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Abstract

As the arm of NLP technologies extends
beyond a small core of languages, tech-
niques for working with instances of lan-
guage data across hundreds to thousands
of languages may require revisiting and re-
calibrating the tried and true methods that
are used. Of the NLP techniques that has
been treated as “solved” is language iden-
tification (language ID) of written text.
However, we argue that language ID is
far from solved when one considers in-
put spanning not dozens of languages, but
rather hundreds to thousands, a number
that one approaches when harvesting lan-
guage data found on the Web. We formu-
late language ID as a coreference resolu-
tion problem and apply it to a Web harvest-
ing task for a specific linguistic data type
and achieve a much higher accuracy than
long accepted language ID approaches.

1 Introduction

A large number of the world’s languages have
been documented by linguists; it is now increas-
ingly common to post current research and data
to the Web, often in the form of language snip-
pets embedded in scholarly papers. A particu-
larly common format for linguistic data posted to
the Web is “interlinearized text”, a format used
to present language data and analysis relevant to
a particular argument or investigation. Since in-
terlinear examples consist of orthographically or
phonetically encoded language data aligned with
an English translation, the “corpus” of interlinear
examples found on the Web, when taken together,
constitute a significant multilingual, parallel cor-
pus covering hundreds to thousands of the world’s
languages. Previous work has discussed methods
for harvesting interlinear text off the Web (Lewis,

2006), enriching it via structural projections (Xia
and Lewis, 2007), and even making it available to
typological analyses (Lewis and Xia, 2008) and
search (Xia and Lewis, 2008).

One challenge with harvesting interlinear data
off the Web is language identification of the har-
vested data. There have been extensive studies
on language identification (language ID) of writ-
ten text, and a review of previous research on this
topic can be found in (Hughes et al., 2006). In gen-
eral, a language ID method requires a collection
of text for training, something on the order of a
thousand or more characters. These methods work
well for languages with rich language resources;
for instance, Cavnar and Trenkle’s N-gram-based
algorithm achieved an accuracy as high as 99.8%
when tested on newsgroup articles across eight
languages (Cavnar and Trenkle, 1994). However,
the performance is much worse (with accuracy
dropping to as low as 1.66%) if there is very lit-
tle language data for training and the number of
languages being evaluated reaches a few hundred.

In this paper, we treat the language ID of har-
vested linguistic data as a coreference resolution
problem. Our method, although narrowly focused
on this very specific data type, makes it possible to
collect small snippets of language data across hun-
dreds of languages and use the data for linguistic
search and bootstrapping NLP tools.

2 Background

2.1 Interlinear glossed text (IGT)

In linguistics, the practice of presenting language
data in interlinear form has a long history, go-
ing back at least to the time of the structural-
ists. Interlinear Glossed Text, orIGT, is often
used to present data and analysis on a language
that the reader may not know much about, and
is frequently included in scholarly linguistic doc-
uments. The canonical form of an IGT consists



of three lines: a line for the language in question
(i.e., thelanguage line), an English gloss line, and
an English translation. Table 1 shows the begin-
ning of a linguistic document (Baker and Stewart,
1996) which contains two IGTs: one in lines 30-
32, and the other in lines 34-36. The line numbers
are added for the sake of convenience.

1: THE ADJ/VERB DISTINCTION:EDO EVIDENCE
2:
3: Mark C. Baker and OsamuyimenThompsonStewart
4: McGill University
....
27: The following shows a similar minimal pair fromEdo,
28: aKwa language spoken in Nigeria (Agheyisi 1990).
29:
30: (2) a.Èmèrí mòsé.
31: Mary be.beautiful(V)
32: ‘Mary is beautiful.’
33:
34: b. Èmèrí *(yé) mòsé.
35: Mary be.beautiful(A)
36: ‘Mary is beautiful (A).’
...

Table 1: A linguistic document that contains IGT:
words in boldface are potential language names

2.2 The Online Database of Interlinear text
(ODIN)

ODIN, the Online Database of INterlinear text, is
a resource built from data harvested from schol-
arly documents (Lewis, 2006). It was built in
three steps: (1) crawling the Web to retrieve doc-
uments that may contain IGT, (2) extracting IGT
from the retrieved documents, and (3) identifying
the language codes of the extracted IGTs. The
identified IGTs are then extracted and stored in a
database (the ODIN database), which can be easily
searched with a GUI interface.1

ODIN currently consists about 189,000 IGT in-
stances extracted from three thousand documents,
with close to a thousand languages represented.
In addition, there are another 130,000 additional
IGT-bearing documents that have been crawled
and are waiting for further process. Once these
additional documents are processed, the database
is expected to expand significantly.

ODIN is a valuable resource for linguists, as it
can be searched for IGTs that belong to a partic-
ular language or a language family, or those that
contain a particular linguistic construction (e.g.,
passive, wh-movement). In addition, there have

1http://odin.linguistlist.org

been some preliminary studies that show the bene-
fits of using the resource for NLP. For instance, our
previous work shows that automatically enriched
IGT data can be used to answer typological ques-
tions (e.g., the canonical word order of a language)
with a high accuracy (Lewis and Xia, 2008), and
the information could serve as prototypes for pro-
totype learning (Haghighi and Klein, 2006).

3 The language ID task for ODIN

As the size of ODIN increases dramatically, it is
crucial to have a reliable module that automati-
cally identifies the correct language code for each
new extracted IGT to be added to ODIN. The cur-
rent ODIN system uses two language identifiers:
one is based on simple heuristics, and the other
on Cavnar and Trenkle’s algorithm (1994). How-
ever, because the task here is very different from
a typical language ID task (see below), both algo-
rithms work poorly, with accuracy falling below
55%. The focus of this paper is on building new
language identifiers with a much higher accuracy.

3.1 The data set

A small portion of the IGTs in ODIN have
been assigned the correct language code semi-
automatically. Table 2 shows the size of the data
set. We use it for training and testing, and all re-
sults reported in the paper are the average of run-
ning 10-fold cross validation on the data set unless
specified otherwise.

Table 2: The data set for the language ID task
# of IGT-bearing documents 1160
# of IGT instances 15,239
# of words on the language lines77,063
# of languages 638

3.2 The special properties of the task

The task in hand is very different from a typical
language ID task in several respects:

• Large number of languages: The number of
languages in our data set is 638 and that of the
current ODIN database is close to a thousand.
As more data is added to ODIN, the number
of languages may reach several thousand as
newly added linguistic documents could refer
to any of approximately eight thousand living
or dead languages.



• The use of language code: When dealing
with only a few dozen languages, language
names might be sufficient to identify lan-
guages. This is not true when dealing with
a large number of languages, because some
languages have multiple names, and some
language names refer to multiple languages
(see Section 4.2). To address this problem,
we use language codes, since we can (mostly)
ensure that each language code maps to ex-
actly one language, and each language maps
to exactly one code.

• Unseen languages: In this data set, about
10% of IGT instances in the test data belong
to some languages that have never appeared
in the training data. We call it theunseen
language problem. This problem turns out to
be the major obstacle to existing language ID
methods.

• Extremely limited amount of training data
per language: On average, each language in
the training data has only 23 IGTs (116 word
tokens in the language lines) available, and
45.3% of the languages have no more than
10 word tokens in the training data.

• The length of test instances: The language
lines in IGT are often very short. The aver-
age length in this data set is 5.1 words. About
0.26% of the language lines in the data set are
totally empty due to the errors introduced in
the crawling or IGT extraction steps.

• Encoding issues: For languages that do not
use Roman scripts in their writing system,
the authors of documents often choose to use
Romanized scripts (e.g., pinyin for Chinese),
making the encoding less informative.

• Multilingual documents: About 40% of doc-
uments in the data set contain IGTs from
multiple languages. Therefore, the language
ID prediction should be made for each indi-
vidual IGT, not for the whole document.

• Context information: In this task, IGTs are
part of a document and there are often various
cues in the document (e.g., language names)
that could help predict the language ID of
specific IGT instances.

Hughes and his colleagues (2006) identified
eleven open questions in the domain of language

ID that they believed were not adequately ad-
dressed in published research to date. Interest-
ingly, our task encounters eight out of the eleven
open questions. Because of these properties, ex-
isting language ID algorithms do not perform well
when applied to the task (see Section 6).

4 Using context information

Various cues in the document can help predict the
language ID of IGTs, and they are represented as
features in our systems.

4.1 Feature templates

The following feature templates are used in our ex-
periments.

(F1): The nearest language that precedes the cur-
rent IGT.

(F2): The languages that appear in the neighbor-
hood of the IGT or at the beginning or the
end of a document.2 Another feature checks
the most frequent language occurring in the
document.

(F3): For each language in the training data, we
build three token lists: one for word uni-
grams, one for morph unigrams and the third
for character ngrams (n ≤ 4). These word
lists are compared with the token lists built
from the language line of the current IGT.

(F4): Similar to (F3), but the comparison is be-
tween the token lists built from the current
IGT with the ones built from other IGTs in
the same document. If some IGTs in the
same document share the same tokens, they
are likely to belong to the same language.

Here, all the features are binary: for features in
F3 and F4, we use thresholds to turn real-valued
features into binary ones. F1-F3 features can
be calculated by looking at the documents only,
whereas F4 features require knowing the language
codes of other IGTs in the same document.

4.2 Language table

To identify language names in a document and
map language names to language codes, we need
a language table that lists all the (language code,

2For the experiments reported here, we use any line within
50 lines of the IGT or the first 50 or the last 50 lines of the
document.



language name) pairs. There are three existing lan-
guage tables: (1) ISO 639-3 maintained by SIL
International,3 (2) the 15th edition of the Ethno-
logue,4 and (3) the list of ancient and dead lan-
guages maintained by LinguistList.5 6 We merged
the three tables, as shown in Table 3.

Table 3: Various language name tables
Language table # of lang # of lang

codes (code, name) pairs
(1) ISO 639-3 7702 9312
(2) Ethnologue v15 7299 42789
(3) LinguistList table 231 232
Merged table 7816 47728

The mapping between language names and lan-
guage codes is many-to-many. A language code
often has several alternate names in addition to the
primary name. For instance, the language code
aaa maps to names such as Alumu, Tesu, Arum,
Alumu-Tesu, Alumu, Arum-Cesu, Arum-Chessu,
and Arum-Tesu. While most language names map
to only one language code, there are exceptions.
For instance, the nameEdocan map to eitherbin
or lew. Out of 44,071 unique language names in
the merged language table, 2625 of them (5.95%)
are ambiguous.7

To identify language names in a document, we
implemented a simple language name detector that
scans the document from left to right and finds the
longest string that is a language name according
to the language table. The language name is then
mapped to language codes. If a language name is
ambiguous, all the corresponding language codes
are considered by later stages. In Table 1, the
language names identified by the detector are in
boldface. The detector can produce false positive
(e.g., Thompson) because a language name can
have other meanings. Also, the language table is
by no means complete and the detector is not able
to recognize any language names that are missing
from the table.

3http://www.sil.org/iso639-3/download.asp
4http://www.ethnologue.com/codes/default.asp#using
5http://linguistlist.org/forms/langs/GetListOfAncientLgs.html
6While ISO 639-3 is supposed to include all the language

codes appearing in the other two lists, there is a lag in the
adoption of new codes, which means the ISO 639-3 list con-
tinues to be somewhat out-of-date with the lists from which
it is compiled since these other lists change periodically.

7Among the ambiguous names, 1996 names each map to
two language codes, 407 map to three codes, 130 map to four
codes, and so on. The most ambiguous name isMiao, which
maps to fourteen language codes.

5 Formulating the language ID task

The language ID task here can be treated as two
different learning problems.

5.1 As a classification problem

The language ID task can be treated as a classifica-
tion problem. A classifier is a function that maps
a training/test instancex to a class labely, andy
is a member of a pre-defined label setC. For lan-
guage ID, the training/test instance corresponds to
a document (or an IGT in our case), andC is the
set of language codes. We call this approach the
classification (CL) approach.

Most, if not all, of previous language ID meth-
ods, fall into this category. They differ with re-
spect to the underlying learning algorithms and the
choice of features or similarity functions. When
applying a feature-based algorithm (e.g., Maxi-
mum entropy) and using the features in Section
4.1, the feature vectors for the two IGTs in Ta-
ble 1 are shown in Table 4. Each line has the for-
mat “instancename truelang code featname1
feat name2 ...”, where featnames are the names
of features that are present in the instance. Take
the first IGT as an example, its true language code
is bin; the nearest language name (nearLC) is Edo
whose language code isbin or lew; the languages
that appear before the IGT includes Edo (bin or
lew), Thompson (thp), and so on. The presence of
LMw1 bin andLMm1 bin means that the overlap
between the word/morph lists forbin and the ones
built from the current IGT is higher than some
threshold. The feature vector for the second IGT
looks similar, except that it includes a F4 feature
IIw1 bin, which says that the overlap between the
word list built from the other IGTs in the same
document with language codebin and the word
list built from the current IGT is above a thresh-
old. Note that language codes are part of feature
names; therefore, a simple feature template such
as nearest language (nearLC) corresponds to hun-
dreds or even thousands of features (nearLC xxx).

TheCL approach has several major limitations.
First, it cannot handle theunseen language prob-
lem: if an IGT in the test data belongs to a lan-
guage that does not appear in the training data, this
approach cannot classify it correctly. Second, the
lack of parameter tying in this approach makes it
unable to generalize between different languages.
For instance, if the wordGermanappears right be-
fore an IGT, the IGT is likely to be German. The



igt1 bin nearLCbin nearLClew prev50bin prev50lew prev50thp ... LMw1 bin LMm1 bin ...

igt2 bin nearLCbin nearLClew prev50bin prev50lew prev50thp ... LMw1 bin LMm1 bin ... IIw1 bin ...

Table 4: Feature vectors for the IGTs in Table 1 when using theCL approach (Edo: bin/lew, Thompson:
thp, Kwa: etu/fip/kwb)

same is true if the wordGermanis replaced by an-
other language name. But this property cannot be
leveraged easily by theCL approach without mod-
ifying the learning algorithm. This results in a pro-
liferation of parameters, making learning harder
and more prone to overfitting.

5.2 As a coreference resolution problem

A different way of handling the language ID task
is to treat it as a coreference resolution problem: a
mention is an IGT or a language name appearing
in a document, an entity is a language code, and
finding the language code for an IGT is the same as
linking a mention (i.e., an IGT) to an entity (i.e., a
language code).8 We call this approach theCoRef
approach. The major difference between theCL
approach and theCoRefapproach is the role of
language code: in the former, language code is a
class label to be used to tag an IGT; and in the lat-
ter, language code is an entity which an IGT can
be linked to.

The language ID task shares many similarities
with a typical coreference resolution task. For
instance, language names are similar to proper
nouns in that they are often unambiguous. IGT
instances are like pronouns in that they often refer
to language names appearing in the neighborhood.
Once the language ID task is framed as aCoRef
problem, all the existing algorithms onCoRefcan
be applied to the task, as discussed below.

5.2.1 Sequence labeling using traditional
classifiers

One common approach to theCoRefproblem pro-
cesses the mentions sequentially and determine for
each mention whether it should start a new entity
or be linked to an existing mention (e.g., (Soon
et al., 2001; Ng and Cardie, 2002; Luo, 2007));
that is, the approach makes a series of decisions,

8There are minor differences between the language ID and
coreference resolution tasks. For instance, each entity inthe
language ID task must be assigned a language code. This
means that ambiguous language names will evoke multiple
entities, each with a different language code. These differ-
ences are reflected in our algorithms.

one decision per (mention, entity) pair. Apply-
ing this to the language ID task, the (mention, en-
tity) pair would correspond to an (IGT, langcode)
pair, and each decision would have two possibili-
ties: Samewhen the IGT belongs to the language
or Diff when the IGT does not. Once the decisions
are made for all the pairs, a post-processing proce-
dure would check all the pairs for an IGT and link
the IGT to the language code with which the pair
has the highest confidence score.

Using the same kinds of features in Section 4.1,
the feature vectors for the two IGTs in Table 1 are
shown in Table 5. Comparing Table 4 and 5 re-
veals the differences between theCL approach and
theCoRefapproach: theCoRefapproach has only
two class labels (SameandDiff) where theCL ap-
proach has hundreds of labels (one for each lan-
guage code); theCoRefapproach has much fewer
number of features because language code is not
part of feature names; theCoRefapproach has
more training instances as each training instance
corresponds to an (IGT, langcode) pair.

igt1-bin same nearLC prev50 LMw1 LMm1 ...
igt1-lew diff nearLC prev50 ...
igt1-thp diff prev50 ...
...

igt2-bin same nearLC prev50 LMw1 LMm1 IIw1 ...
igt2-lew diff nearLC prev50 ...
igt2-thp diff prev50 ...
...

Table 5: Feature vectors for the IGTs in Table 1
when using theCoRefapproach with sequence la-
beling methods

5.2.2 Joint Inference Using Markov Logic

Recently, joint inference has become a topic of
keen interests in both the machine learning and
NLP communities (e.g., (Bakir et al., 2007; Sut-
ton et al., 2006; Poon and Domingos, 2007)).
There have been increasing interests in formulat-
ing coreference resolution in a joint model and
conducting joint inference to leverage dependen-



cies among the mentions and entities (e.g., (Well-
ner et al., 2004; Denis and Baldridge, 2007; Poon
and Domingos, 2008)). We have built a joint
model for language ID inMarkov logic(Richard-
son and Domingos, 2006).

Markov logic is a probabilistic extension of
first-order logic that makes it possible to com-
pactly specify probability distributions over com-
plex relational domains. AMarkov logic net-
work (MLN) is a set of weighted first-order
clauses. Together with a set of constants, it de-
fines a Markov network with one node per ground
atom and one feature per ground clause. The
weight of a feature is the weight of the first-order
clause that originated it. The probability of a
statex in such a network is given byP (x) =
(1/Z) exp (

∑
i
wifi(x)), whereZ is a normaliza-

tion constant,wi is the weight of theith clause,
fi = 1 if the ith clause is true, andfi = 0
otherwise. Conditional probabilities can be com-
puted using Markov chain Monte Carlo (e.g., MC-
SAT (Poon and Domingos, 2006)). The weights
can be learned using pseudo-likelihood training
with L-BFGS (Richardson and Domingos, 2006).
Markov logic is one of the most powerful rep-
resentations for joint inference with uncertainty,
and an implementation of its existing learning and
inference algorithms is publicly available in the
Alchemy package (Kok et al., 2007).

To use the features defined in Section 4.1, our
MLN includes two evidence predicates: the first
one isHasFeature(i, l, f) wheref is a feature in
F1-F3. The predicate is true iff the IGT-language
pair (i, l) has featuref . The second predicate is
HasRelation(i1, i2, r) wherer is a relation that
corresponds to a feature inF4; this predicate is
true iff relationr holds between two IGTsi1, i2.
The query predicate isIsSame(i, l), which is true
iff IGT i is in languagel. Table 6 shows the pred-
icates instantiated from the two IGTs in Table 1.

The language ID task can be captured in our
MLN with just three formulas:

IsSame(i, l)

HasFeature(i, l,+f) ⇒ IsSame(i, l)

HasRelation(i1, i2,+r)∧ IsSame(i1, l)
⇒ IsSame(i2, l)

The first formula captures the default probabil-
ity that an IGT belongs to a particular language.

IsSame(igt1, bin)
HasFeature(igt1, bin, nearLC)
HasFeature(igt1, bin, prev50)
HasFeature(igt1, bin, LMw1)
...
HasFeature(igt1, lew, nearLC)
HasFeature(igt1, lew, prev50)
...
IsSame(igt2, bin)
HasFeature(igt2, bin, nearLC)
HasFeature(igt2, bin, prev50)
HasFeature(igt2, bin, LMw1)
...
HasRelation(igt1, igt2, IIw1)
...

Table 6: The predicates instantiated from the IGTs
in Table 1

The second one captures the conditional likeli-
hoods of an IGT being in a language given the fea-
tures. The third formula says that two IGTs prob-
ably belong to the same language if they have a
certain relationr.

The plus sign beforef and r in the formulas
signifies that the MLN will learn a separate weight
for each individual featuref and relationr. Note
that there is no plus sign beforei and l, allowing
the MLN to achieve parameter tying by sharing the
same weights for different instances or languages.

5.2.3 The advantage of theCorefapproach

Both methods of theCoRefapproach address the
limitations of theCL approach: both can handle
theunseen language problem, and both do param-
eter tying in a natural way. Not only does parame-
ter tying reduce the number of parameters, it also
makes it possible to accumulate evidence among
different languages and different IGTs.

6 Experiments

In this section, we compare the two approaches
to the language ID task: theCL approach and the
CoRef approach. In our experiments, we run 10-
fold cross validation (90% for training and 10%
for testing) on the data set in Table 2 and report
the average of language ID accuracy.

The two approaches have different upper
bounds. The upper bound of theCL approach is
the percentage of IGTs in the test data that be-
long to aseenlanguage. The upper bound of the
CoRefapproach is the percentage of IGTs in the
test data that belong to a language whose language
name appears in the same document. For the data
set in Table 2, the upper bounds are 90.33% and



Table 7: The performance of theCL approach (# of classes: about 600, # of training instances=13,723)
Upper bound of TextCat MaxEnt classifier using context information

CL approach F1 F1-F2 F1-F3 F1-F4 (cheating)
# of features N/A N/A 769 5492 8226 8793
w/o the language filter 90.33 51.38 49.74 61.55 64.19 66.47
w/ the language filter 88.95 60.72 56.69 64.95 67.03 69.20

97.31% respectively. When the training data is
much smaller, the upper bound of theCL approach
would decrease tremendously, whereas the upper
bound of theCoRefapproach remains the same.

6.1 TheCL approach

As mentioned before, most existing language ID
algorithm falls into this category. We chose
TextCat,9 an implementation of Cavnar-Trenkle’s
algorithm (1994), as an example of these algo-
rithms. In order to take advantage of the con-
text information, we trained several classifiers
(e.g., decision tree, Naive Bayes, and maximum
entropy) using the Mallet package (McCallum,
2002) and a SVM classifier using the libSVM
package (Chang and Lin, 2001).

The result is in Table 7. The first column shows
the upper bound of theCL approach; the second
column is the result of running TextCat;10 the rest
of the table lists the result of running a MaxEnt
classifier with different feature sets.11 F4 features
require knowing the language code of other IGTs
in the document. In the F1-F4 cheating exper-
iments, the language codes of other IGTs come
from the gold standard. We did not implement
beam search for this because the difference be-
tween the cheating results and the results without
F4 features is relatively small and both are much
worse than the results in theCoRefapproach.

In Table 7, the first row shows the number of
features; the second row shows the accuracy of the
two classifiers; the last row is the accuracy when
a post-processing filter is added: the filter takes
the ranked language list produced by a classifier,
throws away all the languages in the list that do
not appear in the document, and then outputs the
highest ranked language in the remaining list.

There are several observations. First, applying
the post-processing filter improves performance,

9http://odur.let.rug.nl/ vannoord/TextCat/
10We varied the lexicon size (m) – an important tuned pa-

rameter for the algorithm – from 100 and 800 and observed
a minor change to accuracy. The numbers reported here are
with lexicon size set to 800.

11The MaxEnt classifier slightly outperforms other classi-
fiers with the same feature set.

albeit it also lowers the upper bound of algorithms
as the correct language names might not appear
in the document. Second, the MaxEnt classifier
has hundreds of classes, thousands of features, and
millions of model parameters. This will cause se-
vere sparse data and overfitting problems.

6.2 TheCoRefapproach

For theCoRefapproach, we built two systems as
described in Section 5: the first system is a Max-
Ent classifier with beam search, and the second
one is a MLN for joint inference.12 The results
are in Table 8.13

In the first system, the values of F4 features
for the test data come from the gold standard
in the F1-F4 cheating experiments, and come
from beam search in the non-cheating experi-
ments.14 In the second system, the predicate
HasRelation(i1, i2, r) instantiated from the test
data is treated as evidence in the F1-F4 cheat-
ing experiments, and as query in the F1-F4 non-
cheating experiments.

The results for the two systems are very similar
since they use same kinds of features. However,
with Markov logic, it is easy to add predicates and
formulas to allow joint inference. Therefore, we
believe that Markov logic offers more potential to
incorporate arbitrary prior knowledge and lever-
age further opportunities in joint inference.

Tables 7-8 show that, with the same kind of fea-
tures and the same amount of training data, the
CoRefapproach has higher upper bound, fewer
model parameters, more training instances, and
much higher accuracy than theCL approach. This
study shows that properly formulating a task into
a learning problem is very important.

12For learning and inference, we used the existing im-
plementations of pseudo-likelihood training and MC-SAT in
Alchemy with default parameters.

13No language filter is needed since the approach links an
IGT to only the language names appearing in the document.

14It turns out that for this task the size of beam does not
matter much and simply using the top choice by the Max-
Ent classifier for each IGT almost always produces the best
results, so that is the setting used for this table and Table 9.



Table 8: The performance of theCoRefapproach (# of classes=2, # of training instances=511,039)
Upper bound of F1 F1-F2 F1-F3 F1-F4 F1-F4
CoRef approach (cheating) (Non-cheating)

# of features N/A 2 12 17 22 22
Sequence labeling 97.31 54.37 66.32 83.49 90.26 85.10
Markov logic model 97.31 54.98 65.94 83.44 90.37 84.70

Table 9: The performance of theCoRefapproach with less training data (the upper bound of theCoref
approach remains 97.31%)

% of training F1 F1-F2 F1-F3 F1-F4 F1-F4 Upper bound of
data used (cheating) (non-cheating) theCL approach
0.1% 54.37 54.84 65.28 81.21 70.15 1.66
0.5% 54.37 62.78 76.74 87.17 80.24 21.15
1.0% 54.37 60.58 76.09 87.24 81.20 28.92
10% 54.37 62.13 77.07 87.20 83.08 54.45

6.3 Experiments with much less data

Table 8 shows that theCoRefapproach has very
few features and a much larger number of training
instances; therefore, it is likely that the approach
would work well even with much less training
data. To test the idea, we trained the model with
only a small fraction of the original training data
and tested on the same test data. The results with
the first system are in Table 9. Notice that the up-
per bound of theCoRefapproach remains the same
as before. In contrast, the upper bound for theCL
model is much lower, as shown in the last column
of the table. The table shows when there is very
little training data, theCoRefapproach still per-
forms decently, whereas theCL approach would
totally fail due to the extremely low upper bounds.

6.4 Error analysis

Several factors contribute to the gap between the
best CoRefsystem and its upper bound. First,
when several language names appear in close
range, the surface positions of the language names
are often insufficient to determine the prominence
of the languages. For instance, in pattern “Similar
to L1, L2 ...”, L2 is the more prominent thanL1;
whereas in pattern “L1, a L2 language, ...”, L1 is.
The system sometimes chooses a wrong language
in this case.

Second, the language name detector described
in Section 4.2 produces many false negative (due
to the incompleteness of the language table) and
false positive (due to the fact that language names
often have other meanings).

Third, when a language name is ambiguous,
choosing the correct language code often requires
knowledge that might not even be present in the

document. For instance, a language name could
refer to a list of related languages spoken in the
same region, and assigning a correct language
code would require knowledge about the subtle
differences among those languages.

7 Conclusion and future work

In this paper we describe a language identification
methodology that achieves high accuracy with a
very small amount of training data for hundreds
of languages, significantly outperforming existing
language ID algorithms applied to the task. The
gain comes from two sources: by taking advan-
tage of context information in the document, and
by formulating the task as a coreference resolution
problem.

Our method can be adapted to harvest other
kinds of linguistic data from the Web (e.g., lexicon
entries, word lists, transcriptions, etc.) and build
other ODIN-like resources. Providing a means for
rapidly increasing the amount of data in ODIN,
while at the same timeautomatically increasing
the number of languages, can have a significant
positive impact on the linguistic community, a
community that already benefits from the existing
search facility in ODIN. Likewise, the increased
size of the resulting ODIN database could pro-
vide sufficient data to bootstrap NLP tools (e.g.,
POS taggers and parsers) for a large number of
low-density languages, greatly benefitting both the
fields of linguistics and NLP.
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