
Solving the Starting Problem: Device Drivers as
Self-Describing Artifacts

Michael F. Spear
Dept. of Computer Science

University of Rochester
Rochester, NY 14627

spear@cs.rochester.edu

Tom Roeder
Dept. of Computer Science

Cornell University
Ithaca, NY 14853

tmroeder@cs.cornell.edu

Orion Hodson
Microsoft Research
One Microsoft Way

Redmond, WA 98052

ohodson@microsoft.com

Galen C. Hunt
Microsoft Research
One Microsoft Way

Redmond, WA 98052

galen.hunt@microsoft.com

Steven Levi
Microsoft Research
One Microsoft Way

Redmond, WA 98052

levi@microsoft.com

ABSTRACT
Run-time conflicts can affect even the most rigorously tested soft-
ware systems. A reliance on execution-based testing makes it pro-
hibitively costly to test every possible interaction among potentially
thousands of programs with complex configurations. In order to
reduce configuration problems, detect developer errors, and reduce
developer effort, we have created a new first class operating system
abstraction, the application abstraction, which enables both online
and offline reasoning about programs and their configuration re-
quirements.

We have implemented a subset of the application abstraction
for device drivers in the Singularity operating system. Program-
mers use the application abstraction by placing declarative state-
ments about hardware and communication requirements within
their code. Our design enables Singularity to learn the input/output
and interprocess communication requirements of drivers without
executing driver code. By reasoning about this information within
the domain of Singularity’s strong software isolation architecture,
the installer can execute a subset the system’s resource manage-
ment algorithm at install time to verify that a new driver will not
conflict with existing software. This abstract representation also
allows the system to run the full algorithm at driver start time to
ensure that there are never resource conflicts between executing
drivers, and that drivers never use undeclared resources.

Keywords
operating systems, programming language support, dependable
computing, experience with existing systems, declarative config-
uration

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EuroSys’06,April 18–21, 2006, Leuven, Belgium.
Copyright 2006 ACM 1-59593-322-0/06/0004 ...$5.00.

1. INTRODUCTION
The complexity of device drivers has grown considerably in the

last decade as users have come to expect rich features such as hot-
swapping and power management. Popular operating systems such
as Windows, Linux, and FreeBSD have responded in a variety of
ways, but at their core these systems possess the same driver model,
with the same inherent weaknesses, as they possessed a decade ago.

The manner in which these systems load device drivers is con-
sistent and dangerous; in all of these systems, the OS loads exe-
cutable code into the same protection domain as the kernel [8, 41,
40]. Once the driver is installed into this address space, the ker-
nel cannot prevent it from accessing any (or all) hardware in the
system. Furthermore, as these drivers are typically written with
low-level primitives to access hardware directly, the kernel rarely
verifies that drivers use only appropriate hardware resources. In-
stead, the kernel trusts that the driver will only access hardware for
the device it claims to serve. Furthermore, often the kernel cannot
guarantee that a driver will respect the memory allocated to pro-
cesses, or even the memory allocated to other components within
the kernel.

Consequently, drivers are among the most unreliable compo-
nents in the OS. Swiftet al. [39] report that 85% of diagnosed
Windows crashes are caused by drivers. Chouet al. [9] found
that Linux drivers are seven times more likely to contain bugs than
other kernel code. We offer the following four deficiencies as a
partial explanation for the unreliability of these systems.

• Device drivers are loaded into the kernel’s address space and
hardware protection domain with no mechanisms to isolate
driver code from kernel code.

• The precise resource needs of device drivers are not declared,
and the driver model provides no mechanism for an operating
system to verify such declarations even if they existed.

• Every driver is permitted to acquire its hardware resources
without monitoring by the kernel, even though this acquisi-
tion is rarely device-specific.

• The kernel lacks the information necessary to monitor the
behavior of a driver from the instant it begins, and as such
cannot perform complete resource management.

We used the Microsoft Research Singularity Operating System
[27] to experiment with solutions to the problems of driver reli-
ability and sandboxing. Singularity uses type-safe languages and
system-wide metadata to replace hardware protection with verifi-
cation of memory safety.

In this paper, we extend Singularity’s metadata to allow both
online and offline verification of driver resource utilization and to
ensure three invariants: the OS never installs a device driver that
cannot start successfully, the OS never starts a device driver that
cannot run successfully, and device drivers never use hardware or
IPC resources they haven’t declared.

1.1 Singularity Overview
Singularity runs each driver in a separate software isolated pro-

cess (SIP)1. Unlike processes in traditional operating systems,
which rely on hardware protection mechanisms to provide mem-
ory isolation, Singularity relies on language safety to verify that no
SIP is capable of writing onto another SIP’s pages. Encapsulated
in SIPs, individual drivers can be stopped and restarted as needed
without bringing down the entire operating system.

With the exception of a small hardware abstraction layer (HAL),
the operating system itself is written in C# and type-safe Sing#,
an extension of C# with additional static analysis and embedded
support for Singularity’s type-safe IPC primitives [28].

All programs in Singularity are statically linked at install time
to a trusted runtime. While all programs are statically verified for
type safety, each trusted runtime is a component of they system’s
trusted computing base (TCB). Each trusted runtime encapsulates
unsafe code, such as a garbage collector, that cannot be represented
in our type system. Trusted runtime code maintains process isola-
tion, allowing processes to run in the privileged/supervisor mode
of the host processor without being able to affect the memory and
hardware resources of other processes. Dynamic reflection or other
mechanisms that can circumvent type safety are not permitted in
user code.

The trusted runtime for device drivers provides a managed
environment that abstracts communication with hardware. The
assembly-level instructions for handling interrupt requests, fixed
memory, ports, and direct memory access channels (DMA) are all
protected through abstractions exposed by the driver runtime.

All IPC in Singularity is through strongly typed bidirectional
channels [26]. These channels have exactly two endpoints, labeled
Exp (exported) andImp (imported), corresponding to the “server”
and “client”, respectively. Messages on a channel are restricted to
value types, and the format of these messages is defined by a con-
tract. The contract also serves as a channel protocol that specifies
valid sequences of messages sent across the channel, and includes a
handshaking step to initiate communication. An application’s con-
formance to a contract can be statically verified.

Some endpoints must have a public name in order to allow easy
connection by clients. This is achieved through a singly rooted,
globally accessible namespace. A global namespace server man-
ages the namespace, and allows the mapping from names to chan-
nel endpoints, directories, and symbolic links. The namespace is
not attached to a persistent backing store. Instead, system policy
permits some applications (such as the filesystem) to create virtual
subtrees within the namespace and map content into these trees.
This allows the equivalent of a traditional file system, with the dis-
tinction that file access is through the channel abstraction.

1While all processes run in the same address space, they cannot
share language objects with each other. Communication between
processes involves only value types, and transfers exclusive owner-
ship of affected memory from the sender to the receiver.

<?xml version="1.0" encoding="utf-8"?>
<manifest>

<application ...>
<signatures ...>
<assemblies ...>
<driverCategory ...>

</manifest>

Listing 1: Key Tags in the Driver Manifest

In Singularity, application installation is a privileged operation.
During installation, the OS compiles an application from type-safe
MSIL2 to native code with the Bartok compiler [19]. While con-
ducting this compilation, the installer can also use static analysis
to enforce system policy, as well as language safety rules. In ad-
dition, since applications are presented to the installer as MSIL as-
semblies, they carry their programmer-created metadata internally,
enabling easy inspection and verification by the installer.

1.2 Contributions
Our research exploits the attributes of Singularity to improve the

management of device drivers. We offer three contributions, which
comprise the three main sections of this paper.

First, we have created an abstraction for treating applications as
first-class entities, which enables the operating system to reason
about applications and provide guarantees. We make device drivers
a subclass of this abstraction, and make installation a first-class op-
eration performed by the OS on applications.

Secondly, we present a simple language extension for declaring
the I/O and IPC resource requirements of a device driver. In con-
temporary systems, these requirements can only be inferred from
the state of executing code. In Singularity, we have created a spec-
ification for this information that is verifiable at compile time, in-
stall time, boot time, and execution time. In effect, the specification
turns the device driver into a self-describing artifact. Given the set
of MSIL assemblies for the device driver, the OS can reason com-
pletely about the hardware and software preconditions that must
be met in order for the device driver to function correctly. Our
language extension has the added benefit of simplifying the devel-
opment process for driver writers.

Third, we provide extensions to Singularity that use the appli-
cation abstraction and driver resource declarations to provide guar-
antees about the I/O and IPC resources used by a device driver.
Our extensions allow Singularity to detect resource conflicts before
drivers execute, infer a valid total boot order from strictly declar-
ative syntax, and automatically generate significant driver initial-
ization code. These capabilities increase the reliability and main-
tainability of the system with no significant cost in run-time perfor-
mance.

The combination of these three features gives Singularity the
ability to reason about all driver resource requirements, pre-
configure driver resources, and vet driver access to hardware in
detail from system startup to shut-down.

2. THE APPLICATION ABSTRACTION
Existing operating systems lack an aggregate concept of an ap-

plication. While processes effectively encapsulate the resources
possessed by a running code segment, and threads represent
schedulable, executable segments of that code, neither is an ap-
propriate level at which to represent the relationship between the

2Microsoft Intermediate Language (MSIL) is a superset of the
Common Intermediate Language (CIL) [29]. MSIL is the CPU-
independent byte code format used by Microsoft’s .NET compilers
and tools.

<?xml version="1.0" encoding="utf-8"?>
<manifest>

<application identity="Sb16" />

<assemblies>
<assembly filename="Sb16.exe" />
<assembly filename="Namespace.Contracts.dll" />
<assembly filename="Io.Contracts.dll" />
<assembly filename="Singularity.V1.ill" />
<assembly filename="Corlib.dll" />
<assembly filename="Singularity.DriverRuntime.dll" />

</assemblies>

<driverCategory>
<device signature="/pnp/PNPB003" />

<ioPortRange index="0" baseAddress="0x220" rangeLength="0x10" />
<ioPortRange index="1" baseAddress="0x380" rangeLength="0x10" />
<ioIrqRange index="2" baseAddress="5" rangeLength="1" />
<ioDmaRange index="3" baseAddress="1" rangeLength="1" />
<ioDmaRange index="4" baseAddress="5" rangeLength="1" />
<ioMemoryRange addressBits="24" alignment="0x20000" rangeLength="0x4000" fixed="True" />

<extension contractName="Microsoft.Singularity.Extending.ExtensionContract"
startStateId="3" endpointEnd="Exp" assembly="Namespace.Contracts"
version="0.0.0.0" culture="neutral" publicKeyToken="null">

<imp>
<inherit name="Microsoft.Singularity.Channels.Endpoint" />
<inherit name="Microsoft.Singularity.Extending.ExtensionContract.Imp" />

</imp>
<exp>

<inherit name="Microsoft.Singularity.Channels.Endpoint" />
<inherit name="Microsoft.Singularity.Naming.ServiceContract.Exp" />
<inherit name="Microsoft.Singularity.Extending.ExtensionContract.Exp" />

</exp>
</extension>

<serviceProvider contractName="Microsoft.Singularity.Io.SoundDeviceContract"
startStateId="3" endpointEnd="Exp" assembly="Io.Contracts"
version="0.0.0.0" culture="neutral" publicKeyToken="null">

<imp>
<inherit name="Microsoft.Singularity.Channels.Endpoint" />
<inherit name="Microsoft.Singularity.Naming.ServiceProviderContract.Imp" />

</imp>
<exp>

<inherit name="Microsoft.Singularity.Channels.Endpoint" />
<inherit name="Microsoft.Singularity.Naming.ServiceProviderContract.Exp" />

</exp>
</serviceProvider>

</driverCategory>
</manifest>

Listing 2: Pre-Installation Manifest for a Sound Blaster

underlying application and the OS. In particular, the files that com-
prise the application, the set of legal security contexts for an appli-
cation, and the IPC and I/O resources that are potentially accessed
by an application are not properties of an instance of the program,
but of the program as it has been configured in a particular sys-
tem. Abadi et al. present illustrative examples of advanced access
control lists [1], none of which can be directly applied to the basic
units of management of applications in traditional operating sys-
tems, such as files, processes, and threads.

The problem is that the traditional application takes different
forms at various levels of the system, and each level imposes its
own constraints on the nature of the application. At the filesystem
level, the application is a collection of files, often structurally linked
through a folder hierarchy. At the system configuration level, the
application is a tree in a registry, or a set of files in the/etc di-

rectory. At run time, the application is a process hierarchy. The
network sees the application as a set of addresses and ports.

Unlike traditional operating systems, in Singularity these mul-
tiple views of an application are unified with a consistent OS ap-
plication abstraction. We define this abstraction as a tupleApp =
{R, P}, whereR is a set of resources (content mapped into the
namespace, channels, hardware) andP is a set of declarative poli-
cies on those resources. Since there is a global namespace, we
represent this tuple as a directory containing a distinguished entry,
containing the manifest, and a protected folder tree. The manifest
lists all resources, with the constraint that all content associated
uniquely with the application (such as executable code) must be in
the protected folder tree. The manifest also specifies all policy re-
lating to the application, and is the only logical unit by which the
OS can reason about applications. Through this manifest, applica-

tions can have a lifecycle that extends from compilation through
installation and execution. Furthermore, in the case of drivers,
changes to the manifest are permitted only during installation.

This application abstraction is the enabling idea for the remain-
der of this paper. In particular, since the application is a first-class
entity, we can define a special subclass of applications that specifi-
cally applies to device drivers, and then we can set system policies
that apply exclusively to this class. Furthermore, the specific na-
ture of installation as we define it allows for semantic analysis and
verification of system policy on every application at install time.
Since installation is rare, and since the cost of a faulty installation
is tremendous, we believe that the impact of a longer installation
procedure is more than justified by its benefits.

2.1 The Manifest
Listing 1 shows the key tags of a device driver manifest.

The installer is only permitted to make changes to content
in the application tree, and to add signatures to the in-
stalled manifest in thesignature tree. Theassembly and
driverCategory trees provide the entire declaration of all soft-
ware components of the driver and all I/O and IPC resources the
driver needs in order to run.

Other classes of applications might have trees for command-line
parameters, run-time metadata (such as the lastn files opened),
and user configuration options. However, the existence of these
tags in a device driver’s manifest are illegal and will prevent in-
stallation. Each device driver is compiled to a single binary image
whose name is stored in theapplication tree by the installer.

In Listing 2 we present the compile-time manifest for a Sound
Blaster 16 driver. This manifest is most typically generated auto-
matically as part of the build step, and it is machine and installation-
agnostic. The entireassemblies anddriverCategory trees
are fixed at compile time. We can statically verify at installation
time that these trees have not been modified.

Through these two fixed trees, the compile-time manifest lists
all assemblies that comprise the application, as well as sufficient
metadata to enable the kernel to completely construct all I/O and
IPC resources required by the driver at run time. The manifest is
completely declarative, contains no system state, and is general to
any use of this driver in any Singularity system.

However, this purely declarative representation does not yet de-
scribe a runnable application. In order to trust the accuracy of the
manifest, it must be verified and installed by the system. In our
design, the manifest cannot be modified except through trusted op-
erations. Thus we can ensure that only the installer modifies those
elements of the manifest that apply to installation.

Furthermore, the manifest is the focal point for all system poli-
cies that deal with applications. The manifest is expressed in XML
and can be easily analyzed off-line, as we will discuss later in Sec-
tion 4.

2.2 Installation
To install the driver in Listing 2, we perform a set of analytical

steps and transformations. The actual changes to the manifest apply
only to theapplication andsignature sections, and appear
in Listing 3.

The installation process has three main operations: it guarantees
that the driver is appropriate for the system, it optimizes the driver
for the system by compiling it to native code, and it records suffi-
cient signature information to ensure that the installed application
is not modified except by the installer. The signature algorithm is
specified in the system policy.

Installation begins by statically analyzing the entire set of assem-

<?xml version="1.0" encoding="utf-8"?>
<manifest>

<application identity="Sb16">
<properties>

<code main="True"
path="/drivers/Sb16/private/Sb16.x86" />

</properties>
</application>
<signatures>

<installer>
<secureHash id="1" value="(hash value)" />
...

</installer>
...

</signatures>
<assemblies>

...
</assemblies>
<driverCategory>

...
</driverCategory>

</manifest>

Listing 3: Installed Manifest for a Sound Blaster

blies. The Singularity bytecode verifier tests that every channel is
implemented according to its contract, and determines if the ap-
plication is a driver. Based on this analysis, we can check that
if an application is not a driver, it contains no references to the
Io*Range object family (which provide direct access to hard-
ware); if the application is a driver, we check that any declaration
of Io*Range objects conforms to the coding standards for de-
vice drivers presented in the next section. We can also check the
IPC channels used by the application, to enforce any policy defined
by the system. Our current system, for example, can limit drivers
to ServiceProvider channels (which listen for service re-
quests) and oneExtension channel (connecting the application
to its parent, in this case the kernel). TheServiceProvider is
a second-order contract through which clients connect a device-
class specific contract, such as theSoundDeviceContract .
General applications are permitted to possess channels to ac-
cess the global namespace (and therefore access data files), as
well as other endpoints for interacting with drivers and other
ServiceProviders .

If all system-specified tests succeed, we compile the entire set
of assemblies into a single, statically-linked, native-instruction ex-
ecutable using the Bartok optimizing compiler [19]. The name of
this executable and a suitable path are added ascode properties
in the application tree of the manifest. Following this step,
we generate the signature tree that enables the system to verify that
the application has not been modified, according to the system’s
security policy. Following this process, the manifest is placed in its
distinguished location in the system namespace, and the executable
is stored in the namespace according to the path attribute.

Since the final compilation is performed by the operating sys-
tem during installation, we can inline trusted code from the ap-
propriate runtime libraries. Thus for drivers we can inline instruc-
tions from the trustedSingularity.DriverRuntime.dll
library, which is the only process runtime library that implements
the Io*Range family of objects. By deferring linking and final
compilation until the installation step, and using the application
abstraction to prevent uninstalled applications from executing, we
can use static analysis to verify design-time rules about how objects
that access hardware are constructed, used, and destroyed. Further-
more, since the kernel application binary interface (ABI) supports
versioning and is backward compatible, the entire kernel can be up-
graded without impacting this installed driver; the driver will con-

tinue to use the older version of ABI calls until it is updated by its
designer.

Singularity can analyze the manifest to determine if a given
driver should be installed. The driver must be capable of serving
some device attached to the system, as determined by matching
the device signatures declared in the manifest to the hardware sig-
natures present on the machine. The installer also inspects every
channel andIo*Range declaration in the manifest to verify that
there are no conflicts over fixed resources and no unsatisfied depen-
dencies on channels. Additional system policy can also regulate
driver updates or restrict the installation of generic drivers.

Singularity also uses the manifest at boot time, as discussed in
Section 4, to ensure that no conflicts arise when devices are added
or removed. The manifests aid in creating a total order in which
drivers are loaded, and give the kernel sufficient information to pre-
allocate and track all resources used by each driver. The language
support we present in the following section greatly improves the
accuracy of driver metadata.

3. DECLARING DRIVER RESOURCES
In order for our application abstraction to have value, the mani-

fests must be correct and easy to produce. In the previous section,
we assumed that the compiler would simply create such manifests
given only source code.

To generate such output from the compiler, we created a declara-
tive syntax for resource configuration using MSIL custom attributes
[29]. These attributes are programmer-defined, statically checked,
and easy to locate in the metadata of a Sing# program.

Our attributes provide the compiler with two main categories of
information. First, the attributes identify the device signature3 of
the physical device the driver serves. Secondly, the attributes de-
clare the default configuration for all hardware and IPC objects that
the driver will use. This information is sufficient to generate the
metadata upon which we rely.

To increase the accuracy of these attributes, we implement an
additional compilation step that enforces strict rules on their use.
Additionally, we use a MSIL transformation feature of the Sing#
language to generate resource configuration code based on the val-
ues of these attributes. In this manner we prevent the programmer
from using the attributes incorrectly, while rewarding their correct
use by automatically generating boilerplate code.

3.1 Declaring Resource Requirements
The trusted Singularity driver runtime provides four objects

for interacting with hardware directly, theIoPortRange ,
IoMemoryRange , IoIrqRange , and IoDmaRange objects.
These objects all derive from the abstractIoRange object, and
none has a public constructor. The driver runtime does not allow
programs to cast arbitrary objects to these types, and since these
types are reference types, they cannot be transmitted over chan-
nels. The only way to construct any of these objects is through a
protected call to the trusted driver runtime.

TheIo*Range family of objects provides full support for mod-
ern devices, such as those that use programmed I/O and memory-
mapped I/O. In addition to standardizing access to these hardware
resources,Io*Range objects also provide an interface by which
the operating system can mediate dynamic resource configuration
and detect inappropriate behavior, such as attempts to map an IRQ
3Every plug-and-play ISA and PCI device can be queried during
bus enumeration to determine its signature. This signature identi-
fies the generic function of the device. PCI signatures also identify
the vendor ID, a vendor-defined device ID, and a revision number
[33].

[DriverCategory]
[Signature("/pci/03/00/5333/8811")]
class S3TrioConfig: DriverCategoryDeclaration
{

// Hardware resources from PCI config
[IoMemoryRange(0, Default = 0xf8000000,

Length = 0x400000)]
internal readonly IoMemoryRange frameBuffer;

// Fixed hardware resources
[IoFixedMemoryRange(Base = 0xb8000,

Length = 0x8000)]
internal readonly IoMemoryRange textBuffer;

[IoFixedMemoryRange(Base = 0xa0000,
Length = 0x8000]

internal readonly IoMemoryRange fontBuffer;

[IoFixedPortRange(Base = 0x03c0,
Length = 0x20)]

internal readonly IoPortRange control;

[IoFixedPortRange(Base = 0x4ae8,
Length = 0x02)]

internal readonly IoPortRange advanced;

[IoFixedPortRange(Base = 0x9ae8,
Length = 0x02)]

internal readonly IoPortRange gpstat;

// Channels
[ExtensionEndpoint(typeof(Extension-

Contract.Exp))]
internal
TRef<ExtensionContract.Exp:Start> iosys;

[ServiceEndpoint(typeof(VideoDevice-
Contract.Exp))]

internal
TRef<ServiceProviderContract.Exp:Start> video;

// Static accessor
internal readonly static
S3TrioResources Values;

// Auto-generate resource acquisition code
reflective private S3TrioResources();

}

Listing 4: Example Driver Resource Declaration

to an unavailable line or attempts to access memory mapped to an-
other driver.

Two common patterns exist by which drivers acquire such
ranges. In the case of some ISA devices and legacy PC devices
for video and keyboards, the driver requires access to hard-coded
resources at known places (such as thetextBuffer in Listing
4). For most devices, however, the process of enumerating a bus to
identify devices reveals not only the signature and physical location
of the device on the bus, but also the full set of hardware resources
that are allocated to the device.

Thus we have created two identical sets of metadata attributes
for dynamic resources and fixed resources. These attributes are
constructed with type-checked Sing# code and differ only in num-
ber of parameters. The dynamic versions take as an extra parameter
the index of the corresponding resource in the ACPI[24], PCI[33],
or PnP[10] configuration spaces.

In a similar manner, we defined attributes for the major classes of
channel endpoints. The constructors for these attributes accept any
channel class derived from some well-known parent; in this man-
ner the OS need not predefine the specific protocol by which two

processes communicate, yet the OS can verify the type hierarchy
defining the unknown protocol.

Listing 4 presents the full Sing# code for a class encapsulat-
ing all the hardware and IPC resources used by the Singular-
ity S3Trio video driver. We encapsulate all of the objects in a
class, derive the class from a known ancestor, and add decora-
tions to the class itself, indicating that this class has special rel-
evance to the installer (DriverCategory) and identifying the
signature prefix of devices for which this driver is appropriate
(in Listing 4, the prefix is a complete signature). All accesses
to the class are through the static accessor, following the form
S3TrioConfig.Values.textBuffer .

3.2 Decreasing Effort, Increasing Accuracy
At this point, it may appear that we have done little more than a

system such as Javadocs [37] or Doxygen [43], which graft syntax
onto the comments of a program to aid in the automated generation
of documentation. Our attributes appear to merely do this in-band,
employing the compiler instead of a third-party tool. However,
Listing 4 is complete; in particular, the final line is not an elided
constructor; it is theentireconstructor.

By using the Sing#reflective keyword, we can associate
a MSIL transformation known as compile-time reflection (CTR)
to entirely automate the runtime calls and ABI calls required to
claim exclusive ownership of the driver’s resources. CTR is simi-
lar to meta-programming; programs are permitted to contain place-
holder elements (classes, methods, fields, and accessors) that are
subsequently expanded by a generator. Generators are written in
Sing# as transforms that express both a pattern matching program
structure and a code template. The transformations are applied to
the compiled MSIL for each device driver at install time. The gen-
erated code can be statically checked. Functionally, the transforms
are part of the trusted computing base. Listing 5 provides the result
of a reflective transformation on our device driver resource con-
structor.

In theory, a programmer could write the exact same code, but
there is no benefit to doing so. With only a small number of run-
time calls for gettingIo*Range objects, this code is simply boil-
erplate. Our use of CTR lets the programmer write less code, and
thereby decreases the likelihood of incorrectly implementing boil-
erplate code. The use of CTR also encapsulates implementation-
specific code that may change in future versions of the OS.

We contend that in this case CTR does more than simply re-
duce keystrokes; it is a bridge to thinking about resource acquisi-
tion declaratively. In this mindset, Listing 4 is Sing# syntax that
declares what resources are expected, what they are to be named
within the program scope, and what rule should be used to acquire
the resources. The driver writer does not “get” resources; he ex-
pects the kernel to provide resources that satisfy his requirements,
according to the kernel’s declarative policy.

Furthermore, the driver writer and the kernel are now linked to-
gether in their dependence on accurate metadata; the kernel will
use the decorations (as represented in a manifest) to allocate re-
sources to the driver, and the driver writer will use the metadata
(indirectly, through CTR and calls to the trusted runtime) to ac-
quire and configureIo*Range objects. This mutual dependence
creates an incentive for writing accurate metadata, and we consider
it a key feature of our design.

3.3 New Semantic Rules
Without additional semantic analysis, our attributes can intro-

duce rather than prevent errors. For example, a programmer
could accidentally place aFixedIoPortRange attribute on an

[DriverCategory]
[Signature("/pci/03/00/5333/8811")]

class S3TrioConfig : DriverCategoryDeclaration {
...
// Set the accessor via a static constructor
static S3TrioResources() {

Values = new S3TrioResources();
}

private S3TrioResources() {
// Single run-time call wrapping multiple
// ABI calls to get fully configured
// hardware objects
IoConfig config = IoConfig.GetConfig();

// Debug output to log file
Tracing.Log(Tracing.Debug,

"Config: {0}", config.ToPrint());

frameBuffer = (IoMemoryRange)
config.DynamicRanges[0];

textBuffer = (IoMemoryRange)
config.FixedRanges[0];

fontBuffer = (IoMemoryRange)
config.FixedRanges[1];

control = (IoPortRange)
config.FixedRanges[2];

advanced = (IoPortRange)
config.FixedRanges[3];

gpstat = (IoPortRange)
config.FixedRanges[4];

iosys =
new TRef<ExtensionContract.Exp:Start>

((!)Extensions.GetStartupExtension-
Endpoint(0));

video =
new TRef<ServiceProviderContract.Exp:Start>

((!)Extensions.GetStartupService-
ProviderEndpoint(1));

base();
}

}

Listing 5: A Post-Transformation Constructor

IoMemoryRange object. Fortunately, the machinery necessary
to prevent such errors is simple.

The root of the problem is that the rules governing the use of
MSIL attributes are more loose than we would like. We have ad-
dressed this problem by adding a compilation step for drivers that
understands the following four classes of rules, which are more
strict than the MSIL specification:

• Field specificity: An attribute decoration X may only be ap-
plied to fields of type Y.

• Object Ancestry: An attribute decoration X may only be
applied to classes derived from class Y.

• Required Decorations: Every object, field, or variable of
type Y must be decorated with an attribute in the set X.

• Decoration Hierarchy: Any instance of the decoration X1
must be within a class decorated with X2.

Our added step in the driver build process is a simple parse of
MSIL assemblies, and is sufficient to ensure that all of the driver-
specific attributes only appear within a class structure as shown in

Listing 4. Additionally, these rules simplify the extraction and val-
idation of driver resource requirements and ensure the accuracy of
the CTR reflective transformation

3.4 Impact
Our model simplifies the development of drivers by removing

resource configuration from the domain of the programmer, and
employs several mechanisms to achieve a higher degree of meta-
data correctness than is available in other systems. Furthermore,
we have separated the configuration of drivers from the declara-
tion of system state. The driver does not specify where its end-
points are to be connected, or how they are to be named. The
driver can only communicate with the OS through itsExtension
channel, and can only listen for service requests through its
ServiceProvider , an opaque but strongly typed connection to
the rest of the system. Additionally, the driver cannot communicate
with hardware except through standardizedIo*Range objects.

Due to hardware limitations, fraudulent or incorrect use of DMA
can overwrite physical memory that does not belong to the driver.
We anticipate that future architectures will provide DMA memory
protection to address this problem [20]. With such protection in
place, a Singularity driver will not be able to affect kernel data
structures directly or construct arbitraryIo*Range objects. With
proper OS support, the driver will be completely sandboxed with
regard to its I/O and IPC resource consumption.

4. OS SUPPORT
Through our declarative syntax and application abstraction, we

can provide the operating system with trustable metadata for every
driver. By crafting this entire driver initialization model as an end-
to-end system, we can then push this trusted information directly
into the OS to transform the system boot procedure so that it is
more declarative, more statically verifiable, and more stable.

4.1 Installation
As we have mentioned earlier, installation is a first-class opera-

tion in Singularity. However, it is not exclusively the responsibility
of a running system. Based on our declarative design, we can in-
stall applications off-line, so long as we possess a description of the
hardware, a manifest for the new application, and the full declara-
tive specification of the system as it is currently configured.

Since all drivers and applications are abstract entities, the in-
staller reasons about them by their declarations. For example, the
S3Trio driver we showed in the previous section declares a set of
hardware resources upon which it depends, and a set of endpoints
(in this case oneServiceProvider) upon which other applica-
tions can depend.

Given a bootable system, a new driver is installable if there exists
a partial order that includes it and every installed driver in the sys-
tem, such that all requirements of each driver are satisfied on start,
and all endpoint resources provided by the driver are considered
available at the instant the driver is activated. We do not concern
ourselves with a total order at this time, as we are only computing
the feasibility of installation.

The hardware and IPC requirements of a driver are funda-
mentally different in this calculation. For an IPC resource,
an unlimited number of applications may connect to a single
ServiceProvider channel, and thus once that channel is pro-
vided, we assume that it persists for the remaining lifetime of the
system.

In contrast, we demand that no two drivers use the same physi-
cal resource, unless they both explicitly state in their metadata that
they expect the resource to be shared (resource sharing is nec-

Sing#:
...
[ServiceEndpoint(typeof(NicDeviceContract.Exp))]
internal

TRef<ServiceProviderContract.Exp:Start> nicsp;
...

Manifest:
...
<serviceProvider

startStateId="3"
contractName="Microsoft.Singularity-

.Io.Network.NicDeviceContract"
endpointEnd="Exp"
assembly="Io.Contracts"
version="0.0.0.0"
culture="neutral"
publicKeyToken="null">

<imp>
<inherit name="Microsoft.Singularity-

.Channels.Endpoint" />
<inherit name="Microsoft.Singularity-

.Naming.ServiceProviderContract.Imp" />
</imp>
<exp>

<inherit name="Microsoft.Singularity-
.Channels.Endpoint" />

<inherit name="Microsoft.Singularity-
.Naming.ServiceProviderContract.Exp" />

</exp>
</serviceProvider>
...

Listing 6: Code and Manifest for Network Controller

essary, for example to support the master and slave drives on a
legacy IDE bus). Furthermore, our installation assumes that the
kernel will choose which driver to run based on a longest pre-
fix search. Thus if a generic video driver is installed for the sig-
nature/pci/03/00 , and our S3Trio driver serves the signature
/pci/03/00/5333/8811 , then the installation will note that
if the S3Trio signature is the only video signature in the system,
the generic driver will not run. System policy specifies how the
installer will behave when such conflicts arise.

It is important to note that even after installation, we have not
created much system state. Certain information, such as the loca-
tion of the manifest and driver in the global namespace, is neces-
sary. However, we still haven’t given a public name to any endpoint
or provided any imperative instruction for how the system should
behave. Thus the installed driver is still stateless with respect to the
installation order.

4.2 System Policy at Boot Time
The installation routine ensures that a driver will not be added to

the system if it would conflict with existing drivers. However, this
does not guarantee that the driver will run. We have necessarily
limited the imperative state present in manifests up to this point,
in order to ensure that the state of a running system’s software is
tied only to its individual components’ declarative configuration in
manifests, the declarative system policy, and the state of the phys-
ical resources at run time. For example, we have not yet specified
what to do if multiple S3Trio video cards appear. Currently, this is
handled through the system policy that is applied at run time.

In Singularity, applications communicate only through chan-
nels. Thus we can create a powerful policy for permitting (or
prohibiting) driver execution simply by placing constraints on
what types and counts ofServiceProvider contracts are al-
lowed. Listing 6 depicts the Sing# declaration and corresponding

<namePolicy>
<name contract="Microsoft.Singularity.Io-

.Network.NicDeviceContract"
nsName = "/dev/nic" />

<name contract="Microsoft.Singularity.Io-
.Network.NicDeviceContract"

nsName = "/dev/nic"
allowMultiple="True" />

<name contract="Microsoft.Singularity.Io-
.Network.NicDeviceContract"

nsName = "/dev/nic"
allowMultiple="True"
limit="2"/>

</namePolicy>

Listing 7: Three Policies for NIC Configuration

manifest for the publicly accessible endpoint of a network inter-
face card (NIC). Since the parameter to the attribute constructor
wastypeof(NicDeviceContract.Exp) , the manifest cor-
relates the particularServiceProvider endpoint of the driver
to this channel type. Using this metadata, Singularity will not rea-
son about the endpoint generically; instead it is a gateway through
which only NicDeviceContract endpoints are passed. This
allows a system policy for arbitrary contract types that are not
known at kernel compile time.

The system policy is a set of structured XML declarations which
define the behavior of a Singularity system. The system policy
currently consists only of anamePolicy section, which regulates
the creation and management of endpoints. As the OS matures, this
policy is certain to grow. However, even in its current incarnation
it allows the concise declaration and implementation of interesting
configurations.

Listing 7 depicts three possible policies for giving names to
ServiceProvider endpoints in NIC device drivers, all of
which are expressible in the existing policy syntax. The first pol-
icy states that there is one public name that any such endpoint
may have, the second states that an arbitrary number of names can
be created using thensName attribute as a prefix, and the third
states that no more than two such global names can be created (i.e.
/dev/nic0 and/dev/nic1). During the construction of a total
order at boot time, Singularity applies these policies to classes of
drivers based on their function, rather than their name. We believe
this distinction will permit more flexible system configuration, and
the exploration of its implications is a future research direction.

4.3 Creating a Total Order and Loading
We now show how declarative manifests and declarative system

naming policy are used to load drivers. Our installer ensures that we
install only drivers that are capable of starting (i.e., their resource
needs are not provably unfillable). In a similar manner, our boot
sequence ensures that we only activate drivers that are capable of
running (i.e. their resources needs can be satisfied at a point in the
boot sequence that is consistent with a valid partial order).

At boot time, Singularity identifies the root bus of the system and
enumerates it, identifying an initial set of devices and (depending
on the bus type) their hardware resources. These devices include
other buses, timers, and user-installed expansion cards; we think of
this as the OS learning some of the state of the machine.

Given this partial state, our device activation algorithm oppor-
tunistically enumerates a bus (through a bus device driver) when-
ever one is found, thereby learning more state, and otherwise ac-
tivates a driver for some device in the system. In both cases, the
driver’s requirements must be satisfied in advance.

[DriverCategory]
[Signature("/pci/02/00/10de/0056")]
class NvMacResources : DriverCategoryDeclaration
{

[IoMemoryRange(0, Default = 0xfebf9000,
Length = 0x1000)]

internal readonly IoMemoryRange imr;

[IoPortRange(1, Default = 0xf000,
Length = 0x08)]

internal readonly IoPortRange ports;

[IoIrqRange(6, Default = 0x0b)]
internal readonly IoIrqRange irq;

[ExtensionEndpoint(typeof(Extension-
Contract.Exp))]

internal
TRef<ExtensionContract.Exp:Start> iosys;

[ServiceEndpoint(typeof(NicDevice-
Contract.Exp))]

internal
TRef<ServiceProviderContract.Exp:Start> nic;

internal readonly static NvMacResources Values;

reflective private NvMacResources;
}

Listing 8: nForce4 Resource Declaration

For devices that use the PCI configuration space to acquire re-
sources, the kernel uses the manifest to identify and acquire appro-
priate resources. To illustrate this process, we present the config-
uration of an nForce4 network interface controller (NIC) in figure
Figure 8. In this declaration, the driver requires threeIo*Range
objects whose base addresses are determined by the PCI bus. When
the PCI bus driver runs, it will identify a device whose signature
starts with/pci/02/00/10de/0056 . The bus driver will also
assign to this device a set of resources from the dynamic PCI con-
figuration space. For every physical device in on the PCI bus, the
bus driver will pass to the kernel a tuple consisting of the full de-
vice signature, the physical location of the device, and the set of
dynamic resources enumerated from the PCI configuration space.
Other configuration spaces such as PnP and ACPI are similarly enu-
merated to discover devices and dynamic resources.

During the driver activation loop, if Singularity determines that
an installed driver’s signature is the longest matching prefix of a
physical device, it will then check that every IoFixed*Range dec-
laration in the metadata of the driver can be exclusively assigned
to this instance of the driver4. Then the kernel ensures that every
Io*Range object declared in the metadata can be assigned. For
the nForce4 NIC, this means that the resource packet5 returned by
the bus driver must contain a memory range of at least0x1000
bytes in position0, a port range that is at least8 bytes wide in po-
sition 1, and an IRQ line in position6. Lastly, the kernel ensures
that it can create and connect all channels declared in the manifest.

We currently support the full range of PCI and legacy ISA de-
vices using this model. There are five key features of our design:

• Proactive Resource Tracking: We do all tracking within
the OS, without having to inspect the behavior of the driver

4Fixed resources exist only for legacy devices, and those devices
that provide legacy support. The nForce4 NIC requires no fixed
resources
5The PCI standard governs the number of positions in this packet
and their use.

foreach signature in EnumerationResults
driver = FindByLongestPrefix(signature)
foreach IoResource in driver.manifest

if isInUse(resource) then skip
foreach channel in driver.manifest

if notAvailable(channel) then postpone

MarkInUse(signature.resources)
MarkInUse(driver.manifest.fixed)
MarkAvailable(driver.manifest.channels)

Allocate(driver.manifest.fixed)
Initialize(driver.channels)

if Activate(driver) fails then
cleanup(driver, signature)

Listing 9: Pseudocode for the Driver Activation Loop

to know what resources it uses. If a driver does not use a re-
source that it is allocated, we still prevent other software from
using it. Additionally, we track both the resources identified
by enumeration and the resources that the driver wants to
claim explicitly as fixed resources. As a result we can easily
support legacy hardware.

• Strong Support for Generic Drivers: Furthermore, we
adapt to the real resources that enumeration provides, rather
than performing either tracking or allocation of dynamic re-
sources based only on driver writer expectations. Thus if the
driver writer was unaware of a resource that PnP enumeration
gave a device, our system will still track it safely, providing
the highest assurance of correct tracking of all I/O resources.
Similarly, if enumeration gives a larger range than the driver
expected, we can prune the range before handing it to the
driver, while still marking the full range as allocated.

• IPC Preallocation: Every channel to a device driver is cre-
ated by the kernel and then passed to the driver. Since chan-
nel communication is usually blocking, this lets us start a
batch of drivers without worrying about timing for the com-
munication between them. If we waited until a driver’s IPC
was ready before we started any other application that needed
to communicate with the driver, we could potentially hang
forever in the kernel. While this does introduce the possi-
bility of several drivers convoying as they wait for the first
driver in the chain to complete a lengthy initialization and
start processing the messages in its channel, the overall de-
sign is simpler and prevents the kernel itself from waiting.
Furthermore, this allows strong isolation for IPC, as drivers
can be denied constructors to IPC channels.

• Managed Connections to Drivers: Using our design Sin-
gularity can easily create and connect channels for commu-
nicating with device drivers. As a result, there is no need
for applications to do so. Instead, the application declares in
its manifest that it requires access to certain types of chan-
nels, and then relies on its application runtime to create and
bind those channels. If a driver is not loaded, the system can
prevent dependent applications from running, whereas if the
driver is loaded, the system will connect all channels to the
driver during application activation.

• Flexibility : There is no imperative script; our algorithm
adapts to changes in the hardware configuration by resolv-
ing simple declarative statements.

Drivers for motherboard resources provide a simple, powerful
example of the flexibility of our design. Some of our Athlon-based
systems contained a special low pin count chip (LPC) which was
responsible for remapping the IRQs of the network and IDE disk
controllers. For systems with the LPC chip, failure to remap IRQs
would prevent the machine from having either network or disk ac-
cess.

Rather than create separate distributions of Singularity for the
different hardware platforms, with special imperative boot scripts,
we added a soft dependency on the LPC driver to the installed meta-
data of the disk and network drivers. This dependency ensures that
the network and disk will not start until after the LPC, if it is found.
When the LPC is not found, the disk and network drivers still start,
but not until the end of the boot sequence. Any devices that require
connections to the network and disk are similarly postponed.

Using these declarative dependencies, the same distribution of
Singularity, with the exact same set of installed drivers, can deter-
mine not only the best set of drivers to load, but a safe order in
which to load the drivers. When a driver’s soft requirements cannot
be met, the driver loads later in the boot sequence, without vio-
lating dependencies. When a driver’s hard requirements cannot be
met, the kernel will not load it. The failure to load this driver will
smoothly trickle through the initialization process, and while we
may load a system that does not provide all expected functionality,
we will never start a system with erroneous drivers loaded.

4.4 Managed Resource Allocation
The final detail of our implementation is how we create end-

points in an OS that does not support reflection. In the case of de-
vice drivers, theServiceProvider endpoint types are visible
to the kernel, but our system must support arbitrary endpoint types
as well. For example, an application that connects to our NIC driver
will require endpoints of typeNicDeviceContract.Imp and
NicDeviceContract.Exp . In addition, theExp end should
be passed to the NIC driver before the client application starts, so
that if the endpoint bind fails, the application won’t start.

To support the safe creation of arbitrary endpoint types, we use
the imp andexp subtrees in the metadata. The function of these
trees is to provide enough information for the kernel to safely allo-
cate a memory region that precisely matches the shape of a memory
region for an unknown endpoint type, with sufficient metadata at-
tached to that region for it to be cast as the unknown endpoint type
within the client application. In the current Singularity type sys-
tem, this includes the full name of every ancestor of a type, tracing
back until at least the first parent type that is known by the kernel,
as well as the integer index of the start state of the channel.

Using this mechanism, the Singularity kernel can completely
bind the initial IPC of an arbitrary application within the kernel
in time linear to the ancestry of the endpoints. This feature is the
foundation for future research into extending our model to other
abstract classes of applications.

4.5 Performance Impact
Our design avoids the need for most run-time checks on drivers.

As a result, there is no fundamental obstacle to Singularity drivers
running as efficiently as their unsafe counterparts in other operat-
ing systems. In Figure 1 we compare the average sequential disk
read performance of Singularity to that of Windows XP (Service
Pack 2), Linux (Fedora Core 4, kernel version 2.6.11-1.1369FC4),
and FreeBSD (version 5.3). We also include a custom build of Sin-
gularity in which bounds checks on theIo*Range objects were
disabled. All tests were conducted on an AMD Athlon 64 3000+
(1.8 GHz)-based system with 1 GB RAM and a Western Digi-

512 1K 2K 4K 8K 16K 32K 64K
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Windows Linux FreeBSD Singularity Singularity
Unchecked

Block Size

IO
 O

pe
ra

tio
ns

/S
ec

on
d

Figure 1: Raw Disk I/O Performance: Sequential Reads

tal WD2500JD 250GB 7200RPM SATA disk (without command
queuing).

On each operating system we read 512MB of sequential data
from the same disk partition. The benchmarks were all single-
threaded, and our results are an average over seven trials. On Sin-
gularity, the benchmark communicated with the disk driver pro-
cess over a channel, whereas FreeBSD, Linux, and XP used system
calls.

We measured an overhead of less than0.6% for Singularity with
runtime checks, compared to Singularity without these checks. Fur-
thermore, the disk throughput of Singularity in both cases is com-
petitive with other systems. In return for a slight run-time overhead,
our system can track track I/O and IPC resource usage at a fine
granularity, before any driver runs. Our language features also aid
the programmer in providing an accurate manifest, and reduce the
run-time overhead of safe access to hardware. Similarly, language
safety ensures that drivers cannot touch kernel data structures and
cannot violate their manifests by using undeclared resources.

5. RELATED WORK
Our research touches upon several fields, most notably defect

detection, application isolation, and declarative configuration.

5.1 Defect Detection
Engler et al. propose Meta Compilation in [15], a technique by

which information specific to a particular domain, such as the use
of a resource, is used to develop a compiler extension for identify-
ing violations of system intent. Other defect detection tools include
SLAM [5], ESP [11], and Vault [35], as well as Lint [30], LCLint
[18], and FiSC [44].

In the same spirit, we have created a new tool for identifying
driver errors. Our work applies to a very specific domain (metadata
attributes in Sing# drivers), and is unique in that it deals with a type-
safe intermediate representation of the program (MSIL), rather than
source code or binaries. Furthermore, since we are not interested
in supporting legacy code, we can require new programmer decla-
rations (in the form of custom attributes) that greatly simplify the
verification process without sacrificing accuracy.

5.2 Application Isolation and Reliability
Our design allows Singularity to implement an isolation model

that differs from most existing operating systems. Among micro-
kernel systems that rely on hardware for isolation, such as Mach

[2], L4 [23], and Exokernel [16], isolation is achieved by placing
the driver in a different hardware protection ring. As discussed
previously, monolithic kernels such as Linux and Windows load
drivers directly into the kernel address space. In contrast with these
systems, our design relies exclusively on type safety.

SPIN [7], JX [22], and KaffeOS [3] use safe programming lan-
guages (Modula-3 and Java) for both the kernel and extensions.
While they can thus achieve high degrees of protection through
language features instead of hardware, our design differs in two
key areas. First, we provide a single and explicit abstraction for
hardware interaction through a family of objects. Coupled with
our declarative metadata, this allows us to completely track re-
source allocation and prevent conflicts before drivers are started.
Secondly, we provide an application abstraction which permits our
kernel to distinguish between drivers and applications by inspect-
ing their runtime libraries. Since this check occurs at install time
in Singularity, differentiating between classes of applications is es-
sentially free in a running system, while allowing stronger static
guarantees about which applications can and cannot acquire partic-
ular resources. This also permits us to factor trusted code into the
driver executable.

Nooks [39] provides multiple, configurable mechanisms for iso-
lating drivers. While Nooks is very effective at preventing resource
conflicts at run time, it suffers from at least one problem that also
affects many language-based solutions: it cannot detect resource
conflicts until run time. As it lacks accurate driver metadata, Nooks
must wait until a conflict is detected and then recover, rather than
prevent the execution of drivers that may cause conflicts. An ex-
tension to Nooks that employs shadow drivers [38] mitigates the
effect of driver failure on applications. This additional indirection
does not significantly impact performance.

The Xen virtual machine monitor [6, 20] isolates drivers by plac-
ing each in its own I/O virtual machine, and connecting drivers
through a unified driver interface. LeVasseur et al. propose another
driver model that achieves isolation through virtual machines [31].
In their design, each driver can run in a protected container, with
its own full copy of the OS. Erlingsson et al. investigate a similar
model for Windows drivers in [17], which delivers backwards com-
patibility with binary drivers, at the cost of more run-time checks.

The Devil IDL [32] provides a novel mechanism for improving
driver reliability. Devil is a high-level language for specifying low-
level device operations, and there is considerable overlap between
Devil’s abstractions and ourIo*Range objects. As a language-
only solution, Devil cannot offer extensive run-time monitoring and
management, but their design, based on the recognition that driver
reliability must be a design-time consideration, provides a comple-
mentary approach.

In the embedded systems domain, the HAIL language [36] is a
high-level, operating system-independent language for specifying
the low-level interaction between a driver and its device. HAIL
provides strong guarantees and aids in the creation of more reliable
drivers, but as with Devil, HAIL’s focus is on a lower-level abstrac-
tion, and does not change the interaction between drivers and the
kernel. We believe that HAIL is compatible with our design.

5.3 Declarative Configuration
Dodge et al. [14] outline the initialization and configuration of

the Linux and OpenBSD systems in detail, describing among other
things the complex process by which IPC resource handles are pre-
allocated. In contrast to this mechanism, our model permits bidi-
rectional channels to be allocated on the fly during driver initial-
ization. Furthermore, whereas the systems they describe can make
limited guarantees about the initialization of drivers, our system

allows detailed management of this process by the kernel.
Raymond proposed a declarative language for Linux kernel con-

figuration in [34]. This model permits off-line reasoning about how
a kernel is configured, but lacks the ability to analyze driver meta-
data to prevent the installation of drivers for hardware that is not
present in the system.

There are also a number of installation management systems for
the Linux and BSD Unix operating systems, such as the Redhat
Package Manager [4], the Debian Package System [12], the Gen-
too Portage System [21], and the venerable BSD Ports [42]. While
these systems correctly model dependencies between applications
at install time, they rely on external sources of metadata, rather
than intrinsic qualities of the code. As a result, these tools can-
not provide guarantees about whether a program is runnable, only
guarantees that a program can be built and installed without error.
Furthermore, these tools focus on applications, and contain only
limited support for device drivers.

Compaq’s Vesta project [25] also addressed the issue of software
configuration, using models to configure single programs. While
Vesta provided new tools to integrate revision control, dependency
management, and application build, the system remains an applica-
tion that runs atop the operating system, rather than a fundamental
component of the system. As a result, Vesta cannot guarantee that
it installed all runnable software on a given system.

DeTreville proposes a broad movement to declarative system
configuration in [13], based on lambda calculus. Although he does
not present an implementation, his extensive list of failure condi-
tions for a declarative configuration model proved instructive in the
design of our declarative driver syntax.

6. CONCLUSIONS
We present an end-to-end design to characterize and manage

the IPC and I/O resource needs of device drivers in the Singular-
ity OS. By leveraging the strong metadata features of MSIL, our
design overcomes a traditional hurdle to accuracy by making the
driver as dependent on correct metadata as the OS. As a result,
Singularity knows at all times the resource requirements of every
installed driver, and can verify that the declared and available re-
sources match before allowing driver code to run. In addition, Sin-
gularity has sufficient information to monitor the communication
of its drivers from the moment they begin, enabling it to prevent
errors due to inappropriate resource use. By leveraging compiler
and language support, the cost of this model is incurred at installa-
tion time, allowing Singularity to reason extensively about device
drivers without degrading performance.

Furthermore, we have created a new first class operating system
abstraction for applications, and defined a subclass of this abstrac-
tion for drivers. This abstraction enables us to reduce configuration
problems, detect developer errors, and reduce developer effort. Us-
ing this abstraction, our drivers are more declarative, and push the
responsibility for allocating resources into the trusted computing
base.

Beyond the single function device drivers discussed in this pa-
per, we are exploring how to extend these abstractions to cover ad-
ditional software. We hope to use the generalized application ab-
straction to describe drivers for bus devices, subsystems like the file
system and network stacks, applications ranging from web servers
to GUI shells, and an entire software system. We also hope to
leverage recent work in cross-process channel contracts, to create
contracts that describe the hardware/software boundary between a
driver and a device. These contracts will allow us to verify that the
driver is interacting correctly with the hardware, and may let us to
verify that hardware is interacting correctly with the driver.

Acknowledgments
We are indebted to the rest of the Singularity team at Microsoft Re-
search, especially Mark Aiken, Paul Barham, Manuel Fähndrich,
James Larus, Nick Murphy, Bjarne Steensgaard, David Tarditi, and
Brian Zill. In addition, Manuel F̈ahndrich and Michael Carbin de-
veloped the compile time reflection implementation used to gener-
ate boilerplate driver constructor code. We are grateful to Michael
Scott and James Larus for giving feedback on early drafts of this
paper. We also thank our shepherd, Brian Bershad, and the anony-
mous reviewers, for their valuable advice.

7. REFERENCES
[1] M. Abadi, A. Birrell, and T. Wobber. Access Control in a

World of Software Diversity. InTenth Workshop on Hot
Topics in Operating Systems (HotOS X), Sante Fe, NM,
USA, 2005.

[2] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid,
A. Tevanian, and M. Young. MACH: A New Kernel
Foundation for UNIX Development. InProceedings of the
USENIX Summer Conference, pages 93–112, Atlanta, GA,
USA, 1986.

[3] G. Back and W. C. Hsieh. The KaffeOS Java Runtime
System.ACM Transactions on Programming Languages and
Systems (TOPLAS), 27(4):583–630, 2005.

[4] E. C. Bailey.Maximum RPM: Taking the Red Hat Package
Manager to the Limit. Red Hat Software, Inc., first edition,
1997.

[5] T. Ball and S. K. Rajamani. The SLAM Project: Debugging
System Software via Static Analysis. InThe 29th Annual
ACM SIGPLAN - SIGACT Symposium on Principles of
Programming Languages, pages 1–3, Portland, OR, USA,
2002.

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and the
Art of Virtualization. InProceedings of the Nineteenth ACM
Symposium on Operating Systems Principles (SOSP ’03),
pages 164–177, Bolton Landing, NY, USA, 2003.

[7] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E.
Fiuczynski, D. Becker, C. Chambers, and S. Eggers.
Extensibility Safety and Performance in the SPIN Operating
System. InProceedings of the Fifteenth ACM Symposium on
Operating Systems Principles (SOSP ’95), pages 267–283,
Copper Mountain Resort, CO, USA, 1995.

[8] D. P. Bovet and M. Cesati.Understanding the Linux Kernel.
O’Reilley & Associates, Inc., second edition, 2002.

[9] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. R. Engler. An
Empirical Study of Operating System Errors. InProceedings
of the Eighteenth ACM Symposium on Operating Systems
Principles (SOSP ’01), pages 73–88, Chateau Lake Louise,
Banff, Canada, 2001.

[10] Compaq Computer Corporation, Phoenix Technologies Ltd.,
and Intel Corporation. Plug and Play BIOS Specification,
Version 1.0a. May 5, 1994.

[11] M. Das, S. Lerner, and M. Seigle. ESP: Path-Sensitive
Program Verification in Polynomial Time. InACM
SIGPLAN 2002 Conference on Programming Language
Design and Implementation (PLDI), pages 57–68, Berlin,
Germany, 2002.

[12] J. Dassen, C. Stickelman, S. G. Kleinmann, S. Rudolph,
S. Vila, J. Rodin, and J. Fernandez-Sanguino. The Debian
GNU/Linux FAQ Chapter 6–Basics of the Debian Package

Management System.
http://www.debian.org/doc/FAQ/ch-pkgbasics.en.html,
September 2005.

[13] J. DeTreville. Making System Configuration More
Declarative. InTenth Workshop on Hot Topics in Operating
Systems (HotOS X), Sante Fe, NM, USA, 2005.

[14] C. Dodge, C. Irvine, and T. Nguyen. A Study of Initialization
in Linux and OpenBSD.SIGOPS Operating Systems Review,
39(2):79–93, 2005.

[15] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking
System Rules Using System-Specific, Programmer-Written
Compiler Extensions. InProceedings of the Fourth
Symposium on Operating Systems Design and
Implementation (OSDI 2000), pages 1–16, San Diego, CA,
USA, 2000.

[16] D. R. Engler, M. F. Kaashoek, and J. O’Toole. Exokernel:
An Operating System Architecture for Application-Level
Resource Management. InProceedings of the Fifteenth ACM
Symposium on Operating Systems Principles (SOSP ’95),
pages 251–266, Copper Mountain Resort, CO, USA, 1995.

[17] U. Erlingsson, T. Roeder, and T. Wobber. Virtual
Environments for Unreliable Extensions. Technical Report
MSR-TR-2005-82, Microsoft Research, Microsoft
Corporation, One Microsoft Way, Redmond, WA 98052,
2005.

[18] D. Evans, J. V. Guttag, J. J. Horning, and Y. M. Tan. LCLint:
A Tool for Using Specifications to Check Code. In
Proceedings of the Second ACM SIGSOFT Symposium on
Foundations of Software Engineering (SOGSPFT ’94), pages
87–96, New Orleans, LA, USA, 1994.

[19] R. Fitzgerald, T. B. Knoblock, E. Ruf, B. Steensgaard, and
D. Tarditi. Marmot: An Otimizing Compiler for Java.
Software–Practice and Experience, 30(3):199–232, 2000.

[20] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield, and
M. Williamson. Safe Hardware Access with the Xen Virtual
Machine Monitor. InFirst Workshop on Operating System
and Architectural Support for the On-Demand IT
Infrastructure (OASIS) at ASPLOS’04, Boston, MA, USA,
October 2004.

[21] Gentoo Foundation, Inc. About Gentoo Linux.
http://www.gentoo.org/main/en/about.xml, 2005.

[22] M. Golm, M. Felser, C. Wawersich, and J. Kleinöder. The JX
Operating System. InProceedings of the General Track:
2002 USENIX Annual Technical Conference, pages 45–58,
Monterey, CA, 2002, 2002.

[23] H. Härtig, M. Hohmuth, J. Liedtke, S. Schönberg, and
J. Wolter. The Performance ofµ-Kernel-Based Systems. In
Proceedings of the Sixteenth ACM Symposium on Operating
Systems Principles (SOSP’97), pages 66–77, Saint-Malo,
France, 1997.

[24] Hewlett-Packard Corporation, Intel Corporation, Microsoft
Corporation, Phoenix Technologies Ltd., and Toshiba
Corporation. Advanced Configuration and Power Interface
Specification, Revision 3.0. September 2, 2004.

[25] A. Heydon, R. Levin, T. Mann, and Y. Yu. The Vesta
Approach to Software Configuration Management. Technical
Report 168, Compaq Systems Research Center, March 2001.

[26] G. Hunt, J. Larus, M. Abadi, M. Aiken, P. Barham,
M. Fändrich, C. Hawblitzel, O. Hodson, S. Levi, N. Murphy,
B. Steensgaard, D. Tarditi, T. Wobber, and B. Zill. An
Overview of the Singularity Project. Technical Report
MSR-TR-2005-135, Microsoft Research, Microsoft

Corporation, One Microsoft Way, Redmond, WA 98052,
2005.

[27] G. C. Hunt and J. R. Larus. Singularity Design Motivation.
Technical Report MSR-TR-2004-105, Microsoft Research,
Microsoft Corporation, One Microsoft Way, Redmond,
WA 98052, December 2004.

[28] G. C. Hunt, J. R. Larus, D. Tarditi, and T. Wobber. Broad
New OS Research: Challenges and Opportunities. InTenth
Workshop on Hot Topics in Operating Systems (HotOS X),
Sante Fe, NM, USA, 2005.

[29] ISO/IEC 23271:2003. Common Language Infrastructure
(CLI): Partition II: CIL Instruction Set.http://www.ecma-
international.org/publications/standards/Ecma-335.htm,
2003.

[30] S. C. Johnson. Lint, a C Program Checker. Technical
Report 65, AT&T Bell Laboratories, 1978.

[31] J. LeVasseur, V. Uhlig, J. Stoess, and S. Götz. Unmodified
Device Driver Reuse and Improved System Dependability
via Virtual Machines. InProceedings of the Sixth Symposium
on Operating Systems Design and Implementation (OSDI
2004), pages 17–30, San Francisco, CA, USA, 2004.

[32] F. Mérillon, L. Réveillere, C. Consel, R. Marlet, and
G. Muller. Devil: An IDL for Hardware Programming. In
Proceedings of the Fourth Symposium on Operating Systems
Design and Implementation (OSDI 2000), pages 17–30, San
Diego, CA, USA, 2000.

[33] PCI Special Interest Group. PCI Local Bus Specification,
Revision 2.3. March 29, 2004.

[34] E. S. Raymond. The CML2 Language.
http://www.catb.org/∼esr/cml2/cml2-paper.html, 2000.

[35] M. F. Robert DeLine. Enforcing high-level protocols in
low-level software. InACM SIGPLAN 2001 Conference on
Programming Language Design and Implementation (PLDI),
pages 59–69, Snowbird, UT, USA, 2001.

[36] J. Sun, W. Yuan, M. Kallahalla, and N. Islam. HAIL: A
Language for Easy and Correct Device Access. InThe 5th
ACM International Conference on Embedded Software
(EMSOFT’05), pages 1–9, Jersey City, NJ, USA, 2005.

[37] Sun Microsystems Inc. Javadoc Tool Home Page.
http://java.sun.com/j2se/javadoc/, 2005.

[38] M. M. Swift, M. Annamalai, B. N. Bershad, and H. M. Levy.
Recovering Device Drivers. InProceedings of the Sixth
Symposium on Operating Systems Design and
Implementation (OSDI 2004), pages 1–16, San Francisco,
CA, USA, 2004.

[39] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving the
Reliability of Commodity Operating Systems. In
Proceedings of the Nineteenth ACM Symposium on
Operating Systems Principles (SOSP ’03), pages 207–222,
Bolton Landing, NY, USA, 2003.

[40] A. S. Tanenbaum.Modern Operating Systems. Prentice Hall,
second edition, 2001.

[41] The FreeBSD Documentation Project. FreeBSD Architecture
Handbook.http://www.freebsd.org/doc/enUS.ISO8859-
1/books/arch-handbook/,
2000–2005.

[42] The FreeBSD Project. FreeBSD Ports.
http://www.freebsd.org/ports/, October 2005.

[43] D. van Heesch. Doxygen.http://www.doxygen.org/,
1997–2005.

[44] J. Yang, P. Twohey, D. R. Engler, and M. Musuvathi. Using

Model Checking to Find Serious File System Errors. In
Proceedings of the Sixth Symposium on Operating Systems
Design and Implementation (OSDI 2004), pages 273–288,
San Francisco, CA, USA, 2004.

