
A Scalable Multi-Engine Xpress9 Compressor with Asynchronous Data Transfer

Joo-Young Kim
Microsoft Research
Redmond, WA, USA

jooyoung@microsoft.com

Scott Hauck
University of Washington

Seattle, WA, USA
hauck@ee.washington.edu

Doug Burger
Microsoft Research
Redmond, WA, USA

dburger@microsoft.com

Abstract—Data compression is crucial in large-scale storage
servers to save both storage and network bandwidth, but
it suffers from high computational cost. In this work, we
present a high throughput FPGA based compressor as a
PCIe accelerator to achieve CPU resource saving and high
power efficiency. The proposed compressor is differentiated
from previous hardware compressors by the following features:
1) targeting Xpress9 algorithm, whose compression quality
is comparable to the best Gzip implementation (level 9); 2)
a scalable multi-engine architecture with various IP blocks
to handle algorithmic complexity as well as to achieve high
throughput; 3) supporting a heavily multi-threaded server
environment with an asynchronous data transfer interface
between the host and the accelerator. The implemented Xpress9
compressor on Altera Stratix V GS performs 1.6-2.4Gbps
throughput with 7 engines on various compression benchmarks,
supporting up to 128 thread contexts.
Keywords-FPGA; data compression; LZ77; Huffman encoding;
hardware accelerator; Xpress; high throughput;

I. INTRODUCTION

Modern server and storage systems handle peta-byte scale
data with multiple compute and storage nodes connected
to each other via high speed networks. Data compression
plays an essential role in achieving a cost effective system
by reducing the size of data to be stored or transmitted.

For this general purpose compression domain, multi-stage
lossless algorithms that combine dictionary based method
such as LZ77 [1] and statistical coding scheme such as
Huffman encoding [2] are widely used. The best example
is the well-known Gzip compression algorithm [3]. Another
example is LZMA [4], which claims the best compression
ratio but is very slow due to its heavy optimizations.

In this paper, we present a high throughput Xpress9 com-
pressor on reconfigurable devices. The Xpress9 algorithm
is an advanced branch of Microsoft’s Xpress compression
algorithm family [5], targeting superior compression quality.
We propose a multi-engine architecture that scales with the
engine number, while each engine parallelizes Xpress9’s
algorithm. We also provide an asynchronous data transfer
interface to the host, which makes the proposed compressor
useful under a multi-threaded server environment.

II. XPRESS9 COMPRESSION ALGORITHM

Algorithm 1 depicts the Xpress9 pseudo-code. The LZ77
process achieves compression by replacing a whole set
of current data with a single reference to the repeated

occurrence in the past, representing the result with a pair of
numbers, length-offset. To find matches, it keeps the most
recent data in a buffer called window, and slides forward
by half the window length when it hits the window’s end.
The Xpress9 uses a 64KB window size. It performs LZ77
processing until it fills an internal buffer storing length-offset
results, and streams them out after Huffman compression.
The algorithm iterates these two stages to the end of input.

Hash insertion, the first step of the LZ77 process, builds
a linked chain of matching candidate positions that have the
same hash value. It can be effectively done with a head
and prev table. The head table holds, for each set of 3
characters, the most recent position in the incoming data
where that hash value has been seen. When it encounters
the same hash value, it retrieves the head position in that
hash value (head[hash value]) and store it to the current
position of the prev table (prev[pos]), which indicates the
previous position that has the same hash value for a given
position in the window. Then it updates the head table to
the current position for the next insertion. Thus, to find all
possible previous matches for a given position, we need to
walk the prev table (e.g., prev[pos] gives the first candidate,
prev[prev[pos]] gives the next previous, and so on) until the
linked-list for that hash value is terminated by a NULL entry.
The result of matching is represented with the following
three packet types:

• Literal (LIT): LIT emits current byte as it is since it
could not find any good matches from the past.

Algorithm 1 Xpress9 Algorithm
1: while (processed<input) do
2: //LZ77 process
3: repeat
4: Hash chain build;

Prev[pos]← Head[hashV al];
Head[hashV al]← pos;

Xpress9 matching;
LIT, PTR, MTF packet match
frequency histogram;

5: until internal buffer is full
//Huffman encoding

Create Huffman code;
Output bit-stream;

6: end while



Figure 1. System architecture

• Pointer (PTR): PTR is a match to a previous point,
containing the offset and length.

• Move-to-Front (MTF): Same as PTR, but since offset is
one of the last N (0..3) most recent offsets, can encode
offset via 2-bit value.

Another feature of Xpress9 is local search optimization. It
runs MTF and hash matching not only at the current position
but also at the next two and picks the best overall result. This
can be seen as an extended feature of Gzip’s lazy evaluation
which looks only the next position.

III. SYSTEM ARCHITECTURE

Figure 1 shows the system architecture of the proposed
FPGA based Xpress9 compressor. We used the Altera Stratix
V development kit [6] that provides a PCIe x8 interface
to host PC and a 1GB DDR3. The proposed architecture
involves 3 key components to handle heavily multi-threaded
compression workloads on the FPGA: a custom PCIe in-
terface to support L communication channels, a queue
management system to hold up to M different compression
contexts, and a hardware scheduler to utilize N compression
engines. The number L, M, and N can be selected for system
requirements.

A. Host interface
Data transfer between the host and FPGA is accomplished

by a PCIe data channel called a slot. Each slot includes an
input and an output pinned memory for sending/receiving
data to/from the FPGA, respectively, with the memory size
of power of two from 8KB to 128KB. Communication
between multiple slots and the FPGA is done similarly to
circuit switching: it guarantees a channel until it ends the
unit data transfer. We allocated 128 slots to support up to
128 threads. With a 64KB transfer size, the implemented
PCIe core gives 3GB/s bandwidth.

B. Queue management for asynchronous data transfer
Hardware accelerators often require synchronous opera-

tion with their host CPUs. Since the host always waits
for the FPGA to finish its processing, the synchronous
operation can harm system throughput. To prevent this, we
introduced a queue management scheme that removes timing
constraints between the host and the FPGA by buffering

multiple compression contexts in the DDR3 memory. The
host can push/pull data to/from the FPGA regardless of
compressor’s operation status.

Due to the PCIe slot size, the host evenly chunks the
input data into slot sized segments and sends them to
FPGA through a slot iteratively. The input queue manager
is responsible for assembling segments into a single queue
so that they can get pulled out together. In general, it
manages multiple queues in DDR3 and controls enqueueing
and dequeueing on a target queue. We employed another
queue manager at the output side to enqueue compressed
results from the compression engines and dequeue them for
the host. We picked the queue number of 128, the same as
the slot number, to allow direct coupling between the two.

C. Hardware Scheduler
The hardware scheduler manages a queue status table and

an engine availability table to assign jobs to the engines. The
former stores the compression context information for each
queue such as input data size, compressed data size, and
unique ID tags, while the latter keeps a 1 bit busy or idle
status for each engine. For job assignment, the scheduler
waits until it has an idle engine. It then sends the queue
ID and input size information to the engine and mark it
busy. When the compression is finished by an engine, the
scheduler updates the compressed size at the queue status
table and notifies the host through an interrupt. The engine
becomes available again for the next compression. With
this simple job scheduling, the scheduler ensures no engine
remains idle when it has input data in the queueing system.

IV. ENGINE IMPLEMENTATION

Figure 2 shows the architecture of the compression engine.
It consists of several custom IP cores and memory modules,
interconnected by a multi-layered bus. For the Huffman
encoding part, we employed a NIOS II microprocessor that
effectively runs the program with a 16KB instruction and
64KB data memory. To hide the Huffman encoding latency
in the system, we perform task-level pipelining between
LZ77 and Huffman stage. We utilize the external DDR3 for
double buffering of 128KB intermediate results, as well as
a couple of 16KB on-chip buffers.

A. Hash Insertion
The hash insertion block implements the hash chain build

stage with a simple 5 stage pipelined operation: data load,
hash value calculation, head table read, prev table update,
and head table update. To increase throughput, 2 consecutive
bytes go through the pipeline at the same time with even-odd
memory banking. Due to bank conflicts in the head table,
the block achieves 350MB/s at 200MHz.

B. Multi-Path Speculation
To overcome the FPGA’s ˜10x slower clock rate than the

CPU, the multi-path speculation block parallelizes all the
potential matching paths in Xpress9 algorithm (i.e., 4 MTF



Figure 2. Engine architecture

matchings and a hash chain matching for 3 positions), and
selects the best result. Once the output packet is selected,
operations on not selected paths are terminated and get
flushed for the next matching.

A byte matcher is a basic component in matching that
computes the number of matching bytes between the current
and the target position. It improves throughput with a 7
stage pipeline. For the first and second stage, it fetches 32
bytes of data from the window, starting from the current
and the target position, leveraging full bandwidth without
conflicts. The third and fourth stage is waiting for data to
arrive from the window while it calculates the next two load
addresses. At the fifth stage, the fetched two 32 byte streams
are sent to internal registers. For the last two stages, a vector
comparator compares two streams and calculates the number
of identical bytes. With seamless pipelined operation, we
can have 32 byte matching result every two cycles, which
is equivalent to 3.2GB/s at 200MHz.

Since MTF search involves 4 different matchings per
position, we need 12 byte matchings for 3 consecutive
positions overall. However, if we re-partition them with an
offset perspective, each offset performs 3 matchings, which
are between current and offsetted, current+1 and offsetted+1,
and current+2 and offsetted+2, respectively. Thus, only a
single byte matcher is required to handle these matchings as
the first two can share the result of the last and determine
final results based on the first two byte comparison.

For hash chain matching, the hash chain walker traverses
the prev table from the current to the end of the chain and
pushes read candidate positions into the candidate queue.
The tail checker compares two bytes apart from the current
and the candidate position by the current best length to
filter out candidates whose possible match cannot exceed
it. Since the candidate queue naturally separates the hash

chain walker’s operation and byte matcher’s operation, they
can be run in parallel.

C. Zero-Copying Window Shift
To overcome the memory copy problem in window shift-

ing, we made the window and prev mem function as a
circular buffer. We regard the physical half way point as the
logical starting base and fetch new data into the physical
former half without shifting. The logical starting point tog-
gles every time the window shifts. Simple logical-physical
address translation logic wrapped around the memory makes
the address space appear to be same as before to outside
blocks. Additional subtracting and threshold logic is added
for prev mem to apply the offset caused by shift.

D. High-Bandwidth Multi-Bank Memory
To support the wide bandwidth requirement of the window

memory for parallel matchings by matchers, we employed
two copies of eight 32-bit wide dual port RAMs. In total,
the window memory allows 4 simultaneous reads of 256-bit
data every cycle, which provides 25.6GB/s at 200MHz.

E. Read-Modify-Write RAM
For the frequency histogram of observed literals and

matches, we devised a read-modify-write memory utilizing
the FPGA’s dual-port RAM. In the histogram mode, a port
reads the existing frequency from the address and writes
the incremented value through the other port. A detection
unit compensates the incremental value for the consecutive
accesses to the same address within the reading latency.

V. EXPERIMENTAL RESULTS

A. Resource utilization
Table I shows the resource utilization of our Xpress9

compressor on Stratix V GS D5 FPGA that includes 172K
Adaptive Logic Modules (ALMs) and 39Mb of memory.



Table I
STRATIX V GS RESOURCE UTILIZATION

Entity ALMs Memory bits
PCIe 4383 (2.5%) 2289632 (5.6%)
DDR3 9693 (5.6%) 313280 (0.8%)
2 x QM 22957 (13.3%) 1573036 (3.8%)
Scheduler 1630 (0.9%) 12160 (0.03%)
7 x Engine 117754 (68.2%) 26401536 (55.3%)
Misc. 1342 (0.8%) 398336 (1.0%)
Total 157759 (91.4%) 30987980 (75.8%)

Figure 3. Multi-engine throughput performance

System level IPs for host communication and multi-threaded
queueing accounts for 22% of logic and 10% of memory.
For the rest, we successfully fit 7 compression engines with
the hardware scheduler, with each engine consumes 9.7%
of logic and 9.2% of memory. We have 3 clock domains:
250MHz for PCIe, 166MHz for DDR3, and 200MHz for
user domain.

B. Experimental Setup
To evaluate the proposed compressor, we chose 4 different

data benchmarks covering a variety of data types: Calgary
and Canterbury Corpus [7], Silesia Corpus [8] and large
text benchmark [9]. For comparison with other LZ77 based
algorithms, we chose Gzip level1 (fastest), level6 (normal),
level9 (best compression), and LZMA. We used a machine
with 2.3GHz Intel Xeon E5-2630 CPU and 32GB RAM.

C. Multi-Engine Scalability
We assume the highest workload scenario to measure the

scalability of the proposed architecture. The host threads
make 128 compression requests at the same time and we
measured the overall spent time. As the graph in Fig-
ure 3 shows, the overall throughput scales linearly for all
benchmarks as the number of engines increases. This can
be achieved because the asynchronous processing interface
hides most of the data transfer time and the hardware
scheduler seamlessly distributes the enqueued jobs to en-
gines. This scalability will continue as long as the PCIe and
DDR3 bandwidth can serve the aggregated throughput of
the engines.

D. Comparison
Figure 4 shows the compression ratio vs throughput graph

for software algorithms as well as our hardware compressor.
It is noteworthy that the throughput axis is in log scale.
The LZMA achieves the best compression ratio for all
the benchmarks, but its throughput is limited to 1-2MB/s,
demonstrating that improving compression quality is very
expensive. For the GZIP family, the throughput quickly

Figure 4. LZ77 based compressor comparison

drops as the optimization level goes up to 9. However, there
is no obvious gain in compression quality from level 6
to 9 although the throughput drops by half. On the other
hand, our hardware Xpress9 compressor shows 16x and
33x performance boost from the Gzip level 6 and level 9,
respectively, while maintaining 6% better compression ratio
on average.

VI. CONCLUSION

In this paper, we presented a high quality and high
throughput compressor on reconfigurable devices for stor-
age server applications. Unlike most hardware compressors
target Gzip algorithm with limited set of features, we fully
implemented the Xpress9 algorithm, claiming the best qual-
ity compression on the FPGA. With the multi-engine and
queueing architecture, our compressor demonstrated scalable
performance under heavily multi-threaded environment.

ACKNOWLEDGMENT

The authors would like to thank Jonathan Forbes for
algorithm discussions, Jinwook Oh, Janarbek Matai, and
Jason Thong for contributions on IP design, as well as
Andrew Putnam, Adrian Caulfield, and Eric Chung for
system-level integration and feedback.

REFERENCES

[1] J. Ziv and A. Lempel, “A universal algorithm for sequential
data compression,” IEEE Transactions on Information Theory,
vol. 23, no. 3, pp. 337–343, 1977.

[2] D. A. Huffman, “A method for the construction of minimum-
redundancy codes,” Proceedings of the IRE, vol. 40, no. 9, pp.
1098–1101, 1952.

[3] J.-l. Gailly. (2013) Gzip the data compression program.
[Online]. Available: http://www.gnu.org/software/gzip/manual/

[4] I. Pavlov. (2013) Lzma sdk. [Online]. Available: http://www.7-
zip.org/sdk.html

[5] Microsoft. (2014) Ms-xca: Xpress compression algo-
rithm. [Online]. Available: http://msdn.microsoft.com/en-
us/library/hh554002.aspx

[6] Altera. (2014) Dsp development kit, stratix v edition. [Online].
Available: http://www.altera.com/products/devkits/altera/kit-
stratix-v-dsp.html

[7] M. Powell. (2001) The canterbury corpus. [Online]. Available:
http://corpus.canterbury.ac.nz/descriptions/

[8] S. Deorowicz. (2014) Silesia compression corpus. [Online].
Available: http://sun.aei.polsl.pl/ sdeor/index.php?page=silesia

[9] M. Mahoney. (2014) Large text compression benchmark.
[Online]. Available: http://mattmahoney.net/dc/text.html


