 

conditional retiming moves. 

 

6.4: Testing and Results 

Like the placement approach in Chapter 5, this new simultaneous placement and physical re-synthesis 

approach was tested using the MCNC netlists provided with VPR.  However, because this approach focuses 

on the packing and retiming of registers, obviously the 11 purely combinational MCNC circuits are not 

suitable.  Thus, these circuits were not part of the testing process.  Furthermore, while the same 22 depth = 

1 netlists used in Chapter 5 were part of the testing of this new tool, 22 depth = 0.33 netlists were also 
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created.  These netlists have at least 3 flip-flops after each LUT, rather than only 1.  This set of benchmarks 

simulate an application developer’s attempt to not only pipeline the logic of a circuit but also encourage the 

system to pipeline the interconnect wires.  These netlists were created in a very similar manner to the depth 

= 1 netlists.  Specifically, each netlist was minimally pipelined, C-slowed and Leiserson/Saxe retimed such 

that the maximum logical depth of the circuit was a single LUT.  In addition, a single register was placed 

on each of the primary input pins.  After this, the entire netlist was 3-slowed to provide 3 flip-flops on each 

connection along the critical path.  Additional information regarding these benchmarks can be found in 

Appendix A. 

 

These three groups of netlists were also placed onto a new architecture.  While the single LUT/single flip-

flop/unit-length wire architecture used in the previous chapter provided a very simple platform for testing 

and tuning the incremental timing analysis placement approach, this does not necessarily accurately reflect 

the types of resources present in modern commercial FPGAs.  Thus, this new tool was tested using a much 

more realistic architecture with four 4-LUTs, 4 flip-flops, 20 input pins, and 8 output pins per CLB and 

length 4 interconnect wires.  While not exactly the same as the resources available in recent Altera devices, 

this does provide a reasonable analog of commercial architectures and is very similar to the architecture 

suggested by [1]. 

 

Testing began by first performing CLB-level placement using the enhanced timing placement technique 

described in Chapter 5.  This provided a good baseline for comparison.  Each of the netlists were packed 

using T-VPack and routed using timing-driven PathFinder.  The primary placement parameters (λ and 

criticality exponent) used to gather these results were set to values suggested by the testing in Chapter 5.  

Although the exact parameters found during this earlier testing were used for the original sequential MCNC 

netlists (λ = 0.3, criticality exponent = 12), due to the discussion in Section 5.6, the best criticality exponent 

= 12 parameters were used for the depth = 1 netlists (λ = 0.025, criticality exponent = 12).  The same 

parameters were also used for the depth = 0.33 netlists.  These λ and criticality exponent values were 

maintained throughout the rest of the testing process. 

 

The first round of testing focused on determining good values to use for the new FF-level placement 

parameters:  the activation point, criticality threshold, separation probability, and homing probability.  Due 

to the very large number of potential axes, two simplifications were made to the exploration process.  First, 

rather than testing with all 55 benchmarks, 9 relatively small representational benchmarks were selected – 3 

from each group of logic depths.  These included s1423, diffeq, and bigkey.  Second, some preliminary 

testing was performed to gather reasonable values for all of the parameters before more detailed testing was 

implemented on each individually.  This preliminary testing found that reasonable results were obtained 
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with an activation point of 0.9, a criticality threshold of 0.9, a separation probability of 0.1 and a homing 

probability of 0.01. 

 

As seen in Table 6.1, the FF-level placement activation point was first swept through a range of values 

while holding the criticality threshold at 0.9, the separation probability at 0.1 and the homing probability at 

0.01.  Four activation points were selected for testing.  First, 1.0 started FF-level placement from the 

beginning of the annealing process.  The activation points of 0.9 and 0.0001 started FF-level placement 

when the movement window reached a value of 90% the overall size of the array and 1, respectively.  

These activation points roughly represent beginning the FF-level placement one-third or two-thirds of the 

way through the placement process. An activation point of 0.0 waited until the conventional placement was 

finished and then restarted the annealing at a slightly higher temperature for an additional short FF-level 

placement phase.  This typically gave the annealer another 5 - 10 temperature iterations to improve the 

placement with FF-level moves. 

 

The results of this testing are shown in Table 6.1.  All 9 of the exploratory netlists were placed and routed 3 

times for each set of placement parameters.  The placement with the smallest routed critical path delay for a 

given setting was selected as the best placement.  Table 6.1 shows the geometric mean normalized wire 

cost and post-routing critical path delay for all three netlists within each group of benchmarks.  Beginning 

FF-level placement at an activation point of 0.9 produced the best FF-level placements for all three groups 

of benchmarks.  Thus, this activation point was used for all subsequent testing. 

 

As seen in Table 6.2, the FF-level placement criticality threshold was tested next.  Here, the criticality 

threshold was swept through a range of values while holding the activation point at best value found by the 

previous experiment (0.9), the separation probability at 0.1 and the homing probability at 0.01.  This testing 

showed that performing FF-level placement on registers that were connected to nets that were 90% critical 

or more produced the best results for the original sequential and depth = 1 netlists used for exploration.  A 

criticality threshold of 80% or greater produced the best results for the depth = 0.33 netlists tested.  Again, 

these values were passed on to the subsequent rounds of testing.  Finally, as seen in Table 6.3 and Table 

6.4, the FF-level placement separation probabilities and homing probabilities were tested.  Here, a 

separation probability of 0.1 and a homing probability of 0.1 produced the best results for all of the groups 

of netlists. 

 

The best FF-level placement parameters discovered by the initial round of testing were used to place all of 

the 11 original sequential MCNC netlists, the 22 depth = 1 netlists and the 22 depth = 0.33 netlists.  This is 

shown in Table 6.5.  Looking at these results, the original sequential netlists do not seem to respond to FF-

level placement.  The routed critical path delay for these circuits actually degraded very slightly (1.007x).  
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In some sense, this is to be expected since packing via traditional methods makes sense given the small 

number of registers in these applications.  However, the depth = 1 and depth = 0.33 netlists do seem to 

benefit quite a bit from performing FF-level placement.  The depth = 1 netlists obtain an average of 0.870x  

 

Table 6.1: FF-Level Placement Activation Point Exploration (Clustered Architecture) 
  Original Sequen. Netlists 

Crit. Thres. = 0.9 
Sep. Prob. = 0.1 

Homing Prob = 0.01 

Depth = 1 
Crit. Thres. = 0.9 
Sep. Prob. = 0.1 

Homing Prob = 0.01 

Depth = 0.33 
Crit. Thres. = 0.9 
Sep. Prob. = 0.1 

Homing Prob = 0.01 

 
Activation 

Point 
Norm. 

Wire Cost 
Norm. 
Routed 
CPD 

Norm. 
Wire Cost 

Norm. 
Routed 
CPD 

Norm. 
Wire Cost 

Norm. 
Routed 
CPD 

CLB-Level Placement - 1.000 1.000 1.000 1.000 1.000 1.000 
From Beginning 1.0 0.999 1.011 0.915 0.959 0.859 0.633 

From 1/3 Complete 0.9 0.998 1.007 0.916 0.957 0.842 0.631 
From 2/3 Complete 0.0001 0.997 1.031 0.954 0.966 0.910 0.724 

Post-Processing 0.0 0.997 1.031 0.954 0.966 0.910 0.724 
Best of 3 placement and routing attempts 

 

Table 6.2: FF-Level Placement Criticality Threshold Exploration (Clustered Architecture) 
 Original Sequential Netlists 

Activation = 0.9 
Sep. Prob. = 0.1 

Homing Prob = 0.01 

Depth = 1 
Activation = 0.9 
Sep. Prob. = 0.1 

Homing Prob = 0.01 

Depth = 0.33 
Activation = 0.9 
Sep. Prob. = 0.1 

Homing Prob = 0.01 

 
Norm. 

Wire Cost 
Norm. 

Routed CPD 
Norm. 

Wire Cost 
Norm. 

Routed CPD 
Norm. 

Wire Cost 
Norm. 

Routed CPD 
CLB-Level Placement 1.000 1.000 1.000 1.000 1.000 1.000 
Crit. Threshold = 0.95 0.999 1.013 0.911 0.982 0.860 0.639 
Crit. Threshold = 0.9 0.998 1.007 0.916 0.957 0.842 0.631 
Crit. Threshold = 0.8 1.004 1.011 0.909 0.963 0.872 0.622 

Best of 3 placement and routing attempts 

 

Table 6.3: FF-Level Placement Separation Probability Exploration (Clustered Architecture) 
 Original Sequential Netlists 

Activation = 0.9 
Crit. Thres. = 0.9 

Homing Prob = 0.01 

Depth = 1 
Activation = 0.9 
Crit. Thres. = 0.9 

Homing Prob = 0.01 

Depth = 0.33 
Activation = 0.9 
Crit. Thres. = 0.8 

Homing Prob = 0.01 

 
Norm. 

Wire Cost 
Norm. 

Routed CPD 
Norm. 

Wire Cost 
Norm. 

Routed CPD 
Norm. 

Wire Cost 
Norm. 

Routed CPD 
CLB-Level Placement 1.000 1.000 1.000 1.000 1.000 1.000 

Separation = 0.1 0.998 1.007 0.916 0.957 0.872 0.622 
Separation = 0.2 1.004 1.007 0.913 0.965 0.874 0.622 
Separation = 0.4 1.001 1.014 0.911 0.970 0.891 0.689 

Best of 3 placement and routing attempts 

 

Table 6.4: FF-Level Placement Homing Probability Exploration (Clustered Architecture) 
 Original Sequential Netlists 

Activation = 0.9 
Crit. Thres. = 0.9 
Sep. Prob = 0.1 

Depth = 1 
Activation = 0.9 
Crit. Thres. = 0.9 
Sep. Prob = 0.1 

Depth = 0.33 
Activation = 0.9 
Crit. Thres. = 0.8 
Sep. Prob = 0.1 

 
Norm. 

Wire Cost 
Norm. 

Routed CPD 
Norm. 

Wire Cost 
Norm. 

Routed CPD 
Norm. 

Wire Cost 
Norm. 

Routed CPD 
CLB-Level Placement 1.000 1.000 1.000 1.000 1.000 1.000 

Homing = 0.001 1.015 1.023 1.053 1.048 1.113 0.917 
Homing = 0.01 0.998 1.007 0.916 0.957 0.872 0.622 
Homing = 0.1 1.001 1.006 0.892 0.949 0.750 0.608 

Best of 3 placement and routing attempts 
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Table 6.5: FF-Level Placement Results (Clustered Architecture) 
 Original Sequential Netlists 

Activation = 0.9 
Crit. Thres. = 0.9 
Sep. Prob = 0.1 

Homing Prob = 0.1 

Depth = 1 
Activation = 0.9 
Crit. Thres. = 0.9 
Sep. Prob = 0.1 

Homing Prob = 0.1 

Depth = 0.33 
Activation = 0.9 
Crit. Thres. = 0.8 
Sep. Prob = 0.1 

Homing Prob = 0.1 

 
Norm. 

Wire Cost 
Norm. 

Routed CPD 
Norm. 

Wire Cost 
Norm. 

Routed CPD 
Norm. 

Wire Cost 
Norm. 

Routed CPD 
e64   0.937 0.903 0.830 0.622 
ex5p   0.926 0.889 0.762 0.749 
apex4   0.971 0.959 0.760 0.732 
misex3   0.919 0.945 0.726 0.744 

alu4   0.946 0.929 0.726 0.786 
des   0.916 0.930 0.682 0.610 
seq   0.925 0.993 0.704 0.740 

apex2   0.912 1.008 0.701 0.642 
spla   0.896 0.887 0.655 0.512 
pdc   0.899 0.823 0.642 0.623 

ex1010   0.852 0.890 0.604 0.315 
s1423 1.001 1.026 0.916 0.938 0.871 0.719 
tseng 0.999 0.959 0.837 1.008 0.722 0.700 
dsip 0.997 1.004 0.993 0.907 0.709 0.572 

diffeq 0.996 0.982 0.845 0.924 0.714 0.573 
bigkey 0.998 1.014 0.976 1.010 0.677 0.545 
s298 1.007 1.006 0.847 0.975 0.717 0.685 
frisc 0.992 1.000 0.735 0.864 0.576 0.588 

elliptic 0.991 1.015 0.804 1.006 0.632 0.634 
s38584.1 0.998 1.018 0.666 0.475 0.575 0.330 
s38417 0.983 0.983 0.682 0.442 0.538 0.532 
clma 0.992 1.068 0.747 0.798 0.584 0.363 

Geo Mean 0.996 1.007 0.865 0.870 0.682 0.588 
Best of 3 placement and routing attempts 

 

better critical path delay with 0.865x better wire cost.  The depth = 0.33 netlists respond even more 

positively with an enormous 0.588x improvement in critical path delay and 0.682x better wire cost.  This 

behavior clearly shows the difficulties that a large number of registers pose to existing packing approaches. 

 

The next phase of testing examined the benefits of adding simultaneous retiming on top of FF-level 

placement.  A similar testing methodology was used to tune this aspect of the tool, but here only the 

retiming activation point was explored. This is because, first, the exploration into FF-level placement 

provided a great deal of information regarding how nets of different criticalities interact.  Thus, it makes 

sense to use the same criticality threshold parameters found in Table 6.2 for retiming.  Second, the retiming 

frequency was pegged to 1.  This represents attempting to retime one set of registers either backward or 

forwards through each logic block per simulated annealing temperature iteration.  This mimics the behavior 

of the tool in [36].   

 

Table 6.6 shows the exploration of different retiming activation points from 0.9 to 0.0.  Similar to the FF-

level placement activation point, a retiming activation point of 0.9 begins retiming moves when the 

placement window has reached 90% the maximum size of the array, a retiming activation point of 0.0001  
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Table 6.6: Retiming Activation Point Exploration (Clustered Architecture) 
  Original Sequential 

Netlists 
Crit. Thres. = 0.9 

Retiming Freq. = 1.0 

Depth = 1 
Crit. Thres. = 0.9 

Retiming Freq. = 1.0 

Depth = 0.33 
Crit. Thres. = 0.8 

Retiming Freq. = 1.0 

 
Activation 

Point 
Norm. 

Wire Cost 
Norm. 
Routed 
CPD 

Norm. 
Wire Cost 

Norm. 
Routed 
CPD 

Norm. 
Wire Cost 

Norm. 
Routed 
CPD 

CLB-Level Placement - 1.000 1.000 1.000 1.000 1.000 1.000 
Best FF-Level 

Placement 
- 1.001 1.006 0.892 0.949 0.750 0.608 

From 1/3 Complete 0.9 1.044 1.018 0.919 0.987 0.771 0.634 
From 2/3 Complete 0.0001 1.007 1.030 0.909 0.966 0.769 0.642 

Post-Processing 0.0 1.002 0.999 0.914 0.983 0.759 0.615 
Best of 3 placement and routing attempts 

 

Table 6.7: Simultaneous Retiming and Placement Results (Clustered Architecture) 
 Original Sequential Netlists 

Activation = 0.0 
Crit. Thres. = 0.9 

Retiming Freq. = 1.0 

Depth = 1 
Activation = 0.0001 

Crit. Thres. = 0.9 
Retiming Freq. = 1.0 

Depth = 0.33 
Activation = 0.0 
Crit. Thres. = 0.8 

Retiming Freq. = 1.0 

 
Norm. 

Wire Cost 
Norm. 

Routed CPD 
Norm. 

Wire Cost 
Norm. 

Routed CPD 
Norm. 

Wire Cost 
Norm. 

Routed CPD 
e64   0.904 0.882 0.830* 0.622* 
ex5p   0.926* 0.889* 0.762* 0.749* 
apex4   0.971* 0.959* 0.781 0.732 
misex3   0.919* 0.945* 0.726* 0.744* 

alu4   0.946* 0.929* 0.726* 0.786* 
des   0.897 0.885 0.682* 0.610* 
seq   0.903 0.966 0.701 0.701 

apex2   0.885 1.000 0.701* 0.642* 
spla   0.864 0.844 0.666 0.505 
pdc   0.858 0.797 0.642* 0.623* 

ex1010   0.852* 0.890* 0.604* 0.315* 
s1423 1.007 0.991 0.905 0.922 0.869 0.705 
tseng 0.999 0.959 0.840 1.002 0.720 0.700 
dsip 0.997 1.000 0.993* 0.907* 0.709* 0.572* 

diffeq 0.998 0.982 0.845* 0.924* 0.734 0.573 
bigkey 0.998* 1.014* 0.976 1.003 0.677* 0.545* 
s298 1.007* 1.006* 0.847* 0.975* 0.708 0.678 
frisc 0.992* 1.000* 0.735* 0.864* 0.571 0.588 

elliptic 0.995 0.978 0.800 1.000 0.631 0.586 
s38584.1 0.998* 1.018* 0.645 0.473 0.570 0.330 
s38417 0.983* 0.983* 0.645 0.431 0.538* 0.532* 
clma 0.999 1.045 0.747* 0.798* 0.584* 0.363* 

Geo Mean 0.998 0.998 0.854 0.860 0.683 0.583 
Best of 3 placement and routing attempts.  *Indicates result reverted to values from FF-level placement. 

 

begins retiming moves when the placement window has reached 1 and a retiming activation point of 0.0 

runs an additional post-placement retiming and annealing phase.  This retiming was performed on top of 

FF-level placement with the best parameters suggested by Table 6.4.  Again, this initial testing was 

performed by placing and routing each of the 9 exploratory benchmarks 3 times for each set of placement 

parameters.  The placement with the smallest routed critical path delay for a given setting was selected as 

the best placement.  Table 6.6 shows the geometric mean wire cost and routed critical path delay 

normalized to the results produced by performing CLB-level placement. 
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Unfortunately, looking at these results, it appears as though the addition of retiming does not greatly 

improve upon the performance of only applying FF-level placement.  While retiming with an activation 

point of 0.0 very slightly helped the original sequential MCNC netlists used for exploration, even the best 

setting of retiming actually degraded the results for the depth = 1 and depth = 0.33 netlists compared to 

only performing FF-level placement.  These mediocre results were further confirmed when testing was 

expanded to the full set of benchmarks, as shown in Table 6.7.  It should be noted that the results reported 

here are actually a mixture of the results obtained by performing only FF-level placement and retiming on 

top of FF-level placement.  Since the retiming activation point suggested by the testing in Table 6.6 for the 

original sequential and the depth = 0.33 netlists is actually after normal placement has been completed, any 

degradation caused by the retiming can be eliminated by simply reverting the system to the placement 

found before retiming was activated.  These corrected results are denoted with an asterisk.  While a bit 

more difficult for the depth = 1 netlists, since the best retiming activation point found during the previous 

testing was 0.0001, a similar correction can be made by performing two partial placement runs once the 

movement window reaches 1 – once implementing retiming and once without.  That said, despite best 

attempts, the benefits of retiming seem relatively small compared to only performing FF-level placement.  

Performing retiming did not seem to improve critical path delay by more than about 1%. 

 

These results are somewhat surprising.  The testing in [37] and [36] showed a 0.838x and 0.930x 

improvement in critical path delay for their respective integrated retiming approaches.  However, when 

comparing the results of this new technique to previous results, the baseline that these previous papers used 

should also be kept in mind.  Both of these papers only compared their retiming approach to relatively 

classical placement techniques.  On the other hand, the technique suggested here is compared to a highly 

enhanced placement approach and a placement tool that implements FF-level placement.  This change in 

comparison target creates two fundamental differences between the results from these previous works and 

the results gathered here.   

 

First, since the incremental slack analysis placement approach described in Chapter 5 already obtains such 

good results compared to conventional placement techniques, from the viewpoint of this toolflow, the 

baseline placements used for comparison in previous work likely contain a lot of room for improvement.  

Stated another way, incremental slack update placement already improves performance so much that it may 

subsume the gains reported by previous retiming efforts just by itself.  For that matter, this also makes it 

much more difficult for any retimer built on top of this placement algorithm to achieve further gains. 

 

Second, although very little is known about the placement tool used for comparison in [36], VPR certainly 

does not change the packing of a netlist during placement. Thus, in some sense the results reported include 

the gains provided by FF-level placement.  This is because the legalization phases of both the tools in [37] 
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and [36] migrate registers between different CLBs in order to make room for the new registers created by 

retiming.  These legalization tools specifically seek out registers based upon net criticality, so it is possible 

that a large portion of their respective gains are specifically due to changes in CLB packing, not necessarily 

the retiming itself. 

 

However, this is not to say that retiming during placement should be ignored.  Rather, the results indicate 

that there are other forces at work in the testing performed thus far.  First, placement with more accurate 

timing information improves circuit quality significantly.  Second, packing is a much more pressing issue 

when mapping netlists with a large number registers to architectures with multiple BLEs per CLB.  Lastly, 

there is likely some characteristic that these new architectures have that makes retiming after placement 

less fruitful.   

 

The impact of a placement tool that has a more accurate way of tracking timing is relatively easy to 

quantify.  This can be done by simply repeating placement with a VPR-style timing update approach.  

Unfortunately though, evaluating the contribution of changing the packing of the system is a bit more 

difficult.  However, this factor can be minimized by mapping to an architecture that only has one BLE per 

CLB.  While retiming can still be performed on applications mapped to this kind of architecture, it does not 

pose a very large packing problem since each flip-flop must be mapped to its own CLB.  Although some 

flip flops must still be packed into CLBs with LUTs, the system does not have to worry about the initial 

packing limiting the placement because it put registers from different parts of the circuit into the same 

CLB.  This problem can be further reduced by eliminating the very heavily registered depth = 0.33 netlists. 

 

Finally, it is likely that retiming was less effective on the architectures used for the testing in Table 6.7 

because they had multi-segment wires.  Longer wires are generally incorporated into FPGAs because they 

allow the system to make connections using fewer programmable wire segments.  However, this also 

means that each logic block can reach a much larger number of other logic blocks with a single wire delay.  

Consider the two architectures in Figure 6.9.  While each logic block can reach four others with a single 

wire delay in the architecture with unit-length wires, each logic block can reach 26 others with a single wire 

delay in an architecture with length-4 wires.  By the same token, the number of logic blocks that can be 

reached with two wire delays is 8 for an architecture with unit-length wires and 116 for an architecture with 

length-4 wires. 

 

This much larger number of locations that can be reached quickly means that the timing-driven placement 

problem is easier.  In turn, this makes retiming after placement less critical.  On a unit-length wire 

architecture, certain wires have to be made longer because not every block can fit next to the other blocks  
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a) b)

 

Figure 6.9: Logic Blocks Reachable with 1 Wire Segment 
 

to which it is connected.  These longer wires make certain connections slower than others.  However, 

which connections are going to be the slow ones, and by how much, is impossible to determine without 

information about the placement.  This makes retiming after placement very important.  However, with 

length-4 wires, and further compounded by clustered CLBs, a much larger fraction of the blocks can be 

close to the other blocks to which they are connected.  This strongly reduces the need for long, slow wires 

and makes the delay of all the connections in the system much more predictable. 

 

This behavior can be seen by repeating the testing of both FF-level placement and retiming placement, this 

time mapping to an unclustered, unit-length wire architecture.  As seen in Table 6.8 and Table 6.9, as 

expected, FF-level placement plays a much smaller role on these architectures.  The critical path delay is 

only reduced by 0.991x for the original sequential netlists and by only 0.980x for the depth = 1 netlists.  

However, retiming improves critical path delay by a much larger amount, 0.947x for the original sequential 

netlists and 0.952x for the depth = 1 netlists.  This testing not only shows that simultaneous retiming and 

placement can improve critical path delay, it also suggests that the benefit can be somewhat architecture 

dependent.  Furthermore, it is also obvious that while the incremental slack analysis placement approach 

described in Chapter 5 produces much better placements than VPR, there is still a small amount of room for 

further improvement. 

 

The effect that the architecture has on retiming can also be seen Table 6.10.  Here, the fastest 

implementations found by FF-level placement were retimed using the Leiserson/Saxe method.  However, 

unlike the Leiserson/Saxe retiming applied before placement, this retiming was performed using the actual 

wire delays in the final placement.  Of course, the critical path delay reported by retiming netlists in this 
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way is wildly optimistic.  Not only does this run into the problems discussed earlier regarding finding 

enough registers and disturbing the existing placement, this “optimal” retiming also assumes that registers 

 

Table 6.8: Comparison of FF-Level Placement and Retiming Placement  
(Unclustered Architecture) – Original Sequential MCNC Netlists 

 VPR CLB-Level 
Placement 

Incremental Slack CLB-
Level Placement 

FF-Level Placement Retiming Placement 

 Wire CPD Wire CPD Wire CPD Wire CPD 
s1423 1.028 0.914 1.000 1.000 1.004 0.953 0.996 0.898 
tseng 1.046 1.042 1.000 1.000 0.988 0.942 0.988* 0.942* 
dsip 0.837 1.333 1.000 1.000 1.008 0.887 1.027 0.755 

diffeq 1.051 1.119 1.000 1.000 1.001 1.052 0.998 1.012 
bigkey 0.876 1.538 1.000 1.000 0.997 0.965 1.004 0.951 
s298 1.079 0.990 1.000 1.000 0.997 0.985 0.997* 0.985* 
frisc 1.081 1.067 1.000 1.000 0.999 0.986 1.010 0.961 

elliptic 1.067 1.205 1.000 1.000 0.994 1.057 1.008 0.980 
s38584.1 0.985 1.258 1.000 1.000 0.997 0.984 0.997 0.968 
s38417 1.011 1.205 1.000 1.000 1.001 0.989 1.009 0.964 
clma 1.053 1.451 1.000 1.000 1.025 1.125 1.023 1.022 

Geo Mean 1.007 1.179 1.000 1.000 1.001 0.991 1.005 0.946 
Best of 3 placement and routing attempts. *Indicates result reverted to values from FF-level placement. 

 

Table 6.9: Comparison of FF-Level Placement and Retiming Placement  
(Unclustered Architecture) –  Depth = 1 MCNC Netlists 

 
VPR CLB-Level 

Placement 
Incremental Slack CLB-

Level Placement 
FF-Level Placement Retiming Placement 

 Wire CPD Wire CPD Wire CPD Wire CPD 
e64 1.055 1.818 1.000 1.000 1.000 1.042 1.000* 1.042* 
ex5p 1.057 1.619 1.000 1.000 0.997 1.059 0.996 1.026 
apex4 1.065 1.608 1.000 1.000 1.005 1.002 1.004 1.002 
misex3 1.146 1.445 1.000 1.000 1.005 0.983 1.007 0.863 

alu4 1.162 1.366 1.000 1.000 0.998 1.002 0.995 1.000 
des 1.048 1.756 1.000 1.000 1.029 0.906 1.018 0.906 
seq 1.076 1.784 1.000 1.000 1.001 1.053 1.001 1.052 

apex2 1.100 1.721 1.000 1.000 0.997 0.971 0.997 0.970 
spla 1.081 1.213 1.000 1.000 1.014 0.921 0.997 0.730 
pdc 1.080 2.104 1.000 1.000 0.999 1.002 0.995 0.940 

ex1010 1.107 1.479 1.000 1.000 1.007 1.093 1.000 1.085 
s1423 1.038 2.002 1.000 1.000 1.012 0.910 1.014 0.876 
tseng 1.076 1.853 1.000 1.000 1.027 0.908 1.027 0.908 
dsip 1.242 1.245 1.000 1.000 1.013 0.970 1.036 0.919 

diffeq 1.051 1.870 1.000 1.000 1.031 0.939 1.051 0.918 
bigkey 1.152 1.547 1.000 1.000 1.011 0.979 1.011* 0.979* 
s298 1.108 1.484 1.000 1.000 0.997 0.942 0.990 0.922 
frisc 1.000 2.452 1.000 1.000 0.997 0.973 0.997 0.971 

elliptic 1.097 1.761 1.000 1.000 1.007 0.962 1.007 0.962 
s38584.1 1.158 1.226 1.000 1.000 1.018 1.017 1.025 1.016 
s38417 1.031 2.060 1.000 1.000 0.992 0.974 1.028 0.917 
clma 1.109 1.350 1.000 1.000 0.997 0.991 0.999 0.984 

Geo Mean 1.091 1.643 1.000 1.000 1.007 0.980 1.009 0.951 
Best of 3 placement and routing attempts. *Indicates result reverted to values from FF-level placement. 

 

Table 6.10: Effect of Architecture on Leiserson/Saxe Retiming After Placement 
 Clustered Architecture 

Four BLEs, Length-4 Wires 
Unclustered Architecture 

One BLE, Unit-Length Wires 
Depth = N Netlists 0.936 0.717 
Depth = 1 Netlist 0.734 0.639 

Results normalized to critical path delay found after FF-level placement. 
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can be placed wherever they are needed – potentially in the middle of wires rather than in discrete CLB 

locations.   That said, this “theoretical” retiming offers some upper bound on how much room for 

improvement there is after placement.  While the depth = N netlists could only be improve by an average of 

0.936x when placed on the clustered, length-4 wire architecture, they could be improved by an average of 

0.717x when placed on the unclustered, unit-length wire architecture.  Similarly, the depth = 1 netlists 

could only be improve by an average of 0.734x when placed on the clustered, length-4 wire architecture, 

they could be improved by an average of 0.639x when placed on the unclustered, unit-length wire 

architecture.  Although these results are purely theoretical, they suggest that the placer can better balance 

delay along the critical path in netlists mapped to the clustered, length-4 wire architecture.  This means that 

retiming after placement is probably less essential when mapping to more sophisticated architectures rather 

than simpler devices. 

 

6.5: Conclusions and Future Research 

This chapter investigated how classical packing, retiming and placement tools interact.  While the 

conventional toolflow works relatively well for lightly registered applications, its highly 

compartmentalized and purely feed-forward nature can cause problems when attempting to deal with more 

heavily registered netlists.   

 

Packing is particularly vulnerable to some of these issues because the conventional approach that tools like 

VPR use generally applies packing to a netlist followed by strictly CLB-level placement.  Because 

traditional packing techniques tend to put registers into the same CLB as their source LUT, this can limit 

the capability of the system to use these registers to balance delay along long connections.  Furthermore, 

when attempting to handle netlists with signals that have multiple registers, conventional packing tools can 

fuse unrelated parts of the circuit together.  This makes the placement problem much more difficult, both 

from the standpoint of reducing wiring cost and improving critical path delay.   

 

However, solving this problem is not simply a matter of opening the placement tool to FF-level annealing 

moves.  Doing so can not only dramatically increase the time required for simulate annealing, it can create 

problems for the basic achievable quality as well.  Moving flip-flops and LUTs strictly separate from each 

other can prevent the system from making larger-scale moves.  Simply put, the placement tool needs to 

have the capability to perform both CLB and FF-level moves.  This allows the system to change the 

packing of CLBs while still maintaining the ability to make coarser changes to the placement.  Towards 

that end, this chapter introduces a new hybrid placement approach that gives the placement tool the 

capability to either move an entire CLB, or individually migrate highly critical flip-flops. 
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Retiming also presents a problem to the conventional toolflow.  Since retiming can create or delete registers 

within a netlist, the most obvious point to apply it is before packing and placement.  However, the 

optimizations that can be made at this point are very limited since very little is known about the potential 

delay required by the interconnect.  Unfortunately, it is also not obvious how retiming could be applied 

after placement when more is known about the criticality of each of the nets.  This is because retiming can 

change the netlist significantly, necessitating a brand new placement that may or may not have the same 

timing characteristics as the original.  Although there have been multiple previous research attempts to deal 

with this problem, the majority of these approaches have still struggled with the same basic issue: how to 

support aggressive retiming without creating a problem for timing convergence.  

Essentially, the problem is that it is unreasonable to expect that the system will be able to clean itself up 

satisfactorily when the retimer makes major and sudden changes to the netlist.  Thus, this chapter also 

introduced a new integrated retiming and placement approach.  This technique differs from previous work 

in three main ways.  First, rather than performing retiming as a single, highly disruptive step, it applies 

multiple stages of more incremental annealing-based retiming moves.  Second, the new registers created by 

these much smaller retiming steps are then integrated into the rest of the placement with a hybrid CLB/FF-

level placement approach.  Third, this technique avoids issues with CLB input and output legalization by 

never creating an illegal placement in the first place. 

 

Unfortunately, determining how well this new integrated placement and physical re-synthesis approach 

performs was a bit difficult.  Largely, this is because the problems that packing and retiming face are 

greatly dependant on the characteristics of both the incoming netlist and target architecture.  Specifically, 

conventional packing works very well when the number of registers in a netlist is relatively low or when 

mapping to an architecture with few BLEs in each CLB.  At best, the FF-level placement technique 

suggested in this chapter only provided a vanishingly small improvement for the original sequential MCNC 

netlists on both the clustered and unclustered architectures, as compared to CLB-level placement.  This is 

because these netlists do not have enough registers to create a problem for conventional packing.  The 

improvement for more heavily registered circuits is also relatively small for unclustered architectures.  

Compared to CLB-level placement, the depth = 1 netlists only obtained a 0.980x improvement in critical 

path delay when mapped to a single LUT/single flip-flop architecture.  This is because the packing tool for 

an unclustered architecture does not inherently bundle enough LUTs and flip-flops together in a single CLB 

to greatly restrict the subsequent placement step.  However, when the number of registers in a netlist is 

relatively high and there are multiple BLEs in each CLB of the architecture, packing becomes a much 

larger problem.  The depth = 1 and depth = 0.33 netlists obtained a 0.890x and 0.625x improvement in 

critical path delay, respectively, when mapped to a four 4-LUT/four flip-flop architecture using the FF-

level placement approach described in this chapter, as opposed to a CLB-level only technique. 
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Retiming has a similar issue regarding dependence on the architecture.  Here, it is likely that the placement 

problem for the netlists used in this study was not hard enough to truly present a challenge on architectures 

with longer wire segments and clustered CLBs.  At best, retiming provided a few percent critical path delay 

improvement for placement on architectures with length-4 wires and four BLEs in each CLB.  This is 

probably because the logic blocks in these architectures can reach a dramatically larger number of other 

logic blocks with relatively few wires.  This makes these architectures inherently faster and, perhaps more 

importantly, the delay of different nets more predictable, even prior to placement.  However, retiming plays 

a much larger factor on architectures with shorter wires and unclustered CLBs.  Retiming during placement 

on a unit-length wire architecture with one BLE per CLB improved delay by a factor of 0.954x for the 

original sequential MCNC netlists and by a factor of 0.970x for the depth = 1 netlists as compared to a FF-

level placement approach without retiming. 

 

Looking to the future, it is likely that the issues surrounding packing will only get worse.  This has some 

interesting implications for the runtime of placement.  First, as consumers demand more complex and 

higher performance devices, it is likely that the number of LUTs and registers in applications will go up.  

For that matter, recent trends in commercial devices tend towards using CLBs that incorporate a larger 

number of BLEs.  Thus, while the hybrid CLB/FF-level placement approach described in this chapter 

appeared to work very well, the runtime of any algorithm based solely upon simulated annealing will likely 

be extremely long for future applications.  However, as mentioned in Chapter 5, many commercial 

placement tools use a fast, but relatively inaccurate approach to provide a global placement.  The natural 

speed advantage of these tools makes low-level placement far more tractable.  It would be interesting to see 

how a non-simulated annealing global placement tool could interact with a hybrid CLB/FF-level placement 

tool.   

 

Furthermore, there is a large body of work that has considered another kind of physical re-synthesis: logic 

duplication.  Like retiming, logic duplication can cause problems for the classical toolflow.  As discussed 

in [24], logic duplication attempts to replicate portions of a netlist that limit performance due to fanout.  

Consider the example in Figure 6.10.  After placement, the original netlist on the left has a long wire to 

connect LUT A and LUT C.  This type of situation could occur for a variety of reasons, but most likely the 

placement of the blocks that connect to LUTs B and C pull these blocks in opposite directions.  However, as 

seen on the right, duplicating LUT A could reduce the number of long wires in the system.  Of course, 

duplicating parts of the circuit restructures the netlist and increases the area requirements, so this must be 

done very carefully.  Unfortunately, determining which nets present a bottleneck can only really be 

performed after placement, so logic duplication can suffer from the same type of problems regarding timing 

closure as retiming.   
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However, similar to retiming, the effect of logic duplication is also likely architecture dependent.  In 

preliminary testing that attempted to replicate timing critical registers on an architecture with length-4 

wires, the potential improvement in critical path delay was relatively minor.  It is possible that this is due to 

the fact that architectures with longer wire segments do not need as much duplication, but some additional 

investigation is necessary to more fully explore the possibilities and limitations of duplication on modern 

architectures. 
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Figure 6.10: Logic Duplication 
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Chapter 7: Register-Aware Routing  

Although all of the tools in a netlist compilation CAD flow play some role in determining the performance 

of an application mapped to an FPGA, addressing timing concerns during the routing process is particularly 

important.  This is because routing sets the exact communication paths between different logic blocks.  The 

communication in an FPGA-based application is critical because the delay accumulated in the interconnect 

contributes so heavily to the overall timing of the system.  However, while Section 4.4 discussed a classical 

algorithm for timing-driven routing, this type of approach cannot necessarily be used to map applications to 

all FPGAs.  This is because the register resources that some architectures provide pose a fundamentally 

different routing problem, breaking some of the basic assumptions necessary to use classical techniques. 

 

This chapter will discuss the nature of some of these architectural design decisions and describe how the 

connectivity of the registers in an FPGA can affect the CAD algorithms needed to effectively use these 

resources.  This will lead to a discussion of the pipelined routing problem and an introduction to the only 

two known heuristics that address it: PipeRoute and QuickRoute.  Unfortunately, both of these algorithms 

are purely congestion-driven, and this chapter will outline some of the issues that prevent these approaches 

from borrowing existing timing-driven routing methodologies.  Finally, this chapter will suggest a new 

timing-driven pipelined routing algorithm that avoids these problems and can significantly improve circuit 

performance for architectures that require pipelined routing. 

 

7.1: Registers with Limited Connectivity 

Some FPGA architectures may limit the accessibility of some of the registers in the system.  For example, 

in the registered track-graph FPGA discussed in the last chapter [38], the flip-flops embedded in the 

communication network are only connected to a maximum of four wires.  As seen in Figure 6.2c, the 

incoming and outgoing signals of each of these registers must be routed on one specific wire domain.  

Thus, to use one of these registers, it must be driven from one of four wires coming from either the top, 

bottom, left or right of the switchbox.  The registered output can then leave on one of the wires on the 

remaining three sides.  This extremely limited connectivity is a stark contrast to the accessibility of the 

more conventional registers found inside CLBs.  Flip-flops within logic blocks are generally connected to 

all or most of the wires inside the channels that surround each CLB.  Since the wire channels in modern 

FPGAs contain hundreds of individual wires, the routing flexibility of registers inside logic blocks is 

extremely high. 

 

However, limited register accessibility is common on architectures that attempt to increase the number of 

registers they provide.  In general, this is because these systems would like to introduce as many additional 

registers as they can while minimally disturbing the rest of the system.  From an area and performance 

standpoint, an architecture like in [38] cannot afford to connect the registers embedded in the 
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communication network to all of the wires that enter or exit its switchbox.  As seen on the left of Figure 

7.1, fully connecting even one register can require extremely wide input multiplexers and output 

demultiplexers.  As seen on the right of Figure 7.1, FPGA architecture designers would rather increase the 

number of registers but decrease the communication flexibility of each one. 

 

This architectural choice has a subtle but very important impact on the CAD tools.  Specifically, the placer 

cannot map flip-flops in a netlist in the traditional way to registers in an architecture that have limited input 

and output connectivity.  Although the placement tool can temporarily map flip-flops to these locations 

during the annealing process to get a general idea of local register supply versus demand, these assignments 

cannot be binding like the placement of LUTs and registers with a high degree of connectivity.   

 

In the conventional toolflow, after placement is completed the locations of all the LUTs and flip-flops in 

the netlist are fixed.  However, if the placement of flip-flops mapped to registers with limited connectivity 

is fixed after annealing, this can interfere with basic routability of the system.  This is because fixing the 

location of these registers during placement also forces the system to use specific wires to get in and out of 

these resources.  In some sense, because these registers are connected to so few wires, this also fixes the 

routing for these signals.  This characteristic effectively blocks the capability of the router to choose the 

path of these signals.  Unlike the more conventional registers mapped to logic block locations, the router 

cannot change the wires it uses to get to these registers to resolve congestion.  This can dramatically affect 

the routability of netlists that make use of registers with low degrees of connectivity.  Thus, to maintain the 

routability of the device, the CAD tools must be able to reassign the locations of flip-flops mapped to 

registers with limited connectivity after placement is completed. 
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Figure 7.1: Impact of Connectivity on Area and Number of Switchbox Registers 
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7.2: Pipelined Routing Problem 

In a way, the CAD tool flow described in [38] and discussed in Section 6.2 avoids this problem entirely on 

their architecture by only assigning flip-flops in a netlist to the registers in the interconnect after placement 

and routing has been completed.  However, as mentioned, this severely limits the usability of these registers 

and makes it impossible for the system to map flip-flops that are not generated by retiming to these 

interconnect registers.  This leads to poor register utilization. 

 

A new CAD approach is necessary to more efficiently use registers with limited connectivity.  While the 

discussion in the previous section suggests that the CAD tools should assign these registers during the 

routing process, this fundamentally changes the nature of routing itself.  No longer is it simply a matter of 

finding the cheapest path between a source and sink, the router now needs to find a path between a source 

and sink that goes through exactly N registers.  Formally introduced in [34], this problem is officially 

known as the N-Delay Routing problem and has been proven to be NP-Complete. 

 

While PathFinder [28] and its predecessors demonstrated that the conventional routing problem of 

congestion resolution for multi-terminal, multi-net circuits is very difficult on most modern FPGA 

architectures, it breaks down into much simpler sub-problems.  For example, ignoring congestion, 

Dijkstra’s shortest-path algorithm can be used to quickly find routes for all two-terminal nets.  The 

difficulty of the N-delay routing problem stems from the fact that the additional latency constraint on a 

signal precludes the use of Dijkstra’s algorithm.  This is a large handicap since conventional routing 

techniques generally use some form of Dijkstra’s algorithm as a foundation.   

 
The N-delay routing problem breaks Dijkstra’s in two ways.  First, the lowest cost path from source to the 

sink may not meet the specified latency requirement.  More importantly, the cheapest path to any given 

node along the way may not be the best path, since it may not even form the prefix of any legal route.  This 

issue is clearly illustrated in Figure 7.2.   In this example, the router would like to find a path between the 

source S and the sink K that goes through exactly one pipelining register.  Assuming a unit cost model, 

Dijkstra’s algorithm fails to find a valid one-latency path.  Obviously, (S, d, e, f, K) is the cheapest path, but 

it does not meet the one clock cycle latency requirement.   
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Figure 7.2: Failure of Dijkstra’s Algorithm for the  N-Delay Routing Problem 
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Of greater concern, though, is why Dijkstra’s fails.  The reason that Dijkstra’s does not find the valid path 

through register b is because node f is explored first by the zero-latency search from (S, d, e).  Since 

Dijkstra’s algorithm marks all nodes when they are visited, this prevents the initially more expensive (S, a, 

b, c) route from continuing on to the sink.  This problem becomes even more complicated when 

considering multi-terminal, multi-latency nets and the need for congestion resolution. 

 

The two following sections describe the only known algorithms to address the N-Delay routing problem: 

PipeRoute and QuickRoute.  Details of these algorithms are discussed and their advantages and 

disadvantages are examined. 

 
7.2.1: PipeRoute 

PipeRoute [33] was the first heuristic designed to confront the N-delay routing problem.  Although it is NP-

Complete, the authors prove in [34] that a one-latency route can be found in polynomial time.  They begin 

by showing that a normal Dijkstra’s breadth-first search is not sufficient given the difference between the 

input and output nets of a register.  As seen in Figure 7.3, if S is both the source and sink, the router will not 

find a valid one-latency path if it simply marks nodes visited or not visited.   This is because neither search 

can complete a path around the ring.  Assuming a unit-cost model, the search from (S, a, b, c) cannot 

continue to node f because it has already been visited by the other half of the search through (S, d, e).  By 

the same token, the search from (S, d, e, f) cannot continue to node c because it has already been visited by 

the other half of the search through (S, a, b).  To solve this problem the router must also note the associated 

latency when a node is explored.  That is, a post-register wave (latency=1) can expand to a given node even 

if it has already been explored by a pre-register wave (latency=0) and vice versa.  This is called a 

Combined-Phased Breath-First Search.   

 

However, the authors go on to show that even this is not entirely adequate.  Consider the example in Figure 

7.4.  Even if the router allows nodes to be visited both at latency zero and latency one separately, it can 

enter a similar deadlock if the graph is slightly different.  Here, the latency 0 search through (S, d, e, c) 

cannot continue to node b because it has already been explored at latency 0 through (S, a).  However, the  
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Figure 7.3: Combined-Phase Breadth-First Search 
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Figure 7.4: Failure of Combined-Phase BFS and Need for 2 Combined-Phase BFS 
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Figure 7.5: Greedy Accumulation of Multiple-Latency Routes 
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Figure 7.6: PipeRoute and Self Intersection 

 

latency 1 search through (S, a, b, c) cannot continue to node e because it has already been explored at 

latency 1 through (S, d, f) and the latency 1 search through (S, d, f, e) cannot continue to node c because it 

has already been explored at latency 1 through (S, a, b).  In [34] the authors prove that these problems can 

be avoided and they can guarantee optimality if the router allows nodes to be visited once at latency zero 

and twice at latency one.  This is called a 2Combined-Phased BFS. 

 

PipeRoute uses this 1-delay router to iteratively form multiple latency paths.  As seen in Figure 7.5, to find 

a two-latency path from the source S to the sink K, PipeRoute first attempts to find a one-latency path.  If 

this initial single-register route elects to use register e, as in the top right of Figure 7.5, the next step is to 

attempt to replace either the link from S to e or e to K with its own one-latency route.  As shown in the 

bottom left of Figure 7.5, PipeRoute would select the lowest cost alternative between the routes (S, a, e, f, 

K) and (S, d, e, j, K).  Unfortunately, this is a greedy accumulation process.  For example, if the netlist 
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required a four-latency route and PipeRoute selected an interim three-latency path through (S, a, e, j, K), it 

would be unable to find a valid route.  This is because there is no way for any of the links (S→a), (a→e), 

(e→j), or  (j→K) to be replaced with its own single latency link.  

 

PipeRoute uses this iterative multi-latency search technique to replace Dijkstra’s algorithm in PathFinder.   

It maintains PathFinder’s iterative routing scheme and cost formulation in an outer loop to gradually 

resolve congestion.  Unfortunately, this approach has some subtle yet serious limitations.  Although the 

authors prove that their 1-delay router is optimal, their definition of an optimal path allows a route to cross 

over itself.  For example, on the left side of Figure 7.6, if S is both the source and sink, PipeRoute realizes 

that the shortest one-latency path is the route (S, d, e, f, d, S).  Unfortunately, this path visits a register and 

then doubles back onto itself.  This is clearly not a valid physical route since one node must simultaneously 

carry a value from the current clock cycle and the previous one.   

 

The authors justify their definition of an optimal path by indicating that since they use PathFinder in their 

outer loop, its natural congestion avoidance will resolve these problems over multiple routing iterations.  

Unfortunately, PathFinder may not be able to discourage this type of path self-intersection on many 

common architectures.  First, present sharing cost, or the pn term in Equation 4.7, cannot play any role in 

preventing self-intersection regardless of architecture design. This is because, as seen in Figure 4.4, 

PathFinder does not update the present sharing of any node until it has found a complete route from a 

source to sink.  Thus, an exploration will not feel the effects of present sharing between the phase zero and 

phase one routes until after it has already completed the search.  Furthermore, PathFinder cannot update 

present sharing during a routing exploration itself since a phase one search has no efficient way of 

distinguishing between when it is wrapping back onto itself versus attempting to explore a node that was 

used at latency zero by an unrelated exploration.  Likewise, this problem cannot be resolved by history 

cost, the hn term in Equation 4.7.  Consider a symmetrical architecture as shown in the right side of Figure 

7.6.  Here, the self-intersecting problem will simply alternate between the top and bottom loop, never 

realizing that a valid alternative exists.   

 
This characteristic makes PipeRoute unsuitable for many FPGA architectures.  First, the interconnect 

flexibility of modern devices will encourage the self-intersecting path problem.  In other words, the 

generally high connectivity within the communication fabric allows a routing node to easily re-discover 

itself after going through a register.  If modern FPGAs were purely directional devices (outputs could only 

drive inputs that were to the right or below a given location, for example), this might not be a problem. 

Second, the majority of interconnection networks have a great deal of symmetry.  One routing track is  
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Figure 7.7: QuickRoute and Self-Intersection 
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Figure 7.8: QuickRoute and Self Blocking 
 

likely to have the same access to pipelining resources as neighboring tracks.  This will encourage 

explorations to fold all available options back onto themselves and prevent valid non-overlapping routes 

from being found. 

 
7.2.2: QuickRoute 

QuickRoute [23] was the second heuristic to address the N-delay routing problem.  Like PipeRoute, it also 

retains an outer loop of PathFinder congestion resolution and simply replaces Dijkstra’s algorithm to 

perform the inner loop searches.  However, unlike PipeRoute it attempts to find full N-latency paths 

directly.  Although performed for latencies larger than one, it is similar to the Combined-Phased BFS from 

PipeRoute in that the router must record the phase of an exploration when a node is visited.  In QuickRoute, 

a wave is allowed to explore a given node if the node has been visited by fewer than k other waves at the 

same latency.  For example, in the top right figure of Figure 7.7, if the router is trying to find a 2-register 

path from S to K, assuming k=2, the paths (S, a, b) and (S, e, b) would both be considered.  However, unlike 

PipeRoute, QuickRoute does not allow paths to intersect themselves.  To accomplish this, it records the 

path back to the source for every exploratory wave and does not allow an exploration to revisit a node 

already used by itself earlier in the search.  In the bottom left illustration of Figure 7.7, a path that goes 

through node b will not consider it again for subsequent exploration.  This multi-latency search process is 

continued until the sink is discovered at the appropriate latency. 
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QuickRoute 
0 while(!all signals routed || congestion exists) 
1  for all nets N 
2   if N is nota  pipelined net, use PathFinder 
3   else  
4    clear N.routing tree 
5    put source of N into N.routing tree 
6    sort sinks by non-decreasing latency 
7    for all sinks of N 
8     for all nodes in architecture, for all latencies L, set visited[L] = 0 
9     put all nodes in routing tree into priority queue PQ at cost C, path P, latency L 
10     while(PQ.head not sink[i] of N && PQ not empty) 
11      remove head of PQ H at cost C, path P, latency L 
12      if(H.visited[L] < k) 
13       set H.cost[L] to C 
14       add H to P 
15       increment H.visited[L] 
16       if (neighbor of H is  not register && neighbor of H.visited < k && neighbor not in P) 
17        put neighbor into PQ at cost C + neighbor cost + edge cost, path P, latency L 
18       else if (neighbor of H is register && neighbor of H.visited < k && neighbor not in P) 
19        put neighbor into PQ at cost C + neighbor cost + edge cost, path P, latency L+1 
20       end if  
21      end if 
22     end while 
23     if(PQ is empty) 
24      net unroutable, exit 
25     else if(PQ.head is sink[i] of net N) 
26      mark sink found 
27      add new parts of P to N.routing tree 
28      clear PQ 
29      update cost of congested nodes 
30     end if 
31    end for 
32   end if 
33  end for 
34  update critical path delay and sink criticalities 
35 end while 

Figure 7.9: Pseudo-Code for QuickRoute 
 

Of course, since the problem is still NP-Complete, QuickRoute cannot guarantee a solution.  For example, 

if a slight modification is made to the routing graph, as in Figure 7.8, the router will run into problems.  

Assuming k=1 and the router needs to go from S to K accumulating two registers, it will fail to find a 

solution.  This is because node b is initially used by the doomed route through (S, a, b, c, d) that, in turn, 

prevents the correct route through (S, e, f, g, h) from exploring node d.  Unfortunately, no matter how large 

k is made, it is possible to construct a routing graph that will cause QuickRoute to self-block by adding 

additional 1-register paths between b and d.   

 

However, QuickRoute still holds multiple advantages over PipeRoute.  Not only does QuickRoute defend 

itself from the self-intersection problem of PipeRoute, it has the flexibility to improve its routing ability by 

increasing the k factor.  Pseudocode for QuickRoute is shown in Figure 7.9. 

 

7.3: Timing-Driven Pipelined Routing 

Although both PipeRoute and QuickRoute do address the basic N-Delay routing problem, they also share a 

critical shortcoming: neither implements timing-driven routing.  This is surprising for two reasons.  First, 
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registers are generally added to a netlist because the application developer seeks better critical path delay.  

Thus, not considering the timing concerns of an application during the routing process can nullify much of 

the advantags these registers might provide.  Second, as discussed in Chapter 4, PathFinder already has a 

timing-driven mode that simultaneously balances congestion and delay very nicely.  However, PipeRoute 

and QuickRoute cannot leverage PathFinder’s timing-driven formulation because of multiple differences 

between the conventional routing problem and the pipelined routing problem.  The following sections will 

discuss the nature of these issues and introduce some new solutions. 

 
7.3.1: Determining Link Criticality 

Returning to Equation 4.8, Pathfinder determines the cost of a path based upon Aij, the criticality of the 

source/sink pair as found during the last routing iteration.  One key problem that prevents previous 

pipelined routing algorithms from using PathFinder’s timing-driven methodology stems from the fact that, 

in the classical CAD sense, they continuously change the very nature of the netlist during the routing 

process.  This makes using the criticality information from one routing iteration in the next unreliable. 

 

As shown in top illustration of Figure 7.10, conventional CAD tools map registers to logic block locations.  

Since the placement process determines the location of all the blocks before routing begins, it can achieve 

relatively consistent iteration-to-iteration net criticality.  This allows the classical PathFinder cost 

formulation to function well.  In this example, the placement tool has decided that CLB a must route to 

CLB b before going to CLB c.  As routing progresses, Pathfinder can use the criticality of the last route 

found to determine the next route.  In this way, PathFinder relies on the fact that the routing will not 

drastically change between iterations.  In other words, it assumes that it is unlikely that consecutive routing 

iterations will choose vastly faster or slower routes from a to b or b to c.  However, if this does occur, the 

router will over or under-penalize the congestion versus delay contribution to the overall path cost.  For 

example, if the last routing iteration resulted in a timing-critical path for the link from a to b, but the 

present routing iteration manages to find a much faster path, the cost of the route will greatly over-penalize 

delay while erroneously ignoring congestion. 

 

Pipelined routing differs strongly from classical routing because it must find the location of registers in the 

netlist during the routing process.  These registers are not locked into position by the placement tool.  

While this is a hard problem in itself, it also presents a completely new issue for timing optimization.  Since 

registers are the start and end points of a clock cycle, their placement is naturally very important to the 

timing of the nets to which they are attached.  However, since a pipelined router determines the placement 

of at least some portion of the registers in the netlist during routing, the timing significance of a given net 

can change dramatically depending on the location chosen by a given routing iteration.  Looking at the 

pipelined routing problem from the standpoint of conventional routing, it is as if the placement of all the  
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Figure 7.10: Timing Implications for Conventional Routing Versus Pipelined Routing 
 

registers that need to be found during routing can change every routing iteration.  This makes it very easy 

to use the wrong criticality value and over or under-penalize the congestion versus delay contribution of the 

overall path cost. 

 

Consider the same netlist used before, but in a pipelined routing framework.  This is shown in bottom 

illustration of Figure 7.10.  Notice that the register has been replaced by a latency annotation on the edge 

between a and c.  In this situation, LUT a must be connected to LUT c by a single latency link, but the 

router must find the register as part of the routing process itself.  However, the criticality of the individual 

links between a and the register and the register and c will heavily depend upon the registering location that 

is chosen.  The relative criticality of these links will change completely if the router chooses to register at i 

versus ii .  However, the system cannot anticipate this change between routing iterations, so it can only 

follow the classical PathFinder methodology and forward criticality information calculated in one iteration 

for use in the next.  However, potential inaccuracy regarding the criticality of the nets will result in possibly 

grossly miscalculating the true cost of a path.  Ultimately, this will lead to timing oscillations as opposite 

sides of a register along critical or nearly critical paths vie for dominance. 

 

If the first iteration chooses to register at i, the second iteration will choose to register at ii , despite that fact 

that it would be more advantageous, from a timing standpoint, to select a register closer to the center of the 

array.  This problem occurs because the pre-register link will have a very low criticality, making delay on 

this segment during the next routing iteration very inexpensive.  Conversely, the post-register link will have  
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Figure 7.11: Multi-Terminal Criticality Problem 
 

a very high criticality, making delay very costly during the next routing iteration.  Thus, ignoring 

congestion for the moment, the post-register link will want to become as short as possible at the expense of 

the pre-register link.  For similar reasons, a third routing iteration will return to the register at i.  This means 

that the router will alternately select equally poor register locations and never find a better solution.   

 

Essentially, this type of behavior occurs because the router utilizes old, and dramatically incorrect net 

criticality information to determine future routes.  The criticality of a link to a register used in one routing 

iteration has little relevance in the next if the router selects a different register.  Notice that the mismatch 

that occurs between the real criticality of a link and the criticality used for calculating the cost of a path is 

very reminiscent of the problem encountered during the placement of registered netlists discussed in 

Section 5.4.  For that matter, the fundamental cause of this problem is also the same: the technique that 

conventional timing-driven routers use implicitly assumes that the criticality of any connection in the 

system will not change significantly between routing iterations.  However, if the criticality does change 

significantly, the algorithm can produce degenerate solutions.   

 

This problem becomes even further complicated considering multi-terminal and multi-latency nets.  As 

shown in Figure 7.11, there are certain situations in which sinks may want to share registers to reduce 

congestion.  However, depending upon their relative placements and if this net becomes critical or near 

critical, each sink might wish to use a separate register.   Unfortunately, it becomes unclear what criticality 

to assign any of the nets to allow these “zipped” and “unzipped” paths to exist in consecutive iterations and 

still produce high-quality results. Should the criticality of all latency-N segments be averaged?  Should the 

worst criticality of any segment define the criticality of all links?  This becomes an issue because the router 

can fundamentally changing the nature of the netlist during routing.  Similar to before, from the viewpoint 

of a conventional router it is as if a limited form of logic synthesis or, at the very least, register duplication 

can be performed between every routing iteration. 

 

7.3.2: Assumed Criticality Searching 

Clearly, if a pipelined router is to obtain high quality results, it cannot use criticality information gleaned 

from previous routing iterations to guide future exploration.  However, PathFinder has shown that there still 
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needs to be some mechanism to allow more timing-significant links to trade higher congestion for lower 

delay, and less important signals to trade additional delay for less congestion.  A potential solution?  Allow 

each exploration to discover its own criticality. 

 

While the router would normally obtain the timing importance of the signal from the previous routing 

iteration, this cannot be done for pipelined signals.  One possible alternative is for an exploration to build 

its own criticality based upon the delay it has seen thus far.  In this scenario, the router would start with a 

very low criticality at the source when the exploration has not accumulated any delay, and gradually 

increase the timing significance as the search continues and paths becomes slower.  Unfortunately, while 

this may work for low and mid-criticality links, this will not perform well on high criticality segments.  

This is because the early portion of searches may meander to avoid congestion.  As the path becomes 

longer, the search will opt for more direct routes to the sink.  Unfortunately for critical nets, the damage has 

already been done and they will never obtain the congestion-blind routes that they should. 

 

Instead, it is possible for an exploration to decide the proper criticality for a route at the only point that the 

decision can actually be made – when it arrives at a sink.  In this formulation, the router starts AC 

independent waves from the source, each assuming the net has a different criticality, ranging from 1/AC to 

1.0.  In this manner, the system will have multiple simultaneous searches that each emphasizes delay versus 

congestion in a slightly different way.  The first exploration to reach the sink will be the least expensive 

and, thus, represent approximately the proper balance of congestion versus delay.   Furthermore, the router 

can trade runtime for further timing accuracy or vice versa by adjusting AC.  This technique is called an 

Assumed Criticality Search. 

 

However, assumed criticality searching could still lead to grossly incorrect routing.  Looking back at 

Equation 4.8, this is because high criticality nets always emphasize low delay and low criticality nets 

always emphasize low congestion.  This relationship makes it possible for assumed criticality searches to 

degenerate to always selecting either the lowest or highest assumed criticality for all nets.  For example, if 

the delay values along most paths from the source to the sink are coincidentally smaller in magnitude than 

their congestion counterparts, searches that assume a criticality of 1.0 will always be the cheapest, 

regardless as to whether they are truly timing critical.  A similar situation occurs for the minimum assumed 

criticality if the relative values are reversed.  While this problem could be addressed by ensuring that the 

delay and congestion values are always balanced, this is not a feasible solution as the congestion values 

must be able to grow as the routing progresses – PathFinder relies on gradually escalating congestion costs 

to resolve sharing.   

 
To deal with this problem the assumed criticality router needs to incorporate the real criticality of a path 

back into the cost calculation.  This can be accomplished by using the assumed criticality values to 
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calculate the cost of route up to, but not including, the sink or register.  Then, just as the router reaches this 

node, it can determine the real criticality of the route that it actually found.  At this point the router can re-

calculate the cost of the path based upon the actual criticality.  This will ensure that a sink is only pushed 

into the search queue with the true cost of the path.  This will prevent the scenario in which low assumed 

criticality searches rush ahead along uncongested, but slow links and form an unnecessarily high criticality 

path.  This is because just as these searches are about to reach the sink or register, they will calculate the 

real criticality of the paths found.  The cost of these searches will then rise dramatically to reflect their 

newly revealed high delay and high criticality.  This will allow higher assumed criticality searches, which 

will presumably find faster, slightly more congested paths, to catch up and have the opportunity to form a 

more appropriate mid-criticality link.   

 

The complete assumed criticality search methodology, as seen in Figure 7.12, has several attractive 

features.  First, it solves the problem of routing inaccuracy due to iteration-to-iteration variance in path 

criticality.  Second, this approach does not dramatically increase the computational effort of routing.  

Obviously, if the router conducted AC completely independent searches for each source/sink pair, this 

would only invoke PathFinder’s inner loop AC-1 additional times.  However, the router can also easily run 

all of these searches simultaneously and prune non-productive explorations along the way.  Of course, once 

one search has reached the sink, the router can end all exploration.  However, it can even prune incomplete 

 

Assumed Criticality Breadth-First Search 
0 for i = 1 to AC 
1  put source into priority queue PQ at cost = 0, crit= i/AC 
2 end for 
3 while(PQ.head not sink && PQ not empty) 
4  remove head of PQ H at cost C, crit CR, previous node P 
5  if(H not visited at crit[CR]) 
6   mark H visited at crit[CR] 
7   set H.cost[CR] to C 
8   set H.previous node[CR] to P 
9   for each neighbor of H 
10    if neighbor is not sink 
11     if CR != 1.0 && neighbor.delay > (CR + 1/AC) * critical path 
12      continue 
13     else 
14      put unvisited neighbor of H into PQ at cost C + neighbor cost + edge cost, crit CR,  

      previous node H 
15     end if 
16    else if neighbor is sink 
17     calculate actual criticality of current path 
18     recalculate cost of path 
19     put sink into PQ at updated cost, crit CR, previous node H 
20    end if 
21   end for 
22  end if 
23 end while 
24 if(PQ is empty) 
25  sink is unroutable, exit 
26 else if(PQ.head is sink) 
27  add path net’s routing tree 
28 end if 

Figure 7.12: Assumed Criticality Searching 
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searches.  For example, for AC=5 the router will launch five explorations with criticalities (0.2, 0.4, 0.6, 

0.8, 1.0).  If the current critical path is 10, paths with a delay of 4 or more do not need to be explored by the 

0.2 assumed criticality wave. Those paths will be better serviced by the 0.4 assumed criticality exploration.  

Thus, with the exception of the highest criticality wave, the router can prune a search when the current path 

delay would make the exploration’s criticality larger than the next higher assumed criticality search. 

 

7.3.3: New Cost Formulation 

Another issue that appears concerns the congestion versus timing cost formulation itself.  As mentioned in 

the previous section during the discussion of the potential pitfalls of the assumed criticality methodology, 

the lowest cost path obtained by using Equation 4.8 heavily depends upon the relative values of an 

architecture’s delay and congestion costs.  Unfortunately, this can cause further undesirable behavior when 

considering pipelined routing. 

 

Consider the scenario in Figure 7.13.  Here, there are two potential one-latency paths from S to K.  If the 

notation in the figure is (delay cost:congestion cost), and the cost of a path is considered to be the some of 

the congestion and delay costs of all of it links,  both paths have the same total congestion and delay.  

However, the top path is a comparatively poor choice because the post-register path is both highly critical 

and highly congested. Using Equation 4.8 as a cost function, the cost of the top and bottom paths are shown 

in Equations 7.1 and 7.2, respectively.  For mathematical simplicity, the critical path delay of the system is 

assumed to be 10d for the moment.  The effect of system critical path delay will be further examined in 

Section 7.6.   

 

 cdcdcd 8.12.8)9(1.0)9(9.0)(9.0)(1.0 +=+++   (7.1)  

 

 c dcdc)(.d)(. 55)5(5.0)5(5.0550550 +=+++   (7.2) 

 
Based on these equations, the selection of balanced versus unbalanced paths depends entirely upon the 

relative values of c and d, an architecture’s average base congestion and delay cost.  In this example, the 

more balanced path is only selected if c < d.  However, maintaining this relationship is very difficult.  Even 

if the router were to scales the base cost of all routing nodes so that it initially selected more balanced 

paths, the natural congestion cost escalation of PathFinder will cause later iterations to tend toward worse 

selections.  Not only do these unbalanced paths create a more difficult timing problem, they actually work 

contrary to PathFinder’s own attempts at congestion resolution.  This is because as the router enters the 

later stages of routing, the average congestion cost will rise to resolve sharing.  However, based upon the 

observation here, the router will actually tend towards more extreme congestion options. 
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Figure 7.13: Congestion vs. Timing Concerns For Pipelined Routing 
 

This problem occurs because the delay and congestion contributions to the overall path cost are linked.   

While the Aij versus (1-Aij) terms guarantee that paths can trade delay for congestion and vice-versa, this 

intertwines the two components, making their relative values very sensitive.  To address this issue, a subtle 

change can be made that removes this vulnerability.  Equation 7.3 is obtained by dividing both sides of 

Equation 4.8 by (1-Aij).  
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While this change scales all path costs by 1/(1-Aij), since all explorations compete with each other 

simultaneously, this likely does not change path selection for conventional non-pipelined routing.  

However, this does change the behavior for pipelined signals.  Revisiting the example from Figure 7.13 but 

substituting the new cost formulation, the cost of the unbalanced top path and balanced bottom path are 

shown in Equations 7.4 and 7.5, respectively. 
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Since both the congestion and delay costs are necessarily positive numbers, more balanced paths are now 

always selected over unbalanced paths without the need to meticulously adjust the relative values of an 

architecture’s congestion and delay costs.  However, the router still has the option of selecting the 

unbalanced path should this path become less congested in future routing iterations. 

 

One concern that might arise regarding Equation 7.3 is that the criticality of a connection, Aij, is divided by 

1 minus the criticality, or (1-Aij).  This term could become undefined for connections that are along the 

critical path since Aij  is 1.0, resulting in a division by zero.  However, this does not occur because timing-

driven routers generally cap the criticality used to calculate routing costs to 0.99 [2].  Looking back at 

Equation 4.8, the reason that the criticality is only allowed to reach a maximum of 0.99 is because routers 



101 

 

do not want to create situation in which paths can entirely ignore congestion.  If Aij were equal to 1.0, (1-

Aij) would equal zero, allowing a path to solely focus on delay with absolutely no concern for congestion.   

Thus, two critical paths that fight over a single resource would never be able to resolve their conflict.  This 

cap on a path’s criticality helps the router better resolve congestion. 

 

This limit also has an effect on routes slower than the current critical path.  For example, it is possible that 

in an attempt to resolve congestion, the system considers a slower route for some connections.  Without a 

cap on the criticality of a connection, the assumed criticality methodology could find a route with a 

criticality larger than 1.0, causing the congestion term to become negative.  This might actually cause the 

system to use highly congested paths, just to receive the cost benefit.  However, with the limit in place, the 

router can still feel the effects of slower paths since the delay term is larger, but without potentially creating 

a problem for congestion resolution. 

 

7.4: Armada 

The assumed criticality search technique and the new cost function can be integrated into the QuickRoute 

algorithm.  This new pipelined routing algorithm is called Armada [10].  As shown in Figure 7.14, Armada 

launches a series of multi-criticality searches from the source.  In this example the router would like to find 

a one-latency path between S and K.  The first series of searches expand from the source.  When one of 

these waves encounters a register, it recalculates the path cost based upon the real criticality required to 

reach the register along the given path.  When the cheapest path to the register is popped from the priority 

queue, it launches a new series of assumed criticality searches of its own at latency one.  Notice that 

although all zero-latency searches may reach the register and push it into the priority queue, only one path 

will be deemed the least expensive and, thus, the best way to use this particular register.  Only this path will 

continue on with one-latency explorations. 

 

However, this example brings up the issue of defining the cost of a multiple latency route.  In Figure 7.14, 

eventually both registers in the architecture will launch their own set of one-latency explorations.  As they 

near K, the router needs to determine which path best balances not only the congestion and delay of their 

zero and one-latency paths individually, but the combination of the two.  Since each time the router 

encounters a register it determines the actual criticality of the link, the cost of an L-latency path can be 

S KKS

 

Figure 7.14: QuickRoute with Assumed Criticality Searching 
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defined as the total of the timing and congestion costs of all zero to L-latency segments.  This is shown in 

Equation 7.6. 

 

 )Costcongestiont(timingCos
0

ii
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C +=∑
=

 (7.6) 

 

Furthermore, as seen in line 6 of the pseudocode in Figure 7.16, Armada borrows a concept from 

QuickRoute and sorts the sinks of each net it is responsible for routing.  To give priority to higher criticality 

links, it sorts each net’s sinks first by non-decreasing order of latency (# of registers required on the path), 

then by non-increasing order of maximum link criticality found in the previous routing iteration.  In this 

way, the most timing-critical sinks with the fewest chances to amortize path delay over multiple clock 

cycles determine the earliest stages of the routing tree. 

 

To build successive multi-terminal routes, Armada must also define how pre-existing routes should 

initialize the priority queue.  As seen in Figure 7.15, after the router has found a one-latency route to K, the 

router pushes this existing route into the priority queue to reflect all of the possible routing options to the 2-

latency sink J.  This can be seen in lines 9-17 of the pseudocode in Figure 7.16.  While building a link from 

b would allow for the maximum register sharing and will likely cause the minimum congestion impact, 

developing a wholly new path may offer some timing benefits.  Borrowing a concept from timing-driven 

PathFinder, Armada considers existing routes to be free in terms of congestion, and it only consider their 

delay impact on further sinks.  Based upon the model discussed in Equation 7.6, Armada pushes nodes 

along existing routes into the priority queue by summing only the timing cost of all upstream zero to L- 

latency segments.  For the example in Figure 7.15, to combine this concept with the assumed criticality 

searching technique, all nodes along a would be pushed into the priority queue AC times using different 

assumed criticalities to determine their timing cost.  While all nodes along b would also be added to the 

priority queue AC times, they would all share some common portion of their cost – the zero-latency timing 

cost incurred along a. 
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Figure 7.15: Re-initializing PQ for Multi-Terminal Nets 
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Armada 
0 while(!all signals routed || congestion exists) 
1  for all nets N 
2   if N is not pipelined net, use PathFinder 
3   else  
4    clear N.routing tree 
5    put source of N into N.routing tree 
6    sort sinks by non-decreasing latency, non-increasing criticality 
7    for all sinks of N 
8     for all nodes in architecture, for all latencies L, for all assumed criticalities CR set visited[L][CR] = 0 
     Initialize priority queue PQ with existing routing tree 
9     for all CR = 1/AC to 0.99 
10      for all nodes X in routing tree 
11       if CR != 0.99 && X.delay > (CR + 1/AC) * critical Path 
12        continue  // prune search for starting points 
13       else 
14        put X into PQ at cost C, path P, latency L, assumed criticality CR 
15       end if 
16      end for 
17     end for 
18     while(PQ.head notsink[i] of N && PQ not empty) // search for L-latency route to sink 
19      remove head of PQ H at cost C, path P, latency L, assumed criticality CR 
20      if(H.visited[L][CR] < k) 
21       set H.cost[L][CR] to C 
22       add H to P 
23       increment H.visited[L][CR] 
24       for each neighbor of H 
25        if neighbor is not sink 
26         if CR != 1.0 && neighbor.delay > (CR + 1/AC) * critical path 
27          continue  // prune searches 
28         else if neighbor of H.visted ≥ k || neighbor in P 
29          continue  // don’t explore visited or loopback neighbors 
29         else if (neighbor of H is  not register) 
30          put neighbor into PQ at cost C + neighbor cost + edge cost, path P,  

          latency L,  assumed criticality CR 
31         else if (neighbor of H is register) 
32          calculate actual criticality of current path 
33          recalculate cost of path 
34          put neighbor into PQ at updated cost + neighbor cost + edge cost, path P,  

          latency L+1, assumed criticality CR 
35         end if 
36        else if neighbor is sink 
37         calculate actual criticality of current path 
38         recalculate cost of path 
39         put sink into PQ at updated cost, path P, latency L, assumed criticality CR 
40        end if 
41       end for 
42      end if 
43     end while 
44     if(PQ is empty) 
45      net unroutable, exit 
46     else if(PQ.head is sink[i] of net N) 
47      mark sink found 
48      add new parts of P to N.routing tree 
49      clear PQ 
50      update cost of congested nodes 
51     end if 
52    end for 
53   end if 
54  end for 
55  update critical path delay 
56 end while 

Figure 7.16: Pseudo-Code for Armada Timing-Driven Pipelined Routing 
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7.5: Testing and Results 

As described in [34], the pipeline routing problem was first inspired by the RaPiD [9] architecture.  Thus, 

to determine the effectiveness of the Armada algorithm it was tested with RaPiD architectures and RaPiD 

netlists.  RaPiD is a coarse-grain, one-dimensional reconfigurable array with a word-width interconnect 

network.  As seen in Figure 7.17, logic blocks populate the top of the array with a mixture of short and 

long-distance routing wires below.  Although short wires cannot be concatenated to make longer routes and 

are not connected to specialized interconnect registers, long wires can be concatenated for up to chip-wide 

routes and can acquire between zero and three register latencies at each switchpoint, also known as a bus 

connector.  Bus connectors are represented with small squares between long wire segments.  Furthermore, 

multiple RaPiD cells can be abutted side by side to construct larger arrays. 

 

In the existing RaPiD toolflow, a high-level language compiler produces a retimed netlist that must be 

mapped to a device given specific latency requirements on each connection.  Although RaPiD architectures 

contain a wealth of register locations, any specific bus connector can only communicate with the wires 

immediately to its left and right.  Because of this connectivity, register assignment cannot be performed 

during placement.  This is because, like the registered track-graph architecture in [38], deciding exactly 

which registers should be used for a given signal also mostly determines the detailed routing for that net.  

Unfortunately, deferring register assignment until routing also presents a problem since it is not obvious 

how to find routes that contains exactly the correct number of pipelining registers.  A conventional router 

cannot be used because the architecture has limited pipelining resources that determine the overall 

characteristics of each path.  For example, logic blocks that are placed physically close to each other may 

not be able to be connected via the most direct route.  If the connection between these blocks requires 

multiple pipelining delays, the router may need to take a more circuitous path to acquire sufficient 

registering. 

 
Testing was performed using nine RaPiD netlists that represent a wide range of pipeline register 

requirements. These netlists, detailed in Appendix A, were mapped to three different RaPiD architectures: 

the original architecture that contains 16 logic blocks per cell, length-4 short wires, length-16 long wires, 

and three optional registers at each bus connector, and two other architectures that are similar, but 

substitute long wires of length 8 and 4.  

 

The Armada router was compared to both PipeRoute and QuickRoute.  PipeRoute was represented by a 

slightly augmented version from [32] that added a rudimentary timing-driven formulation to the original 

PipeRoute algorithm.  In the new PipeRoute methodology, the maximum criticality encountered by any 

link between a given source and sink determined the overall net criticality during the following routing 

iteration.  Of course, this technique introduces some inaccuracies into the system.  Not only does this  
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Figure 7.17: Illustration of a RaPiD Cell 

 

methodology suffer from the problem associated with determining the correct relative cost between 

congestion and timing that inspired the modified cost formulation, it also suffers from the false link 

criticality predictions that was addressed with the assumed criticality approach.  As for QuickRoute’s k 

term, as suggested by [23], k = 1 was used.  Armada also used k = 1 and arbitrarily set AC = 10 for the 

initial round of testing.  

 

Before the quality of these routers could be evaluated, they required the benchmark netlists to be placed.  

All nine netlists were placed using the placement tool built into PipeRoute [33].  This provided a fixed, 

pipelining-aware placement as a starting point for all three algorithms.  While conventional placement tools 

always attempt to group interconnected blocks as closely as possible, this is not necessarily favorable on 

architectures that require pipelined routing such as RaPiD.  This is because, as mentioned earlier, high 

latency connections may need to take a circuitous route if there are not enough pipelining resources 

between the logic blocks to acquire the appropriate registering.  The PipeRoute placer attempts to take this 

into account by explicitly placing both logic blocks and registers during annealing.  However, unlike a 

conventional placement tool, the placement of the registers in the system is not binding and new register 

locations are determined during the routing process. 

 

Testing began with the original RaPiD architecture.  Six independent PipeRoute placement and routing runs 

were performed, and the placement with the lowest routed critical path delay as found by PipeRoute was 

passed on to evaluate the other routers.  These placements were routed using congestion-driven 

QuickRoute, the Armada algorithm, and the Armada algorithm with the original PathFinder cost 

formulation substituted in.   
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In Table 7.1 to Table 7.3, the Best Track Count results are the average normalized track requirements, 

circuit timing and router runtime when each tool searched separately for the minimum routable architecture 

for each of the nine netlists.  Notice that this is slightly different than the testing used to evaluate the 

placement tools from the previous chapters, but provides good insight into the true quality of the routing 

algorithms.  Match PipeRoute Track Count results were obtained when each tool was given the same 

number of tracks that PipeRoute required for a given netlist.  Match QuickRoute Track Count results were 

obtained when each tool was given the maximum number of tracks required by any of the QuickRoute-

derivative tools (QuickRoute, Armada or Armada with PathFinder’s cost function) for a given netlist. 

Match QuickRoute Track Count results do not include results for PipeRoute as the available codebase does 

not allow the placement and routing steps to be separated.  Given a different architecture, PipeRoute will 

also change the placement.  

 

Although a precise relationship cannot be made due to the wide range of benchmark complexity, these 

tables also include un-normalized average router runtime to give a general sense of algorithm effort.  All 

results were gathered on 3.2GHz Intel Xeon machines with 2GB of RAM.  Unfortunately, runtime is only 

reported for the three QuickRoute-derivative routers because differences in code execution prevented 

meaningful comparisons to be made with the PipeRoute codebase.  This said, the original QuickRoute 

algorithm is likely to perform as fast or faster than PipeRoute since it does not perform multiple piecewise 

searches.   

  

As seen in Table 7.1, the first surprise is that the original congestion-driven QuickRoute algorithm actually 

achieves nearly the same critical path delay as the improved timing-driven PipeRoute formulation.  

QuickRoute produced a normalized critical path delay of 1.64x while PipeRoute’s critical path delay was 

somewhat faster with a 1.56x critical path delay.  Although based upon the tests performed in [23] one 

would expect QuickRoute to provide marginally better track counts than PipeRoute, the very similar timing 

results indicate that the technique used to make PipeRoute timing-driven is largely ineffective.  As 

predicted, it is likely that inaccuracies within the timing-driven formulation itself greatly limit its ability for 

optimization.   

 

In contrast, though, Armada finds vastly superior timing results with slightly better routability.  PipeRoute 

produced 1.56x worse critical path with 1.09x worse track count and QuickRoute produced 1.64x worse 

critical path delay with 1.04x worse track count.  This improvement in track count is likely due to the fact 

that the timing-driven cost formulation provides additional direction to the QuickRoute-like searches, 

avoiding some occurrences of self-blocking.  However, as expected given the AC = 10 factor, Armada runs 

approximately 10x slower than QuickRoute.  Furthermore, it is also clear that the new timing-driven cost 
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formulation functions as intended.  When PathFinder’s cost function is substituted back into the Armada 

algorithm, it produces 1.18x worse critical path delay. 

 

Of course, it may be unfair to compare the critical path delay of netlists mapped to architectures with 

different track counts.  Thus, as seen in the bottom two sections of Table 7.1, testing was repeated using the 

same architecture for all of the routing algorithms.  However, the results are largely the same – Armada still 

produces vastly superior critical path delay compared with all of the other approaches, but requires 

approximately 10x the runtime of QuickRoute. 

  

Table 7.1.  Normalized Results for Length-16 Long Wire Architecture 
Best Track Count Tracks Crit. Path Delay Runtime Avg. Runtime 

PipeRoute-TD 1.09 1.56 - - 
QuickRoute 1.04 1.64 0.10 133 s 

Armada 1.00 1.00 1.00 1721 s 
Armada, PathFinder Cost  1.03 1.18 7.65 7982 s 

Match PipeRoute Track Count Tracks Crit. Path Delay Runtime Avg. Runtime 
PipeRoute-TD 1.09 1.56 - - 
QuickRoute 1.09 1.75 0.08 113 s 

Armada 1.09 1.00 0.94 1752 s 
Armada, PathFinder Cost  1.09 1.19 5.21 5329 s 

Match QuickRoute Track Count Tracks Crit. Path Delay Runtime Avg. Runtime 
QuickRoute 1.05 1.73 0.11 138 s 

Armada 1.05 0.99 1.05 1826 s 
Armada, PathFinder Cost  1.05 1.20 7.45 7705 s 

All results normalized to the Armada results with the smallest track count 

 

Table 7.2.  Normalized Results for Length-8 Long Wire Architecture 
Best Track Count Tracks Crit. Path Delay Runtime Avg. Runtime 

PipeRoute-TD 1.00 1.66 - - 
QuickRoute 0.96 1.65 0.10 66 s 

Armada 1.00 1.00 1.00 1357 s 
Armada, PathFinder Cost  1.02 1.30 3.11 3068 s 
Match QuickRoute Track Tracks Crit. Path Delay Runtime Avg. Runtime 

QuickRoute 1.03 1.71 0.08 45 s 
Armada 1.03 1.00 0.88 841 s 

Armada, PathFinder Cost 1.03 1.31 3.12 3075 s 
All results normalized to the Armada results with the smallest track count 

 

Table 7.3.  Normalized Results for Length-4 Long Wire Architecture 
Best Track Count Tracks Crit. Path Delay Runtime Avg. Runtime 

PipeRoute-TD 1.01 1.59 - - 
QuickRoute 1.02 1.54 0.11 76 s 

Armada 1.00 1.00 1.00 2637 s 
Armada, PathFinder Cost 1.05 1.21 2.75 2976 s 
Match QuickRoute Track Tracks Crit. Path Delay Runtime Avg. Runtime 

QuickRoute 1.05 1.55 0.10 41 s 
Armada 1.05 0.99 0.84 1593 s 

Armada, PathFinder Cost 1.05 1.21 2.75 2976 s 
All results normalized to the Armada results with the smallest track count 
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As seen in Table 7.2 and Table 7.3, this trend continues when the netlists are mapped to architectures that 

present a more difficult pipelined routing problem.  The testing methodology used on the original RaPiD 

architecture was repeated on architectures with double and quadruple the number of pipelined switch 

opportunities.  On the length-8 architectures, PipeRoute and QuickRoute produce 1.66x and 1.65x worse 

critical path delay respectively.  On the length-4 architectures, PipeRoute and QuickRoute produce 1.59x 

and 1.54x worse critical path delay respectively.  As a note, since the gap between the track counts of 

PipeRoute and the QuickRoute-derivatives mostly closes, the Match PipeRoute Track Count results are no 

longer shown. 

 
Although this testing proved that Armada produces significantly better pipelined routing results than its 

predecessors, there are two other outstanding questions regarding its effectiveness.  First, as mentioned 

earlier, the maximum visitation factor used in this initial testing was suggested by the original QuickRoute 

paper (k = 1).  Even though the routing algorithm is still operating within the same architectural framework, 

the timing-driven nature of the Armada approach might make more thorough explorations attractive.  As 

seen in Table 7.4, there is some correlation between larger values of k and higher quality results, but the 

change is relatively minor.  The small potential improvement in critical path delay (up to 0.95x) or track 

count (up to 0.98x) is likely not worth the increase in algorithm runtime.  However, since larger values of k 

primarily help combat self-blocking, this behaviour is probably highly architecture-specific. 

 

The second issue is that the number of assumed criticality searches that were performed in the initial round 

of testing was completely arbitrarily chosen (AC=10).  Since the assumed criticality entirely controls how 

paths weigh congestion versus delay for the majority of a given route, it is likely that the quality of the 

critical path timing heavily depends upon the granularity of the assumed criticality searches.  However, 

looking at Table 7.5, although there is a marked runtime improvement, dramatically decreasing the number 

of assumed criticality searches does not necessarily affect the overall quality of the routing.  In fact, there is 

no real decline in quality even if the number of searches is reduced to merely two (only assume criticalities 

of 0.5 and 0.99).  With AC = 2, the critical path delay for the original length 16 long wire architecture is 

0.97x better with the same track count and a 0.36x shorter runtime, the critical path delay for the length 8 

long wire architecture is only 1.04x worse with the same track count and a 0.29x shorter runtime, and the 

critical path delay for the length 4 long wire architecture is only 1.01x worse with a 1.04x worse track 

count and a 0.31x shorter runtime. 

 

Although this may seem counter-intuitive, examining the routed results found by Armada more closely, this 

is likely an artifact of the RaPiD architecture’s design philosophy.  In almost all cases, the critical path 

reaches some architectural limit – two to three bus connector-to-bus connector delays or less.  Considering 

that RaPiD was built to be an architecture for heavily pipelined netlists, this should not be particularly  
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Table 7.4.  Normalized Results for Armada, k=1, 2, 4 
Length-16 Architecture Tracks Crit. Path Delay Runtime Avg. Runtime 

k = 1 1.00 1.00 1.00 1721 s 
k = 2 0.99 0.95 1.67 2454 s 
k = 4 0.98 1.02 3.24 5634 s 

Length-8 Architecture Tracks Crit. Path Delay Runtime Avg. Runtime 
k = 1 1.00 1.00 1.00 1357 s 
k = 2 0.99 1.00 1.29 1757 s 
k = 4 0.98 1.00 6.48 21725 s 

Length-4 Architecture Tracks Crit. Path Delay Runtime Avg. Runtime 
k = 1 1.00 1.00 1.00 2637 s 
k = 2 1.01 1.00 1.77 4414 s 
k = 4 1.00 0.98 3.93 9452 s 

All results normalized to the Armada results with the smallest track count 

 

Table 7.5.  Normalized Results for Armada, AC=10, 8, 6, 4, 2 
Length-16 Architecture Tracks Crit. Path Delay Runtime Avg. Runtime 

AC = 10 1.00 1.00 1.00 1721 s 
AC = 8 0.98 1.04 0.96 1168 s 
AC = 6 1.00 0.97 0.67 785 s 
AC = 4 0.99 1.02 0.52 573 s 
AC = 2 1.00 0.97 0.36 354 s 
AC = 1 1.11 1.20 0.35 300 s 

Length-8 Architecture Tracks Crit. Path Delay Runtime Avg. Runtime 
AC = 10 1.00 1.00 1.00 1357 s 
AC = 8 0.98 1.01 0.79 910 s 
AC = 6 0.98 1.01 0.43 576 s 
AC = 4 1.00 1.01 0.56 692 s 
AC = 2 1.00 1.04 0.29 307 s 
AC = 1 1.08 1.37 0.32 217 s 

Length-4 Architecture Tracks Crit. Path Delay Runtime Avg. Runtime 
AC = 10 1.00 1.00 1.00 2637 s 
AC = 8 1.01 0.99 0.75 1802 s 
AC = 6 0.99 1.00 1.05 1803 s 
AC = 4 0.99 0.98 0.60 1014 s 
AC = 2 1.04 1.01 0.31 342 s 
AC = 1 1.60 1.51 0.67 1080 s 

All results normalized to AC=10 values 

 

surprising.  Because of this, Armada merely finds exactly the types of routes that the original designers had 

anticipated.  When the router achieves such an extremely low critical path delay, all signals actually 

become either 50% or 100% critical, making AC = 2 work exceedingly well.  It is only when AC is reduced 

to 1 and all signals are considered critical that the router is not accurate.  However, as with determining k, 

the AC behaviour is also likely highly architecture dependent.  The majority of FPGAs do not have the 

extremely predictable routing characteristics of the RaPiD architecture.  Thus, more conventional FPGAs 

are likely more sensitive to the number of assumed criticality searches. 

 
7.6: Conclusions and Future Research 

This chapter delved into the details of a relatively new CAD problem: pipelined routing.  FPGA 

architectures that contain a large number of registers often limit the input and output connectivity of many 

of them due to area concerns.  This architectural characteristic makes efficiently using these registers 

somewhat difficult since the placement tool cannot assign flip-flops in a netlist to these registers in the 
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traditional manner.  This is because mapping a flip-flop to a register with very limited connectivity also 

largely determines the routing needed to connect this register to the rest of the circuit.  This can make the 

subsequent routing problem much more difficult, particularly if a netlist requires a large number of 

registers.   

 

One manner of dealing with this issue is to assign register locations during the routing process itself.  

However, this fundamentally changes the nature of the routing problem because signals must find paths 

that satisfy an additional constraint – valid paths must traverse a very specific number of registers.  This 

new routing problem is called the N-Delay Routing problem.  Although there have been two prior research 

efforts to address the N-Delay Routing problem, neither of these heuristics can effectively implement 

timing-driven routing.  Primarily, the timing-driven N-Delay Routing problem is difficult because, from the 

viewpoint of conventional CAD tools, it contains aspects of both register placement and physical re-

synthesis that must be solved simultaneously within the normal timing-driven routing problem.  Attempting 

to apply conventional timing-driving methodologies can lead to poor solutions, largely because the 

criticality of registered connections can change dramatically between different routing iterations. 

 

This chapter suggested two new techniques that address some of the instabilities that can form during the 

timing-driven pipelined routing process.  First, this chapter presented an approach that allows the router to 

determine the criticality of a given connection without any a priori knowledge.  Second, this chapter 

introduced a new timing-driven cost formulation that guides the router towards better pipelined paths.  

These two techniques were combined with aspects from previous routers to form the Armada timing-driven 

pipelined routing algorithm.  On three different architectures this algorithm was shown to provide roughly 

0.6x better average critical path delay without compromising routability.  While more computationally 

intensive than previous pipelined routing algorithms, Armada remains competitive, especially given the 

large improvement in circuit timing. 

 
Although these results are promising, looking into the future there is still room for improvement.  One 

concern is the quality obtained using the new cost function.  A large portion of Section 7.3.3 was devoted 

to analyzing the routing problem in Figure 7.13.  In this example, the traditional PathFinder cost function 

was shown to potentially favor paths that had both highly critical and highly congested links over paths that 

had lower criticality and less congested connections.  Which paths were selected largely depended upon the 

relative cost of an architecture’s average base congestion and delay cost.  The new cost function suggested 

in this chapter was shown to remove this dependency and favor more balanced paths.  However, the 

behavior of this new cost function can change depending upon the critical path delay of the system found 

during the last routing iteration.  It turns out that the new cost function can prefer less balanced paths under 

certain conditions.  Of specific interest is what occurs when the critical path delay of the last routing 
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iteration was relatively low, because this provides some idea of what happens when the router encounters 

congestion and begins exploring slower paths.   

 

As shown in Table 7.6 and Table 7.7, the same calculations as performed in Equations 7.4 and 7.5 for the 

example in Figure 7.13 can be repeated for different system critical path delays.  The criticality and (1-

criticality) terms of the expanded equations on the left sides of 7.4 and 7.5 can be found in Table 7.6 in the 

CPD = 10d row.  Similarly, the d and c multiplier terms on the right side of Equations 7.4 and 7.5 can be 

found in Table 7.7 in the CPD = 10d row.   

 

While, as expected, the new cost function causes the router to always prefer the balanced bottom path when 

the previous critical path delay was greater than 6d, the router will always prefer the unbalanced top path 

when the previous critical path delay was between 2 and 5 inclusively.  Most troubling, this means that 

when the previous critical path was 5, the router will not find the balanced path that maintains this critical 

path delay during the next routing iteration.  Rather, it will find the unbalanced route that will make the 

 

Table 7.6: Capped Link Criticality of Connections in Figure 7.13 
 Unbalanced Top Path Balanced Bottom Path 
 Pre Register Post Register Pre Register Post Register 

CPD Crit 1-Crit Crit 1-Crit Crit 1-Crit Crit 1-Crit  
1d 0.99 0.01 0.99 0.01 0.99 0.01 0.99 0.01 
2d 0.50 0.50 0.99 0.01 0.99 0.01 0.99 0.01 
3d 0.33 0.67 0.99 0.01 0.99 0.01 0.99 0.01 
4d 0.25 0.75 0.99 0.01 0.99 0.01 0.99 0.01 
5d 0.20 0.80 0.99 0.01 0.99 0.01 0.99 0.01 
6d 0.17 0.83 0.99 0.01 0.83 0.17 0.83 0.17 
7d 0.14 0.86 0.99 0.01 0.71 0.29 0.71 0.29 
8d 0.13 0.88 0.99 0.01 0.63 0.38 0.63 0.38 
9d 0.11 0.89 0.99 0.01 0.56 0.44 0.56 0.44 
10d 0.10 0.90 0.90 0.10 0.50 0.50 0.50 0.50 
11d 0.09 0.91 0.82 0.18 0.45 0.55 0.45 0.55 
12d 0.08 0.92 0.75 0.25 0.42 0.58 0.42 0.58 

CPD refers to the critical path delay of the system during the last routing iteration. 

 

Table 7.7: Effect of Critical Path Delay on Revised Cost Function 
 Unbalanced Top Path Balanced Bottom Path 

CPD Delay Term *  d Congestion Term *  c Delay Term *  d Congestion Term *  c 
1d 990.00 10.00 990.00 10.00 
2d 892.00 10.00 990.00 10.00 
3d 891.50 10.00 990.00 10.00 
4d 891.33 10.00 990.00 10.00 
5d 891.25 10.00 990.00 10.00 
6d 891.20 10.00 50.00 10.00 
7d 891.17 10.00 25.00 10.00 
8d 891.14 10.00 16.67 10.00 
9d 891.12 10.00 12.50 10.00 
10d 81.11 10.00 10.00 10.00 
11d 40.60 10.00 8.33 10.00 
12d 27.09 10.00 7.14 10.00 

CPD refers to the critical path delay of the system during the last routing iteration. 
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critical path delay 9.  Although the current cost formulation seemed to function well enough in the testing 

performed thus far, removing this vulnerability may improve Armada’s results.  While solving this problem 

will require more extensive investigation, one area that may be worth looking into as a possible solution is 

re-evaluating the way the existing system saturates net criticality at 0.99.  

 

An additional concern is that the Armada algorithm has only been tested on RaPiD architectures.  

Unfortunately, RaPiD’s routing structure is considerably simpler than more conventional FPGAs.  Both the 

overall number of wires and the interconnect flexibility of the system as a whole is much lower than a 

traditional island-style FPGA.  This leads to several concerns looking into the future, primarily revolving 

around the runtime of the algorithm. 

 
Although the testing that has been performed so far showed that the assumed criticality search technique 

was computationally efficient on the RaPiD architecture, this was only because the simple routing 

resources allowed the use of relatively few different assumed criticalities while still obtaining high quality 

results.  The routability and achievable critical path delay did not truly change even when using only two 

independent explorations.  Although unproductive searches are pruned when possible, the number of 

independent searches launched has a nearly linear relationship with algorithm runtime.  Furthermore, since 

the assumed criticality completely controls how paths weigh congestion versus delay for the majority of a 

given route, it is likely that the quality of the router on most FPGA architectures will heavily depend upon 

the granularity of the assumed criticality searches.  Thus, Armada may need to launch far more searches to 

get similar critical path timing improvement on an architecture with a more sophisticated communication 

structure.  To avoid creating a computationally intractable problem, several alternatives can be explored to 

lower the computational needs of the system as a whole.   

 

The first possibility is to launch fewer, but more relevant searches.  The current algorithm divides the 

spectrum of criticalities used for exploration into AC evenly spaced pieces.  However, it is possible that it is 

sufficient to merely split signals into groups of those that are significant in terms of timing, and those that 

are not.  Thus, instead of launching twenty searches with criticalities evenly spaced from 0.05 to 1.0, it is 

possible that four searches, perhaps at 1.0, 0.95, 0.5 and 0.1 may be enough to capture the timing and 

congestion needs of the system. 

 

The second manner of reducing the router’s computational needs is to avoid or reduce the size of the 

pipelined routing problem whenever possible.  Even without the assumed criticality methodology, 

QuickRoute itself is already computationally demanding.  Unlike Dijkstra’s algorithm, it can visit each 

node in the graph multiple times – k times at each latency between 1 and L.  Thus, the computational needs 

of the router can be considerably reduced if either the use of Armada is limited outright, or, at the very 

least, the latency depth of the searches is made smaller.  
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The use of Amada can be eliminated on some nets entirely.  While using conventional placement and fixing 

the location of some of the registers in the architecture can lead to potential routability problems, many 

circuits may only have congestion problems in certain local regions of the device.  Rather than ignoring the 

placement of registers throughout the system, it may be possible to analyse the congestion profile of a 

placement and only use Armada for nets that need to traverse potentially sensitive areas.  The remaining 

nets could be routed using PathFinder since the placement of the registers outside of these regions can be 

fixed before routing begins. 

 

Furthermore, the number of registers that need to be found on a given net can also be reduced.  Although it 

is likely that the best results will be obtained by using Armada for a full L latency path, high latency 

connections could be broken into shorter, lower latency links.  The runtime of most routers is highly 

correlated with the distance between the source and sink.  This is because the searches expand in a wave-

like manner and the number of nodes within the search radius for most architectures generally goes up 

quadratically as the radius is increased.  This is particularly important for Armada because the runtime of 

the router is also affected by the target latency of the sink.  Each node between the source and sink can be 

visited separately by each latency between 0 and L.  However, if high latency routes are split into multiple 

sections by fixing the placement of some of the registers along the way, this would create “waypoints” for 

the router and considerably decrease the runtime.  For example, for an 11 register path, the placement of 

registers 4 and 8 could be fixed.  Rather than finding a single, long 11-register path, Armada would only 

have to find three shorter 3-register paths. 

 

Perhaps the most vital aspect that affects the demands placed on the router is the architecture itself.  

Pipelined routing can be required on architectures that limit the connectivity of the registers it provides.  

However, as will be discussed in the next chapter, if a large number of highly connected registers could be 

efficiently introduced into an FPGA, the need for pipelined routing can be eliminated or drastically 

reduced. 
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Chapter 8: Register-Enhanced Architectures 

While the previous chapters focused on improving FPGA CAD tools, the target device itself ultimately 

determines how fast applications will run and how much silicon area they will require.  Thus, although 

pipelining, retiming and C-slowing can greatly improve the performance of an application, this can be 

largely dependent upon how well the underlying FPGA supports netlists with a large number of registers. 

 

This chapter will focus on how future FPGAs can efficiently incorporate additional registers.  This 

discussion begins by examining how the area requirements and performance profile of a netlist change as it 

is pipelined or C-slowed.  This chapter continues with some background on several previous research 

efforts that attempted to increase the density of registering resources within FPGA architectures and a 

discussion of the potential drawbacks of these systems.  This will lead to an analysis of the underlying 

components of existing FPGAs and a discussion of the potential benefits of adding registers to both the 

interconnect network and the logic blocks. 

 

8.1: Scaling of CLB Requirements and Performance 

As seen in Figure 8.1 and Figure 8.2, the critical path delay of a netlist roughly scales linearly with the 

amount of pipelining or C-slowing performed on the circuit.  The vertical axis of these two figures show 

the post-routing critical path delay when a circuit was placed and routed onto the four 4-LUT, four flip-

flop, length-4 wire architecture used in Chapter 6.  The horizontal axis indicates the logical depth of the 

netlist.  Each of the 11 combinational and 11 sequential  MCNC netlists were pipelined/C-slowed and then 

Leiserson/Saxe retimed such that the maximum logical depth of the circuit ranged from the original logic 

depth of the MCNC netlist to at least three registers following each LUT.  Thus, the rightmost point of each 

line represents the original MCNC netlist, and the leftmost point represents the depth = 0.33 netlist used in 

Chapter 6.  Although the slope of the line differs slightly for each netlist, the impact of additional 

registering on the achievable critical path delay is relatively clear. 

 

Although this performance gain is encouraging, Figure 8.3 and Figure 8.4 show this does come at a price.  

Specifically, as more registers are introduced into the various netlists, the number of required CLBs also 

rises to accommodate the extra registers.  As seen in Figure 8.3, the area overhead is relatively low for the 

majority of originally purely combinational circuits when the logic depth of the circuit is 1 or greater.  

These netlists generally require less than 1.5x the number of CLBs required by the unpipelined circuit.  

These benchmarks can be efficiently handled because the target architecture has one optional flip-flop per 

LUT inside each logic block.  As seen in Figure 8.5a and Figure 8.5b, the registers in these moderately 

pipelined combinational circuits can largely piggyback on the flip-flops that are on the output of each LUT.  

However, as seen in Figure 8.5c, this area overhead can become very large when the logic depth of the  
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Figure 8.1: Combinational MCNC Netlists Critical Path Delay 
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Figure 8.2: Sequential MCNC Netlists Critical Path Delay 
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Figure 8.3: Combinational MCNC Netlists CLB Requirements 
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Figure 8.4: Sequential MCNC Netlists CLB Requirements 
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Figure 8.5: Effect of Pipelining and Netlist Topology on CLB Requirement 
 

circuit dips below 1.  This is because although each new register added beyond one per LUT allows the 

system to better pipeline potential interconnect delay, it also requires an additional BLE.  Thus, a depth = 

0.33 netlist will require approximately 3x the number of CLBs as a depth = 1 implementation. 

 

However, pipelining or C-slowing more sophisticated circuits to a depth of even one LUT can potentially 

require a large number of additional CLBs.  As seen in Figure 8.4, the area overhead is much higher when 

adding registers to the sequential MCNC netlists.  For these circuits, pipelining or C-slowing to a depth of 

one LUT generally requires 2-4x the number of CLBs as the original circuit.  This is because, to pipeline or 

C-slow a circuit without changing the functionally, all paths through the system must add the same number 

of registers.  However, as seen in Figure 8.5d and Figure 8.5e, if the original circuit has a non-uniform 

logical depth, some connections will accumulate more registers than others to match the latency of the 

longest path.  These additional registers require new BLEs. 

 

The CLB overhead associated with pipelining or C-slowing these netlists matches the behavior reported in 

previous research.  The radio cross-correlator in [41] indicated that the best circuit found by hand-

pipelining and hand-placing registers required 4x the number of CLBs as the unpipelined circuit.  This 
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means that at least ¾ of the CLBs in the system were being used only for their flip-flops and not for their 

logical resources.  Thus, while heavily registering a circuit can considerably boost performance, this can 

require a significantly larger FPGA.  Furthermore, a large portion of the LUTs in the underlying fabric may 

sit idle as these netlists require a much larger ratio of registers to logic than commercial architectures 

typically provide. 

 

8.2: Previous Register-Rich FPGAs 

Multiple research groups have noticed that conventional FPGA architectures can have trouble 

implementing heavily registered applications.  Thus, several research efforts have attempted to address 

these concerns by increasing the number of registering resources inside the logic blocks and embedding 

pipelining resources within the interconnect network itself.  Unfortunately, all of the systems suggested so 

far restrict the types of circuits mapped to these devices or have significant overheads inappropriate for 

many applications. 

 

Although they differ in several key ways, HSRA [40] and SFRA [42] both provide vast pipelining 

resources in each logic block.  Each input of the LUTs in these architectures has a large bank of optional 

flip-flops.  In addition, some fraction of the programmable switchpoints inside their routing switchboxes 

have optional registers.  Although these resources allow for very fast, fixed-frequency operation, these 

devices provide so many registers that they also suffer a 2-4x area penalty compared with conventional 

FPGAs.  This kind of overhead is unacceptable for applications that cannot make use of these resources. 

 

Furthermore, these architectures also require extremely high levels of C-slowing or pipelining.  The authors 

of [40] and [42] needed to pipelined or C-slowed their applications somewhere between five to 67 times in 

order for them to be suitable amenable to these architectures.  However, as mentioned in Chapter 3, even 

applications that could potentially be sped up by some pipelining or C-slowing typically cannot be that 

deeply registered due to their input and output protocols.  Thus, while an architecture such as HSRA or 

SFRA can be useful for some very specific applications, the area overhead and registering requirements are 

likely far too large for a mass-market FPGA.   

 

Alternatively, some systems have been developed that, while not insisting that their mappings be heavily 

registered, provide support for such computations by adding registers to the interconnect.  Again, although 

they differ in several key ways, RaPiD [9] and CHESS [27] both offer optional registers in their 

switchboxes.  Even though computations do not need to be pipelined to be efficiently implemented, the 

opportunity exists if application developers desire.  Unfortunately, both of these systems are also optimized 

to very specific types of computation.  The underlying logic and interconnect resources that they provide 

can make implementing more generic computation very difficult. 
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All of these architectures significantly compromise their general-purpose use.  This largely goes against 

one of the guiding philosophy of FPGAs themselves: provide a versatile and cheap alternative to ASICs.  

The limited widespread appeal of existing register-centric systems hampers their ability to leverage 

economies of scale and Moore’s Law, ultimately restricting their quality and availability.   

 

8.3: New Potentials for Increasing Register Capabilities 

Looking into the future, one question is how to improve the performance of FPGAs for heavily registered 

applications while not seriously affecting the area and performance characteristics of the device for more 

classical applications.  No matter what the advantages are for specialized deeply pipelined and C-slowed 

netlists, it is difficult to justify changes that can significantly degrade the area or timing profile of an 

architecture for netlists that cannot use these resources.  Thus, rather than drastically changing the well-

established characteristics of current FPGAs by completely revamping their organization, it may be better 

to make minimally invasive architectural changes that, while offering significant benefit to suitable 

register-rich circuits, will disrupt the general-purpose use of the device as little as possible.   

 

The following sections will investigate the potential advantages and disadvantages of introducing 

additional register resources into modern island-style FPGAs.  This will begin with an analysis of 

architectures with registers in the interconnect network and will continue with a discussion of the feasibility 

of adding registers into the logic blocks. 

 

8.3.1: Potential of Registered Switchboxes 

Research efforts such as the registered-track graph FPGA in [38] and RaPiD [9] have suggested embedding 

registers with limited connectivity within interconnect switchboxes.  These registers are attractive because 

they can be introduced with relatively little additional area and can pipeline long wires without adding the 

delay associated with entering and exiting a CLB.  However, as described in Chapter 7, the CAD tools 

necessary to efficiently map flip-flops to these registers may not be entirely straightforward.  More 

importantly, as will be shown in this section, the potential critical path delay advantages for heavily 

registered applications on these types of architectures may be relatively small. 

 

Ignoring signals that are associated with the I/O pins of a device, the critical path in any FPGA design will 

either begin at a flip-flop and end at another flip-flop, or begin at a flip-flop, pass though one or more LUTs 

and end at another flip-flop.  Since this dissertation is primarily concerned with heavily registered circuits, 

for simplicity, signals that perform computation will assume to be pipelined or C-slowed such that they 

only pass though a single LUT. 
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In a conventional FPGA, flip-flops are only available inside logic blocks.  This means that the critical path 

of a circuit will begin at one CLB, go through some number of interconnect wires and switchboxes and end 

at another CLB.  The delay required by such a signal can be broken up into multiple pieces.  Although the 

precise area and performance numbers of commercial architectures are not publicly available, the 

architecture files provided by the VPR [3] toolflow and the toolflow itself can be mined for some 

reasonable information regarding a modern 0.65nm FPGA with four 4-LUT BLEs per CLB and length-4 

wires.  As seen in Figure 8.6, there are seven numbers that are particularly significant: the clock to output 

delay of a flip-flop, the delay required to exit a CLB and enter a wiring channel, the delay through a single 

wire segment, the switching delay between wire segments, the delay required to enter a CLB through the 
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Figure 8.6: Significant Delay Numbers for an Island-Style FPGA 
Information taken from 65nm four 4-LUT, length-4 wire FPGA architecture 
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input multiplexers, the propagation delay of a LUT and the setup time for a flip-flop.  These delay numbers 

can be used to perform some rough calculations and estimate the anticipated critical path delay of a mapped 

circuit. 

 

The delay for a signal on a conventional architecture that goes between one flip-flop and another without 

passing though a LUT is shown in Equation 8.1.  Here, the signal will exit a flip-flop, exit the CLB, 

traverse N wire segments and (N - 1) switchboxes, enter a CLB and finish at another flip-flop. Similarly, 

the delay of a signal on a conventional architecture that goes from one flip-flop to another through one 

LUT is shown in Equation 8.2.  In this case, the signal will exit a flip-flop, exit the CLB, traverse N wire 

segments and (N - 1) switchboxes, enter a CLB, pass through a LUT and finish at another flip-flop. 

 

 GEDNCNBACPD ++−+++= ]*)1[()*(  (8.1) 

 

 GFEDNCNBACPD +++−+++= ]*)1[()*(  (8.2) 

 

Since the only difference between these two equations is the F term, when traveling through an equal 

number of wires, a signal that uses a LUT will be slightly slower.  Of course, for the application to actually 

perform computation, some signal in the circuit must use a LUT.  Thus, Equation 8.2 will likely be the 

critical path. 

 

As shown in Figure 8.7, an architecture with interconnect registers has flip-flops in both the logic blocks 

and the switchboxes.  The hope is that these additional registers can make the system faster by removing 

the time to exit/enter a CLB (delay B and E in Figure 8.6) and reduce the number of wires between registers 

(the N terms in the previous equations).  There are eight possible scenarios for the critical path on these 

kinds of devices. 

 

The first two possibilities are identical to the situation in an architecture without switchbox registers, that a 

signal begins at a flip-flop inside a CLB, either goes through or does not go though a LUT and ends at 

another flip-flop inside a CLB.  Thus, the delay on these signals will be the same as described in Equations 

8.1 and 8.2. 

 

The second two possibilities are that a signal begins at a flip-flop inside a switchbox, either goes through or 

does not go though a LUT, and ends at a flip-flop inside a CLB.  Assuming that the delay associated with 

the output demultiplexer on a register embedded inside a switchbox is the same as the delay of the switch 

between two wire segments, the delay of a signal that begins at a switchbox register and ends at a CLB  
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Figure 8.7: Significant Delay Numbers for an Island-Style FPGA with Registered Switchboxes 
 

register without passing though as LUT is shown in Equation 8.3.  The delay of a similar signal that goes 

through a LUT is shown in Equation 8.4. 

 

 GEDNCNDACPD ++−+++= ]*)1[()*(  (8.3) 

 

 GFEDNCNDACPD +++−+++= ]*)1[()*(  (8.4) 

 

The third two possibilities on an architecture with registered switchboxes are that a signal begins at a flip-

flop inside a CLB, either goes through or does not go though a LUT, and ends at a flip-flop inside a 

switchbox.  Assuming that the delay associated with the input multiplexer on a register embedded inside a 

switchbox is the same as the delay of the switch between two wire segments, the delay of a signal that 

begins at a CLB and ends at a switchbox register without passing though as LUT is shown in Equation 8.5.  

The delay of a similar signal that goes though a LUT is shown in Equation 8.6.  Notice that Equation 8.6 is 

optimistic in that assumes that a flip-flop in one BLE can directly feed a LUT in another BLE within the 

same logic block.  Since most LUTs will require multiple inputs, it may not be possible to register all of the 

incoming signals within the same CLB as the actual computation.  
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 GDDNCNBACPD ++−+++= ]*)1[()*(  (8.5) 

 

 GDDNCNBFACPD ++−++++= ]*)1[()*(  (8.6) 

 

The last two possibilities for this device are that a signal both begins and ends at a flip-flop inside a 

switchbox, either going through or not going though a LUT.  Using the same conventions as before, the 

delay of a signal that does not go through a LUT is shown in Equation 8.7.  The delay of a similar signal 

that goes though LUT is shown in Equation 8.8. 

 

 GDDNCNDACPD ++−+++= ]*)1[()*(  (8.7) 

 

 GDBFEDNCNDACPD +++++−+++= ]*)1[()*(  (8.8) 

 

Looking at these eight possible situations, many of them can be eliminated from consideration.  For 

example, while a signal that begins and ends at registers inside a CLB could indeed be the critical path of a 

circuit mapped to an architecture that has interconnect registers, this does not use the primary feature of the 

system.  Erring on the optimistic side, the hope is that the tools will be able to use the interconnect registers 

available and these situations will not be the critical path of a mapped application.  By the same token, the 

delay of a signal shown in Equation 8.8 that begins at a switchbox register, passes though a LUT and ends 

at another switchbox register is slower than a similar length signal on an architecture that does not have 

switchbox registers.  Largely, this is because such a path still enters and exits a CLB, but also must contend 

with the input and output multiplexing on switchbox registers.  This leaves five possible scenarios, three 

paths that do not pass though a LUT (Equations 8.3, 8.5, and 8.7) and two paths that do (Equations 8.4 and 

8.6).  Between these different possibilities, Equations 8.4 and 8.6 have the largest likelihood of being on the 

critical path since they perform computation. 

 

These three equations (Equations 8.2, 8.4, and 8.6) can be used to compare the potential critical path delay 

of netlists mapped to both FPGAs that only have registers inside CLBs and architectures that have registers 

inside both CLBs and switchboxes.  Table 8.1 applies the delays shown in Figure 8.6 to Equation 8.2 for 

values of N between 1 and 4 wire segments.  This shows the critical path delay and resulting maximum 

clock frequency for an application mapped to a device with only CLB registers.  Similarly, Table 8.2 shows 

the results of Equations 8.4 and 8.6 on an FPGA with interconnect registers when the critical path either 

goes from a register inside a switchbox to a register inside a CLB (left side) or from a register inside a CLB 

to a register inside a switchbox (right side). 
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Table 8.1: Estimated Critical Path Delay of Conventional FPGA 
# Wire Segments on Critical Path Critical Path Delay MHz 

1 2.128E-9 470.02 
2 3.585E-9 278.91 
3 5.043E-9 198.29 
4 6.501E-9 153.82 

 

Table 8.2: Estimated Critical Path Delay of Island-Style FPGA with Registered Switchboxes 
 Switchbox Reg to CLB Reg CLB Reg to Switchbox 

# Wire Segments on 
Critical Path 

Critical Path Delay MHz Norm. 
Speed 

Critical Path Delay MHz Norm. 
Speed 

1 2.128E-9 470.02 1.000 1.945E-9 514.02 0.914 
2 3.585E-9 278.91 1.000 3.403E-9 293.84 0.949 
3 5.043E-9 198.29 1.000 4.861E-9 205.72 0.964 
4 6.501E-9 153.82 1.000 6.319E-9 158.26 0.972 

 

Comparing these results, when the critical path goes from a register inside a switchbox to a register inside a 

CLB, for any given value of N wire segments, an application mapped to an architecture with interconnect 

registers is no faster than on an architecture without interconnect registers.  This is because, comparing 

Equations 8.2 and 8.4, the only difference between these two arrangements is that B is traded for D.  Stated 

another way, the delay through a CLB demultiplexer is replaced by the delay through a switchbox register 

demultiplexer.  However, since D equals B in the VPR model, the architecture with interconnect registers is 

no faster.  Even if delay though a switchbox register demultiplexer were reduced to zero (D � 0), this 

would only remove 6.562E-11 seconds of delay from the critical path.  In the best case, where there is one 

wire segment on the critical path, this would make an architecture with interconnect registers only 

([2.128E-9 - 6.562E-11] / 2.128E-9 = 0.969x) faster. 

 

Furthermore, when the critical path goes from a register inside a CLB to a register inside a switchbox, for 

any given value of N wire segments, an application mapped to an architecture with interconnect registers is 

only marginally faster than on an architecture without interconnect registers.  Comparing Equations 8.2 and 

8.6, the only difference is that E is traded for D, or that the delay through a CLB input multiplexer is 

replaced by the delay though a switchbox register input multiplexer.  However, this only represents a 

saving of (2.478E-10 - 6.562E-11 = 1.8218E-10) seconds.  As shown on the right side of Table 8.2, at best 

this results in an architecture with interconnect registers being 0.914x faster.  Unfortunately, this may not 

be a large enough performance benefit to justify modifying the architecture and opening the door for 

problems with the CAD tools.  For perspective, according to Xilinx’s datasheets [45], the performance 

difference between only one device speed grade is approximately 0.91x.  On top of this, the advantage also 

quickly decreases as the number of wire segments along the critical path is increased.  At two wire 

segments, the registered switchbox architecture is only 0.949x faster.  This is particularly concerning since 

two wire segments are often required even in the most heavily registered circuits to allow the system to turn 

a corner and connect logic blocks or switchboxes in different rows or columns.   
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Figure 8.8: Delay Contribution of Best-Case Scenarios (1 Wire Segment) for Registered Switchboxes 
 

Looking at Figure 8.8, it is clear why architectures with registered switchboxes have such a small 

performance advantage over more conventional devices.  Regardless of the architecture, there is very little 

that can be done about four components of the critical path delay: the clock to Q delay of a flip-flop, the 

setup time of a flip-flop, the delay through a single wire segment and the delay of a LUT.  These portions 

alone comprise over 85% of the critical path delay, even in the best case of a single wire segment between 

the source and sink registers.   Thus, even if the overhead associated with getting in or out of a register 

inside a switchbox were reduced to zero, such an architecture is limited to an approximately 15% 

performance improvement.  However, it should be noted that the largest portion of this “unavoidable” delay 

is caused by the delay through the wire segments themselves.  If an FPGA were to use very high strength 

drivers or some other technique to drastically reduce the delay of the wires, the potential advantage of these 

kinds of architectures might go up.  That said, it is expected that the delay through wires will only become 

a larger portion of overall delay in future process generations. 

 

Of course, though, this analysis makes one critical assumption: that the number of wire segments along the 

critical path of a netlist mapped to the two architectures is the same.  In practice, this may not be the case 

since registered switchboxes increase the ratio of registers to logic in the architecture.  A heavily registered 

netlist mapped to a register-enhanced architecture will likely be more densely arranged than when mapped 

85.3% of  

the delay 
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to a conventional device.  This is because the implementation mapped to a classical FPGA will probably 

need to spread out over more CLBs for all of the signals to accumulate the necessary flip-flops.  At the very 

least, this could mean that the average wirelength of the nets in the circuit will be longer, if not the 

wirelength along the critical path. 

 

To get any notable speedup, architectures that have registered switchboxes must rely on the fact that the 

additional registers in the system can generally reduce the number of wire segments along the critical path.  

Without this feature, these architectures are not really intrinsically faster.  However, as mentioned earlier, 

these architectures also contain registers with very limited input and output connectivity, changing the 

fundamental problem presented to placement and routing tools.  As will be explored in the next section, it 

may be better to find a way to adding inexpensive but highly connected registers to the system.  These can 

be incorporated into the CLBs.  This would allow an architecture to obtain short wires without creating a 

problem for the CAD tools. 

 

8.3.2: Enhancing Logic Blocks with Additional Registers 

Although incorporating registers into the interconnect network of an island-style FPGA may not provide a 

large performance benefit, additional registers need to be placed somewhere in the architecture to improve 

the support for heavily registered applications and keep the number of wires along the critical path 

relatively low.  Although increasing the register capacity of the logic blocks is the obvious alternative, this 

must be done relatively carefully to avoid seriously affecting the area or performance of netlists that are 

lightly registered.  This problem is made even more difficult since it is highly preferable that any additional 

registers have the same high connectivity as existing registers to prevent issues with CAD tools. 

 

From a practical standpoint, there are two different issues regarding how heavily registered netlists map to 

conventional architectures.  Although these problems are somewhat intertwined, the nature of these issues 

can be largely separated and addressed independently.  The first issue is that a large portion of the silicon 

resources in a conventional FPGA architecture cannot be used when mapping a heavily registered 

application.  While heavily registered circuits require a large number of additional BLEs, the LUTs in the 

majority of these blocks are entirely ignored and only the flip-flops are used.  These unused LUTs actually 

contain a large amount of registering resources that could be made available with some relatively minor 

architectural modifications.  The second issue is that the register density of conventional architectures may 

not be high enough to efficiently map heavily registered circuits.  Pipelining or C-slowing a circuit can 

cause a netlist to spread out so that the necessary registers can be accumulated.  However, this can also 

cause the circuit to slow down because the average wirelength of each net may go up.  Thus, for the system 

to increase the operational frequency of an application beyond a certain point, it is likely necessary to 

increase the number of available registers in computationally dense regions.  While enhancements to 



127 

 

improve one of these issues can improve the other as a side effect, the nature of the architectural changes 

that will be suggested are distinct.   

 

8.3.2.1: Using LUTs as Shift Registers 

Not being able to use the majority of the LUTs in an FPGA is wasteful in two ways.  First, CLBs devote a 

significant amount of area to multiplexing the inputs and outputs of their LUTs.  Second, as discussed in 

Chapter 2, LUTs are actually built from small memories.  Putting these two characteristics together, each 

BLE actually has the basic building blocks to potentially register multiple signals if the LUT is not needed 

for a logic function.  However, conventional architectures only provide the capability to register one signal 

using the flip-flop. 

 

Some commercial FPGAs already unlock a portion of this potential.  As shown on the left of Figure 8.9, a 

conventional 4-LUT consists of 16 individual memory cells.  The content of these cells is programmed 

when a circuit is downloaded to the device.  During normal operation, the values held in these cells are 

selected through a multiplexer to implement a logic function.  However, modern Xilinx devices expose the 

underlying memory cells within half of their LUTs to allow them to be used either as a conventional LUT 

or as a 1 to 16-bit shift register.  Although the exact mechanism Xilinx uses to provide this functionality is 

not publicly known, the illustration on the right of Figure 8.9 shows one possibility.  This shift register 

capability can be provided by adding a small number of additional components to each BLE: twenty 2:1 

multiplexers and four memory cells.  16 of the 2:1 multiplexers are added to the input of each of the 

original memory cells to control whether the value written into the cell comes from the programming logic 

or, when forming a shift register, from the previous memory cell.  The remaining four multiplexers are 

added to the address lines of the 16:1 multiplexer to control whether the address comes from the outside 

world, to implement a logic function, or from a static address that is defined when the BLE is programmed 

as a shift register. 

 

This modification adds a huge raw number of registers into the architecture because every previously 

unused LUT in the device can implement up to sixteen registers.  For example, if a purely combinational 

circuit requires N LUTs, this can be mapped to N BLEs.  A deeply pipelined version of this circuit may add 

4N registers.  On an architecture that offers one LUT and one flip-flop in each BLE, this will require (N + 

3N = 4N) BLEs.  The first N registers can be packed into a BLE with a LUT, but the other 3N registers 

must be assigned to their own BLEs.  The same circuit on an architecture that offers one flip-flop and one 

LUT that can be turned into a 1 to 16-bit shift register in each BLE could theoretically only require (N + 

3/17 N ≈ 1.18 N) BLEs.  This is because every BLE beyond the original N does not use the LUT for logic.  

This makes it available for use as a 16-bit shift register.  Combined with the flip-flop, this allows each BLE 

with an unused LUT to implement 17 registers. 



128 

 

 

4-LUT

M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M

16:1 MUX

P
ro

gra
m

m
in

g
 Inp

u
ts

16:1 MUX

P
ro

gram
m

ing
 In

pu
ts

M

M

M

M

M

M

M

M

M

M M M M

4-LUT
or 

1 to 16
Shift Reg

 

Figure 8.9: Conventional BLE (left) and LUT/16-bit Shift-Register BLE (right) 
“M” denotes a memory cell 

 

However, the number of truly useful registers is likely considerable lower.  This is because although 

heavily registered netlists require a large number of pipelining resources, the distribution of these demands 

is relatively even throughout the circuit.  For example, in the heavily pipelined and C-slowed benchmarks 

in [40], 99% of signals require eight or fewer registers while 95% require four or fewer.  Thus, the majority 

of nets simply cannot use deep, monolithic register banks.  For that matter, even if a net requires a large 

number of registers between the source and sink, it is unlikely that it is a good idea to group all of the 

registers in a single location from a performance standpoint.  This is because one of the primary advantages 

of adding registers into a netlist is the capability to break very long paths into smaller parts.  Thus, shift 

registers will only be used for one or two registers rather than the full 16.  If the system is able to map an 

average of 1.5 registers to each shift register, the number of required BLEs would be (N + 3/2.5 N = 2.2 N).  
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Figure 8.10: LUT/Two 8-bit Shift-Register BLE 
“M” denotes a memory cell 

 

The large number of low latency signals in typical netlists indicates that it is likely more useful to add the 

capability to register multiple different signals by a smaller amount rather than a single signal by a large 

amount.  As shown in Figure 8.10 and Figure 8.11, a single large shift register can be split into two or four  



130 

 

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

4:1
MUX

4:1
MUX

4:1
MUX

4:1
MUX

4:1
MUX

M M

M M

M M

M M

P
ro

gram
m

ing
 In

pu
ts

P
ro

gram
m

ing
 In

pu
ts

P
ro

gram
m

ing
 In

pu
ts

P
ro

gram
m

ing
 In

pu
ts

4-LUT
or 4x 
1 to 4

Shift Reg

 

Figure 8.11: LUT/Four 4-bit Shift-Register BLE 
“M” denotes a memory cell 

 

smaller shift registers.  Assuming that the 16:1 multiplexer in Figure 8.9 can be broken into smaller 

multiplexers with little to no overhead, splitting a 16-bit shift register into two 8-bit shift registers will 
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likely require two additional 2:1 multiplexers and additional two memory cells.  Similarly, splitting a 16-bit 

shift register into four 4-bit shift registers will require four additional 2:1 multiplexers and four additional 

memory cells. 

 

That said, there is another cost associated with splitting a LUT into smaller shift registers.  Adding the 

capability of turning a LUT into a single 1 to 16-bit shift register likely incurs relatively little overhead.  

This is because although additional multiplexers and memory cells are needed, the input and output 

connectivity of the larger CLB does not require any changes – the input and output of the shift register 

simply borrow the connections already needed to use the LUT for logic.  However, splitting a shift register 

into two or four smaller shift registers requires one or three additional outputs, respectively.  Providing full 

connectivity for these new outputs to the external channel wires could significantly affect the area of the 

CLB and associated connection blocks. 

 

8.3.2.2: Adding Independent Flip-Flops 

The fact that registers are generally evenly distributed throughout circuits also contributes to the second 

issue that this section would like to address – that the achievable clock frequency of a circuit may be 

limited by the number of registers within specific areas of the device.  This phenomenon can be most easily 

seen in Figure 8.1 and Figure 8.2 for circuits with a logical depth below one LUT.  While the critical path 

delay of most of the circuits goes down as more registers are added, the critical path delay for some of the 

circuits stays constant or even goes up.  This likely occurs because these very heavily registered circuits 

require a higher density of registers than the architecture provides in order to improve the critical path 

delay. 

 

Taking a step back for a moment, consider a different scenario.  When a purely combinational circuit is 

mapped to an FPGA, each of the individual logic blocks must fight with the others to be as close as 

possible to the other logic blocks to which they are connected.  Assuming that routing congestion is not an 

issue, the operational frequency of the resulting implementation is largely determined by how close these 

logic blocks are able to get.  Thus, it is expected that a larger combinational circuit will have a higher 

critical path delay, even if the logical depth is the same as the smaller circuit.  This is because more logic 

blocks will interfere with each other in the larger circuit and prevent them from getting as close to the logic 

blocks to which they are connected.  However, this can be mitigated by increasing the logical density of the 

architecture.  For example, if this netlist is mapped to an FPGA that has twice as many LUTs in each CLB, 

each LUT will be able to be “near” twice as many other LUTs.  Ignoring for a moment the effect this 

architectural change might have on the speed of the interconnect wires, this will allow the circuit to run 

faster. 
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A similar situation occurs for the registers in a netlist.  Beginning with a purely combination circuit, each 

LUT will try to be as close as possible to the other LUTs to which it is connected.  As registers are 

gradually added to the circuit, they are able to make the system faster because the logical depth of the 

circuit is reduced.  Furthermore, these registers are relatively easy to find.  Assuming that the netlist has a 

uniform logic depth across all paths, until the maximum logic depth of the circuit dips below one, these 

registers can simply be placed in the same BLE as their source LUT.  Thus, the placement of the LUTs in 

the system is still very dense and the critical path delay is improved dramatically.  However, once the logic 

depth of the circuit dips below one LUT, additional registers require additional BLEs.  Since the registers 

are relatively evenly distributed throughout the circuit, the LUTs in the system must spread out to make 

room for the required registers.  This can nullify any potential advantage of adding the registers in the first 

place. 

 

This phenomenon is shown in the example in Figure 8.12.  As shown in Figure 8.12a, there are two paths in 

the circuit that must cross each other.  The first inverter takes an input from the left of the device and sends 

the output to the right.  The second inverter takes an input from the right of the device and sends the output 

to the left.  For simplicity, this circuit is initially mapped to an architecture with one LUT and one flip-flop 

per CLB and unit-length interconnect wires.  As shown in Figure 8.12b, pipelining this circuit once 

improves the critical path delay.  Rather than traversing one wire segment, propagate through a LUT, and 

traversing three more wire segments, the new critical path delay is the time required to traverse three wire 

segments.  However, as seen in Figure 8.12c, further pipelining does not improve the critical path delay 

because the entire netlist must be spread out to make room for these additional registers.  The only way to 

reduce the critical path delay to one wire segment is to increase the number of registers in each CLB.  As 

shown in Figure 8.12d, this can be accomplished by mapping the circuit to an architecture with two 

independently accessible flip-flops per CLB.  Figure 8.13 shows the BLE of such an architecture. 

 

Notice that adding additional independent flip-flops to each BLE affects the system differently than 

allowing LUTs to be used as shift registers.  While both modifications increase the total number of 

potentially available registers in the architecture as a whole, since shift registers are built from unused 

LUTs, inserting them into a computationally dense area still requires the placement tool to spread out the  

LUTs in a netlist to provide whitespace.  On the other hand, introducing additional flip-flops into each CLB 

increases the number of registers in computationally dense regions without any need to change the density 

of mapped LUTs.  Thus, while shift registers can potentially provide denser register resources, additional 

independent flip-flops are more likely to improve critical path delay. 
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Figure 8.12: Registered Netlists and Effect of Architecture Register Density on Critical Path Delay 
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Figure 8.13: BLE with Two Independent Flip-Flops 
 

That said, adding flip-flops to a CLB also requires more inputs and outputs.  The shift register architecture 

suggested in Figure 8.9 added up to 16 registers without requiring any additional inputs or outputs.  The 

split shift registers in Figure 8.10 and Figure 8.11 also added up to 16 registers and require 1 and 3 

additional CLB outputs, respectively.  However, each additional independently accessible flip-flop added to 

a CLB requires its own input and output.  This means that although independently accessible flip-flops 

might be more flexible, they are also potentially more expensive.   

 

The difference between independently accessible flip-flops and shift registers can also be seen in how they 

provide registers to applications.  The number of BLEs that a netlist requires can be estimated using 

Equation 8.9. 
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This equation assumes that each BLE consists of one LUT that may or may not have the capability to 

implement one or more shift registers (if it is not needed for logic), along with some number of 

independently accessible flip-flops.  L is the number of LUTs in the netlist, R is the number of registers in 

the netlist, IndFF is the average number of independently accessible flip-flops available in each BLE in the 
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target architecture and ULReg is the average number of registers that can be mapped to each BLE with an 

unused LUT.   

 

Since each BLE contains a single LUT and IndFF number of independently accessible flip-flops, if the 

number of registers in a netlist is relatively low, the number of LUTs defines the minimum number of 

BLEs needed to implement the circuit.  However, if the number of registers in the circuit is large enough, 

the registers will determine the number of required BLEs.  Since each LUT will require its own BLE, the 

first (L* IndFF) flip-flops in the netlist can use the registers in BLEs occupied by a LUT.  However, 

registers beyond this number will require additional BLEs.  Each of these extra BLEs with an unoccupied 

LUT will be able to implement ULReg registers.  As shown in Equation 8.10, the average number of 

registers that can be mapped to a BLE with an unoccupied LUT equals the average number of independent 

flip-flops in each BLE plus the average number of registers can be implemented using the LUT as one or 

more shift registers.  The average number of registers can be implemented using an unoccupied LUT is 

ANSR, the average number of shift registers per BLE, multiplied by RegPerSR, the average number of 

registers that can be mapped to each shift register. 

 

 )*( RegPerSRANSRIndFFULReg +=  (8.10) 

 

8.4: Evaluation and Results 

These equations can be used to gain some basic insight regarding how efficiently heavily registered 

applications can be mapped to different register-enhanced architectures.  As shown in Table 8.3, the initial 

round of testing investigated how effectively shift register reduce the number of required BLEs compared 

to independently accessible flip-flops.  This testing included fifteen architectures.  The first set of five all 

contain one independently accessible flip-flop per LUT.  Architecture I-0A is the basic four 4-LUT, four 

flip-flop architecture described in previous chapters.  Since each BLE in this architecture contains one flip-

flop, IndFF = 1.  Since the LUTs in this architecture cannot be used as shift registers, ANSR = 0.  This 

makes ULReg = 1, since all the BLEs in the systems can provide one register, regardless as to whether or 

not the LUT is occupied. 

 

Architecture I-0B adds the capability for one of the four 4-LUTs in each CLB to be used as a 1 to 16-bit 

shift register (abbreviated as SR-16).  Since each BLE in this architecture still contains one independently 

accessible flip-flop, IndFF = 1.  Since one in four of the LUTs in the system can be used as a shift register, 

ANSR = 0.25.  At this point, the average number of registers that can be mapped to a shift register becomes 

important.  While each shift register can be used to implement at least one register, the hope is that at least 

some of the shift registers will be able to be filled with more registers.  Although this is largely netlist 

dependent, 1, 1.5 and 2 seem to be reasonable estimates for RegPerSR.  These values for RegPerSR result 
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in three values for ULReg: 1.25, 1.375, and 1.5 respectively.  RegPerSR = 1 results in ULReg = 1.25 

because each BLE with an unused LUT has one independently accessible flip-flop and 0.25 shift registers 

that can be used to implement one register on average.  RegPerSR = 1.5 results in ULReg = 1.375 because 

each BLE with an unused LUT has one independently accessible flip-flop and 0.25 shift registers that can 

be used to implement 1.5 registers on average.  Architectures I-0C through I-0E add more hardware to 

allow two through all four of the 4-LUTs in each CLB to be used as SR-16s.  As mentioned earlier, modern 

Xilinx devices provide one independent flip-flop per BLE and allow half of the LUTs in the system to be 

used as SR-16s.  This is similar to the resources provided by architecture I-0C. 

 

Table 8.3: Architectures Used in Testing Phase I –  
Adding Independent Flip-Flops and 1 to 16-bit Shift Registers 

Arch Description – Contents of Each CLB 
I-0A 4x normal LUTs, 4x FFs (default architecture) 
I-0B 3x normal LUTs, 1x LUT with SR-16 mode, 4x FFs (one LUT in each CLB can be used as a 1 to16-bit shift register) 
I-0C 2x normal LUTs, 2x LUTs with SR-16 mode, 4x FFs (two LUTs in each CLB can be used as a 1 to 16-bit shift register) 
I-0D 1x normal LUT, 3x LUTs with SR-16 mode, 4x FFs (three LUTs in each CLB can be used as a 1 to 16-bit shift register) 
I-0E 4x LUTs with SR-16 mode, 4x FFs (all four LUTs in each CLB can be used as a 1 to 16-bit shift register) 
I-2A 4x normal LUTs, 5x FFs (adds 1 additional independent FF per CLB) 

I-2B 
3x normal LUTs, 1x LUT with SR-16 mode, 5x FFs 

(one LUT in each CLB can be used as a 1 to 16-bit shift register and adds 1 additional FF per CLB) 

I-2C 
2x normal LUTs, 2x LUTs with SR-16 mode, 5x FFs 

(two LUTs in each CLB can be used as a 1 to 16-bit shift register and adds 1 additional FF per CLB) 

I-2D 
1x normal LUT, 3x LUTs with SR-16 mode, 5x FFs 

(three LUTs in each CLB can be used as a 1 to 16-bit shift register and adds 1 additional FF per CLB) 

I-2E 
4x LUTs with SR-16 mode, 5x FFs 

(all four LUTs in each CLB can be used as a 1 to 16-bit shift register and adds 1 additional FF per CLB) 
I-4A 4x normal LUTs, 6x FF (adds 2 additional independent FF per CLB) 

I-4B 
3x normal LUTs, 1x LUT with SR-16 mode, 6x FFs 

(one LUT in each CLB can be used as a 1 to 16-bit shift register and adds 2 additional FFs per CLB) 

I-4C 
2x normal LUTs, 2x LUTs with SR-16 mode, 6x FFs 

(two LUTs in each CLB can be used as a 1 to 16-bit shift register and adds 2 additional FFs per CLB) 

I-4D 
1x normal LUT, 3x LUTs with SR-16 mode, 6x FFs 

(three LUTs in each CLB can be used as a 1 to 16-bit shift register and adds 2 additional FFs per CLB) 

I-4E 
4x LUTs with SR-16 mode, 6x FFs 

(all four LUTs in each CLB can be used as a 1 to 16-bit shift register and adds 2 additional FFs per CLB) 

 

Arch Normal LUTs  
/CLB 

SR-16 
LUTs/CLB 

FF/CLB IndFF ANSR RegPerSR ULReg Additional 
IO Pins 

I-0A 4 0 0 - 1 
I-0B 3 1 0.25 1,1.5, 2 1.25, 1.375, 1.5 
I-0C 2 2 0.5 1, 1.5, 2 1.5, 1.75, 2 
I-0D 1 3 0.75 1, 1.5, 2 1.75, 2.125, 2.5 
I-0E 0 4 

4 1 

1 1, 1.5, 2 2, 2.5, 3 

0 

I-2A 4 0 0 - 1.25 
I-2B 3 1 0.25 1, 1.5, 2 1.5, 1.625, 1.75 
I-2C 2 2 0.5 1, 1.5, 2 1.75, 2, 2.25 
I-2D 1 3 0.75 1, 1.5, 2 2, 2.375, 2.75 
I-2E 0 4 

5 1.25 

1 1, 1.5, 2 2.25, 2.75, 3.25 

2 

I-4A 4 0 0 - 1.5 
I-4B 3 1 0.25 1, 1.5, 2 1.75, 1.875, 2 
I-4C 2 2 0.5 1, 1.5, 2 2, 2.25, 2.5 
I-4D 1 3 0.75 1, 1.5, 2 2.25, 2.625, 3 
I-4E 0 4 

6 1.5 

1 1, 1.5, 2 2.5, 3, 3.5 

4 
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Architecture I-2A returns to the basic four 4-LUT architecture but adds one additional flip-flop per CLB, 

bringing the total to five independently accessible flip-flops.  This requires 2 additional I/O pins to each 

CLB.  Since each BLE in this architecture contains 1.25 flip-flops, IndFF = 1.25.  Since the LUTs in this 

architecture cannot be used as shift registers, ANSR = 0.  This makes ULReg = 1.25.  As with the I-0B 

through I-0E architectures, architectures I-2B through I-2E add the capability for some of the LUTs in each 

CLB to be used as an SR-16.  In a similar manner, architecture I-4A adds two additional flip-flops per CLB 

to the basic architecture and architectures I-4B through I-4E allow some of the LUTs in the device to be 

used as SR-16s. 

 

The architectures used in this testing stop at two additional flip-flops per CLB because this requires four 

additional CLB I/O pins.  All of the architectures discussed in this chapter add four or fewer additional 

CLB inputs or outputs because the basic architecture requires 28 CLB inputs and outputs (16 inputs/4 

outputs for the four 4-LUTs and 4 inputs/4 outputs for the four flip-flops).  An additional four CLB I/O 

pins result in 14% more signals for the connection blocks to deal with.  Since the fundamental philosophy 

this chapter began with tries to limit the impact of any architectural modifications, limiting the number of 

additional CLB inputs and outputs to 14% will likely cover all of the architectures that are of interest. 

 

The efficiency of these fifteen architectures in mapping heavily registered netlists was tested by applying 

Equations 8.9 and 8.10 to the 22 depth = 1 netlists and 22 depth = 0.33 netlists used in the previous 

chapters.  Figure 8.14 and Figure 8.15 show the geometric mean number of BLEs that these netlists require 

when mapped to each of the various architectures.  All of these values are normalized to the number of 

BLEs required by the depth = N netlists. 

 

Although all of these architectures reduce the number of BLEs that these netlists require, adding the 

capability of using some of the LUTs in the device as SR-16s has a much larger effect than adding 

additional flip-flops.  As shown in Figure 8.15, adding SR-16 capabilities to all four LUTs in each CLB 

(architecture I-0E) halves the number of BLEs that are required by the basic system for the depth = 0.33 

netlists (3.133x versus 6.172x the number of BLEs required by the original netlists represents a 0.508x 

improvement, assuming that an average of 1.5 registers can be mapped to each shift register).  This is a feat 

that even adding 2 additional flip-flops per CLB (architecture I-4A) cannot achieve.  The I-4A architecture 

only reaches a 0.667x improvement over the basic I-0A architecture.  Furthermore, adding SR-16 

capabilities does not require adding any additional I/O pins.  Largely, this behavior occurs because 

although the I-0E architecture has a smaller IndFF value than the I-4A architecture (1 versus 1.5), it has a 

larger ULReg value (between 2 and 3 versus 1.5).  Since the depth = 0.33 netlists have so many BLEs with 

an unoccupied LUT, the ULReg value has a much larger impact on the number of BLEs that is required. 
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This phenomenon can also be seen elsewhere in Figure 8.15.  For the depth = 0.33 netlists, adding the 

capability for one of the LUTs in each CLB to be used as a SR-16 (architecture I-0B) produces 

approximately the same results as adding one additional flip-flop (architecture I-2A).  Again assuming that 

an average of 1.5 registers can be mapped to each shift register, the I-0B architecture requires an average of 

4.795x the number of BLEs in the original netlists while the I-2A architecture requires an average of 

4.938x.  Furthermore, adding the capability for two of the LUTs in each CLB to be used as SR-16s 

(architecture I-0C) produces approximately the same results as adding two additional flip-flops 

(architecture I-4A).  The I-0C architecture requires an average of 4.006x the number of BLEs in the original 

netlists while the I-4A architecture requires an average of 4.115x.  This makes sense because for the BLEs 

in the system with an unoccupied LUT, having one SR-16 is essentially the same as having one extra flip-

flop, even assuming the worse case where RegPerSR = 1.  Both architectures have ULReg = 1.25.  

Similarly, having two SR-16s in each CLBs is essentially the same as having two extra flip-flops.  Again, 

even assuming the worse case, both architectures have ULReg = 1.5. 

 

However, this characteristic only applies to BLEs that have an unoccupied LUT.  The depth = 1 netlists 

shown in Figure 8.14 require far fewer additional BLEs.  Thus, these netlists have a much smaller ratio of 

BLEs with unoccupied LUTs.  This affects the results.  For these netlists, to produce approximately the 

same results as adding one additional flip-flop (architecture I-2A), two of the LUTs in each CLB need SR-

16 capabilities (architecture I-0C).  Assuming that an average of 1.5 registers can be mapped to each shift 

register, the I-0C architecture requires an average of 1.590x the number of BLEs in the original netlists 

while the I-2A architecture requires an average of 1.585x.  Similarly, to produce approximately the same 

results as adding two additional flip-flops (architecture I-4A), all four of the LUTs in each CLB need SR-16 

capabilities (architecture I-1E).  The I-0E architecture requires an average of 1.432x the number of BLEs in 

the original netlists while the I-4A architecture requires an average of 1.436x.  More SR-16s are required to 

match the results produced by adding additional flip-flops because the number of BLEs with unoccupied 

LUTs in the depth = 1 netlists no longer dwarfs the number of BLEs with an occupied LUT.  This makes 

the ULReg value less important and the IndFF value more significant.  That said, the benefit of allowing 

LUTs to be used as SR-16s is still impressive, particularly because this does not increase the number of 

CLB I/O pins. 

 

Adding independent flip-flops or allowing LUTs to be used as SR-16s are not the only ways of adding 

additional register resources.  Although it requires addition CLB output pins, it is also possible to allow 

each LUT to be used as two 1 to 8-bit shift registers (SR-8s) or four 1 to 4-bit shift registers (SR-4s).  Thus, 

the next phases of testing investigated the efficiency of architectures that had these types of resources.  This 

testing was divided into 3 separate parts.  The second phase of testing assumed that each CLB could 

support converting one LUT in each CLB into one SR-16, two SR-8s or four SR-4s.  The third and fourth 
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phases assumed that each CLB could support converting two or four of the LUTs in each CLB, 

respectively, into shift registers.  Again, each of these LUTs could be used as one SR-16, two SR-8s or four 

SR-4s.  The testing was divided in this manner because adding the basic components required to convert a 

LUT into any kind of shift register might be costly.  This may be the reason that Xilinx devices only allow 

half of their LUTs to be used as SR-16s.  As mentioned earlier, adding the capability to turn a 4-LUT into 

even a SR-16 could require twenty additional 2:1 multiplexers and four additional memory cells.  

Depending upon the structure used for the basic LUT and the necessary transistor sizing that is required, 

this may be significant.  Thus, each of the subsequent phases of testing explored what could be 

accomplished by adding shift registers and additional flip-flops to the system while limiting the number of 

modified LUTs. 

 

As shown in Table 8.4, the second phase of testing compared the mapping efficiency of seven architectures.  

Four of the architectures are from the first phase of testing: I-0A, I-0B, I-2B, I-4B.  Listed first is the default 

architecture, I-0A.  Next comes all of the architectures that can be made that do not require any additional 

I/O pins and have exactly one modified LUT per CLB.  One architecture can be made that has one LUT in 

each CLB that can be used as a SR-16, architecture I-0B from the first round of testing.  Next comes all of 

the architectures that can be made that require one additional I/O pin and have exactly one modified LUT 

per CLB.  Only one architecture can be made, II-1A, an architecture that allows one of the LUTs in each 

CLB to be used as two SR-8s.  This process continues for two, three and four additional I/O pins per CLB. 

 

As seen in Figure 8.16 and Figure 8.17, for architectures in which one unoccupied LUT can be converted 

into one or more shift registers, increasing the number of I/O pins in each CLB is relatively compelling.  

While adding the capability of converting one LUT per CLB into a SR-16 provides some benefit (0.884x 

improvement over the default architecture for the depth = 1 netlists and 0.777x improvement over the 

default architecture for the depth = 0.33 netlists), a larger improvement comes from mapping the circuits to 

architectures that have CLBs with additional I/O pins (up to a 0.699x improvement over the default 

architecture for the depth = 1 netlists and up to a 0.508x improvement over the default architecture for the 

depth = 0.33 netlists).  However, for the depth = 1 netlists, the benefits of creating more sophisticated 

architectures largely drops off at architecture II-3A, a device with one additional flip-flop and one LUT that 

can be converted into two SR-8s per CLB.  Architecture II-3B, a system with one LUT that can that be 

converted into four SR-4s per CLB is less compelling.  While architecture II-3A improved the number of 

BLEs required by 0.718x compared to the default architecture (1.403x versus 1.954x, again assuming that 

an average of 1.5 registers can be mapped to each shift register), the II-3B architecture only improve the 

number of  BLEs by 0.733x (1.432x versus 1.954x).  This is largely because the depth = 1 netlists do not 

require a huge number of BLEs with unoccupied LUTs.  Thus, having a larger IndFF is preferable to a 

larger ULReg. (when RegPerSR = 1, IndFF = 1.25 and ULReg = 1.75 versus IndFF = 1 and ULReg = 2)  
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However, for the depth = 0.33 netlists, architecture II-3B provides better performance than architecture II-

3A.  Architecture II-3B improved the number of required BLEs by 0.508x while architecture II-3A only 

improved the number of required BLEs by 0.568x.  This is because the depth = 0.33 netlists require more 

registers, creating a larger fraction of BLEs with unoccupied LUTs.  That said, architecture I-4B can be 

essentially disregarded.  This is because while it requires more additional I/O pins than either II-3A or II-

3B, it does not produce dramatically better results than II-3A for the depth = 1 netlists (1.366x versus 

1.403x) and produces worse results than II-3B for the depth = 0.33 netlists (3.517x versus 3.133x). 

 

As shown in Table 8.5, the third phase of testing compared the mapping efficiency of ten architectures.  

Again, four of the architectures are from the first phase of testing: I-0A, I-0C, I-2C, I-4C.  The remaining 

six were generated using the same methodology as in the second testing phase: all of the architectures that 

 

Table 8.4: Architectures Used in Testing Phase II –  
Adding Independent Flip-Flops and Shift Registers, 1 Modified LUT/CLB 

Arch Description – Contents of Each CLB 
I-0A* 4x normal LUTs, 4x FFs (default architecture) 
I-0B* 3x normal LUTs, 1x LUT with SR-16 mode, 4x FFs (one LUT in each CLB can be used as a 1 to 16-bit shift register) 

II-1A 
3x normal LUTs, 1x LUT with 2x SR-8 mode, 4x FFs  

(one LUT in each CLB can be used as two 1 to 8-bit shift registers) 

I-2B* 
3x normal LUTs, 1x LUT with SR-16 mode, 5x FFs  

(one LUT in each CLB can be used as a 1 to 16-bit shift register and 1 additional FF per CLB is added) 

II-3A 
3x normal LUTs, 1x LUT with 2x SR-8 mode, 5x FFs  

(one LUT in each CLB can be used as two 1 to 8-bit shift registers and 1 additional FF per CLB is added) 

II-3B 
3x normal LUTs, 1x LUT with 4x SR-4 mode, 4x FFs  

(one LUT in each CLB can be used as four 1 to 4-bit shift registers) 

I-4B* 
3x normal LUTs, 1x LUT with SR-16 mode, 6x FFs 

(one LUT in each CLB can be used as a 1 to 16-bit shift register and 2 additional FFs per CLB are added) 

 

Arch Normal  
LUTs 
/CLB 

SR-16 
LUTs 
/CLB 

2x SR-8 
LUTs 
/CLB 

4x SR-4 
LUTs 
/CLB 

FF 
/CLB 

IndFF ANSR RegPerSR ULReg Extra 
IO Pins 

I-0A* 4 0 0 0 4 1 0 - 1 

I-0B* 3 1 0 0 4 1 0.25 
1 

1.5 
2 

1.25 
1.375 
1.5 

0 

II-1A 3 0 1 0 4 1 0.5 
1 

1.5 
2 

1.5 
1.75  

2 
1 

I-2B* 3 1 0 0 5 1.25 0.25 
1  

1.5  
2 

1.5  
1.625  
1.75 

2 

II-3A 3 0 1 0 5 1.25 0.5 
1  

1.5  
2 

1.75 
2 

2.25 

II-3B 3 0 0 1 4 1 1 
1  

1.5  
2 

2 
2.5 
3 

3 

I-4B* 3 1 0 0 6 1.5 0.25 
1  

1.5  
2 

1.75 
1.875 

2 
4 

* Denotes architecture from Phase I testing 
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Figure 8.16: Architecture Exploration on Depth = 1 Netlists, 1 LUT/CLB has Shift Register(s) 
Numbers provided indicate ANSR = 1.5 results 
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Figure 8.17: Architecture Exploration on Depth = 0.33 Netlists, 1 LUT/CLB has Shift Register(s) 
Numbers provided indicate ANSR = 1.5 results 
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require one through four additional I/O pins that have exactly two modified LUTs per CLB were 

investigated. 

 

As seen in Figure 8.18 and Figure 8.19, for architectures in which two unoccupied LUTs can be converted 

into two or more shift registers, increasing the number of I/O pins in each CLB is still relatively 

compelling.  Although adding the capability of converting two of the LUTs in each CLB into SR-16s 

provides the largest benefit (by itself a 0.814x improvement for the depth = 1 netlists and a 0.649x 

improvement for the depth = 0.33 netlists), mapping to architectures that have CLBs with additional I/O 

pins also produces a relatively significant improvement (up to 0.670x improvement for the depth = 0.33 

netlists and up to 0.431x improvement for the depth = 0.33 netlists).  That said, as with the architectures in 

the previous round of testing, the benefits of creating more sophisticated architectures largely drops off at 

three additional I/O pins.  All three architectures with two modified LUTs and four additional I/O pins per 

CLB can likely be eliminated from consideration since they do not provide enough benefit to justify the 

additional I/O pins required. 

 

The architectures that worked best in this testing also showed the same netlist dependence as in the 

previous round of testing.  While the depth = 1 netlists preferred architectures I-2C and III-3A for devices 

with 2 and 3 additional I/O pins respectively, the depth = 0.33 netlists preferred architectures III-2A and III-

3B.  The I-2C and III-3A architectures provided a 0.718x and 0.691x improvement, respectively, for the 

depth = 1 netlists and the III-2A and III-3B architectures provided a 0.508x and 0.464x improvement, 

respectively, for the depth = 0.33 netlists.  Again, this is because the depth = 1 netlists prefers architectures 

that trade a slightly higher IndFF for a slightly lower ULReg while the depth = 0.33 netlists prefer 

architectures that trade a slightly higher ULReg for a slightly lower IndFF.  

 

As shown in Table 8.6, the last phase of testing compared the mapping efficiency of twelve architectures 

that had four modified LUTs per CLB.  As seen in Figure 8.20 and Figure 8.21, these architectures showed 

the most improvement by simply allowing all four of the LUTs in each CLB to be used as SR-16s.  By 

itself, this represented a 0.733x improvement over the default architecture for the depth = 1 netlists and a 

0.508x improvement for the for the depth = 0.33 netlists.  However, as with the previous two tests, both the 

depth = 1 and depth = 0.33 netlists showed marked improvement for architectures that added up to three 

additional I/O pins.  Again, architectures with four modified LUTs and four additional I/O pins per CLB 

can likely be eliminated from consideration since they do not provide a sizeable benefit over the 

architectures that require three additional I/O pins.  Furthermore, also like the previous round of testing, the 

architectures that showed the best performance for the depth = 1 netlists had a slightly higher IndFF and 

the architectures that showed the best performance for the depth = 0.33 netlists had a slightly higher 

ULReg. 
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Table 8.5: Architectures Used in Testing Phase III –  
Adding Independent Flip-Flops and Shift Registers, 2 Modified LUTs/CLB 

Arch Description – Contents of Each CLB 
I-0A* 4x normal LUTs, 4x FFs (default architecture) 

I-0C* 
2x normal LUTs, 2x LUTs with SR-16 mode, 4x FFs 

(two LUTs in each CLB can each be used as a 1 to 16-bit shift register) 

III-1A 
2x normal LUTs, 1x LUT with SR-16 mode, 1x LUT with 2x SR-8 mode, 4x FFs 

(one LUT in each CLB can be used as a 1 to 16-bit shift register and  
one LUT in each CLB can be used as two 1 to 8-bit shift registers) 

I-2C* 
2x normal LUTs, 2x LUTs with SR-16 mode, 5x FFs 

(two LUTs in each CLB can each be used as a 1 to 16-bit shift register and 1 additional FF per CLB is added) 

III-2A 
2x normal LUTs, 2x LUTs with 2x SR-8 mode, 4x FFs 

(two LUTs in each CLB can each be used as two 1 to 8-bit shift registers) 

III-3A 
2x normal LUTs, 1x LUT with SR-16 mode, 1x LUT with 2x SR-8 mode, 5x FFs 

(one LUT in each CLB can be used as a 1 to 16-bit shift register,  
one LUT in each CLB can be used as two 1 to 8-bit shift registers, and 1 additional FF per CLB is added) 

III-3B 
2x normal LUTs, 1x LUT with SR-16 mode, 1x LUT with 4x SR-4 mode, 4x FFs  

(one LUT in each CLB can be used as a 1 to 16-bit shift register 
and one LUT in each CLB can be used as four 1 to 4-bit shift registers) 

I-4C* 
2x normal LUTs, 2x LUTs with SR-16 mode, 6x FFs 

(two LUTs in each CLB can each be used as a 1 to 16-bit shift register and 2 additional FFs per CLB are added) 

III-4A 
2x normal LUTs, 2x LUTs with 2x SR-8 mode, 5x FFs 

(two LUTs in each CLB can each be used as two 1 to 8-bit shift registers and 1 additional FF per CLB is added) 

III-4B 
2x normal LUTs, 1x LUT with 2x SR-8 mode, 1x LUT with 4x SR-4 mode, 4x FFs 

(one LUT in each CLB can be used as two 1 to 8-bit shift registers 
and one LUT in each CLB can be used as four 1 to 4-bit shift registers) 

 

Arch Normal  
LUTs 
/CLB 

SR-16 
LUTs 
/CLB 

2x SR-8 
LUTs 
/CLB 

4x SR-4 
LUTs 
/CLB 

FF 
/CLB 

IndFF ANSR RegPerSR ULReg Extra 
IO Pins 

I-0A* 4 0 0 0 4 1 0 - 1 

I-0C* 2 2 0 0 4 1 0.5 
1 

1.5 
2 

1.5 
1.75 

2 

0 

III-1A 2 1 1 0 4 1 0.75 
1 

1.5 
2 

1.75 
2.125 
2.5 

1 

I-2C* 2 2 0 0 5 1.25 0.5 
1 

1.5 
2 

1.75 
2 

2.25 

III-2A 2 0 2 0 4 1 1 
1 

1.5 
2 

2 
2.5 
3 

2 

III-3A 2 1 1 0 5 1.25 0.75 
1 

1.5 
2 

2 
2.375 
2.75 

III-3B 2 1 0 1 4 1 1.25 
1 

1.5 
2 

2.25 
2.875 
3.5 

3 

I-4C* 2 2 0 0 6 1.5 0.5 
1 

1.5 
2 

2 
2.25 
2.5 

III-4A 2 0 2 0 5 1.25 1 
1 

1.5 
2 

2.25 
2.75 
3.25 

III-4B 2 0 1 1 4 1 1.5 
1 

1.5 
2 

2.5 
3.25 
4.0 

4 

* Denotes architecture from Phase I testing 
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Table 8.6: Architectures Used in Testing Phase IV –  
Adding Independent Flip-Flops and Shift Registers, 4 Modified LUTs/CLB 

Arch Description – Contents of Each CLB 
I-0A* 4x normal LUTs, 4x FFs (default architecture) 
I-0E* 4x LUTs with SR-16 mode, 4x FFs (all four LUTs in each CLB can be used as a 1 to 16-bit shift register) 

IV-1A 
3x LUTs with SR-16 mode, 1x LUT with 2x SR-8 mode, 4x FFs 

(three LUTs in each CLB can be used as a 1 to 16-bit shift register  
and one LUT in each CLB can be used as two 1 to 8-bit shift registers) 

I-2E* 
4x LUTs with SR-16 mode, 5x FFs 

(all four LUTs in each CLB can be used as a 1 to 16-bit shift register and 1 additional FF per CLB is added) 

IV-2A 
2x LUTs with SR-16 mode, 2x LUTs with 2x SR-8 mode, 4x FFs 

(two LUTs in each CLB can be used as a 1 to16-bit shift register and 
two LUTs in each CLB can be used as two 1 to 8-bit shift registers) 

IV-3A 
3x LUTs with SR-16 mode, 1x LUT with 2x SR-8 mode, 5x FFs 

(three LUTs in each CLB can be used as a 1 to 16-bit shift register,  
one LUT in each CLB can be used as two 1 to 8-bit shift registers, and 1 additional FF per CLB is added) 

IV-3B 
3x LUTs with SR-16 mode, 1x LUT with 4x SR-4 mode, 4x FFs 

(three LUTs in each CLB can be used as a 1 to 16-bit shift register  
and one LUT in each CLB can be used as four 1 to 4-bit shift registers) 

IV-3C 
1x LUTs with SR-16 mode, 3x LUT with 2x SR-8 mode, 4x FFs 
(one LUT in each CLB can be used as a 1 to 16-bit shift register  

and three LUTs in each CLB can be used as two 1 to 8-bit shift registers) 

I-4E* 
4x LUTs with SR-16 mode, 6x FFs 

(all four LUTs in each CLB can be used as a 1 to 16-bit shift register and 2 additional FFs per CLB are added) 

IV-4A 
2x LUTs with SR-16 mode, 2x LUTs with 2x SR-8 mode, 5x FFs 

(two LUTs in each CLB can be used as a 1 to16-bit shift register, two LUTs in each CLB can each be used as two 1 to 8-bit shift 
registers and 1 additional FF per CLB is added) 

IV-4B 
2x LUTs with SR-16 mode, 1x LUT with 2x SR-8 mode, 1x LUT with 4x SR-4 mode, 4x FFs 

(two LUTs in each CLB can be used as a 1 to16-bit shift register, one LUT in each CLB can be used as 
two 1 to 8-bit shift registers and one LUT in each CLB can be used as four 1 to 4-bit shift registers) 

IV-4C 
4x LUTs with 2x SR-8 mode, 4x FFs 

(all four LUTs in each CLB can be used as two 1 to 8-bit shift registers) 

 

Arch 
 

Normal 
LUTs 
/CLB 

SR-16 
LUTs 
/CLB 

2x SR-8 
LUTs 
/CLB 

4x SR-4 
LUTs 
/CLB 

FF 
/CLB 

IndFF ANSR RegPerSR ULReg Extra 
IO Pins 

I-0A* 4 0 0 0 4 1 0 - 1 

I-0E* 0 4 0 0 4 1 1 
1 

1.5 
2 

2 
2.5 
3 

0 

IV-1A 0 3 1 0 4 1 1.25 
1 

1.5 
2 

2.25 
2.875 
3.5 

1 

I-2E* 0 4 0 0 5 1.25 1 
1 

1.5 
2 

2.25 
2.75 
3.25 

IV-2A 0 2 2 0 4 1 1.5 
1 

1.5 
2 

2.5 
3.25 
4.0 

2 

IV-3A 0 3 1 0 5 1.25 1.25 
1 

1.5 
2 

2.5 
3.125 
3.75 

IV-3B 0 3 0 1 4 1 1.75 
1 

1.5 
2 

2.75 
3.625 
4.5 

IV-3C 0 1 3 0 4 1 1.75 
1 

1.5 
2 

2.75 
3.625 
4.5 

3 

I-4E* 0 4 0 0 6 1.5 1 
1 

1.5 
2 

2.5 
3 

3.5 

IV-4A 0 2 2 0 5 1.25 1.5 
1 

1.5 
2 

2.75 
3.5 
4.20 

IV-4B 0 2 1 1 4 1 2 
1 

1.5 
2 

3 
4 
5 

IV-4C 0 0 4 0 4 1 2 
1 

1.5 
2 

3 
4 
5 

4 

* Denotes architecture from Phase I testing 
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8.5: Conclusions and Future Research 

This chapter examined the potential benefits of increasing the number of registers that FPGAs provide.  

Heavy pipelining and C-slowing can add a huge number of registers into a netlist.  Although this can 

improve the critical path delay significantly, this also considerably increases the number of BLEs that are 

required.  Since conventional architectures offer BLEs with one LUT and one flip-flop, circuits that have a 

uniform logic depth can be pipelined or C-slowed to a logic depth of one LUT and not require a large 

number of additional logic blocks.  This is because the registers in these circuits can be put into the same 

BLEs as the logic.  However, many circuits have some paths that go though several layers of logic while 

the rest of the circuit goes through relatively few.  Since the number of registers added to all paths must be 

the same to maintain the functionality of the circuit, deeply pipelining or C-slowing these non-uniform 

netlists may tremendously increase the number of BLEs that are needed.  This is because many registers 

will have to be added to the short paths in order to fully pipeline the long paths.  For that matter, FPGA 

application developers often purposefully add multiple registers to signals in their circuits.  This is done to 

allow the delay through long wires to be broken up across multiple clock cycles. 

 

There have been multiple previous research efforts that have investigated potential ways of increasing the 

number of registers that FPGAs provide.  Unfortunately, these systems typically impose strict limitations 

on the types of circuits they can implement or have an unacceptably large area overhead when mapping 

more conventional, lightly-registered applications.  Since these architectures are not practical for the 

majority of users, they are not commercially viable.  This chapter addresses the problem of introducing 

additional registers into an FPGA in a fundamentally different way.  Rather than making drastic changes 

that alter the basic usability of entire system, it is likely more reasonable to add small modifications that are 

beneficial to heavily registered applications, but largely invisible to more conventional circuits. 

 

There are two basic areas of an FPGA that additional registers can be incorporated: the routing network and 

the logic blocks.  While some previous architectures have added registers into the interconnect by 

embedding registers inside switchboxes, this really introduces more problems than it solves.  Adding 

registers that are connected to all of the wires that enter and exit a switchbox is not practical due to area 

concerns.  However, introducing registers into the system that have more limited input and output options 

changes the fundamental nature of the placement and routing problems.  As discussed in the previous 

chapter, this kind of architecture can require pipeline-aware routing algorithms.   

 

From a performance standpoint, embedding registers in the interconnect switchboxes does not make the 

system considerably faster compared to using registers that might be found in more conventional logic 

block locations.  Although signals that use registers in the interconnect do not incur the delay associated 

with entering and exiting a CLB, they cannot escape the largest component of delay in modern FPGAs: the 
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delay though the wires themselves.  Furthermore, it is likely that wire delay will become a larger part of the 

overall delay in the system in future process technologies.  Using the values provided by VPR for 0.65nm 

FPGAs, devices with registers embedded in the interconnect not only require more complicated CAD tools, 

they are likely less than 0.92x faster than more conventional architectures. 

 

However, this is not to say that embedding registers within the routing fabric cannot help the performance 

of any FPGA, only that it does not make sense to incorporate these kinds of resources in architectures that 

only have conventional island-style routing wires.  For example, in an architecture with dedicated local 

connections, embedding registers along these wires could be quite helpful.  If each CLB has a direct 

connection to each of its 8 or 24 nearest neighbors, adding a register to split the delay through the wire 

could make these connections much faster.  Alternatively, this could allow the system to use smaller drivers 

for these connections and still have them keep up with other faster routing resources in the architecture.  

Furthermore, adding registers to these dedicated connections does not create a problem for the router.  This 

is because the endpoints of these connections are already fixed.  Thus, these wires are not shared resources 

that can run into congestion resolution problems if registers are assigned to these locations during 

placement. 

 

That said, focusing FPGA architects on incorporating additional registers into the logic blocks themselves 

is probably a better idea.  However, there are multiple ways that this could be accomplished.  One option is 

to simply add more independently accessible flip-flops to each CLB.  Another way is to harness the 

memory cells that already exist within the LUTs themselves.  With a few minor modifications, any LUT 

that is not needed to implement the logic of the circuit can be converted into one 1 to 16-bit shift register, 

two 1 to 8-bit shift registers or four 1 to 4-bit shift registers. 

 

However, there are several practical concerns that should be kept in mind when evaluating any 

modifications to the system.  First, there is the number of input and output pins that each of these various 

enhancements add to the CLB in which they are placed.  Each additional flip-flop that is added to a CLB 

also adds one additional input pin and one additional output pin.  Furthermore, while any LUT that is 

converted into an SR-16 can utilize the existing CLB inputs and outputs, LUTs that are converted into two 

SR-8s or four SR-4s require one or three additional output pins, respectively.   

 

The next issue is the basic usability of shift registers.  Although deeply pipelined and C-slowed circuits 

contain a large total number of registers, they are generally evenly distributed throughout the circuit.  The 

majority of signals in even the most heavily registered netlists require less than four registers.  For that 

matter, for performance reasons these registers generally must be mapped to multiple locations between the 

source and sink.  Thus, each shift register will probably only be used to implement one or two registers.  
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For this reason, while splitting a LUT into multiple shift registers requires more resources, this might be a 

good idea since this gives the LUT the capability to provide registers to multiple different signals.   

 

The last issue concerns the difference in local availability between individual flip-flops and shift registers.  

The ratio of logic to register resources within certain parts of the device likely limits the performance 

benefits of heavily pipelining or C-slowing a netlist.  This is because beyond a certain critical threshold of 

pipelining or C-slowing, the circuit must spread out to accumulate all of the necessary registers in the 

netlist.  This can counteract the benefits of performing pipelining or C-slowing in the first place.  Although 

shift registers provide very dense register resources, they can only be implemented in LUTs that are not 

used for logic.  Thus, for these to be inserted into tightly knit computational kernels, the LUTs in the circuit 

must be spread out to provide empty LUT locations.  Fundamentally, while shift registers are good at 

raising the average number of registers in the chip as a whole, they have a hard time increasing the local 

density of register resources where they might be needed.  On the other hand, adding independently 

accessible flip-flops to CLBs inherently evenly raises the ratio of register resources to logic.  This means 

that although each register might be more expensive, they may be more useful. 

 

These concerns regarding how different types of resources within potential target architectures interact with 

each other and the characteristics of incoming netlists were captured using a few equations.  These 

equations considered basic attributes, like the number of LUTs and registers required by a circuit, along 

with more subtle issues such as the average number of registers that an incoming netlist could map to shift 

registers that might be in the architecture.  These equations were used to evaluate how 32 different 

architectures handled two different sets of heavily registered circuits, the 11 combinational and 11 

sequential MCNC netlists pipelined, C-slowed and retimed to logic depth = 1 and logic depth = 0.33. 

 

This testing showed that the largest gains could be achieved by giving as many LUTs as possible the ability 

to be used as a 1 to 16-bit shift register.  For the depth = 1 netlists, allowing half of the LUTs to be used as 

SR-16s, like modern Xilinx devices, improved the number of BLEs required by 0.814x over the default 

architecture that did not contain shift registers. Allowing all of the LUTs to be used as SR-16s reduced the 

number of BLEs by 0.733x.  Similarly, for the depth = 0.33 netlists, allowing half of the LUTs to be used 

as SR-16s improved the number of BLEs required by 0.649x and allowing all of the LUTs to be used as 

SR-16s reduced the number of BLEs by an enormous 0.508x.   

 

Although adding additional flip-flops to the CLBs or splitting these shift registers into smaller banks could 

potentially further improve the mapping efficiency of an architecture, the achievable improvements were 

comparatively much smaller.  Furthermore, these kinds of modifications increase the number of I/O pins 

that each CLB needs, requiring more extensive changes to the system.  Even adding four I/O pins to each 
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CLB could only improve the results obtained by allowing all four LUTs in each CLB to be used as an SR-

16 by 0.872x for the depth = 1 netlists and 0.754x for the depth = 0.33 netlists.  Thus, from the standpoint 

of layout and architectural design, the most important aspect to consider during the development process of 

an FPGA is how to make the necessary modifications needed to use LUTs as SR-16s as cheap as possible.  

This is far more important than designing the system to make additional CLB I/O pins inexpensive. 

 

That said, the mapping efficiency of an architecture could possibly be justifiably improved if one or two 

additional I/O pins could be added to each CLB.  This would allow the architecture to split one or two of 

the SR-16s into two SR-8s or add one additional flip-flop per CLB.  For the depth = 1 netlists, adding one 

additional I/O pin could improve the results by 0.942x over only having four SR-16s and adding two 

additional I/O pins could improve results by 0.882x.  For the depth = 0.33 netlists, adding one additional 

I/O pin could improve the results by 0.915x over only having four SR-16s and adding two additional I/O 

pins could improve results by 0.849x.  Each additional I/O pin represents a 3.5% increase in the number of 

inputs and outputs needed by a CLB with four 4-LUTs and four independently accessible flip-flops. 

 

This testing also confirmed that how to best use additional I/O pins depends upon the characteristics of the 

intended applications.  Since shift registers can only be implemented in empty LUT locations, as the ratio 

of registers to LUTs in a netlist goes down, it becomes more attractive to add independently accessibly flip-

flops rather than split shift registers.  This is because the number of empty LUT locations in these netlists is 

naturally smaller, allowing fewer of the shift registers to actually be used.  For architectures with the same 

number of I/O pins, allocating the internal resources differently could result in a 1.119x difference in the 

number of required BLEs.  A corollary to this is the observation that adding or splitting shift registers in an 

architecture can never allow a heavily registered application to map to exactly the same number of BLEs as 

an unregistered version.  This is because additional BLEs are always necessary in order to provide empty 

LUT locations that can be used to implement shift registers.   

 

While this insight is a good start, there are still many open questions regarding how different architectures 

affect the mapping of applications.  The most pressing issue is that the number of BLEs required by a 

netlist was the only metric used to evaluate different architectures.  However, this information by itself is 

not enough to constitute a rigorous architecture exploration.  Specifically, more precise area and delay 

values are necessary.  That said, getting this information requires a large amount of additional work. 

 

Although the number of BLEs that a netlist requires strongly affects its silicon footprint and this chapter 

provided some basic analysis of the relative cost of adding or splitting shift registers and adding flip-flops, 

exact area numbers for the architectures were never given.  Largely, this is because accurately estimating 

the area of a device requires additional information regarding the transistor and wire-level realities of the 
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various architectural options.   Although it is impractical to expect entire FPGAs to be laid out while still at 

the architectural exploration phase, the basic pieces of candidate systems must be implemented in some 

way to build a meaningful area model.  At the very least, transistor schematics must be made for all of 

components in an FPGA: LUTs, flip-flops, memory cells, multiplexers, etc.  These schematics could be 

used to build a very rudimentary transistor count area model.  However, to be truly useful such a model 

must account for differences in transistor sizing.  While the transistors within a memory cell can likely be 

close to minimum size, the transistors that drive long interconnect wires will probably need to be much 

larger.  Even better, while entire FPGAs cannot be laid out, specific pieces of the system could be laid out 

to create a relatively accurate area model.   

 

However, applying this area model in a meaningful way also requires netlists to actually be placed and 

routed on these architectures.  This is because the number of logic blocks in an architecture is only one 

component of the area requirement of the system as a whole.  The interconnect network represent 

somewhere between 50-90% of the area in modern FPGAs.  Since changing some of the fundamental 

characteristics of the underlying architecture will also likely change the channel width that mapped 

applications require, this can have a large effect on the overall area of the device. 

 

For that matter, placement and routing is also needed to determine the achievable clock frequency of 

mapped circuits.  Architectural modifications can change the critical path delay of applications in three 

ways.  First, the physical length of each interconnect wire will change because the logic blocks will get 

bigger or smaller as the contents is varied and the switch boxes will get bigger or smaller as the channel 

width of the system goes up and down.  Since longer wires are naturally slower than shorter wires, this can 

affect the delay of the entire FPGA.  Second, the density of mapped circuits will change.  Any increase in 

the amount of register resources in the system will also allow circuits to be mapped to a smaller number of 

logic blocks.  Since the circuits can fit into a smaller region, this may speed up the achievable clock 

frequency.  Third, as touched on earlier, the specific types of register resources provided by the architecture 

will alter the logic density that netlists can achieve.  For example, it is likely that an architecture with more 

independent flip-flops will allow logic-constrained netlists to run faster than an architecture with shift 

registers because additional flip-flops allow the LUTs in computational kernels to be placed more closely 

together. 

 

Unfortunately, altering the architecture itself can also change the demands on the placement and routing 

tools.  Since an architecture can only perform as well as the CAD tools allow, addressing any issues that 

arise is crucial to getting an accurate idea of the advantages or disadvantages of an architecture.  Some of 

these problems are relatively straightforward to address, but potentially difficult to actually solve.  For 

example, different architectures may need different placement or routing tuning parameters to produce 
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good results.  While the techniques needed to test different parameters are obvious, the tests themselves 

may require a huge amount of computational resources to evaluate multiple architectures across multiple 

sets of benchmarks.   

 

Other problems present more fundamental issues.  For example, it is not obvious how to fairly evaluate the 

required size of an application when mapped to an architecture that contains shift registers.  Heavily 

registered circuits, such as the depth = 0.33 netlists, may have many signals with multiple registers.  These 

netlists could be mapped to a very small architecture if all of the registers on each signal are mapped to a 

single shift register.  However, this severely limits the capability of the system to distribute delay along 

long wires because all of the registers in the netlist are packed into dense register resources.  The placement 

tool cannot break these registers out into separate locations because there are so few empty registers 

available in the device.  Thus, while such an implementation is small, it may be very slow.  Conversely, the 

netlist could be mapped to a very large architecture if only one register is initially mapped to each shift 

register.  This gives the placement tool plenty of options to improve critical path delay, but also artificially 

increases the size of the required device.  Of course, the best mixture of size and speed of the application 

probably lies between these two extremes, but finding this implementation is not obvious.  For that matter, 

it is unclear which of these implementations an FPGA architect should use to compare this architecture to 

others. 
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Chapter 9: Conclusions and Future Research 

This dissertation provided a detailed look at the potential advantages and disadvantages of heavily 

pipelining, C-slowing and retiming FPGA-based applications.  Heavily registered circuits are important to 

the future of FPGAs because they can address one of the largest drawbacks that typically plagues today’s 

reconfigurable devices: a relatively low operating frequency.  However, these circuits also present special 

challenges to FPGA CAD tools and put unique demands on the architectures themselves.  Finding solutions 

to these issues is critical because they can dramatically affect the achievable clock rate and area 

requirements of mapped netlists.  Towards this goal, this dissertation focused on four primary problems: 

how to make timing-driven placement more effective, the implications of packing and retiming registers on 

placement, how registers can affect routing and how to efficiently incorporate more register resources into 

existing FPGA architectures. 

 

Chapter 5 provided an in-depth look at timing-driven FPGA placement.  The well-established and often-

cited technique used by VPR was shown to have a significant shortcoming in the fundamental way that it 

tracks the timing information of a netlist during the annealing process.  Simply put, performing static 

timing analysis once every thousand or hundred thousand moves is simply not enough to insure that the 

timing information remains relevant.  It was demonstrated that this can lead to disappointing results, 

particularly for heavily registered netlists since they are inherently more sensitive to changes in the 

placement.  Although forcing the annealer to simply perform static timing analysis more often can improve 

the results, this comes with some risks.  Not only does this dramatically increase placement runtime, it can 

potentially cause the annealer to fail entirely. 

 

Chapter 5 solved this problem by introducing a new incremental criticality update technique that allowed 

the annealer to efficiently estimate changes in net criticality between every single annealing move.  This 

approach was paired with a new cost function that enabled the system to take advantage of more up-to-date 

timing information.  For conventional combinational and lightly registered sequential netlists, this 

technique produced 0.888x  faster post-routing critical path delay without affecting wire cost.  For heavily 

registered benchmarks, it generated placements that were 0.581x faster with 0.951x better wire cost. 

 

While this performance benefit is impressive, perhaps more importantly, the timing-driven placement 

approach suggested in Chapter 5 only requires a few small changes to the basic placement algorithm.  Thus, 

it can likely easily be incorporated into existing placement tools and provide immediate benefits for many 

different applications across many different FPGA architectures. 

 

Speaking more broadly, this new timing-driven placement technique is interesting because it shows that it 

is possible to make dramatic improvements to VLSI CAD tools, even in areas that are thought to be 
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essentially mature, solved problems.  Since changing the smallest detail can have a huge effect on the 

performance of an algorithm, hopefully this work will inspire future research to more closely examine 

classical FPGA CAD tools and techniques.  For that matter, this approach also showed that merely 

estimating the timing of nets during placement is enough to improve post-routing critical path delay.  This 

lends credence to the possibility for much faster CAD tools in the future.  Rather than performing costly 

exact calculations, good estimates may be sufficient to maintain the quality of results and might even lead 

to significant improvements if applied carefully. 

 

Chapter 6 began by investigating the difficulties in packing heavily registered applications.  Packing a 

netlist that has a large number of registers was shown to be problematic because conventional algorithms, 

such as T-VPack, assume that a register will always want to be in the same BLE as its source LUT.  This 

limits the options available to the placement tool to use registers to distribute delay along long wires.  

Furthermore, conventional packing tools simply have no idea what to do when a signal has multiple 

registers on it and they will likely combine unrelated portions of the circuit together, making the placement 

problem unnecessarily difficult.   

 

To address these problems, Chapter 6 introduced a new hybrid CLB and flip-flop level placement approach 

that added the capability to efficiently re-assign registers to new CLBs during the placement process.  

When targeting a four 4-LUT, four flip-flop architecture, this technique improved critical path delay by 

0.870x and wire cost by 0.865x for benchmarks that were pipelined/C-slowed and retimed to have a 

minimum of one register on the output of each LUT.  This approach improved critical path delay by 0.588x 

and wire cost by 0.682x for benchmarks that were pipelined/C-slowed and retimed to have a minimum of 

three registers after each LUT. 

 

Since packing is such an ingrained part of the traditional CAD toolflow, like the issue surrounding the 

accuracy of timing information in conventional placement algorithms discussed in Chapter 5, simply 

making the observation that packing can be inherently flawed is somewhat of a revelation.  Also like the 

approach in Chapter 5, this technique is particularly valuable because it can easily be incorporated into 

existing toolflows.  Heavily registered applications will likely cause similar packing problems on any 

FPGA that has multiple BLEs in each CLB.  Looking into the future, this problem will probably get worse 

since the trend in commercial FPGAs is to build devices with larger and larger CLBs.   

 

Although traditional packing was shown to work acceptably for lightly registered applications, and it is 

probably a necessary part of the toolflow since it significantly reduces the placement problem size, the hope 

is that this work will encourage FPGA CAD developers to examine their general approach more carefully.  

For example, rather than packing the entire netlist and forcing the placement tool to either accept the 
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potential limitations or, as with the new technique discussed in this dissertation, discover for itself where 

the problems are, it may be better to only pack the LUTs and flip-flops in the netlists that have strong 

relationships.  Although packing the entire netlist might be necessary to simply get an initial placement, the 

packer can forward information to the placer regarding which components have a known reasonable 

packing versus those that were combined arbitrarily.  If this is done, the placement tool will have a much 

better idea of which registers should be moved independently and which are better to move as an entire 

CLB.  Although this approach requires altering the existing toolflow more extensively, it may achieve even 

better results than the technique suggested here. 

 

Chapter 6 also looked at how retiming can be incorporated into the netlist compilation process.  Retiming 

can be difficult to apply because when it is performed before placement, the system does not have any 

information regarding the delay accumulated in the interconnect.  On the other hand, since retiming 

restructures the netlist, applying it after placement can be disruptive and lead to problems with timing 

closure. 

 

Chapter 6 borrowed concepts from multiple previous research efforts to develop a technique to more fully 

incorporate retiming into the placement process.  This retiming approach gradually introduces new registers 

into the system and leverages the power of simulated annealing optimization to integrate them into an 

existing placement.  Unfortunately, the results of the testing performed in this chapter seem to indicate that 

retiming is not essential for circuits mapped to more sophisticated architectures.  In the presence of a good 

placement tool, retiming only improved critical path delay by a few percent on architectures with clustered 

CLBs and long interconnect wires.  This result was largely confirmed by the work in [36]. 

 

Basically, sophisticated integrated placement and retiming techniques do not provide a large benefit on 

these architectures because retiming a netlist before placement is actually very effective.  The need for 

retiming after placement is only partially a CAD problem.  It is also a symptom of a larger architectural 

problem.  Specifically, retiming is necessary when a lack of resources in an architecture makes the delay of 

potentially sensitive nets unpredictable.  If the device does not have sufficient fast connectivity between 

different logic blocks in timing-sensitive regions of a netlist, the placement tool has no choice but to make 

some of the wires it knows to be timing critical long.  This creates a mismatch in the system between nets 

that the placer could optimize versus those that it could not.  However, more sophisticated modern FPGA 

architectures put quite a bit of effort into providing dense logic blocks and fast interconnect resources.  This 

eases the pressure put on the placement tool and reduces the need for retiming.   

 

However, this is not to say that retiming during or after placement, when more accurate timing information 

is available, is entirely irrelevant.  The MCNC netlists available for testing in this dissertation are quite 
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small by today’s standards and applications will only get larger in the future.  Since larger applications 

naturally have a more complex structure, they could place higher demands on the target architecture.  This 

may make retiming more important.  Furthermore, this general trend also places the burden on FPGA 

architects.  They must insure that the interconnect resources provided by their FPGAs stays ahead of the 

needs of application developers.  While FPGA architects already consider the effect that interconnect 

resources have on routing congestion, the nature of the problem presented by retiming is somewhat 

different.  Rather than routing channel capacity, the concern is the number of logic blocks that can be 

reached with a certain delay.  Of course, there are physical limitations that prevent every logic block from 

having a fast connection to every other logic block in the device, so the problem of retiming may be 

unavoidable when devices and applications scale beyond a certain critical threshold. 

 

Chapter 7 dealt with the difficulties of pipelined routing.  As discussed in [32], this problem occurs on 

FPGA architectures that contain registers with very limited input and output connectivity.  Assigning flip-

flops in a netlist to register locations on these types of architectures during placement can also force these 

signals to use specific routing wires.  This can seriously affect the routability of circuits that contain a large 

number of registers.  Thus, registers must be found during the routing process on these architectures.  

Chapter 7 analyzed the only two known algorithms that address the pipelined routing problem and 

discussed why pipelined routers cannot use the existing timing-driven formulation suggested by 

PathFinder.  Largely, the issue is that PathFinder forwards net criticality information from one routing 

iteration to the next.  This subtly relies on the fact that the criticality of a net cannot drastically change 

between routing iterations.  However, this assumption is not true for pipelined routing since the locations of 

registers in the system are not fixed by the placement.  Much like the problems encountered in Chapter 5, 

forwarding criticality information from one routing iteration to the next can cause a pipelined router to 

favor degenerate solutions. 

 

To solve this problem, Chapter 7 introduced assumed criticality searching.  This technique performs 

multiple simultaneous waves of exploration that each assume that a net has a slightly different criticality.  

This approach removes the need for any a priori knowledge and discovers better possible routes under the 

prevailing conditions by allowing the system to more accurately balance delay and congestion.  When 

combined with QuickRoute to form the Armada algorithm, compared to the congestion-only original 

QuickRoute technique, this approach improved critical path delay by approximately 0.6x without affecting 

the number of required routing tracks. 

 

However, while this result is significant, particularly because it provides greater insight into a very new and 

relatively poorly explored CAD problem, the results found in Chapter 8 seem to indicate that timing-driven 

pipelined routing may not be necessary on future FPGAs.  As mentioned earlier, the pipelined routing 



157 

 

problem is caused by registers in an architecture that have limited input and output connectivity.  However, 

the results in Chapter 8 suggest that these types of registers may not provide a compelling benefit for 

island-style FPGAs.  Since commercial FPGAs generally follow a basic island-style structure, this may 

limit the applicability of pipelined routing algorithms. 

 

That said, while commercial architectures may not require pipelined routing, they may benefit from more 

extensive use of assumed criticality searching.  Modern architectures generally contain a wide range of 

interconnect resources, ranging from unit-length wires to wires that span the entire length of the device.  

These extremely diverse routing resources make it possible for the delay of a net to significantly change 

from one routing iteration to the next, even in the conventional routing problem, by simply moving a signal 

to a different type of wire resource.  This variability could cause timing-driven routers to generate poor 

solutions on existing architectures.  Since the assumed criticality technique evaluates the criticality of a net 

for each individual path largely independently, it can likely handle heterogeneous wires much more 

gracefully. 

 

As alluded to earlier, Chapter 8 investigated different ways of increasing the amount of register resources in 

island-style FPGAs.  This was shown to be a compelling question because while increasing the amount of 

pipelining and C-slowing performed on an application nearly linearly improved critical path delay, it also 

drastically increased the number of registers in the netlist.  These circuits could have between 3-20x more 

registers than LUTs.  Since conventional FPGAs only contain one register per LUT, these circuits require a 

huge number of additional BLEs.  Although multiple previous research efforts have looked into solving this 

problem, the systems that they have suggested have largely been very specialized devices with limited 

commercial feasibility.  Thus, Chapter 8 attempted to address the issue with a different basic philosophy: 

how can existing FPGAs be modified to benefit heavily registered applications while not disturbing the 

characteristics of the device for lightly registered applications? 

 

The first part of Chapter 8 evaluated the benefits of adding registers with limited connectivity to the 

switchboxes in the interconnect.  Although this possibility has been suggested in prior research as an 

efficient way of incorporating additional registers into an FPGA, using delay estimates from a 0.65nm 

device, it was shown that this could only reduce critical path delay by 0.914x over an architecture that 

restricted registers to the CLBs.  Thus, due to the CAD implications this introduces for placement and 

routing, it is unlikely that it is worth incorporating registers into the interconnect. 

 

A better alternative was explored in the second part of Chapter 8.  This section looked at the possibilities of 

adding inexpensive register resources to the CLBs.  Specifically, Chapter 8 investigated the impact of 

allowing unused LUTs to be turned into one or more shift registers and adding independent flip-flops.  The 
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potential usability of these resources was captured in a few equations.  These equations were applied to 

roughly estimate the potential mapping efficiency of different architectures.  This testing found that 

because allowing a 4-LUT to be used as a 1 to 16-bit shift register does not require adding any additional 

inputs or outputs to the system, this is likely the kind of modification that will provide the largest benefit to 

heavily registered applications, with the lowest impact to lightly registered netlists.  Allowing all the LUTs 

in an FPGA to be used as SR-16s could reduce the number of required BLEs by up to 0.508x compared to 

architectures without any shift register capabilities.  Allowing all the LUTs in an FPGA to be used as SR-

16s could improve the mapping efficiency over Xilinx-style devices that allow half of the LUTs to be used 

as SR-16s by up to 0.783x. 

 

Although the necessary schematics and layouts needed to determine the implications of adding I/O pins to 

each CLB were not available, this testing did show that more extensive CLB modifications could further 

improve mapping efficiency.  That said, it also showed that netlists with a lower amount of pipelining and 

C-slowing preferred architectures with extra independent flip-flops, while netlists with a higher amount of 

pipelining and C-slowing preferred systems with shift registers that were split into smaller independent 

banks.  Largely, this is because although shift registers provide more register locations, they can only be 

implemented in BLEs with unoccupied LUTs. 

 

Taken as a whole, this dissertation provides a glimpse into the future of FPGAs.  As FPGAs are expected to 

implement more complex applications at a higher clock rate, pipelining and C-slowing will become a 

necessary part of the application development process.  This has been shown to have serious implications 

for packing, placement and routing tools, along with the efficiency of the underlying architecture.  The 

large number of registers in heavily pipelined and C-slowed circuits changes many of the basic 

characteristics of the netlists and creates different kinds of CAD problems compared to purely 

combinational or lightly registered applications.  Failing to recognize these intrinsic shifts can easily 

increase the critical path delay and area of an application by a factor of two.  That said, based upon the 

analysis and experiments in this dissertation, many of these issues can be dealt with by making relatively 

minor changes to existing CAD tools and FPGA architectures. 

 

Looking into the future, the need for registered applications must be more fully acknowledged by CAD tool 

developers.  Along these lines, tools must be developed that can assist programmers in determining the 

bottlenecks in their applications.  Currently, pipelining and C-slowing must be applied manually.  After 

placement and routing, application developers must carefully inspect their circuits to determine which 

signals fail to meet timing specifications.  At that point, they must edit their HDL code to insert registers, 

hopefully avoiding making mistakes that change the functionality of their circuit.  This process is 

unnecessarily difficult and haphazard.  Visualization tools could help developers better understand 
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problematic areas of their circuits, and automatic pipelining and C-slowing could prevent unnecessary 

errors. 

 

Simply highlighting the critical and near critical paths in the circuit and indicating which lines in the HDL 

code generated these portions of the netlist would provide extremely useful feedback.  Since HDL code is 

sent through logic synthesis and technology mapping routines largely hidden from the user, it can often be 

difficult to determine the relationship between structures in a mapped FPGA implementation and the source 

code.   

 

Furthermore, once the developer has decided to pipeline or C-slow a section of their circuit, registers could 

be added automatically.  While it can be time consuming to add registers to HDL code manually, it is 

relatively straightforward for a CAD tool to pipeline or C-slow specific sections of a circuit at the LUT 

level.  The HDL code can then be automatically updated to reflect these changes.  Although extensive 

testing would be necessary to determine the real-world usability of such a tool, this might make developing 

high-speed circuits considerably faster and easier. 

 

In addition, while registered applications clearly change the problems presented to the CAD tools and the 

FPGAs themselves, the netlists and architectures explored here were relatively simplistic.  More detailed 

testing must be done using larger benchmarks mapped to more sophisticated FPGAs.  For example, the 

largest circuits in this testing only require about 1/20 the logic provided by a medium to large Xilinx 

device.  Since larger circuits are naturally more complex, they also present different problems to the CAD 

tools.   

 

For that matter, the flagship FPGAs of both Xilinx and Altera contain much more sophisticated logic 

resources.  While they include specialized resources such as fast carry-chains and dedicated multipliers, 

they have also migrated from 4-LUTs to 5 and 6-LUTs.  These type of resources change the way that 

netlists are mapped to FPGAs and affect the realities of the physical layouts.  For example, while fast carry 

chains provide low delay, direct connections between CLBs, these connections currently do not have access 

to registers.  Thus, using these resources has repercussions on the pipelining or C-slowing capabilities of 

the circuit.  Furthermore, implementing logic using larger LUTs changes the ratio of logic to registers in the 

device.  While this certainly has an effect on how circuits are mapped to the system, this also changes the 

area implications for using LUTs as shift registers or adding I/O pins. 

 

Future fabrication technologies also present some interesting issues for FPGA architectures.  For example, 

3-D semiconductor structures might make it much easier to provide fast interconnect wires between 

different logic blocks.  While this can make FPGAs simply run faster, as discussed earlier, this also has 
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ramifications on the effectiveness of retiming.  For that matter, this can also dramatically increase the 

amount of available transistor area.  This may make enhancements such as including additional registers in 

each CLB significantly less expensive.  Looking even further into the future, silicon nano-wire and carbon 

nano-tube devices have fundamentally different fabrication implications.  Although some research has been 

done into reliability and testing issues of FPGA-like structures built from these technologies, some of the 

possible manufacturing techniques also have interesting ways of building extremely small state-holding 

components.  This can have an interesting effect on the cost of introducing more registers into the system. 
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Appendix A 

Conventional MCNC Netlists 
Combinational 

Circuits 
Input 
Pins 

Output 
Pins 

LUTs FFs Required 
BLEs 

Logical 
Depth 

Pipeline 
Amt 

C-slow 
Amt 

e64 65 65 273 0 273 4 0 1 
ex5p 8 63 1064 0 1064 7 0 1 
apex4 9 19 1261 0 1261 6 0 1 
misex3 14 14 1397 0 1397 7 0 1 

alu4 14 8 1522 0 1522 7 0 1 
des 256 245 1591 0 1591 6 0 1 
seq 41 35 1750 0 1750 7 0 1 

apex2 38 3 1878 0 1878 8 0 1 
spla 16 46 3690 0 3690 8 0 1 
pdc 16 40 4575 0 4575 9 0 1 

ex1010 10 10 4598 0 4598 8 0 1 
         

Sequential 
Circuits 

Input 
Pins 

Output 
Pins 

LUTs FFs Required 
BLEs 

Logical 
Depth 

Pipeline 
Amt 

C-slow 
Amt 

s1423 18 5 220 74 220 14 0 1 
tseng 52 122 1046 385 1046 8 0 1 
dsip 229 197 1362 224 1362 3 0 1 

diffeq 64 39 1494 377 1494 10 0 1 
bigkey 229 197 1699 224 1699 3 0 1 
s298 4 6 1930 8 1930 15 0 1 
frisc 20 116 3539 886 3539 8 0 1 

elliptic 131 114 3602 1122 3602 8 0 1 
s38584.1 38 304 6156 1260 6156 9 0 1 
s38417 29 106 5974 1463 5974 11 0 1 
clma 62 82 8364 33 8364 16 0 1 

 
Depth = 1 MCNC Netlists 

Combinational 
Circuits 

Input 
Pins 

Output 
Pins 

LUTs FFs Required 
BLEs 

Logical 
Depth 

Pipeline 
Amt 

C-slow 
Amt 

e64 65 64 273 409 409 1 3 1 
ex5p 8 63 1064 1472 1472 1 6 1 
apex4 9 18 1261 1348 1348 1 5 1 
misex3 14 14 1397 1714 1714 1 6 1 

alu4 14 8 1522 1867 1867 1 6 1 
des 256 245 1591 2838 2838 1 5 1 
seq 41 35 1750 2235 2235 1 6 1 

apex2 38 3 1878 2413 2413 1 7 1 
spla 16 46 3690 4596 4596 1 7 1 
pdc 16 40 4575 5767 5767 1 8 1 

ex1010 10 10 4598 5796 5796 1 7 1 
         

Sequential  
Circuits 

Input 
Pins 

Output 
Pins 

LUTs FFs Required 
BLEs 

Logical 
Depth 

Pipeline 
Amt 

C-slow 
Amt 

s1423 17 4 220 1486 1486 1 13 14 
tseng 51 122 1046 4202 4202 1 0 8 
dsip 228 189 1362 1544 1544 1 2 2 

diffeq 63 39 1494 6304 6304 1 0 10 
bigkey 228 190 1699 2114 2114 1 2 3 
s298 3 6 1930 4555 4555 1 3 15 
frisc 19 116 3539 13600 13600 1 7 8 

elliptic 130 114 3602 12877 12877 1 0 8 
s38584.1 31 189 6156 17928 17928 1 8 9 
s38417 28 52 5974 23589 23589 1 4 11 
clma 61 66 8364 18158 18158 1 4 16 
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Depth = 0.33 MCNC Netlists 
Combinational 

Circuits 
Input 
Pins 

Output 
Pins 

LUTs FFs Required 
BLEs 

Logical 
Depth 

Pipeline 
Amt 

C-slow 
Amt 

Post -
Retiming  
C-slow 

e64 65 64 273 1614 1614 0.33 4 1 3 
ex5p 8 63 1064 4629 4629 0.33 7 1 3 
apex4 9 18 1261 4125 4125 0.33 6 1 3 
misex3 14 14 1397 5226 5226 0.33 7 1 3 

alu4 14 8 1522 5667 5667 0.33 7 1 3 
des 256 245 1591 10017 10017 0.33 6 1 3 
seq 41 35 1750 6933 6933 0.33 7 1 3 

apex2 38 3 1878 7362 7362 0.33 8 1 3 
spla 16 46 3690 13974 13974 0.33 8 1 3 
pdc 16 40 4575 17469 17469 0.33 9 1 3 

ex1010 10 10 4598 17448 17448 0.33 8 1 3 
          

Sequential  
Circuits 

Input 
Pins 

Output 
Pins 

LUTs FFs Required 
BLEs 

Logical 
Depth 

Pipeline 
Amt 

C-slow 
Amt 

Post -
Retiming  
C-slow 

s1423 17 4 220 4521 4521 0.33 14 14 3 
tseng 51 122 1046 12858 12858 0.33 1 8 3 
dsip 228 189 1362 5913 5913 0.33 3 2 3 

diffeq 63 39 1494 19107 19107 0.33 1 10 3 
bigkey 228 190 1699 7596 7596 0.33 3 3 3 
s298 3 6 1930 13683 13683 0.33 4 15 3 
frisc 19 116 3539 41502 41502 0.33 8 8 3 

elliptic 130 114 3602 39411 39411 0.33 1 8 3 
s38584.1 31 189 6156 54021 54021 0.33 9 9 3 
s38417 28 52 5974 70908 70908 0.33 5 11 3 
clma 61 66 8364 54855 54855 0.33 5 16 3 

 
RaPiD Benchmarks 

Netlist # of Required RaPiD Cells Min # of Registers Max Latency of Any Sink 

firtm 16 20 16 
fft16 12 40 3 
sobel 18 49 5 

matmult4 16 129 31 
cascade 16 226 21 

firsymeven 16 377 31 
imagerapid 14 149 11 

sort_g 11 159 32 
sort_rb 11 159 31 

 



166 

 

CURRICULUM VITAE 
Kenneth Eguro 

Education 
Ph.D., Electrical Engineering 
1/2003 – 10/2008 

University of Washington – Seattle, WA 
Supporting High-Performance Pipelined Computation in Commodity-
Style FPGAs 
Advisor – Prof. Scott Hauck 

M.S., Electrical Engineering 
6/2001 – 12/2002 

University of Washington – Seattle, WA 
RaPiD AES: Developing an Encryption-Specific FPGA Architecture 
Advisor – Prof. Scott Hauck 

Graduate Work 
9/2000 – 5/2001 

University of Illinois – Champaign, IL 
Coursework on computer architecture & parallel programming 

B.S., Computer Engineering 
9/1996 – 6/2000 

Northwestern University – Evanston, IL 
Concentration in VLSI and Computer Aided Design  
Honors Thesis – synFPGA: Application Specific FPGA Synthesis 

Research Experience 
Researcher 
11/2008  – 

Microsoft Research – Redmond, WA 
Work focusing on the application of hardware-based accelerators 

Research Assistant 
6/2001 – 10/2008 

EE Dept., University of Washington – Seattle, WA 
Member of Adaptive Computing Machines and Emulators Lab, 
investigating FPGA architectures and CAD algorithms 

Intern 
8/2005 – 11/2005 
6/2004 – 9/2004 

Microsoft Research, Hardware Device Group – Redmond, WA 
Development of applications and a graphical programming language to 
explore a prototype reconfigurable computing platform 

Undergraduate Researcher 
1/1999 – 6/2000 
 
9/1998 – 9/1999 

ECE Dept., Northwestern University – Evanston, IL 
Research in fast placement and routing algorithms with Prof. Majid 
Sarrafzadeh. 
Research into applications of reconfigurable logic in high-performance 
computing with Prof. Scott Hauck 

Teaching Experience 
Instructor 
9/2007 – 12/2007 
9/2006 – 12/2006 
3/2006 – 6/2006 
1/2006 – 3/2006 

EE Dept., University of Washington – Seattle, WA 
Course Instructor for EE471 – Computer Design and Organization 
Course Instructor for EE471 – Computer Design and Organization 
Course Instructor for EE471 – Computer Design and Organization 
Course Instructor for EE541 – Automatic Layout for Integrated Circuits 

Teaching Assistant 
9/2004 – 12/2004 
9/2000 – 6/2001 

EE Dept., University of Washington – Seattle, WA  
Teaching assistant and guest lecturer for EE540 – VLSI Testing 
ECE Dept., University of Illinois – Champaign, IL 
Conducted weekly lectures for ECE290 - Introduction to Computer 
Engineering 

Research Mentor 
6/2001 – 12/2002 

EE Dept., University of Washington – Seattle, WA  
Managed 12 undergraduate students to assist with research in FPGA 
applications  

Tutor 
9/1998 – 6/1999 

Athletics Dept., Northwestern University – Evanston, IL 
Tutoring C/C++ and digital design multiple times per week 

Honors 
Academic & Research 
2003 – 2004 Academic Year 
2002 – 2003 Academic Year 
1999 – 2000 Academic Year 

 
Finalist, Microsoft Research Fellowship 
Nominated, UW EE Dept. Yang Research Award  
Graduated first in class, Computer Engineering curriculum  
Winner, Northwestern ECE Dept. IEC Everitt Award 



167 

 

Teaching 
2007 – 2008 Academic Year 
 
2006 – 2007 Academic Year 
 
2005 – 2006 Academic Year 
 
2000 – 2001 Academic Year 

University of Washington 
Winner, College of Engineering Teaching Assistant Innovator Award 
Nominated, EE Dept. Outstanding Teaching Assistant Award 
Winner, EE Dept. Outstanding Teaching Assistant Award 
Nominated, College of Engineering Teaching Assistant Innovator Award 
Nominated, EE Department Outstanding Teaching Award 
University of Illinois 
Nominated, ECE Dept. Harold L. Olesen Teaching Assistant Award 

Publications 
Book Chapter and Patent 

• K. Eguro and S. Hauck, “Fast Compilation Techniques” In S. Hauck and A. Dehon (Eds.) 
Reconfigurable Computing: The Theory and Practice of FPGA-Based Computation, Morgan 
Kaufmann/Elsevier, 2008. 

• Provisional US Patent #4178-Inv-0001P.1USPRO, Enhancing Timing-Driven Placement, filed 
12/10/2007. 

Refereed Publications 
• K. Eguro and S. Hauck “Simultaneous Retiming and Placement for Pipelined Netlists”, IEEE 

Symposium on Field-Programmable Custom Computing Machines, 2008, 139-48. 
• K. Eguro and S. Hauck, “Enhancing Timing-Driven FPGA Placement for Pipelined Netlists”, 

Design Automation Conference, 2008, 34-7. 
• K. Eguro, “Supporting Heavily Pipelined Reconfigurable Computing on Commodity Devices”, 

SIGDA Ph.D. Forum at Design Automation Conference, 2006. 
• K. Eguro and S. Hauck, "Armada: Timing-Driven Pipeline-Aware Routing for FPGAs", 

ACM/SIGDA Symposium on Field-Programmable Gate Arrays, 2006, 169-78. 
• K. Eguro and S. Hauck, "Resource Allocation for Coarse Grain FPGA Development", IEEE 

Transactions on Computer-Aided Design of Integrated Circuits and Systems. Vol. 24, No. 10, Oct 
2005, 1572-81. 

• K. Eguro, S. Hauck and A. Sharma, "Architecture-Adaptive Range Limit Windowing for 
Simulated Annealing FPGA Placement", Design Automation Conference, 2005, 439-44. 

• K. Eguro and S. Hauck, “Issues and Approaches to Coarse-Grain Reconfigurable Architecture 
Development”, IEEE Symposium on Field-Programmable Custom Computing Machines, 2003, 
111-20. 

• M. Wang, X. Yang, K. Eguro, and M. Sarrafzadeh, "Multi-Center Congestion Minimization 
during Placement", ACM International Symposium on Physical Design, 2000, 147-52. 

• X. Yang, M. Wang, K. Eguro, and M. Sarrafzadeh, "A Snap-On Placement Tool", ACM 
International Symposium on Physical Design, 2000, 153-58. 

Technical Reports 
• S. Hauck, K. Compton, K. Eguro, M. Holland, S. Phillips, A. Sharma, "Totem: Domain-Specific 

Reconfigurable Logic", University of Washington, Dept. of EE Technical Report, 2006. 
• K. Eguro and S. Hauck, "Issues of Wirelength Cost Models in Routing-Constrained FPGAs", 

University of Washington, Dept. of EE Technical Report UWEETR-2004-0006, 2004.  
• K. Eguro and S. Hauck, “Decipher: Architecture Development of Reconfigurable Encryption 

Hardware”, University of Washington, Dept. of EE, Technical Report, 2002. 
• K. Eguro and S. Hauck, “synFPGA: Application Specific FPGA Synthesis”, Northwestern 

University, Dept. of ECE Technical Report, 2000. 
Invited Presentations 

• “Incremental Timing Analysis for FPGA Placement”, Simon Fraser University, 8/8/2008. 
• “Reconfigurable Computing: Architectural and Design Tool Challenges”, Microsoft Corporation, 

5/8/2008.  
• “Simultaneous Retiming and Placement”, Achronix Corporation, 4/16/2008.  
• “Timing Concerns of Pipeline-Aware Placement and Routing”, Dept. of Energy Tech. Review, 

12/11/2007. 



168 

 

• "Pipeline and Retiming-Aware Placement", Cascadia Workshop on FPGAs, 8/10/2007. 
• "Pipelining Commodity Reconfigurable Devices", University of British Columbia, 9/22/2006. 
• “Timing-Driven Pipeline-Aware Routing", Actel Corporation, 7/28/2006. 

Research Interests 
• The exploration of innovative, high-performance computing architectures 
• Application of reconfigurable computing platforms 
• Design automation and fast CAD algorithms 
• Encryption and cryptanalysis 

Professional Activities 
Reviewer 
4/2008 – present 
12/2005 – present 
12/2005 – present 

 
IEEE Transactions on Computers 
IEEE Transactions on Circuits and Systems I 
EURASIP Journal on Embedded Systems 

Professional Societies 
3/2003 – present 
9/1999 – 6/2000 

 
Student Member of IEEE 
Treasurer, Eta Kappa Nu Honor Society – Beta Tau Chapter 

 


