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Abstract

In globally distributed systems, shared state is never perfect. When
communication is neither fast nor reliable, we cannot achieve strong
consistency, low latency, and availability at the same time. Unfortu-
nately, abandoning strong consistency has wide ramifications. Eventual
consistency, though attractive from a performance viewpoint, is chal-
lenging to understand and reason about, both for system architects
and programmers. To provide robust abstractions, we need not just
systems, but also principles: we need the ability to articulate what a
consistency protocol is supposed to guarantee, and the ability to prove
or refute such claims.

In this tutorial, we carefully examine both the what and the how of
consistency in distributed systems. First, we deconstruct consistency
into individual guarantees relating the data type, the conflict reso-
lution, and the ordering, and then reassemble them into a hierarchy
of consistency models that starts with linearizability and gradually
descends into sequential, causal, eventual, and quiescent consistency.
Second, we present a collection of consistency protocols that illustrate
common techniques, and include templates for implementations of ar-
bitrary replicated data types that are fully available under partitions.
Third, we demonstrate that our formalizations serve their purpose of
enabling proofs and refutations, by proving both positive results (the
correctness of the protocols) and a negative result (a version of the
CAP theorem for sequential consistency).

S. Burckhardt. Principles of
Eventual Consistency. Foundations and TrendsR© in Programming Languages,
vol. 1, no. 1-2, pp. 1–150, 2014.
DOI: 10.1561/2500000011.





1
Introduction

As our use of computers relies more and more on a complex web of
clients, networks, and services, the challenges of programming a dis-
tributed system become relevant to an ever expanding number of pro-
grammers. Providing good latency and scalability while tolerating net-
work and node failures is often very difficult to achieve, even for expert
architects. To reduce the complexity, we need programming abstrac-
tions that help us to layer and deconstruct our solutions. Such abstrac-
tions can be integrated into a language or provided by some library,
system API, or even the hardware.

A widely used abstraction to simplify distributed algorithms is
shared state, a paradigm which has seen much success in the construc-
tion of parallel architectures and databases. Unfortunately, we know
that in distributed systems, shared state cannot be perfect: in general,
it is impossible to achieve both strong consistency and low latency. To
state it a bit more provocatively:

All implementations of mutable shared state in a geographically dis-
tributed system are either slow (require coordination when updating
data) or weird (provide weak consistency only).

3



4 Introduction

This unfortunate fact has far-reaching consequences in practice, as
it forces programmers to make an unpleasant choice. Strong consistency
means that reads and updates behave as if there were a single copy of
the data only, even if it is internally replicated or cached. While strong
consistency is easy to understand, it creates problems with availability
and latency. And unfortunately, availability and latency are often cru-
cial for business — for example, on websites offering goods for sale, any
outage may cause an immediate, irrecoverable loss of sales [G. DeCan-
dia et al., 2007]. Where business considerations trump programming
complexity, consistency is relaxed and we settle for some form of

Eventual Consistency. The idea is simple: (1) replicate the data across
participants, (2) on each participant, perform updates tentatively lo-
cally, and (3) propagate local updates to other participants asyn-
chronously, when connections are available.

Although the idea is simple, its consequences are not. For example,
one must consider how to deal with conflicting updates. Participants
must handle conflicting updates consistently, so that they agree on the
outcome and (eventually) converge. Exactly what that should mean,
and how to understand and compare various guarantees, data types,
and system implementations is what we study in this tutorial.

Although eventual consistency is compelling from a performance
and availability perspective, it is difficult to understand the precise
guarantees of such systems. This is unfortunate: if we cannot clearly
articulate a specification, or if the specification is not strong enough to
let us write proveably correct programs, eventual consistency cannot
deliver on its promise: to serve as a robust abstraction for the program-
ming of highly-available distributed applications.

The goal of this tutorial is to provide the reader with tools for
reasoning about consistency models and the protocols that implement
them. Our emphasis is on using basic mathematical techniques (sets,
relations, and first order logic) to describe a wide variety of consistency
guarantees, and to define protocols with a precision that enables us
to prove both positive results (proving correctness of protocols) and
negative results (proving impossibility results).
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1.1 General Motivation

Geographical distribution has become inseparable from computing. Al-
most all computers in use today require a network connection to deliver
their intended functionality. Programming a distributed system has
thus become common place, and understanding both the challenges and
the available solutions becomes relevant for a large number of program-
mers. The discipline of distributed computing is at the verge of a “rel-
evance revolution” not unlike the one faced by concurrent and parallel
computing a decade ago. Like the “multicore revolution”, which forced
concurrent and parallel programming into the mainstream, the “mo-
bile+cloud revolution” means that distributed programming in general,
and the programming of devices, web applications, and cloud services
in particular, is well on its way to becoming an everyday necessity for
developers. We can expect them to discover and re-discover the many
challenges of such systems, such as slow communication, scalability bot-
tlenecks, and node and network failures.

1.1.1 Challenges

The performance of a distributed system is often highly dependent on
the latency of network connections. For technical and physical reasons
(such as the speed of light), there exists a big disparity between the
speed of local computation and of wide-area communication, usually
by orders of magnitude. This disparity forces programmers to reduce
communication to keep their programs performant and responsive.

Another important challenge is to achieve scalability of services.
Scalability bottlenecks arise when too much load is placed on a resource.
For example, using a single server node to handle all web requests does
not scale. Thus, services need to be distributed across multiple nodes
to scale. The limited resource can also be the network. In fact, it is
quite typical that the network gets saturated by communication traffic
before the nodes reach full utilization. Then, programmers need to
reduce communication to scale the service further.

And of course, there are failures. Servers, clients, and network con-
nections may all fail temporarily or permanently. Failures can be a
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consequence of imperfect hardware, software, or human operation. The
more components that there are in a system, the more likely it will fail
from time to time, thus failures are unavoidable in large-scale systems.

Often, it makes sense to consider failures not as some rare event,
but as a predictable part of normal operation. For example, a connec-
tion between a mobile client and a server may fail because the user
is driving through a tunnel or boarding an airplane. Also, a user of a
web application may close the browser without warning, which (from
a server perspective) can be considered a “failure” of the client.

At best, failures remain completely hidden from the user, or are ex-
perienced as a minor performance loss and sluggish responses only. But
often, they render the application unusable, sometimes without indica-
tion about what went wrong and when we may expect normal operation
to resume. At worst, failures can cause permanent data corruption and
loss.

1.1.2 Role of Programming Languages

What role do programming languages have to play in this story? A
great benefit of a well-purposed programming language is that it can
provide convenient, robust, and efficient abstractions. For example, the
abstraction provided by a garbage-collected heap is convenient, since
it frees the programmer from the burden of explicit memory manage-
ment. It is also robust, since it cannot be broken inadvertently if used
incorrectly. Last but not least (and only after much research on the
topic), garbage collection is efficient enough to be practical for many
application requirements. Although conceptually simple, garbage col-
lection illustrates what we may expect from a successful combination of
programming languages and systems research: a separation of concerns.
The client programmer gets to work on a simpler abstracted machine,
while the runtime system is engineered by experts to efficiently simulate
the abstract machine on a real machine.

But what abstractions will indeed prove to be convenient, robust,
and efficient in the context of distributed systems? Ideally, we would
like to completely hide the distributed nature of the system (slow con-
nections, failures, scalability limits) from the programmer. If we could
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efficiently simulate a non-distributed system on a distributed system,
the programmer would never even need to know that the system is dis-
tributed. Unfortunately, this dream is impossible to achieve in general.
This becomes readily apparent when we consider the problem of con-
sistency of shared state. In a non-distributed system, access to shared
data is fast and atomic. However, the same is not true for a distributed
system.

1.1.3 Distributed Shared Data

Ideally, simulating shared data in a distributed system should look just
like in a non-distributed system - meaning that it should appear as if
there is only a single copy of the data being read and written.

The Problem. There is no doubt that strong consistency (also known
as single-copy consistency, or linearizability) is the best consistency
model from the perspective of application programmers. Unfortunately,
it comes at a cost: maintaining the illusion of a single copy requires
communication whenever we read or update data. This communication
requirement is problematic when connections are slow or unavailable.
Therefore, any system that guarantees strong consistency is susceptible
to the following problems:

• Availability. If the network should become partitioned, i.e. if it
is no longer possible for all nodes to communicate, then some
clients may become unusable because they can no longer update
or read the data.

• Performance. If each update requires a round-trip to some central
authority, or to some quorum of servers or peers, and if commu-
nication is slow (for example, because of geographical distance
between the client and the server, or between the replicas in a
service), then the performance and responsiveness of the client
application suffers.

These limitations of strong consistency are well known, and complicate
the design of many distributed applications, such as cloud services.
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The CAP theorem, originally conjectured by Brewer [2000] and
later proved by Gilbert and Lynch [2002], is a particularly popular
formulation of this fundamental problem (as discussed in the IEEE
Computer retrospective edition 2012). It states that strong Consistency
and Availability cannot be simultaneously achieved on a Partitioned
network, while it is possible to achieve any combination of two of the
above properties.

Seat Reservation Example. We can illustrate this idea informally us-
ing an example where two users wish to make an airplane reservation
when there is only one seat left. Consider the case where the two users
reside in different network partitions, and are thus incapable of com-
municating in any way (even indirectly through some server). It is
intuitively clear that in such a situation, any system is forced to delay
at least one user’s request, or perhaps both of them (thus sacrificing
availability), or risk reserving the same seat twice (thus sacrificing con-
sistency). Achieving both availability and consistency is only possible
if the network always allows communication (thus sacrificing partition
tolerance).

This simple seat reservation example is a reasonable illustration of
the hard limits on what can be achieved. However, it may also create
an overly pessimistic and narrow view of what it means to work with
shared state in a distributed system. Airlines routinely overbook seats,
and reservations can be undone (at some cost). The real world is not al-
ways strongly consistent, for many more reasons than just technological
limitations.

1.2 Applications

Practitioners and researchers have proposed the use of eventual con-
sistency to build more reliable or more responsive systems in many
different areas.

• Cloud Storage and Georeplication. Eventual consistency can
help us to build highly-available services for cloud storage, and
to keep data that is replicated across data centers in sync. Ex-
amples include research prototypes [Li et al., 2012, Lloyd et al.,
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2011, 2014, Sovran et al., 2011] and many commercially used stor-
age systems such as Voldemort, Firebase, Amazon Dynamo [G.
DeCandia et al., 2007], Riak [Klophaus, 2010], and Cassandra
[Lakshman and Malik, 2009].

• Mobile Clients. Eventual consistency helps us to write appli-
cations that provide meaningful functionality while disconnected
from the network, and remain highly responsive even if connec-
tions to the server are slow [Terry et al., 1995, Burckhardt et al.,
2012b, 2014b].

• Epidemic or Gossip Protocols. Eventual consistency can help
us to build low-overhead robust monitoring systems for cloud
services, or for loosely connected large peer-to-peer networks
[Van Renesse et al., 2003, Jelasity et al., 2005, Princehouse et al.,
2014].

• Collaborative editing. When multiple people simultaneously edit
the same document, they face consistency challenges. A common
solution is to use operational transformations (OT) [Imine et al.,
2006, Sun and Ellis, 1998, Nichols et al., 1995].

• Revision Control. Forking and merging of branches in revision
control system is another example where we can apply gen-
eral principles regarding concurrent updates, visibility, and con-
flict resolution [Burckhardt and Leijen, 2011, Burckhardt et al.,
2012a].

The examples above span a rather wide range of systems. The par-
ticipating nodes may have little computational power and storage space
(such as mobile phones) or plenty of computation power (such as servers
in data centers) and lots of storage (such as storage back-ends in data
centers). Similarly, the network connections may be slow, unreliable,
low-bandwidth and expensive (e.g. cellular connections) or fast and
high-bandwidth (e.g. intra-datacenter networks), or something in be-
tween (e.g. inter-datacenter networks). These differences are very im-
portant when considering how best to make the trade-off between reli-
ability and availability. However, at an abstract level, all of these sys-
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tems share the same principles of eventual consistency: shared data is
updated at different replicas, updates are transmitted asynchronously,
and conflicts are resolved consistently.

1.3 Warmup

To keep things concrete, we start with a pair of examples. We study two
different implementations of a very simple shared data type, a register.
The first one stores a single copy on some reliable server, and requires
communication on each read or write operation. The second one prop-
agates updates lazily, and both read and write operations complete
immediately without requiring communication.

For illustration purposes, we keep the shared data very simple: just
a value that can be read and written by multiple processes. This data
type is called a register in the distributed systems literature. One can
imagine a register to be used to control some configuration setting, for
example.

1.3.1 Single-Copy Protocol

The first implementation of the register stores a single copy of the reg-
ister on some central server — it does not use any replication. When
clients wish to read or write the register, they must contact the server to
perform the operation on their behalf. This general design is very com-
mon; for example, web applications typically rely on a single database
backend that performs operations on behalf of clients running in web
browsers.

We show the protocol definition in Fig. 1.1. A protocol definition
specifies the name of the protocol, the messages, and the roles. The
SingleCopyRegister protocol defines four messages and two roles, Server
and Client.

Roles represent the various participants of the protocol, and are
typically (but not necessarily) geographically separated. Roles react to
operation calls by some user or client program, and they communi-
cate with each other by sending and receiving messages. Technically,
each role is a state machine which defines a current state and atomic
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1 protocol SingleCopyRegister {
2

3 message ReadReq(cid: nat) : reliable
4 message ReadAck(cid: nat, val: Value) : reliable
5 message WriteReq(cid: nat, val: Value) : reliable
6 message WriteAck(cid: nat) : reliable
7

8 role Server {
9 var current: Value ;

10 receive(req: ReadReq) {
11 send ReadAck(req.cid, current) ;
12 }
13 receive(req: WriteReq) {
14 current := req.val ;
15 send WriteAck(req.cid) ;
16 }
17 }
18

19 role Client(cid: nat) {
20 operation read() {
21 send ReadReq(cid) ;
22 // does not return to client program yet
23 }
24 operation write(val: Value) {
25 send WriteReq(cid,val) ;
26 // does not return to client program yet
27 }
28 receive ReadAck(cid) {
29 return val ; // return to client program
30 }
31 receive WriteAck(cid) {
32 return ok ; // return to client program
33 }
34 }
35 }

Figure 1.1: A single-copy implementation of a register. Read an write operations
contact the server and wait for the response.
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transitions that are executed in reaction to operation calls by client
programs, to incoming messages, or to some periodic scheduling. In
our notation, roles look a bit like objects: the role state looks like fields
of an object, and each atomic transition looks like a method of the
object.

A role definition starts with the name of the role, followed by an
argument list that clarifies the number of instances, and how they are
distinguished. Here, there is a single server role and an infinite number
of clients, each identified by a client identifier cid which is a nonegative
integer (type nat).

Messages. There are four message format specifications (lines 3 – 6).
Each one describes a message type and the contents of the message
(names and types), and specifies the expected level of reliability. For
example, the declaration message WriteReq(c: Client, val:boolean) : reliable
means that each WriteReq message carries a client identifier c (the client
writing the register), and a boolean value val (the value being written),
and that this message is always delivered to all recipients, and never
forged nor duplicated, but possibly reordered with other messages.

Server. In the Server role (lines 8 – 17), the state of the server consists of
a single variable current which is the current value of the register (line 9).
It is specified to be initially false. The only server actions are to receive
a read or a write request. When receiving a message corresponding to
a read request (line 10) or a write request (line 13), the corresponding
operation (read or write) is performed, and the result value (in the case
of read) or an acknowledgment message (in the case of write) is sent
back using a send request.

Client. The Client role (lines 19 – 34) contains definitions for read and
write operations, but has no variables (i.e. it is stateless). Supposedly,
the operations are called by the local user or client program; the latter
may call any sequence of read and write operations, but it may not call
an operation until the previous one has returned.

When the read operation is called, the corresponding atomic transi-
tion sends a WriteReq message, but it does not complete the operation
— there is no implicit return at the end of a transition (the opera-
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tion cannot return because it does not know the value of the register
yet). Only when the response arrives from the server, the correspond-
ing transition contains an explicit return statement that completes the
read operation and returns the result to the client program. Thus, the
read-operation is non-atomic, i.e. executes not as a single transition,
but as two transitions. The write operation is non-atomic as well; it
blocks until an acknowledgment from the server has been received.

Message Destination. Note that the send instruction does not explic-
itly specify the destination — instead, it is the receive instruction that
specifies what messages to receive. Receive operations specify a pattern
that defines what messages can be received.1 For example, the receive
actions on lines 28 and 31 match an incoming message only if the c
field of the request matches this, which is the client id — therefore,
only the c field acts as a destination identifier and ensures the response
message is received only by the client that sent the original request to
the server.

Atomic Actions. Our semantics compiles roles like state machines with
atomic actions. Intuitively, this means that only one block of code is
executing at a time, thus there is no fine-grained concurrency and we
need no locks. Of course, there is still ample opportunity for subtle
errors caused by the coarse-grained concurrency, i.e. by unexpected
orderings of the atomic actions.

Reliability. Crashes by one client cannot impact other clients. However,
the protocol is not robust against server crashes: a crashed server makes
progress impossible for all clients. This assumption of a single reliable
server is of course the cornerstone of the single-copy protocol design.
It is, however, not a limitation of the epidemic protocol defined in the
next section.
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1 protocol EpidemicRegister {
2

3 struct Timestamp(number: nat ; pid: nat) ;
4 function lessthan(Timestamp(n1,pid1), Timestamp(n2,pid2)) {
5 return (n1 < n2) ∨ (n1 == n2 ∧ pid1 < pid2) ;
6 }
7

8 message Latest(val: Value, t: Timestamp) : dontforge, eventualindirect
9

10 role Peer(pid: { 0 .. N }) {
11

12 var current: Value := undef ;
13 var written: Timestamp := Timestamp(0,pid) ;
14

15 operation read() {
16 return current ;
17 }
18 operation write(val: Value) {
19 current := val ;
20 written := Timestamp(written.number + 1,pid) ;
21 return ok ;
22 }
23

24 periodically {
25 send Latest(current, written) ;
26 }
27

28 receive Latest(val,ts) {
29 if (written.lessthan(ts)) {
30 current := val ;
31 written := ts ;
32 }
33 }
34 }
35 }

Figure 1.2: An implementation of the register where all operations return imme-
diately, without waiting for messages.
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1.3.2 Epidemic Protocol

The single-copy implementation is easy to understand. However, the
read and write operations are likely to be quite slow in practice because
they require a round-trip to the server. The epidemic register (Fig. 1.2)
eliminates this problem by removing the server communication from the
operations: each role stores a local copy of the register, and propagates
updates asynchronously. No central server is needed: all roles are equal
(we call them peers). We call this a symmetric protocol, as opposed to
the asymmetric client-server protocol discussed in the previous section.

Timestamps.When propagating updates, we use timestamps to ensure
that later updates overwrite earlier ones and not the other way around.
Each node stores not just the currently known latest value of the reg-
ister (current), but also a timestamp (written) that indicates the time of
the write operation that originally wrote that value. When receiving
a timestamped update, we ignore it if its timestamp is older than the
timestamp of the current value.

Logical clocks. Rather than a physical clock, we use logical clocks to
create timestamps, which are a well-known, clever technique for order-
ing events in a distributed system [Lamport, 1978]. Logical timestamps
are pairs of numbers, which are totally ordered by lexicographic order2
as defined on lines 3–5. On each write operation (lines 18–22) the node
creates a new timestamp, which is larger than the current one (and thus
also larger than all timestamps previously received in update messages).

Update Propagation. Every once in a while, each role performs the
code on lines 24–26 which broadcasts the currently stored value and
its timestamp in a Latest message. This ensures that all roles become
eventually aware of all updates, and are thus eventually consistent.

1These patterns are similar to patterns in languages like OCaml, but must be
static, i.e. the pattern may not depend on the current state of the role, but must
use only constants.

2Lexicographic order means that tuples are compared based on the first compo-
nent, and then the second component if the first one is the same, and so on. It is a
generalization of alphabetic order if we consider words to be tuples of letters, thus
the name.
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Weaker Delivery Guarantees. The delivery guarantees required by this
protocol (on line 8) are dontforge (meaning no messages should be in-
vented) and eventualindirect (meaning that there must be some delivery
path, possibly indirect via other replicas). These are weaker conditions
than the reliable guarantee used by the single-copy protocol (which re-
quired that all messages be delivered to all receivers exactly once). Here,
the system is allowed to duplicate and even lose messages, as long as
there is always eventually some (possibly indirect) delivery path from
each sender to each receiver.

This type of propagation is sometimes called epidemic, since nodes
can indirectly “infect” other nodes with information. An epidemic pro-
tocol keeps functioning even if some connections are down, as long as
the topology is “eventually strongly connected”. Another name for this
type of protocol is state-based, because each message contains informa-
tion that is identical to the local state.

Consistency and Correctness

The interesting questions are: is the epidemic protocol correct? What
does correct even mean? What is the observable difference between the
two protocols, from a client perspective?

Given our discussion of eventual consistency earlier, we may rea-
sonably expect an answer along the lines of “the epidemic protocol is
eventually consistent, while the single-copy protocol is strongly consis-
tent”. However, the story is a bit more interesting than that.

• The single-copy register is linearizable, which is the strongest form
of consistency.

• The epidemic register is sequentially consistent, which is a slightly
weaker, yet still surprisingly strong consistency guarantee. We
prove this in §10.2.2.

At first glance, this appears to contradict the CAP theorem since
the epidemic register is available under partitions (all operations com-
plete immediately), thus strong consistency should not be possible? It
turns out that the original CAP is about linearizability, not sequential
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consistency; and under sequential consistency, CAP only applies to res-
onably expressive data types, not including a simple register. We prove
a properly qualified version of the CAP theorem in §9.1.2.

Since the single-copy register is linearizable, and the epidemic reg-
ister is sequentially consistent, they are observationally equivalent to
any client that does not have a side channel for communication (for
more about this, see §5.3.1).

1.4 Overview

The goal of this tutorial is to provide the reader with tools for reasoning
about consistency of protocols. Our emphasis is on using basic math-
ematical techniques (sets, relations, and first order logic) to describe
a wide variety of consistency guarantees, and to define protocols with
a level of precision that enables us to prove both positive results (cor-
rectness of protocols) and negative results (refute implementability).

We start with basic technical foundations in chapter 2, including a
review of important concepts related to partial and total orders. We also
introduce event graphs, which are mathematical objects representing
information about events in executions, and which are the technical
backbone of all our definitions.

In chapters 3–5, we lay out the specification methodology, and as-
semble consistency guarantees spanning data type semantics, ordering
guarantees, and convergence guarantees:

• In chapter 3 we introduce our approach to specifying consistency
guarantees, which is based on histories and abstract executions.

• In chapter 4, we first specify the semantics of sequential data
types, and then generalize to replicated data types that specify
the semantics in a replicated setting, in particular how to resolve
conflicts. The key insight is to think of the current state not as a
value, but as a graph of prior operations.

• In chapter 5, we define basic eventual consistency, collect vari-
ous consistency guarantees, and present a hierarchy of the most
common consistency models.
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In chapter 6, we walk through a selection of protocol implementa-
tions and optimizations, to gain a better understanding of the nature
of the trade-off between the consistency model and the speed/availabil-
ity of operations. We show implementations for simple data types, and
protocol templates that can be used to implement any replicated data
type.

In chapters 7 and 8, we establish formal models for executions
in asynchronous distributed systems (including crashes and transport
failures), and for protocol definitions (accommodating arbitrary asyn-
chronous protocols). These models are needed as a preparation for the
next two chapters, which conclude the technical development:

• In chapter 9, we prove a version of the CAP theorem that shows
that for all but the simplest data types, sequential consistency
cannot be implemented in a way such that all operations are
available under partitions.

• In chapter 10, we revisit the implementations presented earlier,
and prove that they provide the claimed consistency guarantees.



2
Preliminaries

One of our main themes is to use mathematical language to describe
expected or actual behaviors of distributed systems. In this chapter, we
give careful explanations of the technical foundations we use through-
out the book. Readers may read it from beginning to end, but are
encouraged to skim or skip through it and refer back when needed.

We rely mostly on standard notations that are commonly used in
textbooks, but we also introduce some custom notations and concepts
that are particularly useful for our purpose, most notably event graphs
(§2.2).

2.1 Sets and Functions

We use standard notations for working with sets. Note that we write
A ⊆ B to denote ∀a ∈ A : a ∈ B. In particular, the notation A ⊆ B

does neither imply nor rule out either A = B or A 6= B. We let N be the
set of all natural numbers (starting with number 1), and N0 = N∪{0}.

We write A → B to denote the set of functions from A to B, and
A ⇀ B to denote the set of partial functions. Following tradition, we
write f : A → B to mean f ∈ (A → B). For a function f : A → B,
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we define domf def= A, and for a partial function f : A ⇀ B, we define
domf def= {a ∈ A | ∃b ∈ B : f(a) = b}. When working with a partial
function f , we write f(a) = ⊥ to mean a /∈ domf . The symbol ⊥ is
used exclusively for this purpose, i.e. is not an element of any set.

Functions and partial functions can be interpreted as relations:
(A → B) ⊆ (A ⇀ B) ⊆ (A × B), and we take advantage of this in
our notations. For instance, we write ∅ for the partial function with
empty domain. For any (partial) function f : A → B and elements
a ∈ A, b ∈ B, we define the (partial) function f [a 7→ b] as

f [a 7→ b](x) def=
{
b if x = a

f(x) otherwise.

The power set P(A) = {A′ | A′ ⊆ A} is the set of all subsets of A.
We can lift a function f : A → B to a function bfc : P(A) → P(B)
by bfc(A′) = {f(a) | a ∈ A′} and may sometimes do so implicitly, i.e.
using the same symbol f to denote bfc.

For a finite or infinite set A, we write |A| <∞ or |A| =∞, respec-
tively. We define A ⊆fin B

def⇐⇒ (A ⊆ B ∧ |A| < ∞), Pfin(A) def= {B |
B ⊆fin A}, and A ⇀fin B

def= {f : A ⇀ B | |domA| <∞).

2.1.1 Finite Sequences

Given a set A, we let A∗ be the set of finite sequences (or “words”) of
elements of A, including the empty sequence which is denoted ε. We
identify sequences of length one with the element they contain, thus
A ⊆ A∗. We let A+ ⊆ A∗ be the set of nonempty sequences of elements
of A. Thus, A∗ = A+ ∪ {ε}.

For two sequences u, v ∈ A∗, we write u ·v to denote the concatena-
tion (which is also in A∗). If f : A→ B is a function, and w ∈ A∗ is a
sequence, then we let f(w) ∈ B∗ be the sequence obtained by applying
f to each element of w.

We define operators sort, map, and foldr as follows: (1) Given a finite
set A and a total order rel on A, we let A.sort(rel) ∈ A∗ be the sequence
obtained by arranging the elements of A in ascending <rel-order. (2)
Given a sequence w ∈ A∗, and a function f : A → B, we define
w.map(f) ∈ B∗ to be the sequence obtained by applying f to each
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element of w. (3) Given an element a0 ∈ A, a function f : A×B → A,
and a sequence w ∈ B∗, we define

foldr(a0, f, w) =
{
a0 if w = ε

f(foldr(a0, f, w
′), b) if w = w′b

2.1.2 Relations

A binary relation rel over A is a subset rel ⊆ A × A. For a, b ∈ A, we
use the notation a rel−→ b to denote (a, b) ∈ rel, and the notation rel(a)
to denote {b ∈ A | a rel−→ b}. We use the notation rel−1 to denote the
inverse relation, i.e. (a rel−1

−−−→ b)⇔ (b rel−→ a). Therefore, rel−1(b) = {a ∈
A | a rel−→ b} (we use this notation frequently).

Given two binary relations rel, rel′ over A, we define the composition
rel ; rel′ = {(a, c) | ∃b ∈ A : a rel−→ b

rel′−−→ c}. We let idA be the identity
relation over A, i.e. (a idA−−→ b) ⇔ (a ∈ A) ∧ (a = b). For n ∈ N0, We
let reln be the n-ary composition rel ; rel . . . ; rel, with rel0 = idA. We let
rel+ =

⋃
n≥1 reln and rel∗ =

⋃
n≥0 reln. We let rel? = rel0∪ rel1. For some

subset A′ ⊆ A, we define the restricted relation rel|A′
def= rel∩ (A′×A′).

We often abbreviate conjunctions of relations when convenient; for
example, a = b = c is short for (a = b ∧ b = c), and a rel−→ b

rel−→ c is
short for (a rel−→ b ∧ b

rel−→ c)

2.1.3 Orders and Equivalences

Relations can represent many different things. In our context, we are
particularly interested in the cases where relations represent some kind
of ordering of events, or an equivalence relation. We define various
properties of relations in Figure 2.1.

Partial orders are irreflexive and transitive, which implies acyclic
(because any cycle in a transitive relation implies a self-loop). We of-
ten visualize partial orders as directed acyclic graphs. Moreover, in such
drawings, we usually omit transitively implied edges, to avoid overload-
ing the picture.

A partial order does not necessarily order all elements, which dis-
tinguishes it from a total order. All total orders are also partial or-
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Property Element-wise Definition Algebraic Definition
∀x, y, z ∈ A :

symmetric x
rel−→ y ⇒ y

rel−→ x rel = rel−1

reflexive x
rel−→ x idA ⊆ rel

irreflexive x 6 rel−→ x idA ∩ rel = ∅
transitive (x rel−→ y

rel−→ z)⇒ (x rel−→ z) (rel ; rel) ⊆ rel
acyclic ¬(x rel−→ . . .

rel−→ x) idA ∩ rel+ = ∅
total x 6= y ⇒ (x rel−→ y ∨ y rel−→ x) rel ∪ rel−1 ∪ idA = A×A

Property Definition
natural ∀x ∈ A : |rel−1(x)| <∞
partialorder irreflexive ∧ transitive
totalorder partialorder ∧ total
enumeration totalorder ∧ natural
equivalencerelation reflexive ∧ transitive ∧ symmetric

Figure 2.1: Definitions of common properties of a binary relation rel ⊆ A×A.

ders. For a partial or total order rel, we sometimes use the notation
a ≤rel b

def⇐⇒ [(a rel−→ b) ∨ (a = b)].
An equivalence relation is a transitive, reflexive, and symmetric

relation. If rel is an equivalence relation, we sometimes use the notation
a ≈rel b

def⇐⇒ [a rel−→ b]. An equivalence relation rel on A partitions A
into equivalence classes [x]rel = {y ∈ A | y ≈rel x}. The equivalence
classes are pairwise disjoint and cover A. We write A/≈rel to denote
the set of equivalence classes.

2.1.4 Countable Sets

A total order that is also natural (i.e. for each element x, there are
only finitely many elements that are ordered before x) is called an
enumeration. If there exists an enumeration for a set, that set is called
countable. Countable sets can be finite or infinite.

If rel is an enumeration on a set A, we can choose elements ai ∈ A
such that A = {a0, a1, . . . } with (ai

rel−→ aj ⇔ i < j), by defining ai
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to be the (uniquely) determined element of A that has rank i, where
rank(A, rel, a) def=

∣∣{x ∈ A | x rel−→ a}
∣∣. Also, we can define notations for a

successor function and a predecessor partial function: succ(A, rel, ai) =
ai+1, pred(A, rel, ai+1) = ai, and pred(A, rel, a0) = ⊥.

All total orders on finite sets are enumerations. However, not all
total orders on infinite sets are enumerations: for example, the lexico-
graphic order on N0 × N0, defined as (a, b) < (c, d) def⇐⇒ (a < c) ∨ (a =
c ∧ b < d), is not natural.

Lemma 2.1. Subsets and products of countable sets are countable.

Proof. For subsets, the claim follows easily from the fact that re-
lations remain total and natural when restricted to a subset. For
products {a0, a1, . . . } × {b0, b1, . . . }, we can enumerate the tuples
(ai, bj) by first lexicographically enumerating the finite set of tuples
whose indexes add up to 0, then the finite set of tuples whose in-
dexes add up to 1, and so on. This process yields the enumeration
(a0, b0), (a0, b1), (a1, b0), (a0, b2), (a1, b1), (a2, b0), (a0, b3), . . .

2.1.5 Order-Extension Principle

Sometimes, we want to take a partial order and add just enough edges
to turn it into a total order. For finite sets, the topological sort algo-
rithm (a standard algorithm, which can be found in textbooks such
as Cormen et al. [2003]) does just that: it provides a way to sort all
elements of a directed acyclic graph (the partial order) into a sequence
(a total order) such that there are no backward edges (thus, the total
order extends the partial order). This process is also possible for infi-
nite sets. We prove it for arbitrary countable sets (i.e. a set for which
an enumeration exists) using the following deterministic construction.

Proposition 2.1 (Deterministic Totalization). Let A be a countable
set and en be an enumeration of A. Let rel be a partial order on
A. Then we can define a total order totalize(rel, en) on A such that
rel ⊆ totalize(rel, en).

Proof. Since A has an enumeration en, we can enumerate it as A =
{a0, a1, . . . } where (ai

en−→ aj) ⇔ (i < j). Define the set of pairs P =
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{(ai, aj) ⊆ A × A | i < j} and enumerate P as defined in Lemma 2.1.
Then, define a sequence of relations rel0, rel1, . . . as

rel0
def= rel relk+1

def=
{

relk if pk ∈ rel−1
k

(relk ∪ {pk})+ otherwise

Then clearly, the relk are monotonic: relk ⊆ relk+1. Moreover, each relk
is a partial order: for k = 0 this is assumed of rel. For the induction
step: transitivity is easy (we either use the previous relation which
is transitive by induction, or we use transitive closure); irreflexivity
and acylicity hold because any newly formed cycle or self-loop has to
contain the newly added edge (by induction, the previous relation is
acyclic and irreflexive), and we only add the edge if its converse is not
in the previous relation, and the edge is never a self-loop, thus no cycle
or self-loop can form.

Finally, define totalize(rel, en) def=
⋃
k relk. This satisfies the condi-

tions in the claim, since (1) it contains rel because rel0 = rel, (2) it
is total because for any ai, aj with i < j there exists a k such that
pk = (ai, aj), and then ai and aj are ordered in relk+1, (3) similarly, it
is transitive because for any three ai

rel−→ aj
rel−→ an we can find k large

enough so that ai, an are ordered in relk, which is a partial order so it
must order them as ai

rel−→ an to not form a cycle, and (4) it is irreflexive
and acyclic because any self-loop or cycle would have to be contained
in some relk for k large enough, contradicting our finding that each relk
is a partial order.

The above proof is deterministic (we always construct the same
total order if starting with the same partial order and enumeration).
The order extension principle is true for general (non-countable) sets
as well, but the proof requires the axiom of choice [Marczewski, 1930].

2.2 Event Graphs

To work with all the various specifications and guarantees, we need
techniques and notations that let us conveniently reason about execu-
tions at various abstraction levels. We use event graphs for that pur-
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pose, since event graphs can be easily projected (to remove information)
and extended (to add information).

An event graph represents an execution of the system, and encodes
information about that execution in the form of vertices, attributes,
and relations.

• Vertices represent events that occurred at some point during the
execution. The number of vertices can be infinite, which allows
us to reason about properties of infinite executions (in particular,
liveness properties). Events are drawn from some universe Events
which we leave unspecified, but assume large enough to contain
any sets we may encounter in a concrete situation.

• Attributes label vertices with information pertinent to the cor-
responding event, such as the operation performed, or the value
returned.

• Relations represent orderings or groupings of events; we visual-
ize relations in various ways, such as by arrows (well suited for
partial orders), or by aligning events vertically (well suited for to-
tal orders representing the real-time succession of events), or by
adding numeric subscripts to event labels (well suited for total or-
ders representing arbitration timestamps), or by grouping related
events into dashed boxes (well suited for equivalence relations).

Definition 2.1. An event graph G is a tuple (E, d1, . . . , dn) where E ⊆
Events is a finite or countably infinite set of events, n ≥ 1, and each di
is an attribute or a relation over E.

To give an advance impression of the flexibility of event graphs,
we show four examples where event graphs represent concepts that
we will develop in this tutorial (histories, operation contexts, abstract
executions, and concrete executions) in Figure 2.2. We will explain
what they mean once we reach the corresponding definition later on.

Isomorphisms. Event graphs are meant to carry information that is
independent of the actual elements of Events chosen to represent the
events.
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(a) An event graph for an operation context (Definition 4.4):

wr(1)1 vis

vis

rd3
wr(2)2


graph is ({e1, e2, e3}, op, vis, ar) where
op = {(e1,wr(1)), (e2,wr(2)), (e3, rd)}
vis = {(e1, e3), (e2, e3)}
ar = {(ei, ej) | i < j}


(b) An event graph for an infinite history (Definition 3.1):

rd:0 wr(1):ok rd:1 
rb rb

rd:1 
rb

...
rb

ss



graph is (N0, op, rval, rb, ss) where
op = {(0, rd), (1,wr(1))}

∪ {(n, rd) | n ≥ 2}
rval = {(0, 0), (1, ok)}

∪ {(n, 1) | n ≥ 2}
rb = {(a, b) | a < b}
ss = N0 × N0


(c) An event graph for an abstract execution (Definition 3.3):

inc:ok1

rd:13

rbvis

inc:ok2

rd:24
ssss

rb vis vis



graph is ({a1, a2, b1, b2}, op, rval, rb, ss, vis, ar) where
op = {(a1, inc), (a2, rd), (b1, inc), (b2, rd)}

rval = {(a1, ok), (a2, 2), (b1, ok), (b2, 1)}
rb = {(a1, a2), (b1, b2)}
ss = {(a1, a2), (a2, a1), (b1, b2), (b2, b1)}

vis = {(a1, a2), (b1, b2), (b1, a2)}
ar = b1 < a1 < b2 < a2


(d) An event graph for a concrete execution (Definition 7.5):

Peer(1) Peer(2)

init(0,∅)
init(0,∅)

callret(inc,0,1,{Inc},ok)
callret(inc,0,1,{Inc},ok)

callret(rd,1,1,∅,1)

rcv(Inc,1,2,∅)
rcv(Inc,1,2,∅) del

del

eo

callret(rd,2,2,∅,2)

Figure 2.2: Four examples of event graphs used for different purposes throughout
this tutorial.
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Definition 2.2. Two event graphs G = (E, d1, . . . , dn) and G′ =
(E′, d′1, . . . , d′n) are isomorphic, written G ' G′, if di and d′i are of
the same kind (attribute vs. relation) and if there exists a bijection
φ : E → E′ such that for all di where di is an attribute, and all x ∈ E,
we have di(φ(x)) = d′i(x), and such that for all di where di is a relation,

and all x, y ∈ E, we have x di−→ y ⇔ φ(x)
d′i−→ φ(y).

Lemma 2.2. Let G = (E, rel) be an event graph where rel is an enumer-
ation. Then, G is isomorphic to (N,<) where N is either {0, 1 . . . , n}
for some n, or N = N0.

Proof. See § A.1.1 in the appendix.

2.2.1 Projection and Extension

It is often convenient to remove information from event graphs, either
by carving out a subgraph (i.e. restricting to a subset of vertices), or
by removing some attributes or relations, or both.

Definition 2.3. Let G = (E, d1, . . . , dn) be an event graph, let E′ ⊆ E
be a subset of the vertices in G, and let {d′1, . . . d′k} ⊆ {d1, . . . , dn} be
a subset of the attributes/relations. Then, we let G|E′,d′1,...,d′k denote
the projected graph (E′, d′1, . . . , d′k) where for all d′i where d′i = dj :
d′i|E′ = dj |E′ .

We say an event graph G1 is a projection of an event graph G2 if
G1 = G2|E,d1,...,dn for some E, di. Conversely, we say an event graph
G2 is an extension of an event graph G1 if G1 is a projection of G2.

Lemma 2.3 (Structure Preservation). Projection preserves the charac-
ter of a relation: partial orders, total orders, natural orders, enumer-
ations, and equivalence relations remain partial orders, total orders,
natural orders, enumerations, and equivalence relations, respectively,
when projected to a subset.

The lemma is easily proved by checking that each property in Fig. 2.1
is preserved.





3
Consistency Specifications

A consistency model, just like any other specification, serves as a con-
tract between the system architects and the client programmers. Such
a contract simplifies the task of each side: system architects need not
know the details about how client programs intend to use the system,
and client programmers need not understand how the system is imple-
mented. The key to a successful specification is the appropriate use of
abstraction.

The following steps provide a brief overview of our technical ap-
proach to defining a consistency model and checking conformance of
an implementation.

1. Define a set of all observable behaviors H, called histories (§3.1).
This amounts to defining the interface on which the clients inter-
act with the system, and specifying what information to record
about this interaction.

2. Define the subset Hgood ⊆ H of correct behaviors. This is how we
specify the consistency. In general, one may do so operationally
(by a reference model) or declaratively (by a collection of consis-
tency guarantees). The methodology we present here is declara-
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tive and based on abstract executions (§3.2), which are histories
enriched by additional information about visibility and arbitra-
tion.

3. For a particular implementation Π, determine its observable be-
haviors H(Π), and verify correctness by proving H(Π) ⊆ Hgood.
We demonstrate how to verify protocols in Chapters 8 and 10.

3.1 Histories

We capture the observable behavior of a system by defining its histories.
A history records all the interactions between clients and the system.
We include the following information in each history:

• The operations performed. To keep the formalism simple, we de-
fine a single set Operations to be the set that contains all opera-
tions of all data types (more about this in §4.1.2).

• Whether the operation completed, and what value was returned.
We define the set Values broadly to include values of all types
(more about this in §4.1.1).

• The relative order of non-overlapping operations. Operations are
non-overlapping if one of them returns before the other one is
called, in real time.

• The session an operation belongs to. Sessions represent distinct,
sequential interfaces to the system: there can be at most one op-
eration pending per session. Our sessions correspond to what are
often called processes or clients (on shared memory) or contexts
or connections (for replicated stores or databases). In this tuto-
rial, sessions are always bound to a particular role, but in general,
systems may allow sessions to be migrated [Terry et al., 1994].

Histories are commonly visualized using timeline diagrams as shown at
the top of Fig. 3.1. Time goes from left to right, and operations are
drawn as horizontal intervals, whose left end represents the operation
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(a) (b)

wr(1)

wr(2)

rd 1rd 2

ok

ok
enq(1)

deq 1

deq

ok

wr(1):ok 
rb

wr(2):ok rd:2 

rd:1 ss
rb

enq(1):ok deq:1 deq:∇

graph is (V, op, rval, rb) where
V = {a, b, c, d}
op = {(a,wr(1), (b,wr(2)),

(c, rd), (d, rd)}
rval = {(a, ok), (b, ok),

(c, 2), (d, 1)}
rb = {(b, d), (c, d)}
ss = {(a, a), (b, b), (c, c),

(c, d), (d, d), (d, c)}





graph is (W, op, rval, rb) where
W = {x, y, z}
op = {(x, enq(1)),

(y, deq), (z, deq)}
rval = {(x, ok), (y, 1), (z,∇)}

rb = {}
ss = {(x, x), (y, y), (z, z)}



Figure 3.1: Two examples of conventional timeline diagrams that represent histo-
ries (top), and the corresponding event graphs (bottom).

call and whose right end (if present) represents the operation return,
and is labelled by the returned value.

Figure (a) shows a history of an integer register supporting a read
operation rd and write operations {wr(n) | n ∈ N}. There are four op-
erations, two writes by two different sessions (writing 1 and 2, respec-
tively), and two reads by the same session (returning 1 and 2, respec-
tively). Update operations return the constant ok (where ok ∈ Values)
to indicate completion. Figure (b) shows a history of a FIFO queue
supporting a enqueue operation {enq(n) | n ∈ N} and a dequeue op-
eration deq. There are three operations in three separate sessions, one
enqueue and two dequeues, one of which is pending.

Formally, we represent histories using event graphs (as described in
§2.2). Each event in the event graph corresponds to an interval in the
timeline diagram, as shown in Figure 3.1 (bottom).
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Definition 3.1 (History). A history is an event graph (E, op, rval, rb, ss)
where

(h1) op : E → Operations describes the operation of an event.

(h2) rval : E → Values ∪ {∇} describes the value returned by the
operation, or the special symbol ∇ (∇ /∈ Values) to indicate that
the operation never returns.

(h3) rb is a natural partial order on E, the returns-before order.

(h4) ss is an equivalence relation on E, the same-session relation.

The relation rb captures the ordering of non-overlapping operations.
To represent session information, we use a single relation ss, which
we call the same-session relation. It is an equivalence relation that
indicates that two operations have been issued as part of the same
session. Not surprisingly, we call the equivalence classes of ss (i.e. the
sets [e]ss = {e′ ∈ E | e′ ≈ss e}) sessions.

To ensure that histories are meaningful, we need a few additional
conditions, as captured in the following definition.

Definition 3.2 (Well-formed History). A history (E, op, rval, rb, ss) is
well-formed if

(h5) x rb−→ y implies rval(x) 6= ∇ for all x, y ∈ E.

(h6) for all a, b, c, d ∈ E: (a rb−→ b ∧ c
rb−→ d)⇒ (a rb−→ d ∨ c

rb−→ b).

(h7) For each session [e] ∈ E/≈ss, the restriction rb|[e] is an enumera-
tion.

Condition (h5) says that an operation that does not return at all
cannot return before any operation. Condition (h6) ensures that rb is
an interval order [Greenough, 1976], i.e. consistent with a timeline in-
terpretation where operations correspond to segments. Condition (h7)
ensures that sessions are indeed sequential — it implies that any two
operations in the same session are ordered by the returns-before rela-
tion, thus they cannot overlap.
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rd:0 wr(1):ok rd:1 
rb rb

rd:1 
rb

...
rb

ss



graph is (N0, op, rval, rb, ss) where
op = {(0, rd), (1,wr(1))}

∪ {(n, rd) | n ≥ 2}
rval = {(0, 0), (1, ok)}

∪ {(n, 1) | n ≥ 2}
rb = {(a, b) | a < b}
ss = N0 × N0


1 x := x + 1 ;
2 while (x < 2)
3 ;// spin
4 x := 0 ;

Figure 3.2: Example of an infinite history (top) and a snippet of client code that
could cause it to happen (bottom).

Although we will not pursue the topic of transactions further, we
would like to point out that it is straightforward to extend histories
to also record transaction information, using an equivalence relation
to capture which operations belong to the same transaction (e.g. as
formalized by [Burckhardt et al., 2013]).

Infinite Histories. Since histories correspond to executions of some
client program, they can be infinite if that program does not termi-
nate (which is the desired behavior of services, for example). Fig. 3.2
shows an example of an event graph that is an infinite history, with a
single session. The first event (leftmost vertex) is a read operation that
returns the value 0. The second vertex is a write operation that writes
the value 1. All remaining (infinitely many) vertices are read operations
that all return the value 1. We can imagine this execution to be the
result of a client program that reads and writes a single shared variable
as shown at the bottom of Fig. 3.2. Note that the statement on line
1 produces two events, a read and a write that depends on the read.
Also, note that line 4 is never executed because the spin loop on lines
2,3 continues forever. This example illustrates the difference between
(dynamic) events and (static) statements: although each event is the
result of some statement, there is not a one-to-one correspondence.
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3.2 Abstract Executions

How do we tell good histories from bad histories? The most common
approach is to require linearizability of histories. Intuitively, a history
is linearizable if it is possible to insert commit points in the timeline,
where we must place a commit point for each operation that completed
somewhere between its call and its return. The role of the commit
points is to serve as an explanation, or justification, that confirms the
correctness of the observed return values. If no such witness exists, the
history is invalid.

Our methodology follows the same general principle: a history is
correct if and only if we can justify it, by augmenting it with some
additional information that explains the observed return values. How-
ever, instead of adding commit points to a history, we add visibility and
arbitration relations, which allow us to define not just linearizability,
but the whole spectrum of consistency models that are commonly used
for eventually consistent systems.

Visibility tells us about the relative timing of update propagation and
operations. It is an acyclic relation. If an operation a is visible to b
(written a vis−→ b), it means that the effect of a is visible to the client
performing b. In a system where updates are communicated by mes-
sages, this may mean that the message about operation a reached the
client that performed operation b before the operation b was performed.
We call two updates concurrent if they cannot see each other, i.e. are
not ordered by visibility.

Arbitration is used to indicate how the system resolves update conflicts,
i.e. how it handles concurrent updates that do not commute. It is a total
order on operations. If an operation a is arbitrated before b (written
a

ar−→ b), it means that the system considers the operation a to happen
earlier than operation b. In practice, systems can arbitrate operations
in various ways; most often, arbitration is represented by some kind
of timestamp. The timestamp can be taken from a physical or logical
clock on the node that performs the operation, or it can be affixed to
the operation later, for example when it is processed on a single server
that provides a serialization point.
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Definition 3.3 (Abstract Executions). An abstract execution is an event
graph (E, op, rval, rb, ss, vis, ar) such that

(a1) (E, op, rval, rb, ss) is a history.

(a2) vis is an acyclic and natural relation.

(a3) ar is a total order.

We let A be the set of all abstract executions. For some abstract exe-
cution A = (E, op, rval, rb, ss, vis, ar), we get the corresponding history
by removing visibility and arbitration: H(A) = (E, op, rval, rb, ss).

Example. Fig. 2.2(c) shows an example of an event graph that is an
abstract execution.

3.3 Consistency Guarantees

We can define a large variety of consistency guarantees simply by for-
mulating conditions on the various attributes and relations appearing
in the abstract executions.

Definition 3.4 (Consistency Guarantee). A Consistency Guarantee P is
a predicate or property of an abstract execution A, i.e. a statement that
is true or false, depending on the particulars of A up to isomorphism.
We write A |= P if P is true for A.

To define a consistency model, we simply collect all the guaran-
tees needed, and then specify that histories must be justifiable by an
abstract execution that satisfies them all:

Definition 3.5 (Correct History). Let H ∈ H be a history, and let
P1, . . .Pn be a collection of consistency guarantees. We say that H
satisfies the guarantees if it can be extended (by adding visibility and
arbitration) to an abstract execution that satisfies them:

H |= P1 ∧ · · · ∧ Pn
def⇐⇒ ∃A ∈ A :

H(A) = H ∧ A |= P1 ∧ · · · ∧ Pn.
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A consistency model is now simply a combination of consistency guar-
antees. In the next two chapters, we introduce various consistency mod-
els, and the guarantees they are made of, which include:

• Data type semantics that give meaning to operations. We discuss
how to specify both sequential data types (with traditional single-
copy semantics) and replicated data types (which can provide
conflict resolution) in Chapter 4.

• Ordering guarantees (such as causality) that rule out anomalies
caused by reordering of operations. We define a comprehensive
list of such guarantees in Chapter 5 (Fig. 5.1).

• Convergence guarantees that ensure eventual consistency. We de-
fine quiescent consistency in §4.2.1, and eventual visibility in §5.1.

3.4 Background

Operational Consistency Models. An operational consistency model
provides a reference implementation Πref whose behaviors provide the
specification. In this case, an implementation is deemed correct if it
refines the specification:

Πimpl |= Πref
def⇐⇒ H(Πimpl) ⊆ H(Πref)

The main advantage of this approach is that it produces robust
specifications and requires no additional formalization work. Also, there
is a well-studied methodology (e.g. the use of simulation relations or
refinement mappings) to prove correctness.

Operational models for strong consistency (such as linearizability,
sequential consistency) are easy to write and understand. However,
when considering weaker consistency, operational models can become
unwieldy. First, they may become difficult to reason about once they
have a large number of small transitions that interleave in complicated
ways that are hard to visualize. Second, operational models are often
too specific, i.e. over-specify the behavior and do not accommodate a
large number of different implementations and optimizations.
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Axiomatic Consistency Models. An axiomatic model is declarative,
i.e. it uses logical conditions (traditionally called axioms, but here we
call them consistency guarantees) to define the valid behaviors. The ad-
vantage is that we can easily customize the consistency model, choosing
any number and any combination of consistency guarantees. Perhaps
more importantly, the consistency guarantees can have meaning for the
user of the system, thus allowing a user to reason about the correctness
of their programs at a higher abstraction level.

The main disadvantage of axomatic models is that it is often dif-
ficult to fully understand the effect of the axioms. It is easy to make
them accidentally too weak or too strong, thus we need to be careful
to spend some effort on validating them to ensure they serve the in-
tended purpose. For example, we can prove that an operational model
implements them (thus, they are not too strong), or we can use them
to prove a client program correct (thus, they are not too weak).





4
Replicated Data Types

To understand eventually consistent data, we need to understand data,
and we need to understand conflict resolution. We start this chapter
by revisiting sequential data types, based on the notions of state, oper-
ations, and values. Then, we show how to generalize them to replicated
data types, which can specify various conflict resolution strategies. The
key insight is to interpret state not as a value, but as a graph of prior
operations, called the operation context.

Replicated data types can specify simple types (e.g. counters, regis-
ters) or container types (sets, lists, key-value stores), or even recursive
compositions of other replicated data types (such as replicated object
stores). This chapter deals with the specification aspect only; how to
implement replicated data types is discussed in Chapter 6.

4.1 Basic Definitions

Before diving into the challenges of reading and updating shared data
in a distributed system, we start with the basics: what is data, and
what does it mean to read and update it? We set the foundation of our
formalization by defining sets to represent values and operations.

39
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4.1.1 Values

We define Values to be a set of values. It is meant to contain any piece
of data we use in programs, such as constants, tuples, lists, and other
recursive data types. For example, we find it reasonable to include

• Natural numbers N0 = {0, 1, 2 . . . }.

• Character strings, e.g. "", "a", "boo", . . .

• Object identifiers, from some set Objects = {x, y, z, . . . }.

• Various constants used for specific purposes, e.g. ok, false, true,
undef, error, . . . (to be explained when needed).

• Finite sequences of values, such as the empty sequence ε, or a
nested sequence [1, 2, [3, ‘‘far’’, ‘‘boo’’]].

• Tagged tuples, e.g. Timestamp(3, 4), Message(“hi′′, [1, 2]) . . . .

• Finite sets of values, e.g. the empty set ∅.

4.1.2 Operations

We define Operations to be a set of operations. It is meant to contain
operations invoked on data of any data type, whose consistency we may
want to discuss. For example, we find it reasonable to include

• A read operation rd

• A write operation wr(v) writing a value v ∈ Values.

• An increment operation inc.

• Operations add(v) and rem(v) to add/remove a value from a set.

• Operations on objects, fields, or indexed components

x.rd, y.f.wr(0), z.2.inc, . . .

of the general form v.o where v ∈ Values and o ∈ Operations.
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Values and operations can be used to model any imaginable kind of
shared data. However, they are purely syntactic so far. To proceed, we
need a better idea of what the operations are supposed to mean, i.e. a
way to specify the semantics of a data type.

4.2 Sequential Data Types

Conventionally, we reason about data by means of its state. We assume
that at any point of time, the data is in a particular state. This state
determines the return value of read operations, and is modified when
we perform update operations.

Definition 4.1 (Sequential Data Type). A sequential data type S is a
tuple (Σ, σ0, δ) where Σ ⊆ Values is a set of states with an initial state
σ0 ∈ Σ, and δ is a function Operations× Σ→ (Values× Σ) ∪ {∇}.

The function δ describes the effect of operations: δ(o, σ) = (v, σ′) means
that the operation o returns v when called in state σ, and changes the
state to σ′.

Blocking. If δ(o, σ) = ∇, where ∇ /∈ Values is a special symbol, it
means that the operation o blocks in state σ. For example, a dequeue
operation blocks if the queue is empty.

Determinism. We assume determinism, i.e. the specification com-
pletely describes the behavior of the data type. The reason is that we
model nondeterminism due to concurrency explicitly using visibility
and arbitration, as we will discuss in §4.3.

Register Example. We define a register data types that stores a value
(initially the undefined value undef) that can be read by a read opera-
tion rd and updated by a write operation wr(v), as

Sreg
def= (Values,undef, δ) with δ(o, v) =


(v, v) if o = rd
(ok, v′) if o = wr(v′)
(error, v) otherwise

Any operation other than rd or wr(v) is not applicable to this data type,
thus returns the constant error which is an element of Values.
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State Oper. Returned Updated Condition
(and initial state) value state

Counter Sctr
n ∈ N0 rd n same
(initially 0) inc ok n+ 1

Register Sreg
v ∈ Values rd v same
(initially undef) wr(v′) ok v′

Key-Value Store Skvs
f : Values ⇀fin rd(k) undef same if f(k) = ⊥

Values f(k) same if f(k) 6= ⊥
(initially ∅) wr(k, v) ok f [k 7→ v]

Set Sset
A ∈ Pfin(Values) rd A same
(initially ∅) add(v) ok A ∪ {v}

rem(v) ok A \ {v}

Queue Squeue
w ∈ Values∗ enq(v) ok w · v
(initially ε) deq v w′ if w = v · w′

∇ if w = ε

Wall Swall
w ∈ Values∗ post(v) ok w · v
(initially ε) rd w same

Figure 4.1: Definitions of some sequential data types. Implicitly, we define δ(o, σ) =
(error, σ) for all the operations that are not listed.
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More Examples. We show four more examples of sequential data types
in Fig. 4.1, including a counter, a key-value store, a set, a queue, and
a wall. The latter is what we may use for chat rooms or the like: it
is a list of values supporting a read operation rd, and an append op-
eration called post(v). We adopt this terminology (wall, post) because
it is commonly used by social network applications; “append-only list”
would be a more descriptive name.

Operation Categories. It is often convenient to categorize operations.
Read-only operations are operations which have no side effects, update-
only operations are operations that return no information, mixed op-
erations are operations that are neither read-only nor update-only, and
blocking operations are operations that may block.

Definition 4.2. Let S be sequential data type.

readonlyops(S) def= {o∈Operations | ∀σ, v, σ′ : δ(o, σ)=(v, σ′)⇒σ=σ′}

updateonlyops(S) def= {o ∈ Operations | ∀σ : ∃σ′ : δ(o, σ) = (ok, σ′)}

mixedops(S) def= Operations \ (readonlyops(S) ∪ updateonlyops(S))

blockingops(S) def= {o ∈ Operations | ∃σ : δ(o, σ) = ∇}

For example, deq ∈ mixedops(Squeue) ∩ blockingops(Squeue).

4.2.1 Quiescent Consistency

We can define quiescent consistency, a weak form of eventual consis-
tency, by requiring that in any execution where the updates stop at
some point (i.e. where there are only finitely many updates), there
must exist some state, such that each session converges to that state
(i.e. all but finitely many operations e in each session [f ] see that state).

Definition 4.3. Let S = (Σ, σ0, δ) be a sequential data type, and let
A = (E, op, rval, rb, ss, vis, ar) be an abstract execution. Then, define

QuiescentConsistency(S) def⇐⇒( ∣∣{e ∈ E | op(e) /∈ readonlyops(S)}
∣∣ <∞ =⇒ ∃σ ∈ Σ :

∀[f ] ∈ E/≈ss:
∣∣{e ∈ [f ] | δ(op(e), σ) 6= (rval(e), σ) }

∣∣ <∞ )



44 Replicated Data Types

Note that we express this guarantee on a per-session basis, rather
than for all sessions at once, because there may be infinitely many
sessions in an execution. This is important because for many protocols
(e.g. the counter protocols in Fig. 6.3 and Fig. 6.5), new clients may
join throughout the (infinite) execution, and execute a finite number
of steps before converging to the stable value.

Limitations. Quiescent consistency is sometimes used as general defini-
tion of eventual consistency, such as when Terry et al. [1995] coined the
term originally. However, it is too weak of a specification. For one, it
does not guarantee anything in a situation where updates keep arriving.
Thus it cannot be used for services where there is no guarantee that the
updates ever stop. Worse, quiescent consistency does not say anything
about what values should be returned before convergence. For exam-
ple, a register could (temporarily) return an arbitrary bogus value that
was never written, which may surprise clients and have negative con-
sequences. We introduce a stronger definition of eventual consistency
in §5.1, which does not suffer from these limitations.

4.3 Replicated Data Types

Sequential state-based semantics are sufficient to define behaviors of
data types as long as the system maintains single-copy-semantics, i.e.
the illusion that there is but one current state of the data. However, this
is only true for strong consistency models such as linearizability and
sequential consistency. Under eventual consistency, the user may ob-
serve the effects of replication and conflict resolution, and state-based
semantics are no longer sufficient to describe such behavior. Our solu-
tion is to move from a state-based definition of data types to a more
general definition that is based on operations.

Instead of defining the current state as a value, we think of the current
state as the graph of prior operations, called the operation context.

Then, the effect and return value of an operation are determined by
its context rather than by the current state.
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Definition 4.4 (Operation Context). An operation context is a finite
event graph C = (E, op, vis, ar) where op : E → Operations describes
the operation of each event, vis is an acyclic relation representing vis-
ibility among the elements of E, and ar is a total order representing
arbitration of the elements in E. We let C be the set of all operation
contexts.

We now specify a replicated data type by a function Fτ (o, C), which
takes as a parameter the operation o and an operation context C. This
generalizes the specification of a sequential data type using a function
δ(o, σ) that takes as a parameter the operation o and the current state
σ (Definition 4.1).

Definition 4.5 (Replicated Data Type). A replicated data type F is a
function Operations × C → Values that, given an operation o and
an operation context C, specifies the expected return value F(o, C) to
be used when performing o in context C, and which does not depend
on the events, i.e. is the same for isomorphic (as in Definition 2.2)
contexts: C ' C ′ ⇒ F(o, C) = F(o, C ′) for all o, C,C ′.

The events in E capture what prior operations are visible to the
operation that is about to be performed. E is always finite because
no operation can happen after an infinite number of other operations.
The total order ar is called the arbitration order ; it is used to resolve
conflicts between prior operations in a deterministic way. The visibility
order vis represents the mutual visibility of the operations in E, and is
needed if the effect of an operation in E depends on it. To clarify how
these all work together, we discuss examples in the next few sections.

Determinism. Note that F is deterministic: two events that perform
the same operation in the same context produce the same return values.
This is necessary to ensure convergence, as we will see when proving
quiescent consistency in §5.4. Of course, a call to a replicated data type
is still highly nondeterministic due to unpredictable scheduling and
timing of message delivery. Working with a deterministic specification
F simply means that all the non-determinism arising due to scheduling
and message delivery is already captured by vis and ar that are passed
as arguments to F .
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4.3.1 Replicated Counter

To generalize the sequential counter Sctr (Figure 4.1, top) to a repli-
cated counter Fctr, we specify that the number returned by a read
operation is exactly the number of increment operations in the con-
text:

Fctr(rd, (E, op, vis, ar)) =
∣∣{e′ ∈ E | op(e′) = inc}

∣∣
This is a simple example: all operations commute, and no conflict res-
olution is needed. Thus, the value returned by Fctr depends only on E
and op, but not on vis or ar.

4.3.2 Replicated Registers

To generalize the sequential register Sreg, we need to decide how to
resolve conflicts between concurrent write operations, because write
operations do not commute. There are multiple options.

Last-Writer-Wins Register. The simplest and most common solution
is to use some sort of timestamp to determine the order of the writes. In
our formalization, this order is called the arbitration order. To specify
the last-writer-wins register, we say that a read sees the last write in
the visible context (where last means last in terms of arbitration order),
or undef if there is no write. We use the notation writes(E) def= {e ∈ E |
op(e) = wr(v) for some v}, and specify:

Freg(rd, (E, op, vis, ar)) =
{

undef if writes(E) = ∅
v if op(maxar writes(E)) = wr(v)

Since ar is always a total order and E is finite, a maximal write
maxar writes(E) is uniquely determined if there is any write at all, i.e.
writes(E) 6= ∅. This is an example of arbitration-based conflict resolu-
tion — operations do not commute, but we use the arbitration order
to order them consistently.

Multi-Value Register. Another conflict resolution strategy is to report
conflicting writes to the user, and rely on some application-dependent
resolution. We can define a multi-value-register [G. DeCandia et al.,
2007] where read operations do not return an individual value, but a
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set of values, one for each write preceding the read that has not been
overwritten by some other write:

Fmvr(rd, (E, op, vis, ar)) =

{v | ∃e ∈ E : op(e) = wr(v) and ∀e′ ∈ writes(E) : e 6 vis−→ e′}

Note that to determine which writes are overwritten by a write, we use
the visibility relation between writes.

4.3.3 Standard Conflict Resolution

For any sequential data type S without blocking operations, we can
define a corresponding replicated data type F by specifying that the
effect of the updates in the context is determined by applying them
sequentially to the initial state, in the order specified by the arbitration
order. We call this the standard conflict resolution.

Definition 4.6 (Standard Conflict Resolution). Let Sτ = (Σ, σ0, δ) be a
sequential data type without blocking operations. Let δrval and δΣ be
the two components of δ (meaning that δ(o, σ) = (δrval(o, σ), δΣ(o, σ))
for all o, σ). Then we define the replicated data type F〈Sτ 〉 as

F〈Sτ 〉(o, (E, op, vis, ar)) def= δrval(foldr(σ0, δΣ, E.sort(ar)))

where sort and foldr are the operators we defined in §2.1.1 on p. 20.

In fact, the replicated data type for the counter and the last-writer-
wins register defined above is equivalent to the standard conflict reso-
lution: Fctr = F〈Sctr〉 and Freg = F〈Sreg〉.

For the key-value store, the set, and the wall data types (Fig. 4.1) we
define replicated data types using standard conflict resolution: Fkvs =
F〈Skvs〉, Fset = F〈Sset〉, and Fwall = F〈Swall〉.

4.3.4 Replicated Sets

For sets, the interesting question is how to handle conflicts between a
concurrent add and remove of the same element [Bieniusa et al., 2012b].
Using standard conflict resolution F〈Sset〉 means the last operation
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wins. Sometimes, that is however not what we want, for example if we
are concerned about losing data: a remove operation may cancel out
an add operation even if that add operation is not visible at the time
the remove operation is performed.

Add-Wins Set. For the add-wins-set (also known as observed-remove
set [Shapiro et al., 2011b]), we specify that an add always wins against
a concurrent remove, by requiring that an element is in the set if it
has been added by some operation that was not superseded by a later
remove operation:

Fawset(contains(v), (E, op, vis, ar)) = true def⇐⇒

∃e ∈ E : op(e) = add(v) ∧ ¬(∃e′ ∈ E : op(e′) = rem(v) ∧ e vis−→ e′)

4.3.5 Replicated Object Stores

We can compose multiple replicated objects into an object store. At the
specification level, this amounts to defining a type for each value that
represents an object. We define a typing to be a partial function D that
maps values v to a replicated data type D(v).

For example, consider an online chat application, with an object
chat with fields (1) wall, a list containing posted entries, and (2) access,
a set containing the people who have permission to view them. We can
define the corresponding typing as

D(v) =


Fwall if v = chat.wall
Fset if v = chat.access
⊥ otherwise

The typing then determines the replicated data type of the store.

Definition 4.7. For a typing D, define the replicated object store FD:

FD(o, (E, op, vis, ar)) ={
D(v)(o′, (Ev, opv, vis|Ev , ar|Ev )) if o = v.o′ and FD(v) 6= ⊥
error otherwise

where Ev = {e ∈ E | ∃o : op(e) = v.o}, and op(e) = v.opv(e).
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The object composition we defined here is an independent compo-
sition: there is no interaction between the replicated objects. Compo-
sitions are not always independent in practice. For example, if the chat
object supports a delete operation del, then invoking chat.del should
delete chat.wall and chat.access as well, thus a subsequent chat.posts.rd
operation should return an empty sequence or some error message.

4.3.6 Quiescent Consistency

We now generalize operation categories and quiescent consistency
(§4.2.1) from a sequential data type S to a replicated data type F .
Update-only and blocking operations are easy to generalize. However,
determining read-only operations is a bit more tricky: all operations
change the context, thus we need to determine whether they do so in
a non-observable way. To this end, we define an operation o to be a
read-only operation if for all observer operations o′ the return value
does not change when we remove o from the context:

o ∈ readonlyops(F) def⇐⇒ ∀o′ ∈ Operations : ∀C = (E, . . . ) ∈ C : ∀e ∈ E :
op(e) = o ⇒ F(o′, C) = F(o′, C|E\{e},op,vis,ar)

We can straightforwardly generalize quiescent consistency now:

QuiescentConsistency(F) def⇐⇒( ∣∣{e ∈ E | op(e) /∈ readonlyops(F)}
∣∣ <∞ =⇒ ∃C ∈ C :

∀[f ] ∈ E/≈ss:
∣∣{e ∈ [f ] | F(op(e), C) 6= rval(e) }

∣∣ <∞ )
4.4 Return Value Consistency

Finally, we define consistency of return values, as a predicate on ab-
stract executions, for a given replicated data type F .

Definition 4.8. For a replicated data type F , we define the return value
consistency guarantee as

RVal(F) def= ∀e ∈ E : rval(e) = F(op(e), context(A, e))

where context is defined as follows:
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Definition 4.9. Let A = (E, op, rval, rb, ss, vis, ar) be an abstract execu-
tion containing an event e ∈ E. Then

context(A, e) def= A|vis−1(e),op,vis,ar

Note that context(A, e) is always an operation context: vis−1(e) is finite
because vis is natural (condition (a2) on p. 35), and the restrictions of
vis and ar are acyclic and total, respectively, because acyclicity and
totality are preserved under restrictions (Lemma 2.3).



5
Consistency

The level of consistency afforded by replicated data types and quiescent
consistency is usually not strong enough to write correct programs, be-
cause it still permits many “anomalies” that can surprise programmers.

Boss Example [Lloyd et al., 2011]. Consider an online chat, and con-
sider that a user wants to post the message “time for a new job!” to
the wall, but first removes the boss from the access list so that the boss
does not see the message. With an object store as defined in §4.3.5, the
user would perform these two operations in a session:

chat.access.rem(boss); chat.wall.post("Time for a new job!");

Since the boss is removed before the message is posted, the user has
a reasonable expectation that the boss is not able to see the message.
However, this is not always guaranteed — the second operation may
take effect on the computer of the boss before the first one does.

Ordering and Atomicity. In general, a programmer can prevent such
problems in various ways, depending on the consistency model and the
features of the system. Ordering guarantees can ensure the order of op-
erations is preserved under some conditions. Transactions can ensure
that operation sequences are atomic, i.e. never become visible sepa-
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rately. Synchronization operations, such as fence or flush operations,
can enforce ordering selectively.

We discuss the ordering guarantees provided by common consis-
tency models in the remainder of the chapter. Transactions and syn-
chronization operations are out of scope of this tutorial, but are dis-
cussed in Burckhardt et al. [2013].

Summary. For easier reference, we start with a summary of the consis-
tency models and ordering guarantees, without much explanation up-
front, and provide discussion and examples later. Figure 5.1 (top half)
shows the most common consistency models, ordered from strong to
weak. Each model is parameterized by the replicated data type F , and
consists of several consistency guarantees. These guarantees are con-
junctions of predicates that include return value consistency RVal(F)
as defined in §4.4, the ordering guarantees shown in Figure 5.1 (bot-
tom half), and the eventual-visibility guarantee, which we define in §5.1
below.

Overview. We proceed by introducing a series of successively stronger
models (having already started with quiescent consistency in the previ-
ous chapter). For each consistency model, we demonstrate an anomaly
that it permits, and how it can be fixed by adding more guarantees. We
thus finally arrive at linearizability, the strongest model. After that, we
conclude the chapter with proving the hierarchy of the models.

5.1 Basic Eventual Consistency

Under eventual consistency, convergence is expressed as eventual vis-
ibility: a completed operation e must eventually become visible to all
sessions. We express this guarantee by requiring that in each session,
almost all operations that start after e has returned (i.e. all but finitely
many) must see e.

Definition 5.1 (Eventual Visibility).

EventualVisibility def⇐⇒ ∀e ∈ E : ∀[f ] ∈ E/≈ss:∣∣{e′ ∈ [f ] | (e rb−→ e′) ∧ (e 6 vis−→ e′)}
∣∣ <∞
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Consistency Models

Linearizability(F) def= SingleOrder ∧Realtime ∧RVal(F)

SequentialConsistency(F) def=
SingleOrder ∧ReadMyWrites ∧RVal(F)

CausalConsistency(F) def=
EventualVisibility ∧Causality ∧RVal(F)

BasicEventualConsistency(F) def=
EventualVisibility ∧NoCircularCausality ∧RVal(F)

QuiescentConsistency(F) def= (see page 49)

Ordering Guarantees

ReadMyWrites def= (so ⊆ vis)
MonotonicReads def= (vis ; so) ⊆ vis
ConsistentPrefix def= (ar ; (vis ∩ ¬ss)) ⊆ vis

NoCircularCausality def= acyclic(hb)
CausalVisibility def= (hb ⊆ vis)
CausalArbitration def= (hb ⊆ ar)
Causality def= CausalVisibility ∧CausalArbitration

SingleOrder def= ∃E′ ⊆ rval−1(∇) : vis = ar \ (E′ × E)
Realtime def= rb ⊆ ar

Figure 5.1: Overview of the definitions for commonly used consistency models and
ordering guarantees. All the formulas shown above are predicates over an abstract
executionA = (E, op, rval, rb, ss, vis, ar), with session order so def= rb∩ss and happens-
before order hb def= (so ∪ vis)+.
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Eventual visibility is sufficiently strong to write correct client pro-
grams. For example, an eventually visible replicated counter Fctr can
be used to reliably count events in a distributed systems. However, if
eventual visibility is our only guarantee, we may have to deal with a
number of confusing anomalies. We now discuss these anomalies, and
introduce more guarantees that can be used to eliminate them.

5.1.1 Session Guarantees

When a user issues several operations as part of the same session,
there is often an expectation that the order in which they are issued is
preserved. We define the session order to be the relation so def= rb ∩ ss.
Note that within each session, so is an enumeration of the operations
in the session because of condition (h7) on p. 32.

Read My Writes

post(“Hi”):ok 

rd:[] ss

rb

Consider a user who posts a message "Hi" to the wall,
and then reads the wall: clearly, they expect to see
their own message there. However, eventual consis-
tency alone does not enforce it and allows the anomaly
shown on the right. The guarantee ReadMyWrites (Fig. 5.1) ensures
that for any two events x so−→ y, we have x vis−→ y, and thus prevents
this anomaly.

Monotonic Reads

post(“Hi”):ok 
vis

rd:[] ss

rb
rd:[“Hi”]

When issuing more than one read in the
same session, we would expect that we see
more operations over time, not fewer. How-
ever, eventual consistency alone does not
enforce it and allows the anomaly shown on the right, where the sec-
ond read in the session on the right does not see the post of "Hi", even
though the first one did. The guarantee MonotonicReads (Fig. 5.1)
ensures that if x vis−→ y and y so−→ z, then also x vis−→ z, which prevents
this anomaly.
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Consistent Prefix

post(“A”):ok1

vis

rd:[“A”,”B”]4 ss

rb
rd:[“B”]3

post(“B”):ok2

vis

vis

When issuing more than
one read in the same ses-
sion, we may expect that
operations become visible
in arbitration order (e.g.
timestamp order). However, eventual consistency alone does not en-
force it and allows the anomaly shown above on the right: the opera-
tion that posts "A" becomes visible after the post of "B", but precedes
it in arbitration order (as indicated by the numeric subscripts which
represent timestamps); thus, "A" appears before "B" in the returned
value. This is potentially confusing, since in the sequential semantics, a
post appends only at the end, yet here it looks like someone posted at
the beginning. The guarantee ConsistentPrefix (Fig. 5.1) ensures
that whenever we see an operation from a different session, we also see
all operations that precede it in arbitration order, which prevents this
anomaly.

ConsistentPrefix implies that the remote operations contained
in each operation context form a contiguous prefix of the sequence of
all operations (ordered by arbitration order), hence the name.

5.1.2 Causality Guarantees

It is common in distributed systems to use the notion of happens-before
for events that have a potentially causal relationship. If two operations
happen in the same session, they may be causally related: the program
or the user may have decided to issue an operation based on values
returned by an earlier operation. Also, if an operation A is visible to
an operation B, the value returned by B may depend on A. Therefore,
we define the happens-before relation hb to be the transitive union of
session order and visibility: hb def= (so ∪ vis)+.

Note that the happens-before relation does not indicate true causal-
ity, but only potential causality. Distinguishing the two can be surpris-
ingly subtle, and is beyond the scope of this tutorial.
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Circular Causality

vis
post(“repeat me”):ok

ss

rb
rd:[“repeat me”]

rb

rd:[“repeat me”, “repeat me”]

post(“repeat me”):ok

ss

rb
rd:[“repeat me”]

rb

rd:[“repeat me”, “repeat me”]

vis
visvis

vis

vis

Weird things can happen if the happens-before order is allowed to have
cycles. Consider this anomaly involving two users. The first user reads
the wall and sees a single post saying "repeat me" (perhaps also including
some promises about good things that will happen to you if you abide),
and obeys by posting the same string. Then, it reads the wall and sees
both the original post, and the repeated post. The second user goes
through the exact same experience. Nothing seems wrong from the
perspective of each individual user. However, something is definitely
wrong: where did the original post come from? It spookily materialized
out of thin air. This is an example of circular causality.

The guarantee NoCircularCausality (Fig. 5.1) ensures that
the happens-before relation contains no cycles, which prevents circu-
lar causality, and in particular rules out this anomaly. Since circular
causality is usually not an issue in the consistency algorithms we study
here (although it sometimes is when considering compiler optimizations
for shared memory), we include it as a guarantee in our baseline, the
basic eventual consistency model (Fig. 5.1).

Causal Arbitration

post(“yes”):ok2

rd:[“Bob, you there?”]1

ss

post[“Bob, you there?”]:ok3
vis

Alice’ session: Bob’s session: Charlie’s session:

rb

rd:[“yes”,
“Bob, you there?”]4

ss ss

vis

vis

If the happens-before order is not the same as the arbitration order,
it can get confusing. Consider this anomaly: Alice posts the string
"Bob, you there?". Bob reads the wall, sees Alice’s post, and replies "yes".
Charlie is a quiet observer and sees both posts. However, the arbitra-
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tion order (indicated by numeric subscripts representing timestamps)
orders Bob’s reply before Alice’s question, so Charlie sees them in the
“wrong” order.

The guarantee CausalArbitration (Fig. 5.1) ensures that if
x

hb−→ y, then x ar−→ y, which prevents this anomaly. In practice, causal
arbitration can be ensured by obtaining timestamps from sufficiently
well synchronized physical clocks, from logical clocks, or from a single
arbitration node.

Causal Visibility

post(“glad to hear it”):ok4

rd:[“I lost my ring”,
“never mind, got it”]3

ss

post[“I lost my ring”]:ok1 vis

Alice’ session: Bob’s session: Charlie’s session:

rb

rd:[“I lost my ring”,
“glad to hear it”]5

ss ss

rb

post[“never mind, got it”]:ok2
vis

vis

vis

If the happens-before order does not enforce visibility, it can get confus-
ing. Consider this anomaly, which is a standard example for causality
[Lloyd et al., 2014]: Alice posts the string "I lost my ring", and quickly
follows it up with a second post "never mind, got it". Bob reads the wall,
sees both posts, and replies "glad to hear it". Charlie is a quiet observer
and sees Bob’s post and Alice’s first post, but not Alice’s second post.
Thus, it appears to him that Bob is happy about Alice’s loss.

The guarantee CausalVisibility (Fig. 5.1) ensures that if x hb−→ y,
then x vis−→ y, which prevents this anomaly. In practice, causal visibility
can be enforced by tracking dependencies, or by using vector clocks, or
by using ordered broadcast.

5.2 Causal Consistency

We define causal consistency (Fig. 5.1) as the combination of causal
arbitration and causal visibility. Of the models listed in the top half
of Fig. 5.1, causal consistency is the strongest one that can be imple-
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mented in such a way as to remain available under partitions.1 Causal
consistency implies all the ordering guarantees discussed earlier, except
consistent prefix:

Lemma 5.1. If A |= CausalConsistency(F), then A |=
ReadMyWrites ∧MonotonicReads ∧NoCircularCausality ∧
CausalArbitration ∧CausalVisibility.

The combination CausalConsistency(F)∧ConsistentPrefix
is slightly stronger than CausalConsistency(F) alone, and can also
be implemented while fully available under partitions (see the protocol
BufferedSequencer〈F〉 of Fig. 6.12 and Theorem 10.14).

5.2.1 Dekker Anomaly

wr(x,”active”):ok wr(y,”active”):ok 

rd(y):undefined ss

rb rb

rd(x):undefined ss

The Dekker anomaly (on the
right) is possible under causal
consistency. Two sessions each
write "active" to two different locations, then read the location that the
other one is writing. Neither one, however, sees the write by the other
one. The Dekker anomaly is ruled out by strong models like sequential
consistency or linearizability, as discussed in the next section.

5.3 Strong Models

The last two models we discuss are linearizability and sequential con-
sistency. We consider both of them to be strong models, because they
ensure that there is a single global order of operations that deter-
mines both visibility and arbitration. This is expressed by the guar-
antee SingleOrder (Fig. 5.1, bottom) which requires that arbitra-
tion and visibility are the same except for some subset E′ ⊆ rval−1(∇)
that represents incomplete operations that are not visible to any other

1To support this statement we (1) reproduce a causally consistent protocol (for
arbitrary F without blocking operations) that is fully available under partitions in
Fig. 6.13, and (2) prove in theorem 9.1 that there exist no fully available, sequentially
consistent protocol implementations for arbitrary F .
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operations. In particular, SingleOrder implies

∀e, e′ ∈ E : [ e vis−→ e′ ⇒ e
ar−→ e′ ] ∧

[e ar−→ e′ ∧ (rval(e) 6= ∇) ⇒ e
vis−→ e′]

For example, if we have an arbitration order that corresponds to
timestamps, then this guarantee implies that an operation can only see
operations with earlier timestamps, and must see all complete opera-
tions with earlier timestamps. This is the essence of strong consistency.

Besides SingleOrder, linearizability and sequential consistency
both require one additional ordering guarantee.

• Linearizability requires Realtime. This guarantee states that
the returns-before partial order (§3.1) must be consistent with
the arbitration order: ∀e, e′ ∈ E : e

rb−→ e′ ⇒ e
ar−→ e′.

For example, if arbitration is based on timestamps, it means that
if e returns before e′, the timestamp of e must be before the
timestamp of e′. While this is always true for perfectly synchro-
nized physical timestamps, it may not be true for imperfectly
synchronized physical timestamps, or for logical timestamps.

• Sequential consistency requires ReadMyWrites. This guaran-
tee ensures that the session order of operations is respected: For
two operations in the same session, their order implies visibility:

∀e, e′ ∈ E : e ≈ss e
′ ∧ e

rb−→ e′ ⇒ e
ar−→ e′

5.3.1 Sequential Consistency versus Linearizability

wr(x,”active”):ok rb

rd(x):undefined 

Sequential consistency is slightly
weaker than linearizability. For
example, the abstract execution
on the right is not linearizable,
but sequentially consistent: we can order the read before the write in
visibility and arbitration, and this ordering is consistent with the ses-
sion order, but is not consistent with the returns-before order.

To observe the difference between sequential consistency and lin-
earizability, clients must be able to communicate over a side channel.
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For example, consider the abstract execution shown above, and sup-
pose some user A does the write and some user B does the read. After
the write returns, user A may call user B on the phone before user B
starts the read operation. Thus, the users can observe that the returns-
before order fails to guarantee visibility. For that reason, our Realtime
condition is sometimes called external consistency.

We show two examples of implementations that are sequentially
consistent, but not linearizable, in §1.3.2 and §6.5.1.

5.3.2 Dekker Test

A common way to test whether a protocol is sequentially consistent is
to run the following Dekker test.

Program A:
1 x := "active" ;
2 if (y = undef)
3 print "A wins" ;

Program B:
1 y := "active" ;
2 if (x = undef)
3 print "B wins" ;

When running the program above under sequential consistency, it
should never print both "A wins" and "B wins":

Lemma 5.2. Let A be the abstract execution of the Dekker anomaly
shown in §5.2.1. Then A 6|= SequentialConsistency(Fkvs).

Proof. Let E = {wx, wy, ry, rx} where wx, wy are the writes to x and
y, respectively, and ry, rx are the reads from y, x, respectively. Since ar
is total, it must order wx and wy. We can assume wx

ar−→ wy without
loss of generality (otherwise, proceed symmetrically). Since wy

ro−→ rx,
we have wy

vis−→ rx (by ReadMyWrites), and thus wy
ar−→ rx (by

SingleOrder and rval(wy) 6= ∇), and thus wx
ar−→ rx (by transitivity

of ar), and thus wx
vis−→ rx (by SingleOrder and rval(wx) 6= ∇).

But then RVal(Fkvs) requires that rval(rx) = "active", contradicting
rval(rx) = undef.
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5.4 Hierarchy of Models

It is customary to compare the strength of consistency models. We say
that a model P1 is stronger than a model P2, written P1 > P2, if
H |= P1 implies H |= P2, for all histories H ∈ H.

Proposition 5.1. For any replicated data type F , the following hierar-
chy between consistency models holds:

Linearizability(F)
> SequentialConsistency(F)
> CausalConsistency(F)
> BasicEventualConsistency(F)
> QuiescentConsistency(F)

Proof. Let A = (E, op, rval, rb, ss, vis, ar) be an abstract execution.[
(SingleOrder ∧ Realtime) ⇒ ReadMyWrites.

]
Let e so−→ e′.

Then, by definition of so, e rb−→ e′. By Realtime, this implies e ar−→
e′, and by condition (h5) on p. 32, it implies rval(e) 6= ∇. Thus, by
SingleOrder, we get e vis−→ e′, which proves ReadMyWrites.[

(SingleOrder ∧ ReadMyWrites) ⇒ CausalArbitration.
]

so ⊆ vis by ReadMyWrites; and vis ⊆ ar by SingleOrder. Thus,
hb = (so ∪ vis)+ ⊆ (vis ∪ vis)+ = vis+ ⊆ ar+ = ar.[

(SingleOrder∧ReadMyWrites)⇒ CausalVisibility.
]

As in
the previous case, we deduce hb ⊆ vis+. It remains to show that vis+ ⊆
vis. Let E′ be the set of incomplete operations as in SingleOrder;
then, x vis−→ y

vis−→ z implies x, y /∈ E′ and thus x ar−→ y
ar−→ z. Since ar is

transitive, we get x ar−→ z, and thus x vis−→ z.[
SingleOrder⇒ EventualVisibility.

]
Given an arbitrary event

e ∈ E and a session [f ] ∈ E/≈ss, we need to show∣∣{e′ ∈ [f ] | (e rb−→ e′) ∧ (e 6 vis−→ e′)}
∣∣ <∞. (5.1)

If rval(e) = ∇, (5.1) follows immediately because of condition (h5)
on p. 32. Otherwise, if [f ] contains an e′ such that rval(e′) = ∇, it
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implies that [f ] is finite (by condition (h5) and condition (h7)) and
(5.1) follows. Otherwise, define the set A def= vis−1(e), which must be
finite because vis is natural. Then, for any e′ ∈ [f ] \ A, we know that
e′ 6 vis−→ e, and thus e′ 6 ar−→ e (by SingleOrder and because rval(e′) 6= ∇),
and thus e ar−→ e′ (by totality of ar), and thus e vis−→ e′ (by SingleOrder
and because rval(e) 6= ∇). Therefore, e vis−→ e′ for almost all e′ ∈ [f ] (all
but the finitely many ones in A), which implies (5.1).[

Causality⇒ NoCircularCausality.
]

Since hb ⊆ vis, any cycle
on hb would imply a cycle on vis which contradicts Def. 3.3.[

EventualVisibility∧RVal(F)⇒ QuiescentConsistency(F).
]

Let U = {e ∈ E | op(e) /∈ readonlyops(F)} be the set of all updates. If
U is infinite, QuiescentConsistency(F) is vacuously satisfied. Oth-
erwise, let C def= A|U,op,vis,ar. Given [f ] ∈ E/≈ss, we need to show∣∣{e ∈ [f ] | F(op(e), C) 6= rval(e) }

∣∣ <∞. (5.2)

For each update event u, there exists a finite set E′u such that u is
visible for all events in [f ]\E′u (by EventualVisibility). Then E′ def=⋃
u∈U E

′
u is also finite, and for all e ∈ [f ] \ E′, and all u ∈ U , we have

u
vis−→ e. We prove two auxiliary claims:

1. For all operation contexts C ′′ = A|E′′,op,vis,ar with U ⊆ E′′ ⊆
E and all operations r ∈ readonlyops(F), we have F(r, C ′′) =
F(r, C). Proof: by induction over d def= |E′′ \ U |. If d = 0 then
C ′′ = C and thus F(r, C ′′) = F(r, C) as claimed. If d > 0, then
there exists an event e ∈ E′′ \ U ; since e is not in U , it is not an
update event, thus we know F(r, C ′′) = F(r, C ′′|E′′\{e},op,vis,ar),
and the latter is equal to F(r, C) by induction.

2. For all e ∈ [f ] \ E′, we have rval(e) = F(op(e), C). Proof: since e
sees all events in U , we know vis−1(e) ⊃ U and e is a read-only
operation; using the first claim, we get F(op(e), context(A, e)) =
F(op(e), A|vis−1(e),op,vis,ar) = F(op(e), C), which implies the claim
by RVal(F).

The second claim then implies (5.2) because E′ is finite.
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Implementations

In this chapter, we take a look at more protocol examples. The examples
represent three general patterns used for propagating updates: epidemic
protocols, broadcast protocols, and global sequence protocols. For each
of these categories, we present several variations that illustrate the
tradeoff between the consistency model and the speed/availability of
operations. The accompanying proofs of correctness can be found in
chapter 10.

6.1 Overview

We show an overview of the 10 implementations in Fig. 6.1. The proto-
cols are organized into three categories: epidemic, broadcast, and global
sequence protocols. We describe these categories below (§6.1.1).

For each implementation, we show the data type, the consistency
model, and the offline availability of operations, i.e. whether operations
remain available in the presence of arbitrary network partitions.

Four of the implementations are generic templates, i.e. they work
for any replicated data type F , while the other six are specialized for
a specific data type (counter, register, or key-value store).
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Data Implementation Consistency Offline
Type Name Page Availability

Epidemic Protocols
Freg EpidemicRegister (p. 14) sequential yes
Fctr EpidemicCounter (p. 70) eventual yes

Broadcast Protocols
Fctr BroadcastCounter (p. 69) eventual yes
Fkvs EventualStore (p. 72) eventual yes
Fkvs CausalStore (p. 74) causal yes
F CausalStreams〈F〉 (p. 82) causal yes

Global Sequence Protocols
Freg SingleCopyRegister (p. 11) linearizable no
F Sequencer〈F〉 (p. 77) sequential reads
F AsyncSequencer〈F〉 (p. 78) eventual yes
F BufferedSequencer〈F〉 (p. 80) causal yes

Figure 6.1: Overview of the 10 protocol implementations presented in this chapter,
grouped by their update propagation pattern. For a more precise comparison of the
consistency and availability guarantees, see Fig. 6.2

6.1.1 Protocol Categories

We distinguish the following three categories.

In Epidemic Protocols (also known as “state-based” protocols), nodes
propagate local updates to remote nodes by periodically disseminating
a “summary” representing the cumulative effect. For example, in the
epidemic register protocol described in the introduction (§1.3.2), the
latest written value and the timestamp can be thought of a summary
of the effect of all past updates. of all the updates known to this node.
We call this propagation style epidemic because nodes “infect” other
nodes with information, spreading information indirectly. Importantly,
nodes do not need to broadcast each update to all other nodes, and
messages may be lost, duplicated, or reordered without harm.
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In Broadcast Protocols (also known as “operation-based” protocols),
each node sends an update message to all remote nodes whenever it
does a local update. The update messages are guaranteed to arrive, but
may arrive in unspecified order.1 Broadcast protocols are particularly
easy to use when updates commute with each other, because then the
order in which they are applied is irrelevant.

In Global Sequence Protocols, the nodes eventually agree on a com-
mon sequence of updates. This sequencing can be done by a server
in a client-server topology, or by using a distributed algorithm2 in a
peer-to-peer system (e.g. Cachin et al. [2011], Nakamoto [2008]).

6.1.2 General Discussion

Performance. None of the categories or implementations is a priori
better than others, not even if we fix the specific data type considered.
Whether a particular implementation is well suited for an application
depends on the frequency of operations, the number of replicas, and the
sizes of summary messages, update messages, and data type content.

Consistency and Availability. As is to be expected due to the CAP
theorem (§9.1), all implementations either (1) exhibit weak consistency
(i.e. are neither sequentially consistent nor linearizable), or (2) are not
fully available under partitions, or (3) use a very limited data type (e.g.
EpidemicRegister).

The three sequencer protocols Sequencer〈F〉, AsyncSequencer〈F〉, and
BufferedSequencer〈F〉 demonstrate how we can start with a conservative
protocol that guarantees sequential consistency, but is potentially slow
and does not work under arbitrary network partitions, and then add
caching/queueing optimizations that turn it into a weakly consistent
protocol that is available under partitions.

1We sometimes strengthen this requirement slightly, without fundamentally
changing the performance tradeoffs, by requiring pairwise ordering, i.e. any two
messages sent by the same origin to the same destination are delivered in order.

2This type of algorithm is usually called total-order broadcast, because it can
be understood as a type of broadcast where all messages, including messages by
different origins, are delivered in the same order to all receivers.
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data type F Freg Fctr Fkvs
Linearizability(F) X — — — — —
SequentialConsistency(F) X X — — — —
CausalConsistency(F) X X — X — X
BasicEventualConsistency(F) X X X X X X
ReadMyWrites X X X X X X
ConsistentPrefix X X — — — —
MonotonicReads X X X X X X
CausalArbitration X X X X X X
CausalVisibility X X — X — X
available under partitions — X X X X X

S. A.S. B.S. C.S.

Linearizability(F) — — — —
SequentialConsistency(F) X — — —
CausalConsistency(F) X — X X
BasicEventualConsistency(F) X X X X
ReadMyWrites X — X X
ConsistentPrefix X X X —
MonotonicReads X X X X
CausalArbitration X X X X
CausalVisibility X — X X
availableunderpartitions(o)
where o ∈ readonlyops(F) X X X X
where o ∈ mixedops(F) — — X X
where o ∈ updateonlyops(F) — X X X

Figure 6.2: Detailed breakdown of the consistency guarantees for of the counter,
register, and store protocols (top) and the Sequencer (S.), AsyncSequencer (A.S.),
BufferedSequencer (B.S.), and CausalStreams (C.S.) protocols (bottom). For the
latter a check mark indicates Π(F) |= P for all F , and a dash indicates Π(F) 6|= P
for some F .
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Guarantee Details. The precise consistency and availability guarantees
for each implementation are shown in Fig. 6.2, which also shows some
finer consistency distinctions. For example, both BufferedSequencer〈F〉
and CausalStreams〈F〉 satisfy CausalConsistency(F), but only
BufferedSequencer〈F〉 satisfies ConsistentPrefix.

Other Names. Database systems are often categorized as primary repli-
cation (typically corresponding to global sequence protocols) or multi-
master replication (typically corresponding to epidemic or broadcast
protocols). Epidemic protocols are also similar to gossip protocols,
where pairs of nodes periodically exchange information bidirectionally
(as formalized by Princehouse et al. [2014], for example). In the litera-
ture on conflict-free replicated data types (CRDTs) , such as in Shapiro
et al. [2011a,b,c], Roh et al. [2011], Bieniusa et al. [2012a], or Burck-
hardt et al. [2014a], epidemic protocols are called state-based (because
the summary that is sent is usually the same as the local state stored
on each replica), broadcast protocols are called operation-based, and
global sequencing is generally avoided.

Realism. The example algorithms in this chapter demonstrate tech-
niques that are commonly used in real systems. However, real systems
often contain additional complications that we have omitted for now
(such as partitioning of servers using a distributed hash table, and the
use of quorums).

6.2 Pseudocode Semantics

To reason about correctness and consistency with mathematical pre-
cision, a protocol must define exactly what distributed executions are
possible. At the same time, we want protocols to be readable, concise,
and mostly self-explanatory. Unfortunately, these goals are conflicting!
As a compromise, we present protocols in pseudocode, but later on de-
scribe the meaning carefully by means of a compilation process (§8.4)
that compiles the pseudocode into a formal protocol.

Our pseudolanguage liberally includes syntax and features that are
common in modern programming languages, in particular functional
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languages, such as pattern matching. We assume the reader is mostly
familiar with those. The following concepts, on the other hand, are
somewhat nonstandard.

Default Values. All our types have a default value, which is the initial
value of all state variables. The default value of nat is 0.

Maps. We use two kinds of maps: partial maps and total maps. Partial
maps pmap<Key,Value> work exactly like maps in Java, or dictionaries
in C#: mathematically, a partial map m is a partial function with
finite domain m.keys and range m.values. Total maps tmap<Key,Value>,
however, are total functions: all keys (i.e. all elements of the type Key)
are always present, but only finitely many map to a non-default value.
If m is a total map, then m.keys returns all the keys that map to a
non-default value, and m.values returns all the non-default values in the
range of m.

6.3 Counters

A broadcast-based counter is shown in Fig. 6.3. Each role stores the
current value of the counter in current (line 6). On a read operation
(line 8), this current value is returned. On an increment operation
(line 11), the value is incremented, an Inc message is broadcast, and
ok is returned. When receiving an Inc message (line 16), we increment
the current value. Since increment operations commute, the fact that
messages arrive in nondeterministic order is not a problem.

We show an epidemic counter in Fig. 6.5. As for any epidemic pro-
tocol, the key design question is how to construct a summary that
can concisely represent the cumulative effect of all known updates (in
this case, increment operations) and that can be merged with other
summaries. The solution is to use a vector that counts the number
of increments separately for each replica [Shapiro et al., 2011b]. This
vector3 is stored in counts (line 6) and sent in the epidemic messages
(line 15). Its initial value is the default value of tmap<nat,nat>, which

3Since the number of replicas is infinite (to model unbounded dynamic creation
of replicas during execution), the vector is infinite but sparse. We represent it as a
total map tmap<nat,nat>.
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1 protocol BroadcastCounter {
2

3 message Inc() : reliable
4

5 role Peer(nr: nat) {
6 var current: nat ;
7

8 operation read() {
9 return current ;

10 }
11 operation inc() {
12 current := current +1 ;
13 send Inc() ;
14 return ok ;
15 }
16 receive Inc() { current++ ; }
17 }
18 }

Figure 6.3: An implementation of the counter Fctr based on reliable broadcast.

ΠBroadcastCounter
def= (R,M,O,Σ, P, S, T ) where

R = {Peer(i) | i ∈ N0}
M = {Inc}
OPeer(i) = {rd, inc}
ΣPeer(i) = {SPeer(c) | c ∈ N0}
PPeer(i) = {bg}
S = reliable({Inc})
TPeer(i) =

{
init(SPeer(0), ∅),
callret(inc,SPeer(c),SPeer(c+ 1), {Inc}, ok),
callret(rd,SPeer(c),SPeer(c), ∅, c),
rcv(Inc, SPeer(c), SPeer(c+ 1), ∅)
step(bg,SPeer(c),SPeer(c), ∅) ∣∣∣ c ∈ N0

}
Figure 6.4: Formal protocol (as defined in §8.3) for the broadcast-based counter,
corresponding to the pseudocode in Figure 6.3.
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1 protocol EpidemicCounter {
2

3 message Latest(c: tmap<nat,nat>) : dontforge, eventualindirect
4

5 role Peer(n: nat) {
6 var counts: tmap<nat,nat> ;
7

8 operation read() {
9 return counts.values().sum() ;

10 }
11 operation inc(val: boolean) {
12 counts[n] := counts[n] + 1 ;
13 return ok ;
14 }
15 periodically { send Latest(counts) ; }
16

17 receive Latest(c) {
18 foreach (k in c.keys) { counts[k] = max(counts[k], c[k]) ; }
19 } } }

Figure 6.5: An epidemic implementation of the counter Fctr.

ΠEpidemicCounter
def= (R,M,O,Σ, P, S, T ) where

R = {Peer(i) | i ∈ N0}
M = {Latest(c) | c ∈ (R→fin N0)}
OPeer(i) = {rd, inc}
ΣPeer(i) = {SPeer(c) | c ∈ (R→fin N0)}
PPeer(i) = {bg}
S = dontforge(M) ∧ eventualindirect(M)
TPeer(i) =

{
init(SPeer(λr.0), ∅),
callret(inc,SPeer(c),SPeer(c[r 7→ c[r] + 1]), ∅, ok),
callret

(
rd, SPeer(c), SPeer(c), ∅,

∑
r∈domσ c(r)

)
,

rcv(Latest(c′),SPeer(c),SPeer(λr.max(c(r), c′(r))), ∅),
step(bg,SPeer(c),SPeer(c), {Latest(c)})∣∣∣ c, c′ ∈ (R→fin N0)

}
Figure 6.6: Protocol for the epidemic implementation of the counter, compiled
from the pseudocode in Figure 6.5.
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maps each role to zero. On read operations (line 8), the sum of all
counts is returned. On increment operations (line 11), the entry of the
count vector corresponding to this role is incremented. When receiving
a vector (line 17), the two vectors are merged by taking the point-wise
maximum.

6.4 Stores

Key-value stores are the most widely used eventually consistent repli-
cated data types. We discuss two implementations. The first one is even-
tually consistent, and achieves convergence by applying updates only if
they have a more recent timestamp (known as Thomas’ write rule, go-
ing back to Thomas and Beranek [1979]). The second one tracks depen-
dencies to maintain causality and is a variant of the algorithm described
in Lloyd et al. [2011]. Both protocols implement the general data type
Fkvs, and are parameterized by types Key ⊆ Values,Val ⊆ Values, which
specify the range of keys and values.

6.4.1 Eventual Store

Fig. 6.7 shows a key-value store implementation based on reliable
broadcast. It uses Lamport logical clocks to create timestamps. Each
role stores a copy of the entire store, with timestamps attached to each
value in the store.

When a read operation is called (line 14), we simply return the
value stored, or the constant undef if there is none for this key (as
required by the definition of Fkvs).

When a write operation is called (line 20), we create a new logical
timestamp for this operation by advancing the local clock, store the
new value and the new timestamp in store, and broadcast an Update
message containing the timestamp, the key, and the value.

When receiving an Update message (line 26), it is applied to the local
store only if the store has no entry for this key yet, or the timestamp
in the message is larger than what is in the store. This ensures that
updates are “only applied forward”.
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1 protocol EventualStore〈Key,Val〉 {
2

3 struct Timestamp(number: nat ; rid: nat) ;
4 function lessthan(Timestamp(n1,rid1), Timestamp(n2,rid2)) : boolean {
5 return (n1 < n2) ∨ (n1 == n2 ∧ rid1 < rid2) ;
6 }
7

8 message Update(key: Key, val: Val, ts: Timestamp) : reliable
9

10 role Replica(rid: nat) {
11 var localclock: nat ;
12 var store: pmap〈Key, pair〈Val,Timestamp〉〉 ;
13

14 operation read(key: Key) {
15 match store[key] with
16 ⊥→ { return undef ;}
17 (val,ts) → { return val ; }
18 }
19 }
20 operation write(key: Key, val: Val) {
21 localclock++ ; // advance logical clock
22 store[key] := (val,ts) ;
23 send Update(key,val,Timestamp(localclock,rid)) ;
24 return ok ;
25 }
26 receive Update(key,val,ts) {
27 if (store[key] = ⊥∨ store[key].second.lessthan(ts))
28 store[key] := (val, ts) ;
29 if (ts.number > localclock) // keep up with time
30 clock := ts.number ;
31 }
32 }
33 }

Figure 6.7: A broadcast-based eventually consistent key-value store with last-
writer-wins resolution Fkvs.
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Consistency. The EventualStore<K,V> protocol is eventually consistent,
because the reliable delivery implies that all updates become eventu-
ally visible to all nodes. Also, it satisfies causal arbitration, because
the timestamps increase with the happens-before order (this is always
guaranteed when using Lamport clocks). It does, however, not satisfy
causal visibility (and is thus not causally consistent) because updates
reach different roles at different times, thus the anomaly shown on p. 57
is possible.

6.4.2 Causal Store

Figures 6.8 and 6.9 show a key-value store implementation that tracks
dependencies to ensure causal consistency. The best way to understand
this is to see it as a tweaked version of the EventualStore protocol in
Fig. 6.7. The differences are:

• Each role keeps track of what has been read in a session, and
stores it in deps. Note that deps is a partial map: its keys are the
keys of the store that have been read in this session, and its values
are the timestamps of what was read for each key.

• When writing, the dependencies are included in the Update mes-
sage that is broadcast.

• When receiving an update, it is not immediately applied. Instead,
it goes into a processing queue. Each role stores one such queue
per source role, in a structure InBuffer, which also stores the times-
tamp of the latest update processed from that queue.

• Periodically, for each buffer, we check if the next update in the
queue is ready to process, which is the case iff all of its dependen-
cies have timestamps that are less than or equal to the timestamp
number of the latest processed update from the same role.
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1 protocol CausalStore〈Key,Val〉 {
2

3 struct Timestamp(number: nat ; rid: nat)
4 function lessthan(Timestamp(n1,rid1), Timestamp(n2,rid2)) {
5 return (n1 < n2) ∨ (n1 == n2 ∧ rid1 < rid2) ;
6 }
7 struct Update(ts: Timestamp, key: Key, val: Val,
8 deps: pmap〈Key,Timestamp〉)
9

10 message Notify(update:Update) : reliablestream
11

12 role Replica(rid: nat) {
13

14 struct InBuffer {
15 updates: queue<Update> ;
16 lastprocessed: nat ;
17 }
18

19 var store: pmap〈Key, pair〈Val,Timestamp〉〉 ;
20 var buffers: tmap〈nat, InBuffer〉 ;
21 var deps: pmap〈Key, Timestamp〉 ;
22

23 ... continued in Fig.6.9 ....
24 }
25 }

Figure 6.8: A causally consistent implementation of the key-value store with last-
writer-wins resolution Fkvs.

6.5 Protocol Templates

We now study protocol templates that work for generic replicated data
types F that do not have any blocking operations. They are usually
(but not always) less efficient than protocols optimized for that par-
ticular data type, because they often store or propagate more infor-
mation than necessary. However, they are excellent starting points for
implementations, to which we can then add space reduction optimiza-
tions. We divide these templates into two categories: three are based
on single-server serialization, and one is based on reliable broadcast.
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1 ...
2

3 operation read(key: Key) {
4 match store[key] with {
5 ⊥→ { return undef ;}
6 (val,ts) → { deps[key] := ts ; return val ; }
7 }
8 }
9

10 operation write(key: Key, val: Val) {
11 buffers[rid].lastprocessed++ ; // advance logical clock
12 var ts := Timestamp(buffers[rid].lastprocessed,rid) ;
13 store[key] := (val, ts) ;
14 send Notify(Update(ts,key,val,deps)) ;
15 return ok ;
16 }
17

18 receive Notify(update) {
19 buffers[update.ts.rid].updates.enqueue(update) ;
20 }
21

22 function readytoapply(u) {
23 return forall (k,ts) in u.deps :
24 buffers[ts.rid].lastprocessed > ts.number ;
25 }
26

27 periodically {
28 foreach(r in buffers.keys)
29 if (!buffers[r].updates.empty
30 ∧ readytoapply(buffers[r].updates.next)) {
31 var u := buffers[r].updates.dequeue() ;
32 if ((store[u.key] = ⊥) ∨ store[u.key].second.lessthan(u.ts))
33 store[u.key] := (u.val, u.ts) ;
34 buffers[r].lastprocessed := u.ts.number ;
35 if (u.ts.number > buffers[rid].lastprocessed) //keep up with time
36 buffers[rid].lastprocessed := update.ts.number ;
37 }
38 }
39

40 ...

Figure 6.9: Code for the Replica Role in Fig. 6.8.
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6.5.1 Single-Server Protocols

The first three protocols are based on the simple idea that all updates go
through a single server, which provides a serialization point. We start
with a conservative version that is sequentially consistent and then
gradually introduce caching and queueing optimizations that improve
the latency/availability of operations at the expense of consistency.

Sequential Consistency, Local Reads. The protocol Sequencer〈F〉 is
shown in Fig. 6.10. Each client stores a log of confirmed operations
in confirmed. Only operations that are received from the server are
appended to the log. All messages sent from the server are deliv-
ered reliably and in order (as indicated by the transport requirement
reliablestream), thus all logs show the same order of operations.

To perform a read-only operation, we need not communicate with
the server, but can determine the correct return value based on the
replicated data type F and the log. This is done in the function
computeresult, which computes the context (E, op, vis, ar) where E is
the set of positions in the log, op is the operation at that position, and
vis and ar are the order of the operations in the log.

To perform an update operation, we send the operation to the server
and wait for the response. Note that while we are waiting for a response,
the server may send us other messages. When we receive the response
(which is different from other messages because its cid field matches
this client), we compute the result based on the current log.

Note that the protocol is sequentially consistent (we prove this in
Theorem 10.14 on page 127). But it is not linearizable: a read operation
starting after a write operation returns does not necessarily see that
write operation, if they are on different clients, since the server may
not have delivered the update to the client performing the read yet.

Asynchronous Update-Only Operations. It may appear to be a waste
of time to wait for responses of update-only operations, since the re-
turned value is always just ok. A popular (but consistency-weakening,
thus not really correct) optimization is to return ok immediately and
perform the update asynchronously. The protocol AsyncSequencer〈F〉 in
Fig. 6.11 shows this optimization. It ensures that all update messages
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1 protocol Sequencer〈F〉 {
2

3 message ToServer(cid: nat, op: Operation) : reliable
4 message ToAll(cid: nat, op: Operation) : reliablestream
5

6 role Server {
7 receive(ToServer(cid,op)) {
8 send ToAll(cid,op) ;
9 }

10 }
11

12 function computeresult(op: Operation, s: seq〈Operation〉) {
13 return F(op, ( s.positions, //E
14 (p) ⇒ s[p], // op
15 (p1,p2) ⇒ (p1 < p2), // vis
16 (p1,p2) ⇒ (p1 < p2))) ; // ar
17 }
18

19 role Client(cid: nat) {
20 confirmed: seq〈Operation〉 ;
21 operation perform(op: Operation) where [op ∈ readonlyops(F)] {
22 return computeresult(op,confirmed) ;
23 }
24 operation perform(op: Operation) where [op /∈ readonlyops(F)] {
25 send ToServer(cid, op) ;
26 // does not return to caller yet
27 }
28 receive ToAll(c, op) where [c = cid] {
29 var rval = computeresult(op,confirmed) ;
30 confirmed.append(op) ;
31 return rval ; // returns earlier call
32 }
33 receive ToAll(c, op) where [c != cid] {
34 confirmed.append(op) ;
35 }
36 }
37 }

Figure 6.10: Global sequence protocol Sequencer〈F〉 that guarantees sequential
consistency. Read-only operations are available under partitions.
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1 protocol AsyncSequencer〈F〉 {
2

3 message ToServer(cid: int, op: Operation) : reliablestream
4 message ToAll(cid: int, op: Operation) : reliablestream
5

6 role Server {
7 receive(ToServer(cid,op)) {
8 send ToAll(cid,op) ;
9 }

10 }
11

12 function computeresult(op: Operation, s: seq〈Operation〉) {
13 return F(op, ( s.positions, // E
14 (p) ⇒ s[p], // op
15 (p1,p2) ⇒ (p1 < p2), // vis
16 (p1,p2) ⇒ (p1 < p2))) ; // ar
17 }
18

19 role Client(cid: int) {
20 confirmed: seq〈Operation〉 ;
21 operation perform(op: Operation) where [op ∈ readonlyops(F)] {
22 return computeresult(op, confirmed) ;
23 }
24 operation perform(op: Operation) where [op ∈ updateonlyops(F)] {
25 send(ToServer(cid,op)) ;
26 return ok ;
27 }
28 receive ToAll(c, op) {
29 confirmed.append(op) ;
30 }
31 }
32 }

Figure 6.11: Global sequence protocol AsyncSequencer〈F〉. Read-only and
update-only operations are available under partitions.
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sent to the server remain ordered, thus the annotation reliablestream on
ToServer messages.

This optimization means that both read-only and update-only oper-
ations are available under partitions. However, the protocol is no longer
sequentially consistent: the Dekker anomaly (§5.2.1) is possible, since
we do not wait for writes to propagate to the server. Perhaps worse, it
does not guarantee read-my-writes (§5.1.1), and thus no longer guar-
antees causal consistency.

Pending Operations Buffer. Our final version of the sequencer proto-
col, the BufferedSequencer〈F〉, is shown in Fig. 6.12. It is similar to the
AsyncSequencer〈F〉 (in particular, all operations are available under par-
titions), but has stronger consistency because it takes pending updates
into account when computing the result of read operations. The idea is
to buffer pending updates locally in a sequence pending, and make them
visible to subsequent local operations even before they are confirmed4.
We discuss below how the protocol works, and prove in Theorem 10.14
that it guarantees causal consistency and consistent prefix.

When an update operation is performed, we create an update record
that captures the operation, the size of the current log, and the client id
(line 27). The size of the log is recorded so that we know later on what
operations in the log were visible to this operation. When implementing
a replicated data type F that does not depend on the vis in the context,
such as any replicated data type using standard conflict resolution, this
field is not needed and can be removed.

The update record is then appended to the pending sequence and
sent to the server (line 29). Update records arriving from the server are
appended to the confirmed sequence (line 34), and removed from the
pending sequence if they originated on this client (line 36).

When computing the return value of an operation (line 25), the
function computeresult constructs an operation context containing the
operations in both sequences confirmed and pending, with arbitration
order corresponding to the concatenated sequence confirmed · pending,
and with visibility determined by the principle that (1) an operation

4This idea is very similar to the use of store buffers in the TSO memory model.
It is however not exactly equivalent, as shown in Burckhardt et al. [2014b].
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1 protocol BufferedSequencer〈F〉 {
2

3 message ToServer(u: Update) : reliablestream
4 message ToAll(u: Update) : reliablestream
5

6 role Server {
7 receive(ToServer(u)) {
8 send ToAll(u) ;
9 }

10 }
11

12 struct Update(op: Operation, visprefix: nat, cid: nat) ;
13

14 function computeresult(op: Operation, s: seq〈Update〉) {
15 return F(op, (s.positions, (p) ⇒ s[p].op, // E, op
16 (p1,p2) ⇒ (p1 < p2) ∧
17 (s[p1].cid = s[p2].cid ∨ p1 < s[p2].visprefix), // vis
18 (p1,p2) ⇒ (p1 < p2))) ; // ar
19 }
20

21 role Client(cid: nat) {
22 confirmed: seq〈Update〉 ;
23 pending: queue〈Update〉 ;
24 operation perform(op: Operation) {
25 var rval = computeresult(op, confirmed · pending) ;
26 if (op /∈ readonlyops(F)) {
27 var u = Update(op, confirmed.size, cid) ;
28 pending.enqueue(u) ;
29 send ToServer(u) ;
30 }
31 return rval ;
32 }
33 receive ToAll(u: Update) {
34 confirmed.append(u) ;
35 if (u.cid = cid)
36 pending.dequeue() ; // remove confirmed update
37 }
38 }
39 }

Figure 6.12: Global sequence protocol BufferedSequencer〈F〉 that guarantees
causal consistency and consistent prefix. All operations are available under par-
titions.
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sees all preceding updates by the same node, and (2) it sees all operation
in the log prefix up to the recorded length visprefix.

6.5.2 Broadcast Protocol: CausalStreams

The protocol CausalStreams〈F〉 in Fig. 6.13 satisfies roughly the same
guarantees as protocol BufferedSequencer〈F〉; in particular, it satisfies
causal consistency, and all operations are available under partitions.
However, it does not use a single server for serialization, but uses direct,
reliable broadcast. The general idea is somewhat similar to the causally
consistent key-value store in Fig. 6.8: when receiving an update, we do
not apply it immediately, but put it into a queue and wait until it
is ready (i.e. all updates it depends on have arrived). To determine
whether that is the case, we do not attach the actual dependencies,
but use vector clocks (Fidge [1988], Mattern [1989]).

Each node stores the set of all updates it has heard of in known,
and stores a current vector clock in vc. The entries of the vc vector
clock represent (1) the current clock of this node (at vc[cid]), and (2)
the timestamp of the latest update received from each node y (at vc[y]).

When an operation is performed, we compute a new timestamp,
but first advance vc[cid] to a value that is larger than any other value
in the vector clock. Thus, we know that (a) we can always tell where
an update came from by looking at its timestamp - it must be the role
whose number is largest, and (b) the new timestamp is ordered after all
timestamps of updates known to this role. An update structure (with
the operation and the timestamp) is then broadcast to all other roles.

To compute the return value, we create an operation context by
taking all updates in known and using their vector clocks to determine
both visibility and arbitration. Arbitration is determined by the size
of the maximal entry (and the role id if there is a tie); visibility is
determined by checking if each entry is less or equal.

Updates received are put into a queue and later processed by a peri-
odic background process. An update is processed once its timestamp’s
secondary elements (i.e. all elements that are not maximal, and are
thus not the origin of the update) are no larger than the current vector
clock. This ensures causality.
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1 protocol CausalStreams〈F〉 {
2

3 type VClock = tmap〈int,int〉 ;
4 function max(vc: VClock) { return vc.values().max() ; }
5

6 struct Update(op: Operation, vc: tmap<int,int>)
7

8 function origin(u: Update) {
9 return u.vc.key_of_max_value ; }

10 function arbitedbefore(u1 : Update, u2 : Update) {
11 return max(u1.vc) < max(u2.vc) ∨
12 max(u1.vc) = max(u2.vc) ∧ origin(u1.vc) < origin(u2.vc) ; }
13 function visibleto(vc1 : VClock, vc2 : VClock) {
14 return forall i : vc1[i] 6 vc2[i] ; }
15

16 message Notify(u: Update, vc: VClock) : reliablestream
17

18 role Peer(pid: int) {
19 var known: set〈Update〉 ;
20 var vc: VClock ;
21 var pending: tmap〈nat,queue〈Update〉〉 ;
22 operation perform(op: Operation) {
23 var rval = F(op, makecontext(known, arbitedbefore, visibleto)) ;
24 vc[pid] = max(vc)+1 ; // advance logical clock
25 var u = Update(op,vc) ;
26 known.add(u) ;
27 send Notify(u,vc) ;
28 return rval ;
29 }
30 receive Notify(u) { pending[origin(u.vc)].add(u) ; }
31 periodically for (sender: int) {
32 if (forall i : (i = sender) ∨ vc[i] > pending[sender].next.vc[i]) {
33 var u := pending[sender].dequeue() ;
34 known.add(u) ;
35 vc[sender] := u.vc[sender] ;
36 }
37 }
38 } }

Figure 6.13: Broadcast protocol CausalStreams〈F〉 that uses vector clocks for
causality. All operations are available under partitions.
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Concrete Executions

To verify protocol implementations, we need a model of execution with
an appropriate level of detail: it must include the sending and receiving
of messages (which are not present in abstract executions), and show
exactly how they interleave with operation calls, operation returns, and
background processing steps on each role. In the next three chapters,
we present a formal model of executions and protocols.

7.1 Transitions

We model concrete executions based on atomic events called transi-
tions. Transitions happen on a particular role instance, may receive or
send messages, and may modify the local state of the role. To define
transitions, we assume the following sets of entities: A set of role in-
stances Roles, a set of messages Messages, a set of local states States,
and a set of processes Processes.

Each transition represents an atomic step a role can take. Transi-
tions happen in response to an external stimulus. This stimulus can be
either an operation call by the client program, an incoming message
from a remote role, or the scheduler choosing to perform a processing
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step. When transitions execute, they can do two things: send a (finite)
number of messages to other roles, and/or return a value to the client
program.

Definition 7.1. Define the set of transitions Transitions to consist of all
syntactic expression of the form of one of

init(σ′,M) call(o, σ, σ′,M) callret(o, σ, σ′,M, v)
rcv(m,σ, σ′,M) rcvret(m,σ, σ′,M, v),
step(p, σ, σ′,M) stepret(p, σ, σ′,M, v)

where σ, σ′ ∈ States, o ∈ Operations, M ⊆fin Messages, v ∈ Values,
m ∈ Messages, and p ∈ Processes.

The meaning of these transitions is as follows.

• The transition init(σ′,M) is an initialization transition, which
puts the automaton in an initial state σ′. M is a finite set of
messages, describing the messages that are sent by this transition
(possibly empty).

• The transition call(o, σ, σ′,M) means the role accepts a call to
operation o by the client program. It starts in state σ (called the
pre-state), ends in state σ′ (the post-state), and sends the set of
messages M .

• The transition rcv(m,σ, σ′,M) means the role accepts a message
m from the network. Again, σ and σ′ are the pre- and post-state,
respectively, and M is the set of messages sent by the transition.

• The transition step(p, σ, σ′,M) means that process p of this role
takes a spontaneous step. The meaning of σ, σ′, and M is as
before. Roles can be composed of multiple internal processes,
each of which is guaranteed to be scheduled fairly (meaning that
each process in a non-crashed role executes an infinite number of
steps).

For the latter three transitions we also include a variant that addition-
ally returns a value v to the client program, with the following meaning.
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The callret transition models an operation that returns instantly (the
call and return are part of the same atomic transition). The transitions
rcvret and stepret model situations where a currently pending oper-
ation returns, in response to a an arriving message or some internal
processing step.

Implicit Broadcast. When a message is sent, no particular destination
is specified — in our model, all sent messages go to all roles. This
simplifies the reasoning about protocols that use broadcast. It does
not limit generality: for protocols using point-to-point communication,
we can add destination information into the message and ignore the
message on non-destination nodes (using a dummy transition of the
form rcv(m,σ, σ, ∅)).

Definition 7.2. Define the partial functions op, rcv, proc, pre, post, snd,
rval on transitions as follows:

t op(t) rcv(t) proc(t) pre(t) post(t) snd(t) rval(t)
init(σ′,M) ⊥ ⊥ ⊥ ⊥ σ′ M ⊥
call(o, σ, σ′,M) o ⊥ ⊥ σ σ′ M ⊥
rcv(m,σ, σ′,M) ⊥ m ⊥ σ σ′ M ⊥
step(p, σ, σ′,M) ⊥ ⊥ p σ σ′ M ⊥
callret(o, σ, σ′,M, v) o ⊥ ⊥ σ σ′ M v

rcvret(m,σ, σ′,M, v) ⊥ m ⊥ σ σ′ M v

stepret(p, σ, σ′,M, v) ⊥ ⊥ p σ σ′ M v

For a set E of events, we define the subsets of calls and returns as
calls(E) def= {e ∈ E | op(e) 6= ⊥} and returns(E) def= {e ∈ E | rval(e) 6=
⊥}.

7.2 Trajectories

During an execution, each role performs a sequence of transitions, sub-
ject to a few conditions: each transition sequence must start with an
initialization transition; all but the first transition must start in the
state that the previous transition ended at; and calls and returns must
be properly matched. We call such a sequence a trajectory. Formally,



86 Concrete Executions

Definition 7.3 (Trajectories). A trajectory is an event graph (E, eo, tr)
such that

(t1) eo is an enumeration of E.

(t2) tr : E → Transitions specifies the transition of each event. We
write op(e) short for op(tr(e)), and similarly for rcv, proc, pre,
post, snd, and rval.

(t3) The first (and only the first) transition is an initialization transi-
tion, and the pre-state of each transition matches the post-state
of the previous transition:

∀e ∈ E :
(

pre(e) = ⊥ = pred(E, eo, e)
∨ pre(e) = post(pred(E, eo, e))

)
where pred(E, eo, e) is the partial function that returns the prede-
cessor of e in E with respect to the enumeration eo, or is undefined
(⊥) if there is no predecessor.

(t4) A call transition may not follow another call transition unless
there is a return transition in between them:

∀c1, c2 ∈ calls(E) : c1 <eo c2 ⇒
∃r ∈ returns(E) : c1 ≤eo r <eo c2

We let T be the set of all trajectories.
Note that the conditions above do not quite enforce proper alter-

nation of calls and returns: they allow spurious returns, because buggy
protocol implementations may perform too many return transitions.
Correct protocols should always produce well-formed trajectories:

Definition 7.4 (Well-formed Trajectories). A trajectory (E, eo, tr) is
well-formed if each event is preceded by no more returns than calls:

∀e ∈ E :
∣∣{r ∈ returns(E) | r ≤eo e}

∣∣ ≤ ∣∣{c ∈ calls(E) | c ≤eo e}
∣∣
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7.3 Concrete Executions

Trajectories describe the execution of a single role. To describe an exe-
cution of the entire system, we use (1) one trajectory per participating
role, and (2) a message delivery relation del that matches send and
receive events.

Definition 7.5 (Concrete Executions). A concrete execution is an event
graph G = (E, eo, tr, role, del) such that

(c1) eo is an enumeration of E.

(c2) tr : E → Transitions specifies the transition of each event. As
before, we write op(e) short for op(tr(e)), etc.

(c3) role : E → Roles specifies the role of each event.
We write E(r) def= {e ∈ E | role(e) = r}.

(c4) The events for each role are a trajectory:

∀r ∈ R : G|E(r),eo,tr ∈ T

(c5) del is a binary, injective relation that satisfies

∀s, r ∈ E : s
del−→ r ⇒ s

eo−→ r ∧ rcv(r) ∈ snd(s)

We denote the set of all concrete executions by E , and the set of all
finite concrete executions by Efin.

Examples. Fig. 2.2(d) on page 26 shows an example of a finite con-
crete execution. Each event is represented by its transition. Events are
aligned in columns according to which replica they are on, and aligned
vertically according to the execution order eo which is the timeline
(higher up means earlier). The delivery relation del is indicated by
arrows, and connects sending transitions to receive transitions. Two
examples of infinite concrete executions are shown on pages 91 and
92, on the left, and discussed in the first paragraph below the diagrams.

Definition 7.6 (Notations for Executions). For convenience, we intro-
duce a few notations. For a concrete execution G = (E, eo, tr, role, del),
we define:
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• traj(G, r) is the trajectory of role r in G: traj(G, r) def= G|E(r),eo,tr.

• ≈role is an equivalence relation on events relating events by the
same role: e ≈role e

′ def⇐⇒ role(e) = role(e′).

• ro is the role-order relation, defined to be the execution order
restricted to events by the same role: ro def= (eo ∩ ≈role). Note
that ro|E(r) is always an enumeration of E(r).

• roles(G) is the set of all roles that appear in the execution:
roles(G) def= {r ∈ Roles | |E(r)| > 0}.

• del(M) is the delivery relation del restricted to M ⊆ Messages:
s

del(M)−−−−→ r ⇔ s
del−→ r ∧ rcv(r) ∈M .

7.3.1 Silent Crashes

The system guarantees that each correct role gets scheduled repeatedly
unless it crashes. In our model, crashes simply correspond to finite
trajectories - because a role that does not crash will execute forever.
We call a role correct in an execution if it never crashes.

Definition 7.7 (Correct Roles). Let G = (E, eo, tr, role, del) be a con-
crete execution. We define the set of correct (i.e. non-crashed) roles to
be the set of roles whose trajectories are infinite, and the crashed roles
to be the set of roles whose trajectories are nonempty and finite:

correct(G) = {r ∈ Roles | |E(r)| =∞}
crashed(G) = {r ∈ Roles | 0 < |E(r)| <∞}

We say an executionG is complete if crashed(G) = ∅. We define Ecomplete
to be the set of complete executions.

An important observation is that there is no difference between a
crashed node and a node that is simply “frozen” (and may all of a
sudden decide to thaw and take more steps). This type of failure is
thus sometimes called a silent crash. In general, silent crashes are more
difficult to handle than detectable crashes. For example, Fischer et al.
[1982] show that consensus cannot be solved in an asynchronous system
with silent crashes.
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7.3.2 Well-formed Executions

For correct implementations and client programs, calls and returns on
each role should alternate properly.

Definition 7.8 (Well-formed Executions). A concrete execution G =
(E, eo, tr, role, del) is well-formed if all its trajectories traj(G, r) are well-
formed. We define Ewellformed to be the set of well-formed executions.

For protocols where all calls return immediately (as part of the same
transition), all executions are well-formed (Lemma 7.1). In general,
however, an incorrect protocol implementation may contain spurious
return transitions. When proving the correctness of protocols, we thus
need to also prove that all its executions are well-formed.

Lemma 7.1. Let G = (E, eo, tr, role, del) be an execution such that all
calls return immediately: calls(E) = returns(E). Then G is well-formed.

7.4 Observable History

We now show how to characterize the observable behavior of an execu-
tion using histories as introduced in §3.1 and defined in Definition 3.1
on page 32. We obtain a history from a concrete execution by selecting
the operation call events, and recording information about them.

Auxiliary notations. The following notations help us to express prop-
erties of events in a concrete execution G = (E, eo, tr, role, del):

• We define the set of operation call events

ops(E) def= {e ∈ E | op(e) 6= ⊥ }

• For an event e ∈ E, we define call(e) to be the preceding call in
the same role, ret(e) to be the succeeding return in the same role:

call(e) = max
ro

{
c ∈ E

∣∣∣ c ≤ro e ∧ op(c) 6= ⊥
}

ret(e) = min
ro

{
r ∈ E

∣∣∣ e ≤ro r ∧ rval(r) 6= ⊥
}

Note that call(e) = e if e is a call, and call(e) = ⊥ if there is no
preceding call, and similarly for ret(e).
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We can now define how we obtain the observable history H(G) of a
concrete execution G.

Definition 7.9. Let G = (E, eo, tr, role, del) be a concrete execution.
Then we define the observable history of G to be the event graph
H(G) def= (EA, opA, rvalA, rbA, ssA) that records the following informa-
tion:

(x1) EA
def= ops(G) (the events are the operation calls in G)

(x2) opA(e) def= op(tr(e)) (we record the operation performed)

(x3) rvalA(e) def=


⊥ if op(e) = ⊥
rval(ret(e)) if ret(e) 6= ⊥
∇ otherwise

(we record for an operation call e the value returned by the match-
ing return, or ∇ if it did not return)

(x4) e rbA−−→ e′
def⇐⇒ (ret(e) 6= ⊥) ∧ (ret(e) eo−→ e′)

(the returns-before relation captures whether operation e re-
turned before operation e′ was called)

(x5) e ≈ssA e′
def⇐⇒ e ≈role e

′

(the same-session relation captures whether operations happened
on the same role)

If there is no risk of confusion, we abbreviate opA as op, and so on (but
note that rvalA 6= rval in general). The following lemma shows that the
definition above works as intended, i.e. produces histories as defined in
Definition 3.1 on page 32.

Lemma 7.2. For any concrete execution G ∈ E , H(G) is a history, and
if G is well-formed, then H(G) is well-formed.



7.4. Observable History 91

Example 1: Broadcast Counter

Peer(0)

init(...)

callret(inc,...,ok)

callret(rd,...,1)

rcv(...)

rcv(...)

callret(inc,...,ok)

Peer(1)

init(...)

Peer(2)

init(...)

eo
rcv(...)

rcv(...)

inc:ok

rb

step(...)
step(...)

...

step(...)
step(...)

...

step(...)
step(...)

...

step(...)
step(...)

...

ss

rd:1

inc:ok
ss ss

rb

rb

Concrete Execution. On the left, we show a graphical representation
of a concrete execution G = (E, eo, tr, role, del) of the BroadcastCounter
(see code in Fig. 6.3 on page 69). The event graph contains a vertex
for each transition of each role. Transitions are aligned in columns ac-
cording to the role they belong to, and are aligned vertically according
to execution order. We have put frames around the call transitions
ops(G). In this implementation, all operation calls return immediately,
thus all call events are a transition of the form callret(o, σ, σ′,M, v). To
reduce the level of detail, we have omitted all arguments except o (the
operation being called) and v (the returned value). This execution is
infinite, and complete: all participating roles (i.e. all roles that execute
at least one transition) execute infinitely many transitions (indicated
by dots at each column’s bottom).

History. On the right, we show a graphical represention of the corre-
sponding history H(G) = (EA, opA, rvalA, rbA, ssA). The events corre-
spond to the operation calls EA = ops(G) (framed transitions), the
operation and return values are copied from the concrete execution,
and the returns-before order matches the order in which the opera-
tions appear in the concrete execution.
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Example 2: Single-Copy Register

Client(0)

init(...)

call(wr(1),...)

call(rd,...)rcv(...)

Server

init(...)

Client(1)

init(...)

eo

rcvret(...,ok)

step(...)
step(...)

...

step(...)
step(...)

...

step(...)
step(...)

...

rd:1wr(1):ok

ss ss

call(rd,...)

rcv(...)

rcvret(...,1)

rcv(...)

rd:∇

rb
rb

Concrete Execution. On the left, we show a concrete execution of
the single-copy register (Fig. 1.1 on page 11). The call and return of
an operation happens in separate transitions (we highlight calls and
returns using solid or dashed frames, respectively), and there are no
calls or returns on the server, which only responds to messages by the
clients. This execution is not complete: the server crashes (i.e. executes
only a finite number of transitions and then stops) and the client on
the left waits forever for a response that does not arrive.

History. On the right, we show the corresponding history. The history
shows the three operations that are called in the concrete executions.
It combines information from the call and return events into a single
event. The fact that the second read did not return is indicated by rvalA
being ∇. Note that the first write and the first read are not ordered by
ar because their durations overlap.

This history is not a valid history for the register data type: it
cannot be extended to an abstract execution that satisfies RVal(Freg)
because read operations are not allowed to return ∇ (unlike, for exam-
ple, dequeue operations on queues), as specified in Fig. 4.1 on page 42.
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7.5 Infinite Executions

Finite executions represent the behavior of the system during a limited
time interval, starting at the beginning (before any roles are initialized)
and ending at some arbitrary point of time (perhaps in the middle
of some pending operations). In contrast, infinite executions represent
what the system does when left running forever. To define our con-
sistency models, we need to work with infinite executions, because the
consistency guarantees include liveness aspects such as “each operation
call eventually returns” or “each operation eventually becomes visible
to all sessions”.

In this section, we examine (1) how finite and infinite executions
are related to each other, via the notion of prefixes and limits, and (2)
how to distinguish between safety properties and liveness properties. In
addition to their philosophical interest, these concepts are also useful
when we prove general implementability results, as in chapter 9.

7.5.1 Prefixes and Limits

We can easily take a prefix of any execution, and of any finite length
desired (less than or equal to the length of the original execution). This
prefix is always a finite execution itself.

Definition 7.10. Let G = (E, eo, tr, role, del) be a concrete execution,
with an enumerable set of events E = {e0, e1, . . . } (where ei

eo−→ ej ⇔
i < j), and let E′ = {e0, . . . , ek} ⊆fin E. Then, the event graph
G′ = G|E′,eo,tr,role,del is called a prefix of G, written G′ v G. We de-
fine prefixes(G) to be the set of all prefixes of G.

Lemma 7.3. Let G ∈ E and G′ v G. Then G′ ∈ Efin.

Conversely, we can take the limit of a sequence of prefixes. This limit
is always a concrete execution.

Definition 7.11. Let G0 v G1 v G2 . . . be an infinite ascending se-
quence of finite concrete executions. Then, define its limit as:

lim
i
Gi

def= (
⋃
i

Ei,
⋃
i

eo,
⋃
i

tr,
⋃
i

role,
⋃
i

del).

Lemma 7.4. If G0 v G1 v · · · and Gi ∈ Efin, then limiGi ∈ E .
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7.5.2 Safety and Liveness

When specifying and verifying properties, we often distinguish between
safety properties (which describe “bad” things that should never hap-
pen) and liveness properties (which describe “good” things that should
eventually happen). We formally define safety and liveness as follows.

Definition 7.12. Let P ⊆ E be a subset of executions. Then,

• P is called a safety property if the membership of an execution is
completely determined by its finite prefixes:

∀G ∈ E :
(
G ∈ P ⇔ ∀G′ ∈ prefixes(G) : G′ ∈ P

)
or equivalently stated, if membership can always be refuted by a
finite prefix:

∀G ∈ E :
(
G /∈ P ⇔ ∃G′ ∈ prefixes(G) : G′ /∈ P

)
• P is called a liveness property if any finite execution can be ex-
tended to an execution that satisfies the property:

∀G ∈ Efin : ∃G′ ∈ P : G ∈ prefixes(G′).

Interestingly, one can show that any property is a conjunction of a
safety property and a liveness property [Alpern and Schneider, 1985].

Examples. We show a number of interesting safety and liveness prop-
erties in the section on transport layer guarantees §8.2. Also, well-
formedness (Definition 7.8) is a safety property.

Lemma 7.5. Ewellformed is a safety property.



8
Protocols

In the previous chapter, we have shown how to model executions of
any asynchronous distributed protocol. The next step is to formalize
the notion of a protocol. This will allow us to not only study individual
protocols, but to ask deeper questions, such as whether a protocol with
certain properties can even exist.

A protocol has several components: it defines what roles participate,
the format of messages, a state machine (called role automaton) for
each participating role, and the required message delivery guarantees.

8.1 Role Automata

The transitions taken by each role must be consistent with the role
automaton that the protocol defines for that role. A role automaton
is a set of transitions, subject to conditions that ensure that a role
correctly models the asynchronous sending and receiving of messages,
the asynchronous operation calls and returns (from and to the client
program), and the scheduling of processes.

Definition 8.1 (Role Automaton). Let O ⊆ Operations be a set of oper-
ations, let Σ ⊆ States be a set of states, let M ⊆ Messages be a set of
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messages, and let P ⊆ Processes be a set of processes. A role automaton
T over (O,Σ,M, P ) is a set of transitions T ⊆ Transitions that satisfies
the following properties:

(r1) The operations, states, and messages range over O,Σ,M, P :

op(T ) ⊆ O pre(T ) ⊆ Σ post(T ) ⊆ Σ
snd(T ) ⊆ P(M) rcv(T ) ⊆M proc(T ) ⊆ P

(r2) There is at least one initialization transition:

∃σ,M : init(σ,M) ∈ T

(r3) All messages can be received in all states:

∀m ∈M : ∀σ ∈ Σ : ∃t ∈ T :
(

rcv(t) = m ∧ pre(t) = σ
)

(r4) All operations can be called in all states:

∀o ∈ O : ∀σ ∈ Σ : ∃t ∈ T :
(

op(t) = o ∧ pre(t) = σ
)

(r5) All processes can take a step in all states:

∀p ∈ P : ∀σ ∈ Σ : ∃t ∈ T :
(

proc(t) = p ∧ pre(t) = σ
)

Condition (r2) expresses that there must be at least one initializa-
tion transition. There can be more than one if we want to initialize the
automaton nondeterministically.

Condition (r3) expresses that a role must always accept any mes-
sage. This requirement can be easily satisfied by including transitions
of the form rcv(m,σ, σ) that "ignore" unwanted messages, such as mes-
sages that aren’t intended for this particular receiver. Note that if a
node would like to process an incoming message at a later point of
time, it can store the message in a buffer that is part of its state, and
use a dedicated process with its own step transition to process it later.

Condition (r4) expresses that a role must always accept any calls
from the client. Just as for messages, the automaton may ignore calls
that are invalid in some sense by using a transition call(o, σ, σ), or it
may produce an error message using a transition along the lines of
callret(o,Error(invalid call), σ, σ).
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Condition (r5) expresses that each process in a role must be able
to “take a step”. There may be multiple such transitions — if the im-
plementation is nondeterministic. If a process p has no work to do in
state σ, it can satisfy condition (r5) by providing an “idle” transition
step(σ, σ, p). Idle transitions correspond to what is called “stuttering”
in state-oriented models (such as used by Abadi and Lamport [1991]).

Fairness. At runtime, the system must ensure that each process in a
role gets scheduled repeatedly to give it a chance to make progress
(such as sending a message, or returning from a pending operation).

Definition 8.2. We say a trajectory G = (E, eo, tr) is fair to a process
p ∈ Processes if it is either finite, or contains infinitely many transitions
for p:

fair(G, p) def⇐⇒ |E| <∞ ∨ |{e ∈ E | proc(e) = p}| =∞.

Our processes are simply labels on transitions that establish fair
scheduling of transitions within a single role. Thus, process labels have
no meaning across multiple roles. Processes cannot crash, but the role
containing them may (which could be considered a simultaneous crash
of all its processes). Our process labels correspond to the equivalence
relation used in I/O automata (Lynch and Tuttle [1989]) to ensure fair-
ness. For our processes, strong and weak fairness (e.g. as described in
Lamport [1994]) coincide, because condition (r5) guarantees that each
process is always enabled.

8.2 Transport Guarantees

No meaningful protocol can work correctly without some system-wide
guarantees about message delivery. Such guarantees include (1) safety
guarantees, which prevent the forging, loss, duplication, or reordering
of messages, and (2) liveness guarantees, which ensure that messages
are eventually delivered, or eventually indirectly delivered.

Definition 8.3 (List of Transport Guarantees). We define a transport
guarantee to be one of the following predicates over a concrete execution
G = (E, eo, tr, role, del), parameterized by some set of messages M ⊆
Messages:



98 Protocols

• dontforge(M) requires that messages inM that are received must
have been sent, i.e. not invented out of thin air:

∀e :
(
(act(e) = rcv ∧ rcv(e) ∈M) ⇒ ∃e′ : (e′ del−→ e)

)
• dontduplicate(M) requires that no message inM sent by an event
e is delivered twice to the same role:

∀e, e1, e2 : ∀m ∈M :(
(e del(m)−−−−→ e1) ∧ (e del(m)−−−−→ e2) ∧ (e1 ≈role e2)

)
⇒ (e1 = e2)

• dontlose(M) requires that messages in M with correct sender
are eventually delivered to all correct receivers (other than the
sender):

∀s, r ∈ correct(G) where s 6= r : ∀e ∈ E(s) : ∀m ∈M :

m ∈ snd(e) ⇒ ∃e′ ∈ E(r) : e
del(m)−−−−→ e′

This guarantee applies only to correct (i.e. non-crashed) roles,
because a crashed receiver cannot perform a receive transition,
and for a crashed sender, the crash may prevent the message from
propagating (even if the crash occurs after the send operation).

• pairwiseordered(M) requires that the order of messages in M by
the same sender to the same receiver is preserved:

∀s1, s2, r1, r2 :(
(s1

ro−→ s2) ∧ (s1
del(M)−−−−→ r1) ∧ (s2

del(M)−−−−→ r2) ∧ (r1 ≈role r2)

⇒ (r1
ro−→ r2)

)
• reliable(M) and reliablestream(M) require that all messages in
M are delivered exactly once, and in-order (for the latter):

reliable(M) def⇐⇒ dontforge(M) ∧ dontduplicate(M)
∧ dontlose(M)

reliablestream(M) def⇐⇒ reliable(M) ∧ pairwiseordered(M)
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• eventual(M) requires that a correct, stubborn sender (i.e. a
sender sending infinitely many messages in M) can eventually
get a message through to any correct receiver:

∀s, r ∈ correct(G) where s 6= r :∣∣{e ∈ E(s) | snd(e) ∩M 6= ∅}
∣∣ =∞ ⇒

∀e ∈ E(s) : ∃e′ ∈ E(r) : (e ro ; del(M)−−−−−−→ e′)

• eventualindirect(M) requires that a correct, stubborn sender (i.e.
a sender sending infinitely many messages in M) can eventually
reach any correct receiver, possibly via other roles, through a
chain of messages:

∀s, r ∈ correct(G) where s 6= r :∣∣{e ∈ E(s) | snd(e) ∩M 6= ∅}
∣∣ =∞ ⇒

∀e ∈ E(s) : ∃e′ ∈ E(r) : (e (ro ∪ del(M))∗−−−−−−−−−→ e′)

The guarantee eventualindirect(M) is slightly weaker (and slightly eas-
ier to provide) than eventual(M). Yet it is still sufficient for the im-
portant category of epidemic protocols (§6.1.1), where direct delivery
of messages between all pairs is not required.

Lemma 8.1 (Safety and Liveness). The three transport guarantees
dontforge(M), dontduplicate(M), and pairwiseordered(M) are safety
properties. The three transport guarantees dontlose(M), eventual(M),
and eventualindirect(M) are liveness properties.

8.3 Protocols

We can now assemble our definition of a protocol, by combining the
concepts of a role automaton (Definition 8.1 on page 95), and transport
guarantees (Definition 8.3 on page 97).
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Definition 8.4. A protocol is a tuple (R,M,O,Σ, P, S, T ) where

• R ⊆ Roles is a set of role instances.

• M ⊆ Messages is a set of messages.

• O maps each r ∈ R to a set Or ⊆ Operations of operations.

• Σ maps each r ∈ R to a set of states Σr ⊆ States.

• P maps each r ∈ R to a set of processes ∅ 6= Pr ⊆fin Processes.

• S = S1 ∧ · · · ∧ Sn is a conjunction of transport guarantees.

• T maps each r ∈ R to a role automaton Tr over (Or,M,Σr, Pr).

We show two examples of protocols in Fig. 6.4 (the broadcast counter
protocol) and Fig. 6.6 (the epidemic counter protocol) on pp. 69–70.

Protocol Executions. Protocols precisely define what executions are
possible. These executions are of the form as defined in Definition 7.5 on
p. 87, and consistent with the specified role automata and the transport
guarantees:

Definition 8.5. For a protocol Π = (R,M,O,Σ, P, S, T ), define the set
of its executions E(P ) to be the set of executionsG = (E, eo, tr, role, del)
such that

(e1) The transitions of each role are as specified by its role automaton:
∀e ∈ E : tr(e) ∈ Trole(e).

(e2) The execution satisifes each transport guarantee: ∀i : G |= Si.

(e3) All trajectories are fair, for all processes of that role:
∀r ∈ R : ∀p ∈ Pr : fair(traj(G, r), p).

We define the sets of finite / complete protocol executions as

Efin(Π) def= E(Π) ∩ Efin Ecomplete(Π) def= E(Π) ∩ Ecomplete
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8.4 Pseudocode Compilation

Throughout this tutorial, and in particular in chapter 6, we have de-
scribed many different protocols using pseudocode. To achieve reason-
able precision of language without providing a formal definition of a
language syntax and semantics (which is beyond the scope of this tuto-
rial), we resort to an informal, but precise description of a compilation
process that takes a pseudocode protocol definition and compiles it into
a formal protocol (as in Definition 8.4).

We now discuss this compilation process. Much of it can be gleaned
from the examples given in Figures 6.4 and 6.6 on pp. 69–70, which
show the input and the output of the compilation process.

• The set R of role instances is determined by the role definitions in
the protocol. For example, a definition role Peer(nr:nat) translates
to the set {Peer(i) | i ∈ N0}.

• The set M of messages is determined by the mes-
sage definitions in the protocol. For example, a definition
message Latest(c: tmap<nat,nat>) translates to the set {Latest(c) |
c ∈ (R→fin N0)}.

• The sets Or, for r ∈ R, are determined by the operations that
appear in the definition of the role of which r is an instance.

• The sets Σr, for r ∈ R, represents the state of a role. We prefix
the role identifier with an S to denote the state. For example,
ΣPeer(i) = {SPeer(c) | c ∈ N0} for a role whose state is an integer
(Fig. 6.4).

• The set of processes Pr is defined to contain a process for each
periodic task, or if there aren’t any, a single background process
{bg}.

• The transport guarantees S match the reliability attributes of the
messages.

The interesting part is how we obtain the role automaton Tr. The key
insight here is that every handler (preceded by the keyword operation,
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receive, periodically, or init) executes atomically, as a single transition.
Thus, we obtain the set of transitions as follows:

• For every operation o ∈ Or and state σ ∈ Σr, we create a call
transition. The body of the handler determines the set of sent
messages (one per send statement in the body), updated state
(side effect of executing the code), and return value (if it contains
a return statement).

• For every message m ∈ M and state σ ∈ Σr, we create a re-
ceive transition. If there is a handler matching m, we use the
body of the handler to determine sent messages, updated state,
and return value (if any). Otherwise, we use a dummy transition
rcv(m,σ, σ, ∅).

• For every process p ∈ Pr and state σ ∈ Σr, we create a step tran-
sition. If the process corresponds to some periodically clause, the
latter determines sent messages, updated state, and return value
(if any). Otherwise, we create the idle transition step(p, σ, σ, ∅).

• We create a transition init(σ, ∅) where σ is the state where all
fields assume the default value defined by their type, or, if the
role specifies an initialization handler, we use that handler to
create the transition.



9
Implementability

We can now state precisely what it means for a protocol to be cor-
rect, by connecting the formalisms we use for consistency guarantees
(Chapters 3 – 5) and for executions of protocols (Chapters 7 and 8).

Definition 9.1 (Correctness). We say that a protocol Π guarantees a
consistency model P1 ∧ · · · ∧ Pn if it produces only well-formed execu-
tions (Def. 7.8, p. 89), and if all of its complete executions satisfy the
consistency guarantees (Def. 3.5, p. 35):

Π |= P1 ∧ · · · ∧ Pn
def⇐⇒ E(Π) ⊆ Ewellformed ∧
∀G ∈ Ecomplete(Π) : H(G) |= P1 ∧ · · · ∧ Pn

With this definition in place, it becomes possible to ask and answer
many interesting questions. For example, we can formalize protocols
and verify rigorously whether they do indeed provide the guarantees
we think they should. We show correctness proofs for the protocols
introduced earlier in chapter 10.

But beyond that, we can also ask the question whether certain guar-
antees are even implementable by any protocol. We start this section
by proving a general version of the CAP theorem.
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9.1 CAP

To provide clients continous access to data even when the network is
temporarily unavailable, roles must complete client operations without
first waiting for responses from remote nodes. Whenever this is possible,
we can make such operations atomic.

Definition 9.2. Let Π = (R,M,O,Σ, P, S, T ) be a protocol. We say
that an operation o is available under partitions on a role r if o ∈ Or
and all calls are atomic:

availableunderpartitions(Π, o, r) def⇐⇒
(o ∈ Or) ∧ (∀t ∈ Tr : op(r) = o ⇒ rval(t) 6= ⊥).

9.1.1 CAP Sketch

We start with a sketch of the proof structure that is helpful to un-
derstand the mechanics of the proof. Consider a key-value store. Is it
possible to make both reads and writes available under partitions while
guaranteeing sequential consistency? The answer is no. To see why, as-
sume that it is indeed possible, and derive a contradiction. Consider
the Dekker test (§5.3.2), and consider a situation where we have two
roles (A and B), and run three experiments called A, B, and AB. In
each experiment, we simulate a network partition by not delivering
any messages until all code has finished executing. In experiment A,
we run program A only (on role A). In experiment B, we run program
B only (on role B), and in experiment AB, we run both. Now, observe
that (1) in experiment A, the program must print "A wins", and (2)
in experiment B, the program must print "B wins". But since there are
no messages exchanged until the program finished executing, it means
that in experiment AB, we must see both "A wins" and "B wins", con-
tradicting sequential consistency.

9.1.2 General CAP

Since CAP does not apply to all data types (for example, we show that
it is possible to ipmlement a sequentially consistent register that is
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available under partitions in §10.2.2), we first characterize what prop-
erty of the data type causes the problem.

Definition 9.3. Given some replicated data type Fτ , we say that two
operations wa, wb ∈ Operations are independently observable by two
operations ra, rb ∈ Operations if for all operation contexts of the form

Ca = ({ea}, {(ea, wa)}, ∅, ∅}) Cb = ({eb}, {(eb, wb)}, ∅, ∅})
Cab = ({ea, eb}, {(ea, wa), (eb, wb)}, vis, ar) (vis, ar are arbitrary)

the operations ra, rb can distinguish between the contexts:

Fτ (ra, Cab) 6= Fτ (ra, Cb) and Fτ (rb, Cab) 6= Fτ (rb, Ca)

Both the key-value store Fkvs and the counter have independently ob-
servable updates:

• wa = inc and wb = inc are independently observable updates for
the counter Fctr, because Fctr(rd, Ca) = Fctr(rd, Cb) = 1 6= 2 =
Fctr(rd, Cab).

• wa = wr(a, 1) and wb = wr(b, 1) for two objects a 6= b are inde-
pendently observable.

However, the register Freg does not have independently observable
updates; even if choosing two different writes wa = wr(1) and wb =
wr(2), we still have Fτ (rd, Cab) = Fτ (rd, Cb) if we let ar in Cab order the
events as ea

ar−→ eb. In fact, this is a good thing: since we presented a
sequentially consistent register in the introduction, we better not prove
now that it is impossible.

We are now ready to state and prove the CAP theorem for any data
type with independently observable writes.

Theorem 9.1 (SC-CAP Core). Let Π = (R,M,O,Σ, P, S, T ) be a se-
quentially consistent protocol for a data type Fτ with at least two roles,
i.e.

Π |= SequentialConsistency(Fτ ) and |R| ≥ 2,
and let wa, wb ∈ O be independently observable by ra, rb ∈ O. Then,
there exists a role r ∈ R on which at least one of the operations
wa, wb, ra, rb is not available under partitions.
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Corollary 9.2. For neither the counter Fctr, nor the key-value store
Fkvs, do there exist any sequentially consistent implementations that
make all operations available under partitions on more than one role.

Theorem 9.1. We proceed indirectly: assuming that wa, wb, ra, rb are
available under partitions on all roles, we construct a concrete exe-
cution that is not sequentially consistent. We break this down into
three steps. In the first two steps, we separately construct trajecto-
ries Jx and Jy for two roles x, y ∈ R such that x 6= y, and show
that trajectory Jx ends with an rb operation that returns Fτ (rb, Ca)
(for Ca as in Definition 9.3), and trajectory Jy ends with a ra oper-
ation that returns Fτ (ra, Cb). Then, in a third step, we construct a
complete concrete execution G′xy such that H(G′xy) is not contained
in H(SequentialConsistency(Fτ )), which is a contradiction that
completes the proof.

Step 1 . Consider the role automaton Tx. By condition (r2) on p. 96,
it must contain an initialization transition t0 = init(σ0,M0). Now, by
condition (r4), and by the assumption that wa is available under parti-
tions, there must exist a transition t1 = callret(wa,M1, σ0, σ1, v1) ∈ Tx.
Similarly, by the assumption that rb is available under partitions, there
must exist a transition t2 = callret(rb,M2, σ1, σ2, v2) ∈ Tx. Then the
tuple Jx

def= ({x0, x1, x2}, eo, tr) where x0 <eo x1 <eo x2 and tr(xi) = ti
is a trajectory for the role automaton Tx.

We now argue that v2 = Fτ (rb, Ca) for some operation context Ca
as in Definition 9.3. To see why, note that we can extend the trajectory
to a finite concrete execution Gx = ({x0, x1, x2}, eo, tr, role, del) where
role(xi) = x and del = ∅ (no other roles perform transitions, no mes-
sages are delivered). Then Gx ∈ E(Π) because (1) the events for each
role are a trajectory for Tx, (2) all transport guarantees are satisfied be-
cause no messages are delivered (thus safety is not violated) and the ex-
ecution is finite (thus correct(Gx) = ∅ and thus liveness is not violated),
and (3) the execution is fair because it is finite. Its observable history
is H(Gx) = ({x1, x2}, op, rval, rb, ss) where op(x1) = wa, op(x2) = rb,
rval(xi) = vi, x1

rb−→ x2, and x1 ≈ss x2. Because of the progress theo-
rem 9.3, which we prove in the next chapter, we can extend Gx to a
complete execution Gx v G′x ∈ Ecomplete(Π) such thatH(Gx) = H(G′x).
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Now, because Π |= SequentialConsistency(Fτ ), we know there ex-
ists an abstract execution Ax that is the same as H(G′x) = H(Gx),
but with added relations vis and ar (where vis is acyclic and ar is to-
tal), and that satisfies conditions SingleOrder,ReadMyWrites and
RVal(Fτ ). Because x1

rb−→ x2 and x1 ≈ss x2, we have x1
so−→ x2, and

thus by ReadMyWrites, x1
vis−→ x2. Thus the context (as defined on

page 50) for x2 is context(Ax, e) = ({x1}, op, ∅, ∅) with op(x1) = wa. It
is thus of the form stated in Definition 9.3, which concludes step 1.

Step 2 . Consider the role automaton Ty. Symmetric to step 1, us-
ing the same reasoning but swapping a and b in the indexes of the
operations wa and rb, we obtain a trajectory Jy = ({y0, y1, y2}, eo, tr)
of the role automaton Ty, and where y0

eo−→ y1
eo−→ y2, tr(y1) =

callret(wb, v′1, σ′0, σ′1), tr(y2) = callret(ra, v′2, σ′1, σ′2) is a trajectory for
the role automaton Ty, and where v′2 = Fτ (ra, Cb) for some operation
context Cb as in Definition 9.3.

Step 3 . We take the two trajectories Jx, Jy from steps 1 and 2
and combine them into a single, finite concrete execution Gxy =
({x0, x1, x2, y0, y1, y2}, eo, tr, role, del) where x0 <eo x1 <eo x2 <eo
y0 <eo y1 <eo y2, tr and role are as defined before in steps 1 and 2,
and del = ∅ (no messages are delivered). Then, Gxy ∈ E(Π) because (1)
the events for each role are a trajectory, (2) all transport guarantees are
satisfied because no messages are delivered (thus safety is not violated)
and the execution is finite (thus correct(Gx) = ∅ and thus liveness is not
violated), and (3) the execution is fair because it is finite. The observ-
able history is H(Gxy) = ({x1, x2, y1, y2}, op, rval, rb, ss) with op, rval, ss
the same as defined previously in steps 1 and 2, and with rb = eo.
Using the progress theorem 9.3, we can extend to a complete concrete
execution Gxy v G′xy ∈ Ecomplete(Π) with H(G′xy) = H(Gxy).

Finally, it remains to be shown that H(Gxy) 6|=
SequentialConsistency(Fτ ) which concludes the proof by
contradicting Π |= SequentialConsistency(Fτ ). We proceed
indirectly: assume that H(Gxy) |= SequentialConsistency(Fτ ).
This means there exists an abstract execution Axy that is the same as
H(Gxy), but with added relations vis and ar, and that satisfies both
conditions SingleOrder, ReadMyWrites and RVal(Fτ ). Then we
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must have x1
vis−→ x2 and y1

vis−→ y2 (because ReadMyWrites implies
so ⊆ vis). Also, we must have either x1

vis−→ y1 or y1
vis−→ x1 (because

SingleOrder implies that vis is a total order on all operations
e ∈ ops(G) such that rvalG(e) 6= ∇). But both lead to a contradiction:

• If y1
vis−→ x1, then also y1

vis−→ x2 because vis is transitive.
Thus, context(Axy, x2) = ({x1, y1}, . . . ) and therefore (by Defi-
nition 9.3) Fτ (context(Axy, x2)) 6= v2 = rval(x2), contradicting
RVal(Fτ ).

• If x1
vis−→ y1, then also x1

vis−→ y2 because vis is transitive. Thus,
context(Axy, y2) = ({x1, y1}, . . . ) and therefore (by Definition 9.3)
Fτ (context(Axy, y2)) 6= v′2 = rval(y2), contradicting RVal(Fτ ).

9.2 Progress

Our definition of protocols and executions is meant to model systems
including roles and a network. Thus, it is intuitively clear that we
should always be able to take a finite execution and continue taking
steps forever, to obtain an infinite execution. However, in our formal-
ization, it is not immediately clear that such a completion exists for
arbitrary protocols.

For example, if we removed condition (r3) on p. 96, we could con-
struct some protocol Πpathetic that contains a role that refuses to receive
a message (i.e. whose automaton does not have a transition to receive
it), which means the dontlose guarantee may be unsatisfiable in all
executions of Π. This would have odd consequences: it implies that
Ecomplete(Πpathetic) = ∅, which in turn implies that Πpathetic vacuously
satisfies any consistency guarantee (Def. 9.1). Clearly, such nonsense
must be ruled out.

We now prove that our definition of a protocol is crafted carefully
enough. First, consider the notion of completing a history by filling in
some absent return values:

Definition 9.4. A history H = (E, op, rval, rb, ss) is a completion of a
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history H ′ if the latter is of the form H ′ = (E, op, rval′, rb, ss) where for
all e ∈ E, either rval(e) = rval′(e) or rval′(e) = ∇.

The following theorem proves that any finite execution can be com-
pleted, without requiring external input (such as additional operation
calls). We need it for the proof of Theorem 9.1.

Theorem 9.3 (Progress). Let Π be a protocol, and let G0 be a finite
execution of Π. Then, there exists a complete execution G of Π such
that G0 v G and H(G) is a completion of H(G0).

Proof. Let Π = (R,M,O,Σ, P, S1∧· · ·∧Sn, T ). The idea is to construct
an infinite sequence of executionsG0 v G1 v G2 . . . and then show that
G

def= limiGi (as defined on page 93) is an execution of Π. For this to
work, we must choose valid transitions from the role automata specified
by T , we must be fair to all processes (required by condition (e3) on
p. 100), and we must respect the transport guarantees S1 ∧ · · · ∧ Sn.
We can achieve this by always scheduling/delivering a process/message
that has been waiting the longest. We now describe this proof idea in
more detail.

For a finite execution G = (E, eo, tr, role, del), with eo enumerating
E in the order E = {e0, . . . , en}, we define rank(ei) = i, and for each
r ∈ roles(G), we let ir ∈ E be the initialization transition of traj(G, r).
Now we define the set of scheduling obligations QG ⊆ (E ×M × R) ∪
(E ×R× P ) and the function birthdayG : QG → N0 as follows:

• QG contains all tuples (e,m, r) such that m ∈ snd(e) ∧ r ∈
roles(G)∧role(e) 6= r∧¬(∃e′ ∈ E(r) : e del−→ e′∧rcv(e′) = m). Each
tuple represents an obligation to deliver the message m sent by e
to role r. We define birthdayG(e,m, r) = max(rank(e), rank(ir)).

• QG contains all tuples (e, r, p) such that r ∈ roles(G)∧p ∈ Pr∧e =
maxeo{e′ | role(e′) = r ∧ (pre(e′) = ⊥ ∨ proc(e′) = p)}. We define
birthdayG(e, r, p) = rank(e).

The following lemma clarifies that that the birthday of obligations does
not change if we extend an execution, and can thus be used to find out
how old an obligation is:
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Lemma 9.4. If G v G′, and if q ∈ QG ∩ QG′ , then birthdayG(q) =
birthdayG′(q).

Proof. If q = (e,m, r) ∈ QG ∩ QG′ , then both G and G′ contain the
events e and ir, which have the same rank in both, so the birthday is
the same. Similarly, if q = (e, r, p), then both contain e, thus the rank
is the same also.

To construct the sequence G0 v G1 . . . , in each step, we pick a
scheduling obligation of minimal birthday, and choose a transition to
service that obligation. As we do so, we may add finitely many new
obligations of a higher birthday.

Lemma 9.5. Given a finite execution Gn = ({e0, . . . , en}, . . . ) ∈ E(Π)
and a scheduling obligation q ∈ QGn , there exists an execution Gn+1 =
({e0, . . . , en+1}, . . . ) ∈ E(Π) such that Gn v Gn+1, and H(Gn+1) is a
completion of H(Gn), and QGn+1 = ((QGn \ {q}) ∪X) for some finite
set X such that birthday(x) = n+ 1 for all x ∈ X.

Proof. If q = (e,m, r), then by condition (r3) on p. 96, the automaton
Tr must contain a transition t such that rcv(t) = m, and whose pre-
state pre(t) matches the post-state of the last transition of traj(Gn, r).
Thus, we can add an event en+1 with this transition to the execution.
Then q /∈ QGn+1 (because the message has now been delivered) and X
contains all tuples (en+1,m

′, r′) where m′ is a message in snd(t) and r′
is a role in roles(Gn), and is thus finite.

If q = (e, r, p), then by condition (r5) on p. 96, the automaton Tr
must contain a step transition t for process p whose pre-state matches
the post-state of the last transition of traj(Gn, r). Thus, we can add
an event en+1 with this transition to the execution. Then q /∈ QGn+1

(because e is no longer the latest step/init event) and X contains the
finite set of tuples (en+1,m

′, r′) where m′ is a message in snd(t) and r′
is a role in roles(Gn), plus the tuple (en+1, r, p), and is thus finite.

Since QG0 = ∅, and we add only finitely many obligations in each
step, QGi is finite for all i. This means that for all obligations, there
exist only finitely many obligations that have an equal or older birthday,
which means that all obligations get serviced after finitely many steps.
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Then, G def= limiGi is a complete execution of Π because:

• G is a concrete execution by Lemma 7.4.

• It satisfies condition (e1) on p. 100 (which is a safety property)
as well as all the safety guarantees among the Si, because any
safety property satisfied by all Gi carries over to the limit (Defi-
nition 7.12).

• G satisfies fairness (condition (e3)) because for each r ∈ roles(G)
and process p ∈ Pr, there is always some obligation (e, r, p), thus
p gets scheduled again after finitely many steps.

• G satisfies the liveness conditions among the Si, because for every
event e sending a message m and each role r ∈ roles(G), there
is a scheduling obligation (e,m, r) that gets eventually serviced,
thus the message is delivered.

And it is easy to see that G0 v G and H(G) is a completion of H(G0).
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Correctness

The best way to develop a good understanding about how the various
building blocks used in protocols (such as timestamps, logical clocks,
vector clocks, and so on) ensure its proper function is to prove cor-
rectness of a variety of protocols that use different design principles. In
this chapter, we study five of the protocol examples from Chapter 6 and
prove that they satisfy the consistency guarantees claimed in Fig. 6.2.

10.1 Proof Structure

All of our proofs follow the same general structure. Our goal is to prove
an obligation of the form

Π |= RVal(F) ∧ P1 ∧ · · · ∧ Pn,

which states that the protocol Π correctly implements the replicated
data type F and provides the ordering and liveness guarantees Pi. To
prove this goal, we proceed as follows.

1. The execution. We start with a single, arbitrary, complete execu-
tion of the protocol G = (E, eo, tr, role, del) ∈ Ecomplete(Π).

113
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2. Auxiliary notations. We introduce auxiliary notations as needed,
to help us reason about the execution G. For example, we often
define functions that correlate send and receive events in G.

3. State Invariant. We write down a state invariant I(e), which for
each event e ∈ E expresses the state post(e) as a function of the
event graph G. We then prove ∀e ∈ E : I(e) by induction over
the execution order eo.

4. Well-formed. We prove that G is well-formed (Definition 7.8).
This step is often trivial since for most of our protocols, all call
operations return immediately.

5. Witness. We define arbitration and visibility relations arA, visA
on the set of operation call events EA

def= ops(G), and show that
arA is a total order, and that visA is an acyclic natural relation.

6. Abstract Execution. By extending the observable history H(G) =
(EA, opA, rvalA, rbA, ssA) (Definition 7.9) with the witness visi-
bility and arbitration relations, we obtain an event graph A =
(EA, opA, rvalA, rbA, ssA, visA, arA) that meets the requirements
for an abstract execution (Definition 3.3).

7. Return Values. We prove that A |= RVal(F). This step typically
relies on the state invariant.

8. Ordering and Liveness Guarantees. We prove for all Pi that A |=
Pi, by reasoning about arA and visA.

Lemma 10.1. The steps above are sufficient to prove the goal.

Proof. See § A.1.2 in the appendix.

One advantage of this proof approach is that all reasoning takes place
on a single, fixed infinite execution. We can state and prove arbitrary
properties of the execution, possibly involving both future and past
events, without adding history or prophecy variables to the implemen-
tation [Abadi and Lamport, 1991], and without needing backward sim-
ulations [Lynch and Vaandrager, 1995, Colvin et al., 2006].
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Accessing future events is sometimes necessary to prove consistency:
for example, in all of our global sequence protocol implementations, the
arbitration order of two events is decided at a later point of time than
when the events are originally performed.

Organization. We organize the correctness proofs in this chapter based
on the protocol category, because protocols in the same category tend to
have similar proofs. We start with two epidemic protocols (counter and
register), continue with a broadcast protocol (counter) and conclude
with two global sequence protocols (single-copy register and buffered
sequencer).

10.2 Epidemic Protocols

For an execution G = (E, eo, tr, role, del), we define the visibility cone
V (e) of an event e to be the set of operation call events in EA = ops(G)
from which we can reach e along a path consisting of ro and del edges:

V (e) def= {x ∈ EA | x
ro∪del−−−−→* e}.

For most epidemic protocols, the set V (e) captures exactly the op-
erations that are visible to e, since the “cumulative summary” is stored
in the state of each role (thus flows along ro edges) and transmitted in
messages (thus flows along del edges). The following lemma is useful
when doing induction proofs involving V (e).

Lemma 10.2 (Visibility Cone Update). Let G = (E, eo, tr, role, del) be
a concrete execution that satisfies dontforge. Let e ∈ E be an event.
Then

V (e) =


∅ if pre(e) = ⊥
V (p) ∪ {e} if op(e) 6= ⊥
V (p) ∪ V (s) if rcv(e) 6= ⊥
V (p) otherwise

where p = pred(E, ro, e) the predecessor event by the same role (exists
if pre(e) 6= ⊥ by condition (t3) on p. 86), and where s = del−1(e) the
sender of the message received by e (exists if rcv(e) 6= ⊥ by dontforge,
and is unique by injectivity of del).

Proof. See § A.1.3 in the appendix.
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10.2.1 Epidemic Counter

Theorem 10.3. ΠEpidemicCounter |= CausalConsistency(Fctr).

We follow the proof structure described in §10.1 to prove
ΠEpidemicCounter |= RVal(Fctr)∧Causality∧EventualVisibility.

Auxiliary Definitions. We define the set of increment operations by a
specific replica r that are visible to an event e as

visinc(e, r) def= {x ∈ V (e) | (role(x) = r) ∧ (op(x) = inc)}

State Invariant. We now define the state invariant that expresses the
post-state of an event as a function of the concrete execution G. For
this implementation, the state is a vector that counts the increment
operations per replica.

Lemma 10.4. The following invariant I(e) holds for all events e ∈ E:

post(e) = SPeer( λr. |visinc(e, r)| )

Proof. To prove ∀e ∈ E : I(e) we use induction over eo, and do a case
distinction over tr(e). Looking at each transition (listed in Fig. 6.6)
separately, we get:[

tr(e) = init(SPeer(λr.0), ∅).
]

By Lemma 10.2, V (e) = ∅, thus
visinc(e, r) = ∅ for all r, thus SPeer(λr.0) = post(e).[

tr(e) = callret(rd, σ, σ, ∅, v) or tr(e) = step(bg, σ, σ, {m}).
]

These
are the “boring” cases where the invariant is preserved because nei-
ther the state nor the number of visible increments change. Let p =
pred(E, ro, e). Then I(e) holds because:

post(e) 1= post(p) 2= SPeer(λr. |visinc(p, r)| ) 3= SPeer(λr. |visinc(e, r)| )

1. The event e does not modify the state (pre(e) = post(e)) and the
prestate of e must match the poststate of e’ (condition (c4) on
p. 87).

2. By induction I(p) is true (because p vis−→ e, thus p eo−→ e).
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3. By Lemma 10.2, either V (e) = V (p) or V (e) = V (p) ∪ {e}. In
either case visinc(e, r) = visinc(p, r) for all r because e is not an
increment operation.[

tr(e) = callret(inc, ε,SPeer(c), SPeer(c[r 7→ c[r] + 1]), ∅, ok).
]

This
is the case where a role increments the local count and leaves the
other counts unchanged. Let p = pred(E, ro, e). By Lemma 10.2,
V (e) = V (p) ∪ {e}. Thus, visinc(e, r) = visinc(p, r) for r 6= role(e)
and visinc(e, r) = visinc(p, r) + 1 for r = role(e). This implies I(e).[

tr(e) = rcv(Latest(c′),SPeer(c),SPeer(λr.max(c(r), c′(r))), ∅).
]
This

is the case where something interesting happens. So far, everything
we have proved would work just as well for a naive implementation
where we use a single counter for counting all increments, instead
of a separate counter for each replica. Now, however we see why
we need to count per replica: so that the maximum of two counts
matches the count of the union — as expressed in Lemma 10.5 be-
low. Let p = pred(E, ro, e) and s = del−1(e). Let r ∈ R be ar-
bitrary. Then c(r) = visinc(p, r) (because I(p) by induction), and
c′(r) = visinc(s, r) (because I(s) by induction). By Lemma 10.2,
V (e) = V (p)∪V (s), and thus visinc(e, r) = visinc(p, r)∪ visinc(s, r). By
Lemma 10.5 below (using that ro is a total order on EA(r)), this im-
plies |visinc(e, r)| = max{|visinc(p, r)|, |visinc(s, r)|} = max{c(r), c′(r)}
(by induction) which implies I(e).

Lemma 10.5. Let C be some set that is totally ordered by rel and let
A,B ⊆ C be two finite subsets that are predecessor-closed under rel
(i.e. rel−1(A) ⊆ A and rel−1(B) ⊆ B). Then |A ∪B| = max{|A|, |B|}.

Proof. See § A.1.4 in the appendix.

Well-formed. G is trivially well formed because all operations return
immediately (Lemma 7.1).

Witness. As explained above, in epidemic protocols an operation e

is visible to an operation e′ if we can reach e′ from e along a path
consisting of role-order and delivery edges. As for the arbitration, it
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plays no role for this data type so any total order extending visibility
will do: we can use the totalization function defined in proposition 2.1
on page 23 to obtain arA. We define visibility and arbitration as follows:

visA
def= (ro ∪ del)+|EA

arA
def= totalize(visA, eo|EA

)

Our witness satisfies the requirements:

• visA is an acyclic, natural relation on EA: because del ⊆ eo (con-
dition (c5) on p. 87), ro ⊆ eo (by Definition 7.6, pg. 87), and eo
is an enumeration (condition (c1) on p. 87) and thus transitive,
acyclic, and natural. Thus (ro∪del)+ ⊆ eo. This implies that visA
cannot have cycles and must be natural (by Lemma 2.3).

• arA is a total order on EA, by proposition 2.1.

Return Values. To prove A |= RVal(Fctr), we need to show that
∀e ∈ E : rvalA(e) = Fctr(op(e), context(A, e)). Since all operations
return immediately, rvalA(e) = rval(e). If op(e) = inc, then tr(e) =
callret(inc, σ, σ′, ∅, ok), thus rval(e) = ok = Fctr(inc, . . . ). If op(e) = rd,
then tr(e) = callret(rd, SPeer(c), SPeer(c), ∅, v) for some c and for
v =

∑
r c(r). Using the invariant (Lemma 10.4), we get

rval(e) =
∑
r

c(r) 10.4=
∑
r

∣∣{e′ ∈ E(r) | e′ ro∪del−−−−→* e and op(e′) = inc}
∣∣

=
∑
r

∣∣{e′ ∈ E(r) | e′ visA−−→ e and op(e′) = inc}
∣∣

=
∣∣∣∣∣ ⋃
r

{e′ ∈ E(r) | e′ visA−−→ e and op(e′) = inc}
∣∣∣∣∣

=
∣∣{e′ ∈ E | e′ visA−−→ e and op(e′) = inc}

∣∣
= Fctr(op(e), context(A, e)).

Ordering Guarantees. To prove A |= Causality, we need to show
that the relation hbA = (soA ∪ visA)+ is contained in both visA and
arA. This is easy: all events by the same role are in the same session
(condition (x5) on p. 90), thus soA = ro|EA

; therefore,

hbA = (ro|EA
∪ (ro ∪ del)+|EA

)+ ⊆ (ro ∪ del)+|EA
= vis ⊆ ar.
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Liveness Guarantee. To prove A |= EventualVisibility, let e ∈
E and [f ] ∈ E/≈ss as in Definition 5.1 (page 52). Let s def= role(e)
and r

def= role(f). Then s, r ∈ correct(G) since G ∈ Ecomplete implies
crashed(G) = ∅. In particular, E(s) is infinite. Since bg ∈ Ps and
snd is the only transition for process bg (Fig. 6.6) we know that s
performs the snd transition infinitely many times by fairness (condition
(e3) on p. 100). Since the protocol specifies the eventualindirect(M)
guarantee (defined on page 97), this implies that ∀e ∈ E(s) : ∃e′ ∈
E(r) : (e (ro ∪ del(M))∗−−−−−−−−−→ e′). Thus there exists an e′ ∈ E(r) such that
e

ro∪del−−−−→+ e′. Since E(r) is totally ordered by ro, this implies that for
any e′′ ∈ E(r), e 6 vis−→ e′′ ⇒ e′′

ro−→ e′. Thus there can be at most finitely
many such e′′, because ro−1(e′) is finite.

10.2.2 Epidemic Register

We now prove correctness of the epidemic register (Fig. 1.2). This is
an unusual example of an epidemic protocol because it is sequentially
consistent, not just causally consistent. For that reason, we do not use
the cone V (e) to define visibility, but instead use a total timestamp
order.

Theorem 10.6. ΠEpidemicRegister |= SequentialConsistency(Freg).

We follow the proof structure described in §10.1 to prove
ΠEpidemicRegister |= RVal(Freg) ∧ SingleOrder ∧ReadMyWrites.

Auxiliary Definitions. Timestamps are the key for ordering the events
in the execution. We let TS def= N0 × N0 be the set of timestamps,
ordered by the lexicographic order (as defined by the pseudocode
Fig. 1.2) which is a total order. For any event e ∈ E, we define the
corresponding timestamp ts(e) def= post(e).written. We define the times-
tamp order on E as e ts−→ e′

def⇐⇒ ts(e) < ts(e′). It is a partial or-
der (because it is irreflexive and transitive), but not a total order
(read events do not advance the logical clock, thus multiple events
can have the same timestamp). We define the set of write operations
W

def= {e ∈ EA | op(e) = wr(v) for some v ∈ Values}.
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Lemma 10.7. The following conditions are true:

1. Timestamps for each role are monotonic:
∀e, e′ ∈ E : e

ro−→ e′ ⇒ ts(e) ≤ ts(e′).
2. ts ∪ ro is acyclic.

3. Timestamps for writes by the same role are strictly ordered:
∀w,w′ ∈W : w

ro−→ w′ ⇒ ts(w) < ts(w′).
4. ts is injective for writes:
∀w,w′ ∈W : w 6= w′ ⇒ ts(w) 6= ts(w′).

Proof. The first claim is proved easily by an induction over the transi-
tions. The second claim follows from the first. The third claim follows
from the first and the fact that we increase written.number when cre-
ating a new timestamp. The fourth claim follows because the second
claim ensures uniqueness per replica, and uniqueness across replicas
is also guaranteed because the originating replica is included in the
timestamp.

State Invariant. What we prove about the state is that current,written
are either meaningless (if written.number = 0) or describe some write
that actually took place earlier in the execution.

Lemma 10.8. The following invariant I(e) holds for all events e ∈ E:[
(post(e).written.number = 0) ∧ (post(e).current = undef)

]
∨[

∃w ∈W : post(e).written = ts(w) ∧
(w ≤eo e) ∧ op(w) = wr(post(e).current)

]
Proof. Induction over eo and case distinction on the transition. For the
initial transition, the invariant is established because its first clause
is true. For read, send, and idle transitions, and for write transitions
where the incoming message does not have a larger timestamp than
current, the local state is not modfied. By induction, the invariant is
true for the predecessor e′ = pred(E, ro, e) and thus carries over to e.
Write transitions where the incoming timestamp is larger establish the
second clause because the invariant is true for the sender s = del−1(e)
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by induction, from where we copy the fields current,written, and who
satisfies s ≤eo e.

Well-formed. G is trivially well formed because all operations return
immediately (Lemma 7.1).

Witness. We define visibility and arbitration by using the timestamp
partial order ts and breaking ties using the execution order eo:

visA
def= arA

def= {(e, e′) | ts(e) < ts(e′) ∨ (ts(e) = ts(e′) ∧ e
eo−→ e′)}

Note that this is indeed a total order because it is transitive, and ir-
reflexive (for any cycle or self-loop e1

ar−→ e2 . . .
ar−→ en

ar−→ e2, n ≥ 1,
all events would have to have the same timestamp, implying a cycle
or self-loop in eo which is a contradiction) and orders any two events
(because timestamps are totally ordered, and eo is a total order). It is
also natural, because the number of clients is finite. In fact, this is the
reason we bounded the number of clients in this protocol (line 10 of
Fig. 1.2 specifies that there are at most N + 1 clients in an execution).

Return Values. Since all operations return immediately, rvalA(e) =
rval(e). Writes obviously return the correct value ok. For reads, consider
e with op(e) = rd and with visible write setW (e) def= {w ∈W | w vis−→ e},
for which we need to show

rval(e) =
{

undef if W (e) = ∅
v if

(
maxar W (e)

)
= wr(v) (10.1)

To see why this is true, consider both cases of the disjunction in the
invariant.

• Assume (post(e).written.number = 0) ∧ (post(e).current = undef).
Then rval(e) = undef. Since the first component of ts(e) is zero,
we know that e′ vis−→ e implies that the first component of ts(e′)
is also zero, which means e′ cannot be a write; thus W (e) = ∅,
and (10.1) is true.

• Assume ∃w ∈ W : post(e).written = ts(w) ∧ (w ≤eo e) ∧ op(w) =
wr(post(e).current). Then w ∈ W (e) and op(w) = wr(rval(e)). So,
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all that remains to show is that w is maximal in W (e). But this
follows because: we know that ts(w) = ts(e), and this implies that
ts(w′) ≤ ts(w) for any w′ ∈W (e). But writes are totally ordered
by claim 4 of the lemma above, thus ts(w′) < ts(w), which means
that w is indeed maximal in W (e).

Ordering Guarantees. It is easy to see that A |= SingleOrder:
arA ∩ (Ec × E) ⊆ visA is obvious since arA = visA. To prove A |=
ReadMyWrites, we need to show so ⊆ visA which follows from the
monotonicity of the timestamps in a role (claim one of the lemma
above) and the fact that so ⊆ eo.

10.3 Broadcast Protocols

For the protocols based on reliable broadcast introduced earlier, each
message contains information about one operation. Visibility is deter-
mined by the existence of a path of the form (del? ; ro∗), i.e. zero or one
delivery edge, followed by zero or more role-order edges. For an event e,
we define the delivery set D(e) of operations that have been delivered
to the replica performing e:

D(e) def= {x ∈ EA | x
del? ; ro∗−−−−−→ e}

The use of the delivery set D(e) for broadcast protocols is somewhat
analogous to the use of the visibility cone V (e) for epidemic protocols.
The following lemma is useful when doing inductions involving D(e).

Lemma 10.9 (Delivery Set Update). Let G = (E, eo, tr, role, del) be a
concrete execution that satisfies dontforge. For all e ∈ E:

D(e) =


∅ if pre(e) = ⊥
D(p) ∪ {e} if op(e) 6= ⊥
D(p) ∪ {s} if rcv(e) 6= ⊥
D(p) otherwise

where p = pred(E, ro, e) the predecessor event by the same role, and
where s = del−1(e) the sender of the message received by e.

The proof is analogous to Lemma 10.2.
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10.3.1 Broadcast Counter

We now prove correctness of the broadcast counter (see pseoudocode
in Fig. 6.3 and formal definition in Fig. 6.4).

Theorem 10.10.

ΠBroadcastCounter |= BasicEventualConsistency(Fctr)
∧ReadMyWrites ∧CausalArbitration

We follow the proof structure described in §10.1. The proof is similar
to the proof for the state-based counter (§10.2.1), but a little easier.

State Invariant. The state invariant says that the current count is the
sum of all increments in the delivery set.

Lemma 10.11. The following invariant I(e) holds for all events e ∈ E:

post(e) = SPeer(
∣∣{x ∈ D(e) | op(x) = inc}

∣∣)
The proof of the lemma has the same structure as for the state-

based counter; we use induction and case distinction on the transition.
All cases are easy, thus we do not reproduce them in detail.

Well-formed. G is trivially well formed because all operations return
immediately (Lemma 7.1).

Witness. We define visibility and arbitration as follows:

visA
def= ((ro ∪ del) ; ro∗)|EA

arA
def= totalize((ro ∪ del)∗|EA

, eo|EA
)

Visibility is natural and acyclic because ro ⊆ eo and del ⊆ eo and thus
visA ⊆ eo, and eo is natural and acyclic. As in the state-based counter,
the arbitration is irrelevant for the values returned because Fctr does
not depend on it, so we choose a totalization of the happens-before
order (to get causal arbitration).

Return Values. To prove A |= RVal(Fctr), we need to show rvalA(e) =
Fctr(op(e), context(A, e)) for all e ∈ ops(E). Since all operations return
immediately, rvalA(e) = rval(e). For op(e) = inc, rval(e) = ok as desired.
For op(e) = rd, we know tr(e) = callret(rd,SPeer(c),SPeer(c), ∅, c) for
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some number c. Using the invariant (Lemma 10.11), we get rval(e) =∣∣{x ∈ D(E) | op(x) = inc}
∣∣ =

∣∣{x ∈ ops(E) | x vis−→ e and op(x) =
inc}

∣∣ = Fctr(op(e), context(A, e)).

Ordering Guarantees. To prove A |= ReadMyWrites, we need to
show so ⊆ vis which is immediate since so = ro|ops(E). To prove A |=
CausalArbitration ∧ NoCircularCausality, we need to show
that the relation hb = (so ∪ visA)+ is contained in arA and is acyclic.
The former follows directly from how we defined arA. Acyclicity is also
easy because del ⊆ eo and ro ⊆ eo, and eo is acyclic.

Liveness Guarantee. To prove A |= EventualVisibility, let e ∈ E
and [f ] ∈ E/ ≈ss as in Definition 5.1 (page 52). Let s def= role(e) and
r

def= role(f). Then s, r ∈ correct(G) since G ∈ Ecomplete. Since the
protocol requires the reliable(M) guarantee and thus the dontlose(M)
guarantee (defined on page 97), this implies that there exists an e′ ∈
E(r) such that e del−→ e′. This implies that for any e′′ ∈ EA(r) such that
e′

ro−→ e′′, we have e vis−→ e′′. Thus there can be at most finitely many
e′′ ∈ EA(r) such that e 6 ro−→ e′′.

10.4 Global-Sequence Protocols

In global sequence protocols, the arbitration order is not immediately
determined, but requires some communication. In our examples, the
global sequence is constructed on the server, and the arrival order on
the server determines the arbitration order.

10.4.1 Single-Copy Register

We now prove that the single-copy-register (Fig. 1.1) is a linearizable
implementation (Fig. 5.1) of the last-writer-wins register Freg (§4.3.2).

Theorem 10.12. ΠSingleCopyRegister |= Linearizability(F).

We follow the proof structure described in §10.1 to prove
ΠSingleCopyRegister |= RVal(Freg) ∧ SingleOrder ∧Realtime.

Auxiliary Definitions. Each operation sends a message to the server,
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and the server then replies with an acknowledgment. Because delivery
is specified to be reliable, and G ∈ Ecomplete, the following events are
uniquely defined for each operation a ∈ ops(G):

asrv
def= the e ∈ E such that a del−→ e

aack
def= the e ∈ E such that asrv del−→ e

We now define the global order go on ops(E) as the order in which the
server processes operations:

a
go−→ b

def⇐⇒ asrv
go−→ bsrv.

For some server event e ∈ E(Server), we define the set of operations
that were done on the server up to and including e as done(e) = {a ∈
ops(G) | asrv ≤eo e}. For some set of operations E′ ⊆ ops(G), we
define the subset of write operations writes(E′) def= {e ∈ E′ | op(e) =
wr(v) for some v}.

State Invariant. On the server, the implementation stores the latest
committed write. Thus, our invariant is:

Lemma 10.13. For all e ∈ E(Server),

post(e).current =
{

undef if writes(done(e)) = ∅
v if op(maxgo writes(done(e)) = wr(v)

Proof. By induction over eo, and case distinction over the type of tran-
sition. For initialization transitions, the invariant is established because
done(e) is empty and post(e).current is undef. For non-initialization
transitions, let p = pred(E(Server), eo, e) be the predecessor transition
on the server. The invariant holds for p by induction, and is preserved:
(1) for receive transitions that receive a read request, post(e) = post(p)
and writes(done(e)) = writes(done(p)), thus the invariant is preserved;
(2) for receive transitions that receive a write request, let s be the
sending operation event. Then s = maxgo writes(done(e)), and current
contains the value written by s as required.

Well-formed.We need to show that each trajectory is well-formed. This
is trivial for the server role since it contains no calls or returns. Consider
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the events E′ = E(Client(i)) by client i and an arbitrary event e ∈ E.
By Definition 7.4, we need to show that in E′, the number of returns
preceding e is less than or equal to the number of calls preceding e.
To prove this, consider that given a return transition r ∈ returns(E′),
by dontforge and injectivity of del we can track it back to a uniquely
determined operation a ∈ ops(G) such that r = aack. Since the client
number i is tracked by the messages, we know a ∈ E′. Therefore,∣∣{r ∈ returns(E′) | r ≤ e}

∣∣ =
∣∣{a ∈ calls(E′) | aack ≤ e}

∣∣ ≤ ∣∣{a ∈
calls(E′) | a ≤ e}

∣∣. Together with condition (t4) on p. 86, this implies
that calls and returns alternate.

Witness. Visibility and arbitration are both defined by the global order

visA
def= go arA

def= go

To prove that vis is acyclic and natural, and that ar is a total order, con-
sider that go is an enumeration (i.e. a natural total order) on ops(G):
it is isomorphic to (E(Server), eo|E(Server)) which is an enumeration by
condition (c4) on p. 87 and condition (t1) on p. 86.

Return Values. Write operations return the correct value undef.
Consider a read operation r ∈ E(Client(i)). Then, rvalA(r) (as
constructed in condition (x3) on p. 90) is equal to rval(rack), be-
cause calls and returns alternate (see paragraph on well-formedness
above). Therefore, it is the value sent to the transition rack by the
transition rsrv. Using the invariant on rsrv, and matching it with
the definition of Freg on page 46, we know that this value equals
Freg(rd, done(rsrv), op, go, go) = Freg(rd, vis−1(r) ∪ {r}, op, vis, ar) =
Freg(rd, vis−1(r), op, vis, ar) = Freg(rd, context(A, r)).

Ordering Guarantees. To prove A |= SingleOrder, choose E′ = ∅,
then vis = go = ar = ar \ (E′ × E). To prove A |= Realtime, consider
two operations a, b ∈ EA. If a

rb−→ b, it means that aack <eo b. Thus
asrv <eo a

ack <eo b <eo b
srv, thus a go−→ b, thus a ar−→ b.

10.4.2 Buffered Sequencer

We now prove correctness of the protocol BufferedSequencer〈F〉 of
Fig. 6.12.
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Theorem 10.14.

ΠBufferedSequencer〈F〉 |= CausalConsistency(F)
∧ConsistentPrefix.

We follow the proof structure described in §10.1 to prove the required
consistency guarantees, which are RVal(Freg) ∧ CausalVisibility ∧
CausalArbitration∧ConsistentPrefix∧EventualVisibility.

Auxiliary Definitions. For the given concrete execution G =
(E, eo, tr, role, del), define the sets UG of updates and CG of client roles:

UG
def= {o ∈ E | op(o) 6= ⊥ ∧ op(o) /∈ readonlyops(F)}

CG
def= {r ∈ roles(G) | r = Client(i) for some i}

The only transition to create an update event u ∈ UG is the perform
transition by a client role(u) ∈ CG, which sends an update message
ToServer(u). The server transition that receives the message in turn
broadcasts a ToAll(u) message. Because delivery is specified to be reli-
able, and crashed(G) = ∅, the following events are uniquely defined for
each u ∈ UG and c ∈ CG:

usrv
def= the e ∈ E such that u del−→ e

utell c
def= the e ∈ E such that usrv del−→ e

We now define the update order uoG (abbreviated uo) as the order in
which the server processes updates:

a
uo−→ b

def⇐⇒ asrv
eo−→ bsrv.

Then, uo is a total order on UG, and satisfies for all c ∈ CG:

a
uo−→ b ⇔ atell c

ro−→ btell c

(where ro is the role order as defined for concrete executions on page
87) because delivery of messages is specified to be pairwise in-order.

State Invariant. The implementation stores information about updates
by means of Update structs. For some update u ∈ UG, we define the
corresponding tuple

desc(u) def= Update(op(u),
∣∣{x ∈ UG | xtell role(u) ≤ro u}

∣∣, role(u)).
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The second entry, the field visprefix, counts how many updates have been
delivered by the server to the node peforming u at the time it performs
u. This information is used in computeresult to determine visibility when
computing a return value.

We can now formulate the state invariant, which clarifies the mean-
ing of the sequences confirmed and pending (the latter is called a queue
in the pseudocode, which we model as a sequence to which we append
elements on the right and remove elements on the left).

Lemma 10.15 (State Invariant for Clients). For all e ∈ E such that
role(e) ∈ CG,

post(e).confirmed

= {u ∈ UG | utell role(e) ≤ro e}.sort(uo).map(desc)
post(e).pending

= {u ∈ UG | u ≤ro e <ro u
tell role(e)}.sort(uo).map(desc)

where sort and map are the operators we defined in §2.1.1 on p. 20.

The following lemma is an easy consequence of the state invariant.

Lemma 10.16 (Update Descriptors). Let u ∈ UG with role(u) =
Client(i). Then desc(u) = (op(e),

∣∣{x ∈ UG | xtell Client(i) ≤ro u}
∣∣, i).

Witness. We now define visibility and arbitration relations visA and
arA. To this end, we must extend the update order uo in some way,
so it orders not only the update operations UG, but also the read-only
operations. We define a “last-update” partial function lu : ops(G) ⇀ UG
that, given some operation event e on a client role(e) ∈ CG, returns the
last update that precedes e:

lu(e) def= max
uo

{
u ∈ UG | u ≤ro e ∨ utell role(e) ≤ro e

}
(10.2)

Note that lu(e) = ⊥ if the set on the right-hand-side is empty. Also,
note that for update events u ∈ UG, lu(u) = u.

Using the last-update function, we can now define arbitration and
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visibility. First, we define the arbitration witness arA (abbreviated ar):

a
ar−→ b

def⇐⇒ lu(a) <uo lu(b) ∨ lu(a) = ⊥ 6= lu(b)
∨ (a <eo b ∧ (lu(a) = lu(b) ∨ lu(a) = ⊥ = lu(b))) (10.3)

The idea is that update operations are ordered by the update order,
read-only operations with different last updates are ordered the same
way as those updates, and otherwise (if the updates do not establish
the order because they are the same or not defined), we use execution
order eo to order the operations.

Next, we define the visibility witness visA (abbreviated vis):

a
vis−→ b

def⇐⇒ a <eo b ∧

(a ro−→ b ∨ lu(a) = ⊥ ∨ lu(a)tell role(lu(b)) ≤ro lu(b)) (10.4)

The idea is that operations are visible to other operations if they pre-
cede them in execution order, and their respective last updates are
either on the same role, or notification of the first update was delivered
to the role performing the second update before performing the second
update.

The following lemmas imply that arbitration and visibility satisfy
the basic requirements for a witness.

Lemma 10.17. ar is a total order on ops(G).

Proof. See § A.1.5 in the appendix.

Lemma 10.18. vis is a natural partial order on ops(G).

Proof. See § A.1.6 in the appendix.

Return Values.We need to prove that return values are consistent with
the replicated data type F and the visibility and arbitration witness:

∀e ∈ ops(G) : rvalA(e) = F(op(e), A|vis−1(e),op,vis,ar) (10.5)

The following lemma establishes that the return value is indeed cor-
rectly computed by the implementation. It implies equation (10.5) be-
cause F is insensitive to isomorphisms, and to the removal of read-only



130 Correctness

operations, and because rvalA(e) = rval(e). Its proof uses the state
invariant, Lemma 10.16, and Lemma 10.20.

Lemma 10.19. Let e ∈ ops(G) be an operation transition, and let
s be the sequence of update structs that is passed to the computeresult
operation (i.e. s = pre(e).confirmed ·pre(e).pending). Then, the operation
context(

{0, 1, . . . , |s| − 1},
λi.s[i].op,
{(i, j) | i < j ∧ (s[i].cid = s[j].cid ∨ i < s[j].visprefix)},
{(i, j) | i < j}

)
is isomorphic to the operation context (vis−1(e), op, vis, ar)|UG

.

Lemma 10.20. Let e ∈ ops(G). Then

{u ∈ UG | u
vis−→ e}.sort(ar) =
{u ∈ UG | utell role(e) <ro e}.sort(uo) ·

{u ∈ UG | u <ro e <ro u
tell role(e)}.sort(uo)

Ordering Guarantees. We prove the three ordering guarantees in the
three lemmas below.

Lemma 10.21. A |= CausalVisibility.

Proof. Since vis is transitive by Lemma 10.18, it suffices to show so ⊆
vis. This is guaranteed because a so−→ b implies a <eo b and a

ro−→ b and
thus a vis−→ b.

Lemma 10.22. A |= CausalArbitration.

Proof. Since ar is transitive (Lemma 10.17), it is enough to show (a)
so ⊆ ar and (b) (vis\so) ⊆ ar. To prove so ⊆ ar: If a so−→ b then a <eo b. If
lu(a) = ⊥, a ar−→ b follows directly. Otherwise, we know lu(a) ≤uo lu(b),
because lu(b) takes the maximum of a larger set than lu(a) (10.2).
Therefore, a ar−→ b (10.3). To prove (vis \ so) ⊆ ar: If a vis−→ b but not
a

so−→ b, then a <eo b and either (a) lu(a) = ⊥ or (b) lu(a)tell role(lu(b)) ≤ro
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lu(b). (a) implies a ar−→ b directly. (b) on the other hand implies lu(a) ∈
{u ∈ UG | u ≤ro lu(b) ∨ utell role(lu(b)) ≤ro lu(b)

}
, which by maximality

of lu(b) (10.2) implies lu(a) ≤uo lu(b), thus a ar−→ b.

Lemma 10.23. A |= ConsistentPrefix.

Proof. We need to show that for all a, b, c ∈ ops(G) such that a ar−→
b

vis−→ c and role(b) 6= role(c), we have a vis−→ c. Distinguish cases based
on the disjunction in (10.4) for b vis−→ c .

[
b

ro−→ c.
]

Not possible
since role(b) 6= role(c).

[
lu(b) = ⊥.

]
Then by (10.3), lu(a) = ⊥ and

a
eo−→ b, thus a eo−→ c, thus a ar−→ c.

[
lu(b)tell role(lu(c)) ≤ro lu(c).

]
Then

lu(b) ≤uo lu(c), thus b ar−→ c, thus a ar−→ c by transitivity of ar.

Liveness Guarantee. To prove A |= EventualVisibility, let e ∈
ops(G), and let [f ] ∈ E/≈ss be a session. We need to show that e is
visible to almost all e′ ∈ [f ]. If lu(e) = ⊥, then e <eo e

′ for almost all e′
(eo is an enumeration). Otherwise, let x = lu(e)tell role(f). Then x <eo e

′

for almost all e′ ∈ E(role(f)). Thus e vis−→ e′ for almost all e′ ∈ [f ].
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Related Work

Consistency models and distributed protocols are relevant for program-
mers across many disciplines. Not surprisingly, related work appears in
many different communities. We briefly examine the most important
connections below. For a deeper study, we recommend specialized sur-
veys and collections such as Terry [2008], Saito and Shapiro [2005],
Bernstein and Das [2013], or Charron-Bost et al. [2010].

11.1 Distributed Systems

Replication, lazy update propagation, and conflict resolution are com-
monly used in distributed systems, often without using the term even-
tual consistency. We give an overview of some applications in §1.2.

The Bayou system [Terry et al., 1995, 1994, Petersen et al., 1997],
which provides eventually consistent replicated databases on mobile de-
vices, stands out for its clear articulation of the underlying challenges
of update propagation and conflict resolution, and for formulating ab-
stract consistency properties called session guarantees [Terry et al.,
1994, Terry, 2011] (which correspond to the ordering guarantees in
§5). It coined the term eventual consistency, and defined it to mean
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what we here call quiescent consistency: replicas eventually converge
once updates stop (§4.2.1).

Brewer’s articulation of the CAP conjecture [Brewer, 2000] sparked
interest in eventual consistency as it relates to the construction of scal-
able, available, and reliable services (IEEE Computer CAP retrospec-
tive, 2012). Reformulations such as PACELC [Abadi, 2012] include the
quantitative aspect: availability in a strongly consistent system is ham-
pered by slow connections, not just by broken connections.

Key-Value Stores. Amazon’s Dynamo system [DeCandia et al., 2007]
demonstrated the utility and effectiveness of eventual consistency for
the purpose of building scalable, available, and reliable storage systems,
and has become widely cited. Eventual consistency has been extensively
used for this purpose, fueled by the trend of providing virtual compute
and storage services in the cloud, and the noSQL movement.

Replicated Data Types. Developing optimized consistency protocols
for datatypes like counters, sets, and lists has the potential to further
improve scalability and availability [Burckhardt et al., 2014a, Shapiro
et al., 2011a,c,b, Roh et al., 2011, Bieniusa et al., 2012a]. Of particular
interest are conflict-free replicated data types (CRDT’s) [Shapiro et al.,
2011a,c,b] which provide scalable symmetric implementations for many
common data types.

11.2 Databases

In databases, consistency is not just about individual operations, but
about sequences of operations called transactions. Conceptually, we can
think of transactions as augmenting a data type (such as a key-value
store, or a relational database) with the capability of executing several
operations atomically, i.e. as if they were a single operation. This gives
programmers the freedom to invent new operations at any time, which
is important for situations where the precise set of queries and updates
cannot be known a priori.

The strongest consistency model for databases is one-copy serializ-
ability (1SR) [Alsberg and Day, 1976]. It corresponds to linearizability
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at the transaction level. Note that in the database literature, the ab-
stract consistency model used for transactions is generally called the
isolation level, not to be confused with data consistency (meaning com-
pliance with data invariants specified by the schema).

Research on database replication began in the 1970’s, and commer-
cial database management systems (DBMS) started supporting repli-
cation in the late 1980’s (as recollected by Bernstein and Das [2013]).
The unavoidable trade-off between consistency, availability, and parti-
tion tolerance had been known to the database community long before
the CAP formulation became popular [Rothnie and Goodman, 1977].
Eventually consistent replication (or multi-master replication) appears
early on in Thomas’ majority consensus algorithm [Thomas and Be-
ranek, 1979].

Note that replication is not the only motivation to consider weaker
consistency models: efficient concurrency control is important even for
non-distributed databases. In fact, it is very common for commercial
database systems to use isolation levels weaker than 1SR, such as read-
committed (the default setting of commercial databases) or snapshot
isolation [Fekete et al., 2005, Berenson et al., 1995].

Our formalism can be extended with transactions to formalize iso-
lation levels, as demonstrated in Burckhardt et al. [2013]. This style of
formalization is also recommended by Fekete and Ramamritham [2010],
using executions augmented with a justification similar to the visibility
and arbitration relations in our abstract executions.

Parallel snapshot isolation [Sovran et al., 2011], which is slightly
weaker than snapshot isolation, can help to mitigate the cost of wide-
area communication in georeplicated databases.

Weak forms of transactional guarantees can be made available un-
der partitions, using consistency models such as eventually consis-
tent transactions [Burckhardt et al., 2012a, 2014b], causally consistent
transactions [Li et al., 2012, Lloyd et al., 2013], or highly available
transactions [Bailis et al., 2013, 2014].
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11.3 Shared-Memory Multiprocessors

Researchers recognized early on that the use of caching in multiproces-
sors can lead to consistency problems, even for programs that perform
only simple loads and stores. In a brief paper on this topic, Lamport
[1979] describes the Dekker anomaly (see §5.2.1) and sketches an ax-
iomatic definition of sequential consistency (SC).

Since architects are generally unwilling to pay the cost of SC (never
mind the even stronger linearizability), most multiprocessor architec-
tures use weaker consistency models [Adve and Gharachorloo, 1996],
despite the challenge they pose to developers. In practice, however,
most programmers can steer clear of non-sequentially-consistent be-
haviors simply by writing data-race-free programs [Adve and Hill, 1993,
Boehm and Adve, 2008]. Where this is not possible (e.g. in lock-free
algorithms where deliberate data races are needed for optimal perfor-
mance), programmers need to insert appropriate fences, which can be
challenging. To solve this problem, researchers have proposed to manu-
ally check programs for the presence of certain types of cycles [Shasha
and Snir, 1988], or to run static tools to detect problems caused by the
weak consistency [Burckhardt et al., 2007] and/or automatically insert
fences [Kuperstein et al., 2012, Abdulla et al., 2012].

Formalizations of memory consistency models can be categorized
into axiomatic models and operational models, as described in §3.4.
For research and programming purposes, it is often desirable to have
equivalent formulations of a model in both operational and axiomatic
styles. Proofs of equivalence can be difficult to obtain; one direction of
such equivalence proofs (showing that an operational model satisfies
an axiomatic specification) corresponds to the correctness proofs in
chapter 10.

Early proposals for weak memory consistency models include the
SPARC TSO/PSO/RMO models [Weaver and Germond, 1994], Pro-
cessor Consistency (PC) and Release Consistency (RC) [Gharachorloo,
2005], and Collier’s family of models [Collier, 1992], among many oth-
ers. The TSO model, which is only slightly weaker than SC, is now used
by Intel’s x86 architecture [Sewell et al., 2010]. The PowerPC model,
which is particularly weak, has proven to be challenging to understand
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and formalize [Sarkar et al., 2011]. The C++ memory model [Batty
et al., 2011, 2013] and the Java memory model [Manson et al., 2005] are
language-level memory models that provide a hardware-independent
layer. Validating programs and compilers against these models remains
an active area of research.

Formalization style. The use of ordering and equivalence relations over
events to formulate axiomatic memory consistency models is a recurring
theme in the literature [Shasha and Snir, 1988, Collier, 1992, Lamport,
1979, Burckhardt, 2007, Yang, 2005, Batty et al., 2011]. These models
follow a style that is very similar to ours, with some differences:

• The data type F is “memory”, which is essentially a key-value
store (§4.3.3), with keys corresponding to memory addresses, aug-
mented with fences and atomic read-modify-write instructions.

• Histories use different names and record slightly different infor-
mation: operations are called instructions, sessions are called pro-
cesses, session order is called program order, and there may be
additional relations that capture control- and data-dependencies.

• Abstract executions do typically not use visibility and arbitration
relations, but reads-from and coherence relations (the reads-from
relation expresses how values flow from stores to load, and the
coherence relation expresses how to order stores with respect to
a single location).

The connection between these approaches, i.e. how to compare an
axiomatic model for eventual consistency with with the C/C++ re-
laxed memory model [Batty et al., 2011, 2013] is examined in detail in
Burckhardt et al. [2013].

11.4 Distributed Algorithms

The material in this tutorial intersects substantially with classic themes
of Distributed Computing, most noteably linearizability, asynchronous
network protocols, and verification.



138 Related Work

Linearizability as a consistency criterion that is independent of the
particular data type was introduced by Herlihy and Wing [1990]. Lin-
earizable objects (also known as atomic objects, as discussed e.g. in
Lynch [1996]) have been extensively studied, both in terms of general
constructions or impossibility results, as well as in terms of efficient
network protocols or shared-memory algorithms for specific data types.
Because linearizability is easy to explain and has good properties (e.g.
compositionality), it remains the golden standard for implementations
of shared objects where communication latency and reliability is not
a major problem (in particular, on shared-memory multiprocessors)
[Heller et al., 2005, Harris, 2001, Harris et al., 2002].

The observation that linearizability cannot be guaranteed while re-
maining available under network partitions (i.e. the CAP theorem) was
proved by Gilbert and Lynch [2002] (including both an asynchronous
and a synchronous variant). Our version of CAP (§9.1) is a more general
version of the asynchronous case: it applies to sequential consistency,
not linearizability, and applies for any data type with independently
observable writes. A quantitative version of CAP (a lower bound on
read and write latency in sequentially consistent systems) can also be
found in Attiya and Welch [1998].

Our consistency protocols illustrate the concept of layering of trans-
port abstractions. This is a standard theme in distributed algorithms:
for example, we can construct reliable protocols on top of unreliable
ones, ordered ones on top of unordered ones, and secure ones on top
of insecure ones [Cachin et al., 2011, Lynch, 1996, Attiya and Welch,
1998]. In this sense, our consistency models can be understood as high-
level delivery guarantees for update propagation. Logical clocks [Lam-
port, 1978] and vector clocks [Fidge, 1988, Mattern, 1989] are tech-
niques that are commonly used in this context.

11.5 Verification

Simply stated, verification is about separating the ‘what’ (the specifi-
cation) from the ‘how’ (the implementation). This separation is an es-
sential skill, required for modularizing complex systems, and therefore
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relevant for audiences beyond formal methods. Thus, how to best spec-
ify and verify concurrent or distributed systems is a recurring theme
in computer science. Contributions to this area include many Turing
award winners, most noteably Leslie Lamport. His award citation men-
tions causality, logical clocks, safety, liveness, replicated state machines,
and sequential consistency, all of which are topics in this tutorial.

We can categorize verification broadly based on the nature of speci-
fications: property verification, where we prove that all reachable states
or all executions satisfy a certain property, or refinement verification,
where we prove that all executions are observationally equivalent to
some execution of an operational specification. Our method is most
similar to property verification (because our consistency guarantees are
a conjunction of formulas) but has also some similarity to refinement
verification (because we use an existential quantification over abstract
executions).

The idea of modeling protocol participants using automata (states
and atomic transitions) is standard and can be found both in algo-
rithm textbooks [Cachin et al., 2011, Lynch, 1996, Attiya and Welch,
1998] and verification tools [Dill, 1996, Lamport, 1994]. However, the
terminology and formal details exhibit many minor variations. Compo-
sitional reasoning can be tricky to get right, in particular when includ-
ing fairness and liveness, but has been solved by the formulation of I/O
automata [Lynch and Tuttle, 1987, Lynch, 1996]. Our formalization of
protocols is a specialization of the latter.

Verification of linearizable objects in the shared-memory setting has
received much attention over the years, including mechanically-verified
interactive proofs and automatic model checking tools [Colvin et al.,
2006, Vafeiadis et al., 2006, Burckhardt et al., 2010].

Contrary to most work on protocol verification, we are not primarily
concerned with automation (yet). In its current form, our methodology
is meant for manual proofs, and is intended more as an education than
a certification tool: for now, the main purpose of our proofs is to convey
insight into the workings of an implementation, rather than to provide
infallible (i.e. mechanically checked) evidence of correctness.
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Conclusion

We have reached the end of this tutorial, yet in some sense, this is a
beginning: what we have built is a foundation upon which to build. By
delineating the basic principles of eventual consistency, we have erected
a framework for reasoning about specifications and implementations,
thus informing the development of globally distributed systems.

Our formalization of consistency models brings systems and defini-
tions from across space, time, and research communities together in one
place. We hope it will promote a wider understanding and a common
terminology.

Our emphasis was on combining four activities that we consider es-
sential to a principled approach: formulating consistency specifications,
writing protocol implementations, proving correctness of implementa-
tions, and proving impossibility results. We have carried out all of these
in a level of detail that we consider appropriate for an audience with
an appreciation of mathematics.

Developing correct distributed protocols can be quite daunting in
general, and our protocol examples may appear overly simplistic. How-
ever, the best preparation for complexity is a good understanding of
simplicity: In our own experience, proving the correctness of a number
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of simple protocols leads to a deep understanding of recurring design
principles and techniques, which then opens the door for correctly com-
posing more complex protocols.
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A
Selected Proof Details

We include some proof details in this appendix.

A.1 Lemmas

We include proofs of several minor lemmas in this section, for reference.
All of these proofs are relatively easy and perhaps somewhat boring —
whatever is interesting is included in the main text.

A.1.1 Proof of Lemma 2.2

Choose N = N0 if |E| = ∞ or N = {0, . . . , |E| − 1} otherwise. De-
fine φ : E → N by φ(e) = |rel−1(e)|. Then, φ preserves order: if
e

rel−→ e′ then rel−1(e) ⊆ rel−1(e′), and since e′ 6 rel−→ e (by acyclicity),
rel−1(e) ( rel−1(e′), thus φ(e) = |rel−1(e)| < |rel−1(e′)| = φ(e′). Also,
φ is a bijection because it is injective (∀e, e′ : e 6= e′ ⇒ φ(e) 6= φ(e′))
and surjective (∀n ∈ N : ∃e ∈ E : φ(e) = n). First, we show that
φ is injective: for e 6= e′, without loss of generality e

rel−→ e′ because
rel is total. Thus φ(e) < φ(e′) implies φ(e) 6= φ(e′). Finally, we show
that φ is surjective: if N is finite, this follows from injectivity because
both sets are the same size; otherwise, let n be the smallest number
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not in φ(E). Since |E| is infinite and injective, φ(E) must be infinite,
thus there must exist an n0 > n such that n0 ∈ φ(E). Pick a min-
imal such n0. Let e ∈ E be the element such that φ(e) = n0, and
let e′ = maxrel{e′ ∈ E | e′ rel−→ e}. Then, rel−1(e′) = rel−1(e) \ e′,
thus φ(e′) = φ(e) − 1. But this contradicts either minimality of n0 (if
φ(e′) 6= n) or n /∈ φ(E) (if φ(e′) = n).

A.1.2 Proof of Lemma 10.1

By Definition 9.1 we need to prove E(Π) ⊆ Ewellformed and ∀G ∈
Ecomplete(Π) : H(G) |= RVal(F ) ∧ P1 ∧ · · · ∧ Pn. The latter follows
because we chose an arbitrary G ∈ Ecomplete(Π) and constructed an A
such that H(A) = H(G) and H(A) |= RVal(F ) ∧ P1 ∧ · · · ∧ Pn. For
the former, progress (Theorem 9.3) guarantees that any G′ ∈ E(Π) is a
prefix G′ v G of a complete execution G ∈ Ecomplete(Π), for which we
prove G ∈ Ewellformed, thus also G′ ∈ Ewellformed (because it is a safety
property by Lemma 7.5).

A.1.3 Proof of Lemma 10.2

If pre(e) = ⊥, it is an initialization transition, thus there is no x such
that x del−→ e because only receive transitions can receive messages
(condition (c5) on p. 87). Also, there is no x such that x ro−→ e because an
initialization transitions is the first transitions by each role (condition
(c4) and condition (t3) on p. 86). Thus V (e) = ∅. If pre(e) 6= ⊥, the
claimed equality of sets follows from ⊇ and ⊆, which we each discuss
in the following two paragraphs.

Observation (1): the right-hand side is contained in the left-hand
side, because:

• V (p) ⊆ V (e) because p ro−→ e implies that any path x
ro∪del−−−−→* p

can be extended to a path x ro∪del−−−−→* e.

• if op(e) 6= ⊥, then e ∈ V (e) because trivially e ro∪del−−−−→* e.

• since s satisfies s del−→ e, V (s) ⊆ V (e) because any path x ro∪del−−−−→*
s can be extended to a path x ro∪del−−−−→* e.
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Observation (2): the left-hand side is contained in the right-hand
side. Let x ∈ V (e). Then op(x) 6= ⊥ and x ro∪del−−−−→* e. We now show this
implies that x is contained in the right-hand side. If x = e then op(e) 6=
⊥, thus x is contained in the right-hand side (second line). Otherwise,
there exists a y such that we have a path of the form x

ro∪del−−−−→* y ro∪del−−−−→
e. Now we do a case distinction on the kind of the last edge in this path.

• Consider y ro−→ e. Then, because p is the ro-maximal event satis-
fying p ro−→ e (by definition of pred), we must have y ro−→* p. Thus
x ∈ V (p), and thus x is contained in the right-hand side (second,
third, or fourth line).

• Consider y del−→ e. Then s = y, and rcv(e) ∈ snd(y) (condition (c5)
on p. 87). Thus, V (y) is contained in the right-hand side (third
line), and thus also x.

A.1.4 Proof of Lemma 10.5

If A ⊆ B or B ⊆ A then the claim follows easily. We now show that
one of those is always the case, by reductio ad absurdum: if neither of
those is true, then there exist x ∈ A \ B and y ∈ B \ A. Now, x rel−→ y

is not possible since it would imply x ∈ B because B is predecessor
closed, contradicting x ∈ A \B. Symmetrically, y rel−→ x is not possible.
Thus rel is not total, which is a contradiction.

A.1.5 Proof of Lemma 10.17

(1) ar is irreflexive: never lu(a) <uo lu(a), nor a <eo a. (2) ar is total:
given arbitrary a, b. If lu(a) = ⊥ = lu(b) or lu(a) = lu(b), then a, b are
ordered by ar because eo is total. If exactly one of lu(a), lu(b) is ⊥, then
they are ordered. If none is ⊥, they are ordered because uo is total.
(3) ar is transitive: suppose a ar−→ b

ar−→ c. Distinguish cases.
[

lu(a) =
⊥, lu(c) 6= ⊥.

]
a

ar−→ c is immediate.
[

lu(a) = ⊥, lu(c) = ⊥.
]
Then also

lu(b) = ⊥, thus it follows from transitivity of eo.
[

lu(a) 6= ⊥, lu(b) =
⊥.

]
Impossible.

[
lu(a) 6= ⊥, lu(b) 6= ⊥, lu(c) = ⊥.

]
Impossible.[

lu(a) 6= ⊥, lu(b) 6= ⊥, lu(c) 6= ⊥.
]

Do a second-level case distinction.q
lu(a) = lu(b) = lu(c).

y
Then a <eo c, thus a

ar−→ c.
q

lu(a) = lu(b) <uo
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lu(c).
y

Then lu(a) <uo lu(c), thus a ar−→ c.
q

lu(a) <uo lu(b) = lu(c).
y

Same argument.
q

lu(a) <uo lu(b) <uo lu(c).
y

Same argument.

A.1.6 Proof of Lemma 10.18

(1) vis is natural and irreflexive: follows because vis ⊆ eo and eo is
natural and irreflexive. (2) vis is transitive: suppose a vis−→ b

vis−→ c. Then
a <eo b <eo c. Do a case distinction on the disjunctions in (10.4).[
a

ro−→ b, b
ro−→ c.

]
Then a ro−→ c.

[
a

ro−→ b, lu(b) = ⊥.
]

Then lu(a) = ⊥
also (Lemma A.1), thus a vis−→ c.

[
a

ro−→ b, lu(b)tell role(lu(c)) ≤ro lu(c).
]

Apply Lemma A.1 to a ro−→ b, consider subcases.
q

lu(a) <uo lu(b).
y

Then, because notifications are sent from server to client in order,
lu(a)tell role(lu(c)) ≤ro lu(b)tell role(lu(c)) ≤ro lu(c), thus a vis−→ c.

q
lu(a) =

⊥.
y

Then a vis−→ c.

Lemma A.1. ∀a, b ∈ ops(G) : a
ro−→ b⇒ lu(a) ≤uo lu(b) ∨ lu(a) = ⊥.

Proof. a ro−→ b implies that lu(b) takes the maximum of a larger set than
lu(a), thus either lu(a) ≤uo lu(b) or lu(a) = ⊥.

Lemma A.2. Arbitration, when restricted to updates, matches the up-
date order: ar|UG

= uo.

Lemma A.3. Arbitration, when restricted to updates by a specific role
r, matches the role order: ∀r ∈ Roles : ar|E(r) = ro.
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