
Unified Address Translation for Memory-Mapped SSDs with FlashMap

Jian Huang Anirudh Badam† Moinuddin K. Qureshi Karsten Schwan

Georgia Institute of Technology †Microsoft Research
{jian.huang,moin,karsten.schwan}@gatech.edu {anirudh.badam}@microsoft.com

Abstract
Applications can map data on SSDs into virtual memory to

transparently scale beyond DRAM capacity, permitting them
to leverage high SSD capacities with few code changes. Ob-
taining good performance for memory-mapped SSD content,
however, is hard because the virtual memory layer, the file
system and the flash translation layer (FTL) perform address
translations, sanity and permission checks independently from
each other. We introduce FlashMap, an SSD interface that is
optimized for memory-mapped SSD-files. FlashMap combines
all the address translations into page tables that are used to
index files and also to store the FTL-level mappings without
altering the guarantees of the file system or the FTL. It uses
the state in the OS memory manager and the page tables to
perform sanity and permission checks respectively. By com-
bining these layers, FlashMap reduces critical-path latency
and improves DRAM caching efficiency. We find that this in-
creases performance for applications by up to 3.32x compared
to state-of-the-art SSD file-mapping mechanisms. Additionally,
latency of SSD accesses reduces by up to 53.2%.

1. Introduction
A growing number of data-intensive applications use solid
state disks (SSDs) to bridge the capacity and performance gaps
between main memory (DRAM) and magnetic disk drives
(disks). SSDs provide up to 5000x more IOPS and up to
100x better latency than disks [19]. SSDs provide up to 20TB
capacity per rack-unit (RU) [56], whereas DRAM scales only
to a few hundred GBs per RU [6, 8]. SSDs are used today as a
fast storage medium to replace or augment disks.

An emerging approach to using SSDs treats them as a slower
form of non-volatile memory. For example, NoSQL databases
like MongoDB [39, 41], LMDB [35] (backend for OpenL-
DAP) and others [4, 36, 38] which are widely deployed [40]
use SSDs via a memory-mapped file interface. There are
three advantages to this approach. First, the virtual memory

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’15, June 13-17, 2015, Portland, OR USA
©2015 ACM. ISBN 978-1-4503-3402-0/15/06$15.00
DOI: http://dx.doi.org/10.1145/2749469.2750420

interface eases development. For example, MongoDB uses
TCMalloc [51] to manage SSD-file backed memory to create
data structures like its B-tree index, and for using the Boost
template library. Second, SSDs are automatically tiered under
DRAM by the OS’s memory manager and finally, memory
that is backed by a file enables durability for data. Such hybrid
memory systems have also been proposed in the academic
community [5, 44, 45, 55, 57].

Using SSDs in this manner, unfortunately, is inefficient as
there are three software layers with redundant functionalities
between the application and NAND-Flash. The first of these,
memory-level indirection, involves page table translations and
sanity checks by the OS memory manager. The second of
these, storage-level indirection, involves converting file offsets
to blocks on the SSD and permission checks by the file system.
The final one, device-level indirection, is for the flash trans-
lation layer (FTL) of the SSD. Redundant indirections and
checks not only increase the latency of NAND-Flash accesses,
but also affect performance by requiring precious DRAM
space to cache indirection data across all the three layers.

In this paper, we present FlashMap, a holistic SSD design
that combines memory, storage, and device-level indirections
and checks into one level. This is a challenging problem be-
cause page table pages and OS memory manager state that
form the memory-level indirection are process-specific, pri-
vate, and non-shared resources while direct/indirect blocks
(file index) that form the storage-level indirection in a file
system, and the FTL that converts the logical block addresses
to physical block addresses are shared resources. FlashMap in-
troduces the following three new techniques to combine these
layers without losing their functionality:
• FlashMap redesigns a file as a contiguous global virtual

memory region accessible to all eligible processes. It uses
page table pages as the indirect block index for such files
where these page table pages are shared across processes
mapping the same file.

• FlashMap enables sharing of page table pages across pro-
cesses while preserving semantics of virtual memory protec-
tions and file system permissions by creating private page
table pages only on demand.

• FlashMap introduces a new SSD interface with a sparse
address space to enable storing of the FTL’s mappings inside
page table pages.
More importantly, FlashMap preserves the guarantees of all

the layers in spite of combining them into virtual memory. We

implement FlashMap in Linux for EXT4 on top of a functional
SSD-emulator with the new interface proposed. Experimen-
tal results demonstrate that data intensive applications like
NoSQL stores (Redis [46]), SQL databases (Shore-MT [49])
and graph analytic software (GraphChi [22]) obtain up to
3.32x better performance and up to 53.2% less latency.

The rest of this paper is organized as follows: The back-
ground and motivation of our work are described in Section 2.
The design and implementation of FlashMap are presented in
Sections 3, and 4 respectively. Section 5 presents the evalu-
ation results. Section 5.3 analyzes the cost-effectiveness of
using SSDs as memory compared to DRAM. Related work is
described in Section 6, and our conclusions from this work are
given in Section 7.

2. Background & Motivation
To meet the high-capacity needs of data-intensive applications,
system-designers typically do one of two things. They either
scale up the amount of DRAM in a single system [23, 33] or
scale out the application and utilize the collective DRAM of
a cluster [2, 42, 60]. When more capacity is needed, SSDs
are useful for scale-up scenarios [10, 16, 17, 32, 34] and for
scale-out scenarios [3, 7, 12]. Adding SSDs not only improves
performance normalized for cost (as shown in Section 5.3),
but also improves the absolute capacity.

Today SSDs scale up to 10TB per system slot [19] (PCIe
slot) while DRAM scales only to 64GB per slot (DIMM slot).
Even though systems have more DIMM slots than PCIe slots,
one would require an impractically high (160) number of
DIMM slots to match per-slot SSD density. SSDs provide up
to a million IOPS at less than 100µsec and lack seek latencies.
Such performance characteristics make SSDs more similar
to DRAM than to disks. Moreover, SSDs are non-volatile.
Therefore, data-intensive applications are using SSDs as slow,
but high-capacity non-volatile memory [39, 35, 38, 5, 45] via
memory-mapped files. Such an approach has the following
three advantages.

First, virtual memory interface helps existing in-memory
applications adopt SSDs with only a few code changes. For ex-
ample, we find that less than 1% of the code has to be changed
in Redis (an in-memory NoSQL store built for DRAM) to use
SSD-backed memory instead of DRAM. On the other hand,
more than 10% of the code has to be modified if SSDs are used
via read/write system calls. Further benefits of the interface’s
ease are shown in Section 5.3, in our previous work [5] and
is also evident from the fact that widely deployed databases
like MongoDB map SSD-files and build data structures such
as BTree indexes using TCMalloc [51] and Boost [9].

Second, memory-mapped access ensures that hot data is
automatically cached in DRAM by the OS and is directly
available to applications via load/store instructions. To
get such a benefit without memory-mapping, an application
would have to design and implement custom tiering of data
between DRAM and SSD which can take months to years

Application Application

NAND FlashNAND Flash

Memory Level Indirection Page Tables

Storage Level Indirection File Index

Device Level Indirection FTL

Memory, Storage, &

Device

Level Indirections

Page Tables

(Unified Address

Translation)

Figure 1: Comparison of (a) conventional memory-mapped
SSD-file’s IO stack and (b) FlashMap that combines all the ad-
dress translations for mapping files on SSD into page tables.

depending on application complexity. Finally, file-backed
memory as opposed to anonymously-mapped memory (SSD
as a swap space) allows applications to store data in the file
durably and exploit other file system features such as atomicity
(via transactions and journaling), backup, space management,
naming and sharing.

Unfortunately, existing OSes and SSDs are not optimized
for this style of using the SSD. There are three distinct soft-
ware layers with separate indirections between the application
and NAND-Flash. The separation of the virtual memory, the
file system, and the FTL as shown in Figure 1(a) reduces per-
formance and increases latency. This paper presents a holistic
SSD designed from scratch for memory-mapped SSD-files
that combines these layers.

2.1. Overhead from Redundant Software

To service a page fault in a memory mapped region from a file
on an SSD, three types of address translations are required.
First, the CPU traverses the page tables (memory-level indi-
rection) to trigger the page fault. Later, the file system uses
indirect blocks to translate the faulting file offset to a block on
the SSD (storage-level indirection). Finally, the FTL converts
this block address to an actual NAND-Flash level address
(device-level indirection). Multiple layers of indirection not
only increase the latency but also decrease the performance
of applications. Each layer wastes precious DRAM space for
caching address translation data. The latency increases further
if the required address translation is not cached in DRAM.
Locking all the address translation data in DRAM is not a fea-
sible option as one would require as much as 60GB of DRAM
for a 10TB SSD1.

Even if the address translation data is cached in DRAM, the
software latency is still significant (5–15µsec in each layer) as
each layer performs other expensive operations. For example,
the memory manager has to check if the faulting address is in
an allocated range, the file system has to check if the process
has access to the file (checks that can be efficiently enforced
using permission bits in page tables that are always enforced
by the CPU) and FTLs with sparse address spaces [20] have
to check allocation boundaries (checks that can be efficiently
performed by the memory manager itself). There is a need for
a new SSD design that is optimized for memory-mapped SSD-

1A minimum of eight bytes per indirection layer per 4KB page

files, one that uses a single software layer (virtual memory),
one address translation, one permission check (in page tables),
and one sanity check (in memory manager).

2.2. Challenges for a Combined Indirection Layer

Memory-level indirection SSD-files have to be mapped with
small pages (4KB) as large pages are detrimental to the per-
formance of SSDs. An x86_64 CPU provides memory usage
(read/fault and write/dirty) information only at the granularity
of a page. Therefore, smaller page sizes are better for reducing
the read/write traffic to the SSD. For example, our enterprise
class SSD provides 700K 4KB random reads per second, while
it provides only 1,300 2MB random reads per second. Thus
using a 4KB page size means that the size of the page tables
would be about 20GB for a 10TB dataset. While keeping page
table pages only for the pages in DRAM can reduce the space
required, it does not reduce the software-latency of handing a
page fault which is dominated by the layers below the memory
manager. To reduce this latency, we propose performing all
the address translations with page table pages as they are an
x86_64 necessity for file-mapping and cannot be changed or
removed. Moreover, the virtual memory protection bits can
be exploited for all permission checks and the memory alloca-
tion metadata in the OS memory manager can be exploited to
perform all sanity checks.

Storage-level indirection is the direct/indirect blocks of a
file system. For typical block sizes (2–8KB), this indirection
layer requires 10–40GB of space for a 10TB SSD. Larger
blocks unfortunately decrease DRAM caching efficiency and
increase the traffic from/to the SSD. Extent-based file indexes
such as the one used in EXT4 [18] can reduce this overhead.
However, using such an index does not remove all the file
system overhead from the IO-path. It is well known that
permission checks of file systems increase latency in the IO-
path by 10–15µs [13, 43]. A combined memory and storage-
level indirection layer would not only eliminate a level of
indirection but would also perform all the necessary checks
efficiently by using the protection bits in the page tables.

Device-level indirection. NAND-Flash supports three op-
erations – read, write, and erase. Reads can be performed
at a granularity of a page (4KB), which can be written only
after they are erased. Unfortunately, erases can be performed
only at a large granularity of a block (eight or more pages at a
time). Moreover, each block is rated only for a few thousand
erases and therefore it is vital for the blocks to age uniformly.
SSDs employ a log-structured data store with garbage collec-
tion (GC) [1] using indirections in the FTL for out-of-place
writes and ensuring uniform wear. To improve performance
and lifetime, high-performance SSDs implement such logs
by employing a fine-granular and fully-associative page-level
index [20, 27]. Such an index at a granularity of a page (4KB)
requires more than 20GB of space for a 10TB SSD.

Traditionally, FTLs have cached their mappings in em-
bedded SRAM/DRAM to provide predictable performance.

9 bits 9 bits 9 bits 9 bits 12 bits

Page

Offset

Boot
Blocks

Super
Block

Inode # 1

…

Inode # i

…

Inode # n

Data

EXT4 FS

Global Page
Entry # 1

…

…

Global Page
Entry # 512

Global Page Table

512 Entries/Page

Upper Page
Entry # 1

…

…

Upper Page
Entry # 512

Upper Page Table

512 Entries/Page

Middle Page
Entry # 1

…

…

Middle Page
Entry # 512

Middle Page Table

512 Entries/Page

Page Table
Entry # 1

…

…

Page Table
Entry # 512

Page Table Entries

512/Page

48bit file offset into File # i

Global Page

Table Offset

Upper Page

Table Offset
Middle Page

Table Offset

Page Table

Entry Offset

4KB

Page

Figure 2: FlashMap uses a page table design for indexing files.

Unfortunately, it is not possible to provision large amounts
of RAM inside SSDs. Therefore, high-capacity SSDs store
the mappings in the host [20] where DRAM scales better.
FlashMap leverages this SSD design pattern to combine the
FTL mappings with indirections in the higher layers.

Combining page tables with storage and device-level indi-
rections, however, is challenging because page table pages
are process specific and private entities while the remaining
indirections are system-wide entities that are shared by all
processes. Furthermore, page table pages cannot be shared
frivolously across processes because it may lead to false shar-
ing of memory and violate permissions and protections. To ad-
dress these problems, FlashMap introduces a new virtual mem-
ory design where the page table pages needed for mapping a
file belong to the file system and are system wide resources
shared across processes mapping the same file. FlashMap
enforces file permissions and virtual memory protections as
required at a low-overhead by creating process-specific private
page table pages only on demand. This design helps FlashMap
unify the memory, storage and device interfaces (Figure 1(b))
without changing any guarantees from virtual memory, file
system, or FTL.

3. FlashMap Design
To combine the memory and storage-level indirections, we
re-imagine a file as a contiguous virtual memory region of
an abstract process. The region is indexed by an x86_64
style four-level page table as opposed to the traditional di-
rect/indirect block/extent representations that file systems use.
Figure 2 illustrates the indirect blocks in our file design – the
rest of the file system, however, remains unaltered. The 48-bit
physical frame numbers (PFN) in this page table are the block
pointers that the file system uses to index the file. Since we
treat a file as a region of memory of an abstract process, we
will use page and block interchangeably. We will refer to the
file index as shared page tables.

Such files can be accessed via the POSIX file API without
any application changes. Most file systems are designed to
abstract away the indexing from the API and the rest of the
file system. We leverage this abstraction to preserve the rest
of the file system and POSIX API. When mapping such files,
however, necessary shared page table pages have to be bor-
rowed by the process in contrast to traditional file-mapping

PTBR

Page
Directory

Private Virtual
Memory Regions

Process’s Private Virtual Memory Process’s Private Virtual Memory + File Backed Memory

Before
Mapping
a File

After
Mapping
a File

PTBR

Page
Directory

Private Leaf-Level
Page Table Pages

Private Virtual
Memory Regions

Virtual Memory Regions
Backed by File

Shared Leaf-Level
Page Table Pages

Inode

Page
Directory

File’s
Index

Private Leaf-Level
Page Table Pages

Figure 3: File brings leaf-level page tables with itself to a
process that maps it. Higher-level page table pages are not
shared, they are created on-demand for mapping the file.

and memory management techniques where private page table
pages are created for the process.

At a first glance this problem might seem simple and that it
can be solved by grafting the process’s page table with as much
of the shared page table pages as possible. However, the solu-
tion is not so simple. If two processes map the same file with
different permissions (READ_ONLY vs. READ_WRITE),
then sharing page table pages by frivolous grafting can vio-
late file system permissions. To address these problems in a
systematic manner, we introduce the notion of Semi-Virtual
Memory which is a mechanism to share some of the shared
page table pages across processes that map the same file with
different file-level permissions.

3.1. Preserving File System Permissions

Semi-Virtual Memory is a method to share only the leaf-level
page table pages (LL-PTP) that contain page table entries
(PTE) across processes that map the same file. When a process
maps a file, only the LL-PTPs of the shared page table of the
file are borrowed and grafted into the process’s page table.
The rest of the page table pages (page directory pages) needed
for the mapping are created for the process afresh and deleted
when the process unmaps the file.

The permissions set in the higher level page table entries
(page global, middle, and upper directory entries) override the
permissions set at the page table entries in x86_64. Therefore,
private copies of higher-level page table pages can be exploited
to implement custom file-level permissions during mapping. It
helps to think of this memory virtualization at the granularity
of a file rather than a page, hence the name Semi-Virtual
Memory. Not sharing higher-level page tables would increase
the memory overhead of page tables by only a negligible
amount. The branching factor of x86_64 page tables is 512
(512 entries per 4KB page), and the overhead is less than 0.5%.
Figure 3 shows how only the LL-PTP of the shared page tables
are borrowed from the file system when a file is mapped into a
process. Rest of the higher-level page table pages are created
for the process like the way they are in traditional OSes.

FlashMap avoids false sharing of file permissions by design.
Two or more files are mapped to the same process such that the
page table entries required for mapping these files are never on

Page

#1

Page

#2

Page

#3

Page

#4

Page

#5

Page

#6

Page

#7

Page

#8

Page

#9

Page

#10

SSD

(10 pages)

Cached

Page #2

Cached

Page #4

Cached

Page #9

Cached

Page #6

DRAM

(4 pages)

Overloaded Page

Table Entries

Auxiliary SSD-Location Index

Figure 4: Page table entries are overloaded to store both SSD
and DRAM locations of pages. When a page table entry stores
the DRAM location of a cached page, the corresponding auxil-
iary SSD-location entry remembers it’s SSD-location.

the same LL-PTP. This requires that file boundaries be aligned
to 2MB (512x4KB span) in virtual memory space. FlashMap
is designed for x86_64 where there is ample virtual memory
available and therefore, we do not see this requirement as a
major overhead. This design helps separate permissions for
each file mapped to the same process.

This enforcement does not violate the POSIX compliance of
mmap. POSIX mmap specifies that the OS may pick an address
of its choosing to map the file if the address requested by caller
is not available. However, as this scheme itself is deterministic,
it is still possible for a process to map a file to the same address
across reboots.

In traditional OSes, the separation of the memory and
storage-level indexes meant that the memory manager and
the file system needed to interact with each other only for
data. In a system like FlashMap, they have to additionally
collaborate to manage the shared LL-PTPs of the files that are
currently mapped. PTE behavior must remain the same for
user space in spite of this dual role of LL-PTPs

3.2. Preserving PTE Behavior

FlashMap overloads the PTE. When a page of a file is in
DRAM, the corresponding PTE in the LL-PTP is marked
as resident, and contains the address of the physical page in
DRAM where the page resides. On the other hand, when the
page is not cached in DRAM, the PTE in the shared LL-PTP
is marked as not-resident, and contains the address of the page
on the SSD.

The SSD-location of the page must be stored elsewhere
while the page is cached in DRAM. We design an auxiliary
index to store the SSD-locations of all the pages cached in
DRAM. The auxiliary index is implemented using a simple
one-to-one correspondence between DRAM pages and the
SSD-Location of the block that the DRAM page may hold – a
simple array of 8 byte values. It must be noted that the size of
this array is the same as the number of pages in DRAM and
therefore is not significant. For example, for a typical server
with 64GB DRAM, this auxiliary index would require only
128MB and can be stored in DRAM – an overhead of less
than 0.25%. Figure 4 demonstrates how the overloaded page
table entries and auxiliary SSD-location index remember the
location of all the pages (on SSD or cached in DRAM).

While Semi-Virtual Memory allows processes to adhere

Shared LL-PTP#1 Shared LL-PTP#2 Shared LL-PTP#3 Shared LL-PTP#4 Shared LL-PTP#5 Shared LL-PTP#6

2MB 2MB 2MB 2MB 2MB 2MB

Mapped File

Shared LL-PTPs

… …

Page Middle Directory

Process B’s Page Tables

Page Middle Directory

Private LL-PTPs

… …

Process A’s Page Tables

Figure 5: Processes A and B map the same file. However, Pro-
cess B creates custom memory protections for a small mem-
ory region using a private leaf-level page-table page (LL-PTP).

to file-level permissions, it does not provide one of the cru-
cial properties of virtual memory – page-granular memory
protection via mprotect. The sharing of LL-PTPs between
processes means that the protection status of individual pages
is also shared. This can violate the semantics of memory
protection.

3.3. Preserving Memory Protection Behavior

To preserve the POSIX memory protection (mprotect) be-
havior, FlashMap simply disables Semi-Virtual Memory for
the LL-PTPs of only the virtual memory ranges that require
custom access permissions only for the requesting process.
If a process requires custom memory protection for a single
page, then the OS creates a private LL-PTP on demand for the
encompassing virtual memory range that contains this page –
the minimum size of such a region would be the span of an
LL-PTP in x86_64 (2MB = 512x4KB span). These regions of
memory are managed similar to shared memory in operating
systems where the memory-level and storage-level indexes are
separate. We call these regions “saturated virtual memory”.

We believe that saturated virtual memory regions will not
increase the memory overhead of address translation signifi-
cantly. Basu et al. [8] report that for many popular memory-
intensive applications, less than 1% of memory requires cus-
tom per-page protections. Moreover, our focus is on high-
performance, in-memory applications where sharing files
across processes with differing protections is a rare scenario.

Saturated virtual memory is depicted in Figure 5. Processes
A and B map the same file, however Process B requires cus-
tom protection status for a page. FlashMap creates a private
LL-PTP for the encompassing 2MB region to enforce the pro-
tection. The implementation details and the necessary data
structures to support this are presented in Section 4.

3.4. Preserving the FTL Properties

FlashMap only changes the interface between the OS and the
SSD. The rest of the SSD remains intact. FlashMap requires
an SSD that can store only the mappings of the blocks of a file
on the host in the shared LL-PTPs. The rest of the mappings –
of file system metadata and other metadata – are managed by
the SSD itself. Data dominates metadata in our applications
which usually map large files to memory. Therefore, having
separate translations inside the SSD for metadata of the file

Traditional block device interface

Managed Virtual SSD for storing FlashMap Files

FlashMap File # 1

(Virtual SSD # 1)

FlashMap File # n

(Virtual SSD # n)
FlashMap File # i

(Virtual SSD # i)

48 bits address space 48 bits address space48 bits address space

SSD interface with a 64 bit address space

… …

… …
SSD-owned

mappings

shared

page table

shared

page table

shared

page table

ProtoSSD for storing

Non-FlashMap Files

Figure 6: FlashMap uses an SSD with a sparse address space.
A portion of this address space is virtualized with a separate
device-level indirection. This portion is used for implement-
ing non-performance critical data. Rest of the address space
is used for storing the data of FlashMap files. This address
space uses shared page tables for indirections

system does not add significant overhead.
We propose a virtualized SSD architecture, where the SSD

and the file system share indirections only for data blocks of
files. For each file, FlashMap creates a virtual SSD (48-bit
address space) whose blocks have a one-to-one correspon-
dence with the blocks of the file. The mappings of this address
space are stored by FlashMap in shared LL-PTPs. Most of
the space and IOPS of an SSD, in our scenario, will be spent
towards data in large memory-mapped files, and very little
on file system metadata (boot blocks, super blocks, inodes
and etc.). A one-to-one mapping between FlashMap files and
virtual SSDs allows the SSD driver to have a trivial way to
store performance-critical mappings in the shared page table
without affecting the metadata design of a file system.

Virtual SSDs are carved out of a larger virtual address
space that the SSD driver implements. Similar to several
high-performance SSDs [20], we design an SSD with a 64-bit
address space, and carve out smaller virtual SSDs with 48-bit
contiguous address spaces from it. The first 48-bits worth
of this address space is used for implementing a virtual SSD
whose FTL indirections are managed by the SSD driver itself.
The file system can use this as a traditional block device for
storing non-performance-critical data: including metadata and
the on-SSD copy of the shared LL-PTPs. We call this the
proto-SSD.

For each 48-bit address range, the file system must remem-
ber its allocation status so that they can be recycled and reused
as files are created and deleted. The file system maintains a
simple one-to-one table to represent this information using
some space in the proto-SSD. A 64-bit address space allows
216 48-bit contiguous address spaces. Therefore, this table
requires only tens of megabytes of space. Directories and
smaller files are also stored on the proto-SSD.

FTL mappings in LL-PTPs. The rest of the 64-bit address
space is used for creating virtual SSDs. Each virtual SSD
carves a contiguous 48-bit address space for itself and is used
by the file system to implement a logically contiguous file –
a one-to-one correspondence between a FlashMap file and a
virtual SSD. The SSD driver is designed to use the x86_64
style four-level page table of the file as the data structure
for storing the indirections. The indirections for the proto-

SSD are implemented and managed by the SSD driver, while
the indirections for every virtual SSD are stored inside the
shared LL-PTPs of FlashMap. However, the SSD driver can
query and update the shared LL-PTPs for each virtual SSD to
perform read, write, and garbage-collection operations in an
atomic fashion by coordinating with the OS memory manager.
Figure 6 illustrates the address space at the SSD level. This
design enables the SSD to store its mappings on the host, but
not forgo functionality.

FlashMap files are directly mapped to virtual SSDs. New
“file system to SSD calls” are required to help the file system
leverage virtual SSDs:
• create_virtual_ssd allows a file system to create a new

virtual SSD from the SSD driver. The file system updates its
metadata to remember that this file uses FlashMap. It also
remembers the virtual SSD that this file uses.

• delete_virtual_ssd is called by the file system when it
wishes to delete a virtual SSD because the file is deleted
from the file system.
The following operations are supported over a virtual SSD

that the memory manager implements atomically:
• delete_virtual_block is the TRIM operation.
• read_virtual_block reads a block from the SSD.
• write_virtual_block writes a block to the SSD.

The log-management, error detection/correction, garbage
collection algorithm and other SSD level functionalities are
untouched. The actual garbage collection and log management
algorithms we use in our implementation are described in more
detail in Section 4. The following functions are used by the
FTL to access the mappings inside LL-PTPs atomically:
• update_mapping allows the SSD driver to change the log-

ical to physical mapping of a particular virtual block of a
particular virtual SSD.

• read_mapping is used by the SSD to obtain the physical
page address of a virtual page of a virtual SSD.

• lock_mapping is used by the SSD to lock access to the
virtual page. Any accesses will lead to a fault. Faults are not
processed until the SSD releases the lock.

• unlock_mapping is used by the SSD to unlock access to
the virtual page. Fault that occurred since locking are pro-
cessed.

3.5. Preserving Consistency & Durability Guarantees

The consistency and durability guarantees of a file system that
adopts FlashMap style indexing are unaltered. FlashMap lever-
ages in built abstraction of index from data management built
in to file systems and preserves the manner in which fsync(),
journaling or transactions work. However, the shared page
tables which are cached in memory need durability and con-
sistency without affecting performance.

LL-PTP management. The shared pages tables for all
the virtual SSDs/FlashMap files are cached on-demand in the
host’s DRAM. A process mapping a file has private higher-
level page table pages locked into DRAM, but LL-PTPs are

fetched only on demand and unused ones are retired back to
the SSD. An LL-PTP is marked as used when at least one page
indexed by it is detected as recently used by the OS’s memory
manager (details presented in Section 4).

Durability for LL-PTPs. The LL-PTPs and the auxiliary
SSD-index are constantly updated as the GC compacts live
data and as new data is written out of place. However, writing
them to the SSD everytime they are modified would increase
the write traffic. Therefore, a more scalable approach to main-
taining the durability of page tables is needed.

We leverage out-of-band space available on SSDs for this
purpose. Most SSDs have per-page out-of-band space to store
metadata [61]. We expand this space to store reverse-mapping
information that can be used to regenerate the indirection table
in case of a crash. For each page on the SSD, we store its
virtual address in the 64-bit SSD address space where it is
mapped. These reverse mappings only need to be modified
when pages are written or moved by the GC. A sequential scan
of the reverse mappings of all the pages in the right order is
sufficient to recover the shared page table. The ordering is
determined using timestamps that are written along with the
reverse-mappings. Note that they are only stored on the SSD,
and require as little as 10 bytes (8 for the mapping and 2 for
the timestamp) per page. Dirty page table pages are frequently
checkpointed in bulk to the SSD so that the amount of data to
scan after a crash is no more than a few GBs.

4. FlashMap Implementation
We modify EXT4 and the memory manager in Linux to com-
bine their memory and storage level indexes using Semi-
Virtual Memory in combination with overloaded page tables,
auxiliary SSD-Location index, and saturated virtual memory.
We also implement a wrapper that can be used to convert any
legacy SSD into one that provides virtual SSDs and a proto
SSD. FlashMap is the combination of these two systems.

Modified EXT4 Index. We implement the shared page
tables as the file index in EXT4 by replacing the default in-
direct (single/double/triple) block representation as depicted
in Figure 2. We populate the page table of each file as the
file grows contiguously in a virtual SSD’s address space. The
index implementation is abstracted from the rest of the file
system in such a way that traditional POSIX file APIs, page
replacement, and other file system entities work seamlessly.

Augmented Memory Manager. We implement a special
memory manager helper kernel module that manages physical
memory for all the virtual memory regions that map FlashMap
files. This contains a page fault handler that brings the relevant
data/page tables into DRAM. The module also manages the
LL-PTPs. It also maintains the auxiliary SSD-Location index.
This module also interacts with Linux’s page replacement
scheme to identify least recently used pages [21] and LL-PTPs
of the file that can be sent back to the SSD.

The memory manager also implements the modified ver-
sions of mmap, munmap, and mprotect by intercepting these

system calls. It implements semi-virtual memory and saturated
virtual memory. We use a red-black tree to remember the vir-
tual memory regions that require saturated virtual memory and
handle the page faults in these regions as if the memory and
storage-level indirections are separate. Finally, this module
implements the functions required by the SSD for atomically
updating and reading the shared LL-PTPs and the auxilliary
SSD-index.

SSD Emulator Our physical SSD has four requirements
that are different from traditional SSDs. First, it should expose
a 64-bit address space like some existing SSDs [20, 28]. Sec-
ond, it should export a proto-SSD that looks like a block device
to the file system like some existing SSDs [61]. Third require-
ment is the per-page out-of-band space for implementing the
reverse-mappings similar to other recent devices [14, 48]. The
final requirement is the only one that we newly propose: virtual
SSDs with the APIs in Section 3.4.

We implement a static software wrapper for any SSD such
that it functionally emulates our proposed SSD interface. In
the wrapper, we implement a 64-bit sparse address space that
is used to implement a log-structured page-store on the unmod-
ified SSD. The wrapper constructs its own x86_64 style page
table for indexing the proto-SSD. For the rest of the address
space, it relies on the API designed in Section 3.4 to access
and manage the shared page tables.

The wrapper implements a read-modify-write style GC to
emulate log-structured and page-mapped SSDs. The SSD is
organized as a sequence of chunks (128KB/erase granularity).
We reserve a page at the head of each chunk to implement
the out-of-band space. This header page is never allocated
to the file system. We implement a log-structured system of
chunks (each with 1 out-of-band data page and 31 data pages)
with a read-modify-write style garbage-collector as used by
other SSD based systems [5, 7, 44, 61]. In the read phase, the
GC reads a chunk into memory. For each page in this chunk,
it uses the reverse-mapping in the out-of-band metadata of
the page to match against the forward-mapping stored in the
shared LL-PTPs. If it is a match, then this page is still valid, if
not then the page is garbage.

In the modify phase, the wrapper takes any available dirty
pages from the memory manager that have not been recently
used (and other synchronously written pages) and overwrites
the garbage pages in the chunk’s in-memory copy. In the write
phase, the wrapper writes the chunk’s in-memory copy back
to the SSD along with the header page containing the new
reverse-mappings for the recently written dirty pages. The
header page also contains a timestamp that is used during re-
covery for determining the order in which pages were written
to the SSD. Finally, it modifies the shared page table entries of
the dirty pages that were written to new locations and marks
them as clean with the help of the augmented memory man-
ager. The GC then advances to the next chunk. Our SSD
emulator adequately demonstrates that FTL mappings can be
stored inside page tables without compromising on garbage

NoSQL Key-Value Store (Section 5.1.1)
Software Redis

Workload Redis benchmark, YCSB (Yahoo Cloud Service Bench-
marks)

Graph Computation (Section 5.1.2)
Software GraphChi
Workload PageRank, Connected-component labeling

G
ra

ph
D

at
as

et Twitter social networks, 61.5 million vertices, 1.5 billion edges.

Friendster ground-truth communities, 65.6 million vertices, 1.8 bil-
lion edges.

MSD Million Song Dataset (MSD) has 1 billion records of
songs’ metadata.

SQL Database (Section 5.2)
Software Shore-MT (open-source database manager)
Workload TPCC, TATP, TPCB

Table 1: Real workloads used in our experiments.

Unoptim
ize

d

Softw
are

FS Extents

FS Extents

(O
nDemand)

Separate FTL

(O
nDemand)

Separate M
emory

(O
nDemand)

FlashMap
0

2.0

4.0

6.0

8.0

In
d

e
x

S
iz

e
 (

G
B

)

Figure 7: Index size for 1TB SSD.

collection and other FTL requirements.

5. Evaluation
The aim of our evaluation is three fold: (1) To demonstrate that
FlashMap improves performance by making efficient usage
of DRAM, (2) To demonstrate that FlashMap reduces latency
and (3) To demonstrate that using SSDs as memory is a cost-
effective method to increase capacity vs. using DRAM. We
compare FlashMap with the following systems:

Unoptimized Software: Unmodified mmap is used to map
a file on unmodified EXT4 file system without extents on the
proto-SSD. Private page tables are created by mmap. The proto-
SSD has its FTL locked in DRAM similar to high-performance
FTLs such as Fusion-io’s ioMemory [20, 27]. Rest of the
indirections are fetched on demand.

FS Extents: This is the same software and hardware stack
as above but with file system extents (128MB) enabled in
EXT4. An improved version is FS Extents (OnDemand) in
which the FTL mappings are fetched to DRAM from flash
on-demand similar to DFTL [24].

Separate FTL (OnDemand): Page tables and the file sys-
tem index are combined but the FTL remains separate. All the
indirections are, however, fetched on demand.

Separate Memory (OnDemand): The file system and the
FTL are combined similar to existing systems such as Name-
less Writes [61] and DFS [28] where the memory-level indi-
rections remain separate. However, all the indirections are
fetched on demand to DRAM.

The physical machine used for experiments has two Intel

1 2 4 8 16 32 64 128 256 512

SSD Size : DRAM Size
(a) DRAM Hit Rates vs SSD Size

0

20

40

60

80

100

D
R

AM
 H

it
R

at
e

(%
)

Unoptimized Software
FS Extents
FS Extents (OnDemand)
Separate FTL (OnDemand)
Separate Memory (OnDemand)
FlashMap

1:4 1:2 1:1 2:1 4:1
Working set size : DRAM size

(b) YCSB Workload B

0.5
1
2
4
8

16

Pe
rf

. G
ai

n
Fa

ct
or

Gain over Unoptimized Software
Gain over FS Extents

Gain over FS Extents (OnDemand)
Gain over Separate FTL (OnDemand)

Gain over Separate Memory (OnDemand)

1:4 1:2 1:1 2:1 4:1
Working set size : DRAM Size

(c) YCSB Workload D

0
20
40
60
80
100

D
R

AM
 H

it
R

at
e

(%
)

Figure 8: Memory saved by FlashMap helps applications obtain higher hit rates compared to other systems. (a) For DRAM:SSD
ratio of 1:64 or more, FlashMap provides up to 4.01x and 1.28x higher hit rate than Unoptimized Software and Separate Memory
(OnDemand). For throughput of photo-tagging (b) and status-update (c) workloads with various working set sizes, FlashMap
performs up to 12.33x and 1.51x better than Unoptimized Software and Separate Memory (OnDemand) respectively.

Xeon processors each with 6 cores running at 2.1 GHz and 64
GB DRAM. Samsung 840 EVO SSDs are used for experimen-
tation. We use the SSD emulator mentioned in Section 4 to
convert the regular SSDs to the ones that support proto SSD.
For the experiments in Section 5.2, we emulate high-end SSDs
(e.g., PCM-based SSDs) using DRAM with added latency.

5.1. Benefits from Saving DRAM

We first examine the total size of indirections in each sys-
tem per TB of SSD used. The results are shown in Figure 7.
FlashMap requires close to 2GB while unoptimized software
requires more than 6GB of indirections per TB of SSD. For
10TB SSDs available today, unmodified software would re-
quire more than 60GB of metadata. While more efficient than
Unoptimized Software, FS Extents and Separate Memory (On-
Demand) are still more than twice as expensive as FlashMap
in terms of metadata overhead. This indicates that for a given
working set, other methods would require 2-3x more amount
of DRAM to cache all the indirections needed for the data in a
given working set. For large working sets, the DRAM savings
translate to higher performance.

To quantify performance benefits from DRAM savings,
a number of experiments are performed. We perform mi-
crobenchmark experiments and conduct experiments with key-
value stores and graph analytic software to quantify such bene-
fits for real-world workloads. We vary the size of the SSD, the
amount of DRAM and/or the working set size to understand
the limits of benefits from a technique like FlashMap.

We first begin by examining the performance of each system
for a microbenchmark workload as we increase the size of the
SSD – DRAM is kept constant. We perform random reads
over 0.5 million pages (4KB) selected uniformly at random
from a file that spans an entire SSD. The size of the SSD is
increased from 2GB to 1TB as the DRAM in the system is
kept constant at 2GB (after subtracting the memory needed by
the OS and the auxiliary index). The 0.5 million pages (2GB
total) that form the workload are first sequentially accessed to
warm the DRAM.

Ideally, the cache should hold all the pages and all the read

operations should be cache hits in DRAM. However, indi-
rections occupy memory, and therefore cache hits in DRAM
decrease. The measured cache hit rates are shown in Fig-
ure 8(a). The results demonstrate that the additional DRAM
available to FlashMap helps the workload obtain a higher
hit rate in DRAM. For a realistic DRAM:SSD ratio between
1:64 and 1:128, FlashMap obtains up to 4.01x higher hit rates.
However, real-world workloads are not random. To under-
stand how DRAM savings translate to performance benefits
for applications, we conduct the next set of experiments.

5.1.1. Benefits for Key-Value Stores

We evaluate the benefits from using FlashMap for a widely
used NoSQL key-value stores named Redis [46, 58]. Redis is
an in-memory NoSQL storage engine and in its simplest form
is similar to Memcached [37]. We modify Redis (less than 20
lines of code) to use SSD as memory, and run two YCSB [15]
workloads.

YCSB [15, 59] is a framework for evaluating the perfor-
mance of NoSQL stores. It includes six core workloads, work-
load B and D are used in our experiments to test the perfor-
mance of key-value stores in the face of skewed workloads.
Workload B has 95% read and 5% update with zipfian distri-
bution, which represents photo tagging applications: reading
tags happens more frequently than adding a tag; workload
D has 95% read and 5% insert with a bias towards records
that are created recently. It models status updates on social
networks.

The size of key-value pair is 1 KB (by default), and the
number of client threads running in YCSB is 50. We conduct
1 million operations against varied amount of “hot” key-value
pairs for each workload while keeping the DRAM:SSD ratio
at 1:128 (64GB DRAM : 8TB SSD). We leverage the request
distribution parameter in YCSB to adjust working set sizes,
and plot the throughput for both the workloads in Figure 8.

FlashMap (9.5–62.7K TPS/single thread) provides up to
12.33x, 3.81x and 1.51x better throughput compared to Unop-
timized Software (5.8–6.6K TPS/single thread), FS Extents
(7.2–19.3K TPS/single thread) and Separate Memory (On-

16 32 64 128 256
SSD size : DRAM size

(a) PageRank on Twitter

0.0

1.5

3.0

4.5

6.0

E
xe

cu
tio

n
Sp

ee
du

p
Speedup over Unoptimized Software Speedup over FS Extents Speedup over Separate Memory (OnDemand)

16 32 64 128 256
SSD size : DRAM size
(b) PageRank on MSD

16 32 64 128 256
SSD size : DRAM size

(c) Connected-component on Twitter

16 32 64 128 256
SSD size : DRAM size

(d) Connected component on Friendster

Unoptimized Software FS Extents Separate Memory (OnDemand) FlashMap

0

25

50

75

100

D
R

AM
 H

it
R

at
e

(%
)

Figure 9: Improvements for analytics on Twitter, Friendster and MSD dataset, with varied DRAM size. Compared to Separate
Memory (OnDemand), FlashMap performs 1.15–1.64x better for PageRank, and up to 3.32x better for the connected component
labeling.

Demand) (8.3–52.9K TPS/single thread), due to the fact that
FlashMap provides up to 7.59x higher hit rate for the YCSB
workload B as shown in Figure 8(b). This is because of the
fact that the less metadata overhead of FlashMap leads to
more effective amount of DRAM being available for caching
application data. As the working set size increases, the hit
rates increase obtained by using FlashMap decreases. How-
ever, FlashMap still provides 14.5% higher throughput than
the Separate Memory (OnDemand) even for working sets as
large as four times the size of DRAM.

The results of workload D demonstrate the similar trend in
Figure 8(c). For such a workload, FlashMap (51.5-19.0K TPS)
gains 2.04–4.87x, 1.29–2.08x, 1.08–1.22x higher throughput
when compared to Unoptimized Software (10.8-9.3K TPS),
FS Extents (22.4-11.8K TPS), Separate Memory (OnDemand)
(47.7-15.6K TPS). This demonstrates that by adding SSDs to
the memory/storage hierarchy with FlashMap is beneficial for
real-world applications because it reduces the programming
effort and still provides significant performance benefits.

5.1.2. Benefits for Graph Analytics

We now turn our attention towards more computationally in-
tensive applications like PageRank and connected-component
labeling inside graphs. The aim of these experiments is to
demonstrate that the additional DRAM provides performance
benefits not just for IOPS driven applications, but also for com-
putationally intensive applications. We find that FlashMap
reduces the execution time of these memory intensive work-
loads significantly.

GraphChi [22] is a graph computation toolkit that enables
analysis of large graphs from social networks and genomics
on a single PC. GraphChi is primarily a disk based graph
computation mechanism that makes efficient usage of available
memory. It partitions the graph such that each partition can
fit in memory while it can work on it at memory speeds. We
modify GraphChi to use SSDs as memory and run graph
algorithms for various DRAM sizes. We increase the memory
budget of GraphChi beyond the amount of DRAM available
in the system. This means that the entire SSD is the working
set of GraphChi. We run two graph computational algorithms
on different graphs (Table 1) with various memory budgets to

5 10 15 20 25
Device Latency (microseconds)

0
10
20
30
40
50

La
te

nc
y

(u
s)

53.2%
43.1%

38.7%
34.5%

29.6%

device latency
IO stack overhead

virtual memory overhead

Figure 10: For faster SSDs, FlashMap provides tangible im-
provements in the latency over Unoptimized Software.

demonstrate the benefits of FlashMap over existing techniques.
First, we use GraphChi to find the PageRank of a real social

networking graph. The graphs we use in our experiments are
from Twitter [54, 31], Friendster and MSD as shown in Table 1.
Figure 9 (a) and (b) demonstrate that FlashMap obtains 1.27–
3.51x, 1.10–1.65x, 1.31–5.83x speedup in execution time of
the PageRank algorithm than FS Extents, Separate Memory
(OnDemand) and Unoptimized Software respectively, across
different DRAM sizes.

The execution times of the PageRank algorithm on MSD
at 1:64 DRAM:SSD ratio are 589.85 and 471.88 seconds re-
spectively for Separate Memory (OnDemand) and FlashMap.
For GraphChi, the working set spans the entire SSD. As the
size of the SSD increases, the effective amount of DRAM
available for GraphChi runtime decreases. It is natural that
this increases the execution time. However, by combining in-
directions, FlashMap helps speed up the graph computation by
freeing up memory. As shown in Figure 9 (b), the DRAM hit
rates are 18.7% and 9.1% for FlashMap and Separate Memory
(OnDemand) respectively as DRAM:SSD ratio is 1:256. We
next evaluate the FlashMap with the connected-component
labeling algorithm in GraphChi. We run it on the Twitter
and Friendster dataset and the results are shown in Figure 9
(c) and (d): FlashMap outperforms FS Extents by up to 3.93x,
and Separate Memory (OnDemand) by up to 3.32x.

5.2. Latency Benefits

The aim of the experiments in this section is to demonstrate
that FlashMap also brings benefits for high-end SSDs with
much lower device latencies, as it performs single address
translation, single sanity and permission check in the critical

DRAM 5 10 15 20 25
Device Latency (us)

(a) TPCC

0

5

10

15

20

25
Th

ro
ug

hp
ut

 (K
 T

PS
)

Upoptimzed Software
FS Extents
Separate Memory (OnDemand)
FlashMap

DRAM 5 10 15 20 25
Device Latency (us)

(b) TPCB

0
30
60
90

120
150
180

DRAM 5 10 15 20 25
Device Latency (us)

(c) TATP

0
50

100
150
200
250
300
350
400

50 75 100 125
Device Latency (us)

(d) TPCC

0
1
2
3
4
5
6

Figure 11: For faster SSDs, FlashMap provides up to 1.78x improvements on throughput over Unoptimized Software with TPCC,
TPCB and TATP benchmarks. As for Flash with 100 µs device latency, FlashMap still performs 1.21x more TPS than others.

Overhead Source Avg. Latency (µsec)
Walking the page table 0.85

Sanity checks 2.49
Updating memory manager state 1.66

Context switches 0.75

Table 2: FlashMap’s Overhead

path to reduce latency.
PCM-based SSDs and PCM-based caches on NAND-Flash

based SSDs are on the horizon [13, 11, 30]. With much smaller
PCM access latencies, FlashMap can provide tangible latency
improvements. We emulate such SSDs with various latencies
using DRAM and show how the software overhead decreases
because of FlashMap. 4KB pages from the SSD are accessed
at random in a memory-mapped file and the average latencies
are reported. The results are presented in Figure 10 and it
shows how FlashMap can improve latency by up to 53.2%
for faster SSDs. Note that these SSDs do not have a device-
level indirection layer, therefore these benefits are purely from
combining the translations and checks in file systems with
those in virtual memory.

We further break down the software overheads of FlashMap
by intercepting and timing each indirection layer. Table 2 lists
the overhead of the key operations in FlashMap and we find
that these are comparable to the latencies for each component
in unmodified Linux.

Furthermore, we investigate how the latency benefits of
FlashMap improves the performance of applications with con-
currency. Faster access to data often translates to locks being
released faster in transactional applications and this translates
to higher application-level throughput.

We modify a widely used database manager (Shore-
MT [49]) to mmap its database and log files with various tech-
niques (i.e., FlashMap, FS Extents, Separate Memory (On-
Demand) and Unoptimized Software). We use TPC-C [53],
TPC-B [52] and TATP [50] benchmarks (as shown in Table 1)
in our experiments. Their dataset sizes are 32-48 GB and the
footprint of address translation data is small. The memory
configured for the database manager is 6 GB. As shown in
Figure 11, for SSDs with low latency, FlashMap provides up to
1.78x more throughput because of its latency reductions. For
SSDs with higher hardware latency, FlashMap provides more

than 1.21x improvement on throughput over Separate Memory
(OnDemand), as the latency reduction (even small) can relieve
the lock contentions in software significantly [25, 26]. We find
similar trends for TPC-B and TATP workloads.

5.3. DRAM vs. SSD-memory

In this section, we analyze the cost effectiveness of using SSD
as slow non-volatile memory compared to using DRAM with
the aim of demonstrating FlashMap’s practical impact on data-
intensive applications. We survey three large-scale memory
intensive applications (as shown in Table 3) to conduct the
cost-effectiveness analysis. For this evaluation, we ignore the
benefits of non-volatility that SSDs have and purely analyze
from the perspective of cost vs performance for workloads
that can fit in DRAM today. Additionally, we analyze how
real-world workloads affect the wear of SSDs used as memory.

We use three systems for the analysis: Redis which is an
in-memory NoSQL database, MySQL with “MEMORY” en-
gine to run the entire DB in memory and graph processing
using the GraphChi library. We use YCSB for evaluating
Redis, TPC-C [53] for evaluating MySQL, and page-rank
and connected-component labeling on a Twitter social graph
dataset for evaluating GraphChi. We modify these systems to
use SSDs as memory in less than 50 lines of code each. The
results are shown in Table 3. The expected life is calculated
assuming 3,000 P/E and 10,000 P/E cycles respectively for the
SATA and PCIe SSDs, and a write-amplification factor of two.
The results show that write traffic from real-world workloads
is not a problem with respect to wear of the SSD.

SSDs match DRAM performance for NoSQL stores. We
find that the bottleneck to performance for NoSQL stores like
Redis is the wide-area network latency and the router through-
put. Redis with SATA SSD is able to saturate a 1GigE network
router and match the performance of Redis with DRAM. Re-
dis with PCIe SSD is able to saturate a 10GigE router and
match the performance of Redis with DRAM. The added la-
tency from the SSDs was negligible compared to the wide-area
latency.

SSD-memory is cost-competitive when normalized for per-
formance of key-value stores. For a 1TB workload, the SATA
setup and PCIe setup cost 26.3x and 11.1x less compared
to the DRAM setup ($30/GB for 32GB DIMMs, $2/GB for

Application Comparison Settings Bottleneck Slowdown Cost-Savings Cost-Effectiveness Expected Life
NoSQL Store YCSB DRAM vs SATA SSD

(1GigE switch)
Wide-area latency &
router throughput

1.0x 26.6x 26.6x 33.2 years

NoSQL Store YCSB DRAM vs PCIe SSD
(10GigE switch)

Wide-area latency &
router throughput

1.0x 11.1x 11.1x 10.8 years

SQL Database TPCC DRAM vs PCIe SSD Concurrency 8.7x 11.1x 1.27x 3.8 years
Graph Engine PageRank & others DRAM vs SATA SSD Memory Bandwidth 14.1x 26.6x 1.89x 2.9 years

Table 3: Cost-effectiveness of SSD-mapping vs DRAM-only systems for 1TB workload sizes.

PCIe SSDs, $0.5/GB for SATA SSDs). The base cost of the
DRAM setup is $1,500 higher as the server needs 32 DIMM
slots and such servers are usually expensive because of spe-
cialized logic boards designed to accommodate a high density
of DIMM slots.

SSDs provide competitive advantage for SQL stores
and graph workloads. We find that the bottleneck of per-
formance for MySQL is concurrency. MySQL on PCIe SSD’s
Tpm-C was 8.7x lower compared to MySQL on DRAM for a
480GB TPCC database. However, the SSD setup cost 11.1x
less compared to the DRAM setup that makes the SSD setup
1.27x better when performance is normalized by cost. Pro-
cessing graphs in DRAM is up to 14.1x faster than processing
them on the SSD while the SSD setup used is 26.3x cheaper
than DRAM system. However, the advantage of SSDs is not
based on cost alone. The ability to use large SSDs as slow-
memory allows such applications to handle workloads (up to
20TB/RU) beyond DRAM’s capacity limitations (1TB/RU)
with very few code modifications.

6. Related Work

Memory-mapped SSDs. Several systems have proposed us-
ing SSDs as memory [5, 6, 29, 44, 45, 47, 55, 57]. However,
these systems do not present optimizations for reducing the
address translation overhead. FlashMap is the first system to
provide the benefits of filesystems, exploit the persistence of
SSDs and provide the ability to map data on SSDs into virtual
memory with low-overhead address translation.

Combining indirection layers. Nameless writes [61] and
DFS [28] combine the FTL with the file system’s index. How-
ever, when mapping a file that uses nameless writes or DFS
into virtual memory, page tables are created separately on
top which increases the address translation and other software
overhead. FlashMap shifts all the address translation into page
tables since they are a hardware requirement and cannot be
changed easily. However, FlashMap retains all the benefits of
a system like Nameless Writes or DFS where the SSD man-
ages the log, and the mappings are maintained on the host.
Moreover, FlashMap does not change the semantics of virtual
memory or the file system interfaces for achieving this goal.

On demand FTL. DFTL [24] proposes caching only the
“hot” mappings in memory while other mappings can be stored
on the SSD. While such techniques reduce the space require-
ment of RAM at the FTL they do not reduce the indirection
overheads in higher software layers. FlashMap uses a simi-

lar mechanism to manage mappings on-demand in a single
indirection layer across all the required software layers while
preserving their functionalities.

Reducing SSD latency. The Moneta PCM SSD [11,
13] enabled fast and safe userspace accesses to SSDs via
read/write system calls by performing the critical path OS
and file system tasks on the SSD itself. FlashMap reduces the
latency of page fault handling for accesses to SSDs via virtual
memory by taking a complimentary approach of performing
all the translations inside page tables that are mandatory for
mapping SSDs to memory.

7. Conclusions and Future Work
Using SSDs as memory helps applications leverage the large
capacity of SSDs with minimal code modifications. However,
redundant address translations and checks in virtual memory,
file system and flash translation layer reduce performance
and increase latency. FlashMap consolidates all the necessary
address translation functionalities and checks required for
memory-mapping of files on SSDs into page tables and the
memory manager. FlashMap’s design combines these layers
but does not lose their guarantees. Experiments show that with
FlashMap the performance of applications increases by up
to 3.32x, and the latency of SSD-accesses reduces by up to
53.2% compared to other SSD-file mapping mechanisms.

In the future, we are taking FlashMap in two directions.
First, we are investigating how to provide transactional and
consistency guarantees by leveraging the proto-SSD for stor-
ing a transactional log. For example, we could leverage a
log/journal on the proto-SSD to implement atomic modifica-
tions to the memory-mapped file. Second, we are investigating
the benefits of combining the memory and file system layers
for byte-addressable persistent memories. In particular, we
are evaluating the benefits of a combined indirection layer for
leveraging existing file system code as a control plane to man-
age persistent memory while leveraging virtual memory as a
high-performance data plane to access persistent memory.

Acknowledgments
We would like to thank our shepherd Parthasarathy Ran-
ganathan as well as the anonymous reviewers. This research
was performed when the lead author was an intern at Microsoft.
It was also supported in part by the Intel URO program on soft-
ware for persistent memories, and by C-FAR, one of the six
SRC STARnet Centers, sponsored by MARCO and DARPA.

References
[1] Nitin Agarwal, Vijayan Prabhakaran, Tedd Wobber, John D. Davis,

Mark Manasse, and Rina Panigrahy. Design Tradeoffs for SSD Perfor-
mance. In Proc. USENIX ATC, Boston, MA, June 2008.

[2] Ganesh Ananthanarayanan, Ali Ghodsi, Andrew Wang, Dhruba
Borthakur, Srikath Kandula, Scott Shenker, and Ion Stoica. PAC-
Man: Coordinated Memory Caching for Parallel Jobs. In Proc. 9th
USENIX NSDI, 2012.

[3] David G. Andersen, Jason Franklin, Michael Kaminsky, Amar Phan-
ishayee, Lawrence Tan, and Vijay Vasudevan. FAWN: A Fast Array of
Wimpy Nodes. In Proc. 22nd ACM SOSP, October 2009.

[4] ArangoDB. https://www.arangodb.com/.
[5] Anirudh Badam and Vivek S. Pai. SSDAlloc: Hybrid SSD/RAM

Memory Management Made Easy. In Proc. 8th USENIX NSDI, 2011.
[6] Anirudh Badam, Vivek S. Pai, and David W. Nellans. Better Flash

Access via Shapeshifting Virtual Memory Pages. In Proc. ACM TRIOS,
November 2013.

[7] Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prabhakaran, Ted Wob-
ber, Michael Wei, and John D. Davis. CORFU: A Shared Log Design
for Flash Clusters. In Proc. 9th USENIX NSDI, 2012.

[8] Arkaprava Basu, Jayneel Gandhi, Jichuan Chang, Mark D. Hill, and
Michael M. Swift. Efficient Virtual Memory for Big Memory Servers.
In Proc. ISCA, Tel-Aviv, Israel, 2013.

[9] Boost Template Library. http://www.boost.org/.
[10] Mustafa Canim, Georgia A. Mihaila, Bishwaranjan Bhattacharjee,

Kenneth A. Ross, and Christian A. Lang. SSD Bufferpool Extensions
for Database Systems. PVLDB, 3(1-2):1435–1446, 2010.

[11] Adrian M. Caulfield, Arup De, Joel Coburn, Todor I. Mollov, Ra-
jesh K. Gupta, and Steven Swanson. Moneta: A high-performance
storage array architecture for next-generation, non-volatile memories.
In Micro’10, Atlanta, GA, 2010.

[12] Adrian M. Caulfield, Laura M. Grupp, and Steven Swanson. Gordon:
Using Flash Memory to Build Fast, Power-Efficient Clusters for Data-
Intensive Applications. In Proc. ACM ASPLOS, March 2009.

[13] Adrian M. Caulfield, Todor I. Mollov, Louis Eisner, Arup De, Joel
Coburn, and Steven Swanson. Providing safe, user space access to fast,
solid state disks. In Proc. ACM ASPLOS, March 2012.

[14] Vijay Chidambaram, Tushar Sharma, Andrea Arpaci-Dusseau, and
Remzi Arpaci-Dusseau. Consistency Without Ordering. In Proc. 10th
USENIX FAST, February 2012.

[15] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. Benchmarking cloud serving systems with ycsb. In
Proc. SoCC’12, Indianapolis, Indiana, June 2010.

[16] Biplob Debnath, Sudipta Sengupta, and Jin Li. FlashStore: High
Throughput Persistent Key-Value Store. PVLDB, 3(1-2), 2010.

[17] Jaeyoung Do, Donghui Zhang, Jignesh M. Patel, David J. DeWitt,
Jeffrey F. Naughton, and Alan Halverson. Turbocharging DBMS
Buffer Pool Using SSDs. In Proc 30th ACM SIGMOD, June 2011.

[18] EXT4 File Index.
https://ext4.wiki.kernel.org/index.php/Ext4_Disk_
Layout#Extent_Tree.

[19] Fusion-io: ioDrive Octal.
http://www.fusionio.com/products/iodrive-octal/.

[20] Fusion-io: ioMemory Virtual Storage Layer.
http://www.fusionio.com/overviews/
vsl-technical-overview.

[21] Mel Gorman. Understanding the Linux Virtual Memory Manager.
Prentice Hall, 2004.

[22] GraphChi. http://graphlab.org/graphchi/.
[23] Martin Grund, Jens Krueger, Hasso Plattner, Alexander Zeier, and

Philippe Cudre-Mauroux Samual Madden. HYRISE–A Main Memory
Hybrid Storage Engine. PVLDB, 4(2):105–116, 2010.

[24] Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar. DFTL: A
Flash Translation Layer Employing Demand-based Selective Caching
of Page-level Address Mappings. In Proc. ACM ASPLOS, March 2009.

[25] Jian Huang, Karsten Schwan, and Moinuddin K. Qureshi. NVRAM-
aware Logging in Transaction Systems. In VLDB’15, 2015.

[26] Ryan Johnson, Ippokratis Pandis, Radu Stoica, and Manos Athanas-
soulis. Aether: A scalable approach to logging. In VLDB’10, 2010.

[27] Jonathan Thatcher and David Flynn. US Patent # 8,578,127,
http://www.faqs.org/patents/app/20110060887.

[28] William K. Josephson, Lars A. Bongo, Kai Li, and David Flynn. DFS:
A File System for Virtualized Flash Storage. ACM Trans. on Storage,
6(3):14:1–14:25, 2010.

[29] Myoungsoo Jung and Mahmut Kandemir. Revisiting Widely Held
SSD Expectations and Rethinking System-Level Implications. In Proc.
ACM SIGMETRICS, Pittsburgh, PA, June 2013.

[30] Hyojun Kim, Sangeetha Seshadri, Clement L. Dickey, and Lawrence
Chiu. Evaluating Phase Change Memory for Enterprise Storage Sys-
tems: A Study of Caching and Tiering Approaches. In FAST’14, 2014.

[31] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What
is Twitter, a Social Network or a News Media? In Proc. WWW’10,
Raleigh, NC, April 2010.

[32] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. Graphchi: Large-
scale graph computation on just a pc. In Proc. 10th USENIX OSDI,
Hollywood, CA, October 2012.

[33] Per-Ake Larson, Spyros Blanas, Cristian Diaconu, Craig Freedman,
Jignesh M. Patel, and Mike Zwilling. High-Performance Concurrency
Control Mechanisms for Main-Memory Databases. PVLDB, 5(4),
2012.

[34] Hyeontaek Lim, Bin Fan, David Andersen, and Michael Kaminsky.
SILT: A Memory-Efficient, High-Performance Key-Value Store. In
Proc. 23rd ACM SOSP, Cascais, Portugal, October 2011.

[35] LMDB. http://symas.com/mdb/.
[36] MapDB. http://www.mapdb.org/.
[37] Memcache. http://memcached.org/.
[38] MonetDB. http://www.monetdb.org.
[39] MongoDB. http://mongodb.org.
[40] MongoDB Deployment.

http://lineofthought.com/tools/mongodb.
[41] MongoDB: Memory Mapped File Usage.

http://docs.mongodb.org/manual/faq/storage/.
[42] John Ousterhout, Parag Agrawal, David Erickson, Christos Kozyrakis,

Jacob Leverich, David Mazières, Subhasish Mitra, Aravind Narayanan,
Guru Parulkar, Mendel Rosenblum, Stephen M. Rumble, Eric Strat-
mann, and Ryan Stutsman. The Case for RAMClouds: Scalable
High-Performance Storage Entirely in DRAM. SIGOPS OSR, 43(4),
2010.

[43] Jian Ouyang, Shiding Lin, Song Jiang, Yong Wang, Wei Qi, Jason
Cong, and Yuanzheng Wang. SDF: Software-Defined Flash for Web-
Scale Internet Storage Systems. In Proc. ACM ASPLOS, 2014.

[44] Xiangyong Ouyang, Nusrat S. Islam, Raghunath Rajachandrasekar,
Jithin Jose, Miao Luo, Hao Wang, and Dhabaleshwar K. Panda. SSD-
Assited Hybrid Memory to Accelerate Memcached over High Perfor-
mance Networks. In Proc. 41st ICPP, September 2012.

[45] Roger Pearce, Maya Ghokale, and Nancy M. Amato. Multithreaded
Asynchronous Graph Traversal for In-Memory and Semi-External
Memory. In Proc. SC, New Orleands, LA, November 2010.

[46] Redis. http://redis.io.
[47] Mohit Saxena and Michael M .Swift. FlashVM: Virtual Memory

Management on Flash. In Proc. USENIX ATC, June 2010.
[48] Mohit Saxena, Yiying Zhang, Michael Swift, Andrea Arpaci-Dusseau,

and Remzi Arpaci-Dusseau. Getting Real: Leassons in Transitioning
Research Simulations into Hardware Systems. In Proc. FAST, 2013.

[49] Shore-MT. https://sites.google.com/site/shoremt/.
[50] TATP Benchmark. http://tatpbenchmark.sourceforge.net/.
[51] TCMalloc Memory Allocator. http://goog-perftools.

sourceforge.net/doc/tcmalloc.html.
[52] TPCB Benchmark. http://www.tpc.org/tpcb/.
[53] TPCC Benchmark. http://www.tpc.org/tpcc/.
[54] Twitter: A Real Time Information Network.

https://twitter.com/about.
[55] Brian Van Essen, Roger Pearce, Sasha Ames, and Maya Gokhale. On

the Role of NVRAM in Data-Intensive Architectures: An Evaluation.
In Proc. 26th IEEE IPDPS, Shanghai, China, May 2012.

[56] Violin Memory 6000 Series Flash Memory Arrays.
http://violin-memory.com/products/
6000-flash-memory-array.

[57] Chao Wang, Sudharshan S. Vazhkudai, Xiaosong Ma, Fei Mang,
Youngjae kim, and Christian Engelmann. NVMalloc: Exposing an Ag-
gregate SSD Store as a Memory Parition in Extreme-Scale Machines.
In Proc. 26th IEEE IPDPS, Shanghai, China, May 2012.

[58] Who’s using Redis?
http://redis.io/topics/whos-using-redis.

[59] Yahoo! Cloud Serving Benchmark.
https://github.com/brianfrankcooper/YCSB/wiki.

[60] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker, and
Ion Stoica. Resilient Distributed Datasets: A Fault-Tolerant Abstrac-
tions for In-Memory Cluster Computing. In Proc. NSDI, 2012.

[61] Yiying Zhang, Leo Prasath Arulraj, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. De-indirection for Flash-based SSDs with
Nameless Writes. In Proc. 10th USENIX FAST, February 2012.

