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ABSTRACT

Recent online services rely heavily on automatic personal-
ization to recommend relevant content to a large number of
users. This requires systems to scale promptly to accommo-
date the stream of new users visiting the online services for
the first time. In this work, we propose a content-based rec-
ommendation system to address both the recommendation
quality and the system scalability. We propose to use a rich
feature set to represent users, according to their web brows-
ing history and search queries. We use a Deep Learning ap-
proach to map users and items to a latent space where the
similarity between users and their preferred items is maxi-
mized. We extend the model to jointly learn from features
of items from different domains and user features by intro-
ducing a multi-view Deep Learning model. We show how
to make this rich-feature based user representation scalable
by reducing the dimension of the inputs and the amount of
training data. The rich user feature representation allows
the model to learn relevant user behavior patterns and give
useful recommendations for users who do not have any in-
teraction with the service, given that they have adequate
search and browsing history. The combination of different
domains into a single model for learning helps improve the
recommendation quality across all the domains, as well as
having a more compact and a semantically richer user latent
feature vector. We experiment with our approach on three
real-world recommendation systems acquired from different
sources of Microsoft products: Windows Apps recommen-
dation, News recommendation, and Movie/TV recommen-
dation. Results indicate that our approach is significantly
better than the state-of-the-art algorithms (up to 49% en-
hancement on existing users and 115% enhancement on new
users). In addition, experiments on a publicly open data
set also indicate the superiority of our method in compar-
ison with transitional generative topic models, for model-
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ing cross-domain recommender systems. Scalability analy-
sis show that our multi-view DNN model can easily scale
to encompass millions of users and billions of item entries.
Experimental results also confirm that combining features
from all domains produces much better performance than
building separate models for each domain.
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1. INTRODUCTION
Recommendation systems and content personalization play

increasingly important role in modern online web services.
Many recent web services work on finding the most relevan-
t content to their users in order to maximize the engage-
ment with the site and minimize the time for finding the
relevant content. A major approach to this task is called
Collaborative Filtering (CF) [3, 19, 22, 21, 23, 6], which us-
es user’s previous history of interaction in the web site to
predict the most relevant content for recommendation. An-
other common approach is content-based recommendation
[14, 15], which uses features about items and/or users to
recommend new items to users based on the similarity be-
tween features. While both approaches work well in many
practical applications [6], they usually face certain limita-
tions and challenges especially with the increasing demand
of personalization and recommendation quality.

Specifically, CF needs a considerable amount of previous
history of interaction with the site before it can give high
quality recommendation. This problem is known as user cold
start problem [24]. In a newly established online service, the
problem becomes more severe since users have little or no
history of interaction with the site. Therefore, traditional
CF methods often fail to produce high quality recommen-
dation for new users. On the other hand, content-based
recommendation methods extract features from each user
and/or item and use those features to make recommenda-
tions. For example, if two News articles Ni and Nj share the
same topic and a user liked article Ni, the system may rec-
ommend article Nj to the user. Similarly, if two users Ui and
Uj share certain similarities like their location, age or gen-
der, the system may recommend to user Uj the items that



user Ui liked before. In practice, research has shown that
content-based approach can handle the cold start problem
for new items well [32]. However, its effectiveness is ques-
tionable when applying to recommendations for new users
since user-level features are usually more difficult to acquire
and often generated from a limited information in user on-
line profiles, which failed to accurately capture the actual
user’s interests.

To address these limitations, we propose a recommenda-
tion system that leverages both user and item features. To
build user features, unlike many user profile-based approach-
es, we propose to extract rich features from user’s browsing
and search histories to model user’s interests. The under-
lying assumption is that, users’ historical online activities
reflect a lot about user’s background and preference, and
therefore provide a precise insight of what items and top-
ics users might be interested in. For example, a user with
many infant-related queries and website visits (e.g., toys-
rus.com) may suggest that she is a mom for a new-born
baby. With these abundantly available user online activ-
ities, recommending relevant items can be achieved more
efficiently and effectively.

In our work we propose a novel deep learning approach ex-
tended from the Deep Structured Semantic Models (DSSM)
[9] to map users and items to a shared semantic space and
recommend items that have maximum similarity with users
in the mapped space. To achieve this, our model projects
the users and items, each of which is represented by a rich
feature set, through non-linear transformation layer(s) to a
compact shared latent semantic space where the similarity
between the mapping of the user and mappings of items liked
by the user is maximized. This allows the model to learn in-
teresting mappings such as people who visited fifa.com will
like to read News articles about the World Cup and play
soccer games on PC or Xbox. The rich features in the user
side enable modeling the user’s behavior and thus overcome
many limitations in the content-based recommendation. It
also addresses the user cold start problem effectively since
the model allows us to capture user interests from queries
and recommend related items (say music) even if they do not
have any history on using music services. Our deep learning
model has a ranking based objective which aims at ranking
positive examples (items that users like) higher than nega-
tive examples. This ranking based objective has shown to
be better for recommendation systems [9].

Furthermore, we extend the original DSSM model, which
is referred to as single-view DNN in this paper since it learns
from user features and items that come from a single domain,
to jointly learn features of items from different domains. We
name the new modelMulti-ViewDeep Neural Network (MV-
DNN). In literature, multi-view learning is a well-studied
area which learns from data that do not share common fea-
ture space [27]. We consider MV-DNN as a general Deep
learning approach in the multi-view learning setup. Specifi-
cally, in our data sets with News, Apps and Movie/TV logs,
instead of building separate models for each of the domain
that naively maps the user features to item features within
the domain, we build a novel multi-view model that discov-
ers a single mapping for user features in the latent space
such that it is jointly optimized with features of items from
all domains. MV-DNN allows us to learn a better user rep-
resentation that leverages more data across domains and
tackles the data sparsity problem in a principled way by

leveraging user preference data from all domains. We show
in our experiments that this multi-view extension improves
the recommendation quality across all the domains at the
same time. In addition, it is worth mentioning that the
non-linear mapping in the deep learning models enables us
to find a compact representation of users in the latent space
which makes it much easier to store the learnt user mapping
and share the information among different tasks.

One challenge in using deep learning to model rich user
features is the high dimension of the feature space which
makes the learning inefficient and may impact the general-
ization ability of the model. We propose several effective
and scalable dimensionality reduction techniques that re-
duce the dimension to a reasonable size without the loss of
much information.

To summarize, the contributions in this work are: (1)
use rich user features to build a general-purpose recommen-
dation system, (2) propose a deep learning approach for
content-based recommendation systems and study different
techniques to scale-up the system, (3) introduce the novel
Multi-View Deep learning model to build recommendation
systems by combining data sets from multiple domains, (4)
address the user cold start issue which is not well-studied in
literature by leveraging the semantic feature mapping learn-
t from the multi-view DNN model, and (5) perform rigor-
ous experiments using four real-world large-scale data set
and show the effectiveness of the proposed system over the
state-of-the-art methods by a significantly large margin.

The rest of this paper is organized as following, first we re-
view major approaches in recommendation systems includ-
ing papers that focus on the cold start problem in Section
2; in Section 3, we describe the data sets we work with and
detail the type of features we use to model the user and
the items in each domain, respectively. We then review the
basic DSSM model and discuss how it could be extended
for our setting in Section 4; in Section 5, we introduce the
multi-view deep learning model in details and discuss its ad-
vantages; in Section 6, we discuss the dimension reduction
methods to scale-up the model; in Section 7, 8, 9 & 10, we
present a comprehensive empirical study; we finally conclude
in Section 11 and suggest several future work.

2. RELATED WORK
There has been extensive study on recommendation sys-

tems with a myriad of publications. In this section, we
aim at reviewing a representative set of approaches that are
mostly related to our proposed approach.

In general, recommendation systems can be divided in-
to collaborative recommendation and content based recom-
mendation. Collaborative Recommendation systems recom-
mend an item to a user if similar users liked this item. Exam-
ples of this technique include nearest neighbor modeling [3],
Matrix Completion [19], Restricted Boltzmann machine [22],
Bayesian matrix factorization [21] etc. Essentially, these ap-
proaches are user collaborative filtering, item collaborative
filtering or both item and user collaborative filtering. In
user collaborative filtering such as [3], the algorithm com-
putes the similarity between users based on items they liked.
Then, the scores of user-item pairs are computed by combin-
ing scores of this item given by similar users. Item based col-
laborative filtering [23], computes similarity between items
based on users who like both items, then recommend the
user items similar to the ones she liked before. User-item



based collaborative filtering finds a common space for items
and users based on user-item matrix and combines the item
and user representation to find a recommendation. All ma-
trix factorization approaches like [19] and [21] are examples
of this technique. CF can be extended to large-scale setups
like in [6]. However, CF is generally unable to handle new
users and new items, a problem which is often referred to as
cold-start issue.

The second approach for recommendation systems is content-
based recommendation. This approach extracts features
from item’s and/or user’s profile and recommend items to
users according to these features. The underlying assump-
tion is that similar users tend to like items similar to the
items they liked previously. In [14], a method is proposed to
construct a search query with some features of items the user
liked before to find other relevant items to recommend. An-
other example is presented in [15] where each user is modeled
by a distribution over News topics that is constructed from
articles she liked with a prior distribution of topic preference
computed using all users who share the same location. This
approach can handle new items (News articles) but for new
users the system used location feature only which implies
that new users are expected to see most frequent topics in
their location. This might be a good features to recommend
News but in other domains, for example Apps recommen-
dation, using only location information may not work as a
good prior over user’s preferences.

Recently, researchers have developed approaches that com-
bine both collaborative recommendation and content based
recommendation. In [16], the author used item features to
smooth user data before using collaborative filtering. In [7],
the authors used Restricted Boltzmann Machine to learn
similarity between items, and then combined this with col-
laborative filtering. A Bayesian approach was developed in
[32] to jointly learn the distribution of items, research pa-
pers in their case, over different components (topics) and
the factorization of the rating matrix.

Handling the cold start issue in recommendation systems
is studied mainly for new items (items that have no rating
by any user). As we mentioned before, all content based
filtering can handle cold start for item, and there are some
methods that were developed and evaluated specifically for
this issue like in [24] and [7]. The work in [18] studied how
to learn user preferences for new users incrementally by rec-
ommending items that give the most information about user
preferences while minimizing the probability of recommend-
ing irrelevant content. User modeling via rich features have
been studied a lot recently. For example, it has been shown
that user search queries can be used to discover the similari-
ties between users [25]. Rich features from user search histo-
ry has also been used for personalized web search [26]. For
recommendation systems, the authors in [2] leveraged the
user’s historical search queries to build personalized taxono-
my for recommending Ads. On the other hand, researchers
have discovered that a user’s social behaviors can also be
used to build the profile of the user. In [1], the authors used
user’s tweets in Twitter data to recommend News articles.

Most traditional recommendation system research focused
on data within a single domain. Recently, there has been an
increasing interest in cross domain recommendation. There
are different approaches for addressing cross domain rec-
ommendation. One approach is to assume that different
domains share similar set of users but not the items, as il-

lustrated in [20]. In their work, the authors augmented data
from rating of movies and books from datasets that have
common users. The augmented data set was then used to
perform collaborative filtering. They showed that this in
particular helped the cases where users with little profile
information in one of the domains (cold-start users). The
second approach addressed the scenarios where the same
set of items shared different types of feedbacks in different
domains like user clicks or user explicit rating. As shown
in [17], the authors introduced a coordinate system trans-
fer method for cross domain matrix factorization. In [12],
the authors studied the cross domain recommendation in
the case where there existed no shared users or items be-
tween domains. They developed a generative model to dis-
cover common clusters between different domains. However,
a challenge in their approach is its ability to scale beyond
medium datasets due to the computational cost. A different
approach was introduce in [28] for author collaboration rec-
ommendation where they built a topic model to recommend
authors to collaborate from different research fields.

For many approaches in recommendation systems the ob-
jective function is to minimize the root mean squared error
on the user-item matrix reconstruction. Recently, ranking
based objective function has shown to be more effective in
giving better recommendation as shown in [11].

Deep learning has recently been proposed for building rec-
ommendation systems for both collaborative and content
based approaches. In [22], an RBM model was used for
collaborative filtering. Deep learning for content based rec-
ommendation has been done for example in [30] where deep
learning was applied to learn embedding for music features.
This embedding was then used to regularize matrix factor-
ization in collaborative filtering.

3. DESCRIPTION OF THE DATA SETS
In this section introduces the data sets. We describe the

data collection process and the feature representations for
each data set, as well as some basic statistics of the data.

The four data sets used in this study were collected from
user logs of several Microsoft products, including (1) Search
engine logs from Bing Web vertical, (2) News article brows-
ing history from Bing News vertical, (3) App download logs
from Windows AppStore, and (4) Movie/TV view logs from
Xbox. All the logs were collected between December 2013
and June 2014, with primary focus on English-speaking mar-
kets including United States, Canada and Great Britain.

(User Features) We collected users’ search queries and
their clicked URLs from Bing to form user features. Queries
were first normalized, stemmed and then split into unigram
features and URLs were shorten into domain-level only (e.g.,
www.linkedin.com) to reduce the feature dimension. We
then used TF-IDF scores to keep only the most popular and
non-trivial features. Overall, we selected 3 million unigram
features and 500K domain features, leading to a total length
of 3.5-million user feature vector.

(News Features) We collected news article clicks from
Bing News vertical. Each News item is represented by three
parts of features. The first part is the title features encoded
using letter tri-gram representation as we will describe in
the next section. Secondly, the top-level category of each
News (e.g., Entertainment) is encoded as binary features.
Finally, the Named Entities in each article, extracted using



Type DataSet UserCnt Feature
Size

Joint
Users

User View Search 20M 3.5M /
News 5M 100K 1.5M

Item View Apps 1M 50K 210K
Movie/TV 60K 50K 16K

Table 1: Statistics of the four data sets used in this paper.
The Joint Users column indicates the number of common
users between each item view and the user view.

an internal proprietary NLP parser, is encoded using letter
tri-gram as well. This results in a 100K feature vector.

(App Features) Users’ App download histories were col-
lected from Windows AppStore logs. The title of each App
is represented using letter tri-gram, combining with its cat-
egory (e.g., Game) features in the binary format. Do to the
nature of constant change of App descriptions, we decided
not to include that as part of the feature space. This results
in a 50K feature vector for Apps.

(Movie/TV Features) From Xbox logs, we collected the
Movie/TV view history for each Xbox user. The title and
description of each item were combined into text features
and then encoded using letter tri-gram. The genre is also
used as binary features. This results in a 50K feature vector
for Movie/TV.

In our neural network framework, user features are mapped
into the user view and the rest is mapped into different
item views. For training purpose, each user view is matched
with an item view which contains the exact set of users. To
achieve this, we sub-sampled logged-in users (i.e., users with
uniquely annonymized and hashed Microsoft User IDs) from
each user-item view pair and performed inner join based on
their IDs. This results in different number of users for each
user-item view pair. Table 1 depicts some basic statistics of
the data used in this paper.

4. DSSM FOR USER MODELING IN REC-

OMMENDATION SYSTEMS
A deep structured semantic model (DSSM) is introduced

in [9] to enhance query document matching in the web search
context. Given the close relationship to our proposed multi-
view deep neural network, we briefly review DSSM here.

The typical architecture of the DSSM is shown in Fig.
1.The input (raw text features) to the DNN is a high dimen-
sional term vector, e.g., raw counts of terms in a query or
a document without normalization. Then the DSSM pass-
es its input through two neural networks, one for each of
the two different inputs, respectively, and maps them into
semantic vectors in a shared semantic space. For Web docu-
ment ranking, DSSM computes the relevance score between
a query and a document as the cosine similarity of their cor-
responding semantic vectors, and ranks documents by their
similarity scores to the query.

More formally, if we denote x as the input term vector, y
as the output vector, li, i = 1, ..., N − 1, as the intermediate
hidden layers, Wi as the i-th weight matrix, and bi as the
i-th bias term, we have

l1 = W1x

li = f(Wili−1 + bi), i = 2, ..., N − 1

y = f(WN lN−1 + bN ) (1)

Figure 1: The illustration of the deep structured semantic
model (DSSM).

where we use the tanh function as the activation function at
the output layer and the hidden layers li, i = 2, ..., N − 1 :

f(x) =
1− e−2x

1 + e−2x
(2)

The semantic relevance score between a query Q and a
document D is then measured as:

R(Q,D) = cosine(yQ, yD) =
yQ

T yD

||yQ|| · ||yD||
(3)

where yQ and yD are the semantic vectors of the query
and the document, respectively. In Web search, given the
query, the documents are sorted by their semantic relevance
scores.

Conventionally, each word w is represented by a one-hot
word vector where the dimensionality of the vector is the size
of the vocabulary. However, the vocabulary size is often very
large in real-world Web search tasks, and the one-hot vector
word representation makes model learning very expensive.
Therefore, the DSSM uses a word hashing layer to represent
a word by a letter-trigram vector. For example, given a
word (e.g. web), after adding word boundary symbols (e.g.
#web#), the word is segmented into a sequence of letter-n-
grams (e.g. letter-tri-grams: #-w-e, w-e-b, e-b-#). Then,
the word is represented as a count vector of letter-tri-grams.
For example, the letter-trigram representation of web is:

In Figure 1, the first layer matrix W1 denotes the letter-
trigram matrix transforming from a term-vector to its letter-
trigram count vector, which requires no learning. Even
though the total number of English words may grow to be ex-
tremely large, the total number of distinct letter-trigrams in
English (or other similar languages) is often limited. There-
fore, it can generalize to new words unseen in the training
data.

In training, it is assumed that a query is relevant to the
documents that are clicked on for that query, and the param-
eters of the DSSM, i.e., the weight matrix Wi, are trained
using this signal. I.e., first the posterior probability of a
document given a query is estimated from the semantic rel-
evance score between them through a softmax function

P (D|Q) =
exp(γR(Q,D))

∑

D′∈D
exp(γR(Q,D′))

(4)

where γ is a smoothing factor in the softmax function,
which is usually set empirically on a held-out data set in our



experiment. D denotes the set of candidate documents to
be ranked. Ideally, D should contain all possible documents.
In practice, for each (query, clicked-document) pair, denoted
by (Q,D+) where Q is a query and D+ is the clicked docu-
ment, we approximate D by including D+ and N randomly
selected unclicked documents, denote by {D−

j ; j = 1, , N}.
In training, the model parameters are estimated to maxi-

mize the likelihood of the clicked documents given the queries
across the training set.

L(Λ) = − log
∏

(Q,D+)

P (D+|Q) (5)

where Λ denotes the parameter set of the neural networks.

5. MULTI-VIEW DEEP NEURAL NETWORK
The DSSM can be viewed as a multi-learning framework

where it maps two different views of the data into a shared
view. In that sense, it can be viewed in a more general set-
ting to learn a shared mapping between two different views.

Figure 2: Multi-view DNN for multiple domain recommen-
dation. It uses a DNN to map high-dimensional sparse
features (e.g., raw features of users, News, App) into low-
dimensional dense features in a joint semantic space.. The
first hidden layer, with 50k units, accomplishes word hash-
ing. The word-hashed features are then projected through
multiple layers of non-linear projections. The final layer’s
neural activities in this DNN form the feature in the seman-
tic space. Note that the input feature dimension x (5M and
3M) in this figure is hypothetical as in practice each view
can have arbitrary number of features. See text for details.

In this work, we propose an extension to the DSSM where
we have more than two views of the data and we call this
Multi-view DNN (MV-DNN). In this setting, we have v+ 1
views, one pivot view called Xu and other v auxiliary views
X1 through Xv and each Xi has its own input domain Xi ∈
Rdi . Each view also has its own non-linear mapping layer(s)
fi(Xi,Wi) which transforms Xi into shared semantic space
Yi. The training data contains a set of samples. The jth

sample has an instance of the pivot view Xu,j and one active
auxiliary view Xa,j where a is the index of the active view in
sample j. All other views input Xi:i6=a are set to 0 vectors.
The objective of is finding a non-linear mapping for each
view such that the sum of similarities, in the semantic space
between mapping of the pivot view Yu and mappings of all

Algorithm 1 Training Multi-View DNN

1: Input: N = # of view pairs, M = # of training iterations,
UA = user view architecture,
IA = {IA1, ...IAN} item view architecture,
UD = {UD1, ...UDN} user input files,
ID = {ID1, ...IDN} item input files,
WU = user view weight matrix,
WI = {WI1, ...WIN} item view weight matrices

2: Initialization

3: Initialize WU and WI using UA and IA
4: for m = 1 to M

5: for v = 1 to N

6: TU ← UDv

7: TI ← IDv

8: train WU and WI using TU and TI

9: end for

10: end for

11: Output: WU = final user weight matrix,
WI = final set of item view weight matrices

other views Y1, ...Yv is maximized. Formally, we have:

p = arg max
Wu,W1,..Wv

N
∑

j=1

eαa cos(Yu,Ya,j )

∑

X′∈Rda eα cos(Yu,fa(X′,Wa))
(6)

The architecture of MV-DNN is shown in figure 2. In our
recommendation systems setup, we set the pivot view Xu

to user features and create auxiliary view for each different
type of items we aim to recommend.

The intuition for having this objective function is to try
to find a single mapping for user’s features, namely Wu, that
can transform users features into a space that matches al-
l different items the user liked in different views/domains.
This way of sharing parameters allows the domains that do
not have enough information to learn good mapping through
other domains which have more data. It should work well
if the assumption that users who have similar News articles
taste also have similar taste in other domains which mean-
s those domains can benefit from user mapping learned by
News domain. If this assumption is valid, then samples from
any domain will help in grouping similar users more accu-
rately in all domains. The empirical results showed that the
assumption is reasonable in the domains we experimented
on, which we elaborate more in the experiment sections.

5.1 Training MV-DNN
MV-DNN can be trained using Stochastic Gradient De-

cent (SGD). In practice, each training example contains a
pairs of inputs, one for the user view and one for the data
views. Therefore, despite the fact that there exists only one
user view in our model, it is often more convenient to have
N user feature files, each of which corresponds to an item
feature file, where N is the total number of user-item view
pairs. In Algorithm 1, we sketch the high-level process of
training MV-DNN. When taking the derivative with respect
to all Wi ∈ {Wu,W1, ..Wv} we end up with only two non-
zero derivatives ∂p

∂Wu
and ∂p

∂Wa
which allow us to apply the

same update rules for DSSM as in [9] substituting q by Xu

and d by Xa.
5.2 Advantages of MV-DNN

Although MV-DNN is extended from the original DSSM
framework, it has several unique characteristics that makes
it superior than its predecessor. First of all, the original
DSSM model uses for both the query view and document



view the same size of feature dimensions, and preprocessed
using the same representation (letter tri-gram for example).
This poses a huge restrictions in the feature composition
step. Due to the heterogeneity nature of recommendation
systems, it is quite likely that the user view and item view
pose different input features. Also, many types of features
cannot be optimally represented using letter trigram. For
example, the URL domain feature often contains prefix and
suffix like www, com, org which will be mapping to the same
feature if letter tri-gram is applied. In practice, we have dis-
covered that the letter tri-gram representation works ideally
in the case that the input raw text is short (e.g., query text
and document title in the original DSSM model), but be-
comes inappropriate to model user level features which of-
ten contain a large collection of queries and URL domains.
By removing this constraint, the new MV-DNN model can
incorporate categorical features such as movie genre and ap-
p category, geospatial features such as country and region,
as well as raw text features represented using uni-grams or
bi-grams from user inputs.

Secondly, MV-DNN has the capability of scaling up to
many different domains which the original DSSM framework
is unable to. By performing pair-wise training between each
user-item view pair as described in Algorithm 1, our model
can easily adopt new sets of view pairs which may contain
completely independent sets of users and items at any stage
of the training process, e.g., adding a new data set from
Xbox games. By alternating user-view pairs during each
training iteration, our model can eventually converge to an
optimal embedding of user view that is trained through all
item views. Note that although we can have different user
sets in different item views in theory, during our experiment,
we choose to keep the same set of users across all views with
the consideration of both convenience and the ease of feature
normalization.

6. DIMENSION AND DATA REDUCTION
In practice, the proposed deep learning approach often

needs to handle a huge amount of training examples in high
dimensional feature spaces for the user view. In order to
scale the system up, we propose several dimensionality re-
duction techniques to reduce the number of features in the
user view. Then, we propose an idea to compact and sum-
marize user training examples which reduces the number of
training data to be linear to the number of users.

6.1 Top Features
One simple dimensionality reduction approach for user

features is to select the top-K most frequent features. We
select all features that have a probability of 0.001 or greater
to be picked by a user. The main underlying hypothesis is
that users can be described well using a relatively small set
of frequent features that explains the users’ common online
behavior. Note that as described in Section 3, the user’s
raw features are preprocessed using TF-IDF scores so that
the top features we select no longer contains common stop
words in search queries. This resulted in 83K user features.

6.2 K-means
K-means [8] is a well-known clustering technique aims at

creating a number of clusters such that the sum of distances

between each point and its nearest cluster is minimized:

arg min
C1,..Ck

N
∑

i=1

min
Cj∈{C1,..Ck}

distance(Xi, Cj), (7)

Where Xi is a data point and Cj indicates a cluster centroid.
K-means has shown good performance as a way to learn un-
supervised features in vision [5]. The basic idea is to group
similar features together into one cluster and generate a new
feature vector Y which has the size equal to number of clus-
ters K and has number of appearances of features in cluster
i as value of its ith component. To do this we represent each
feature using a vector fi of length U where U is the number
users in the training data and fi(j) equals to the number of
times user i has feature j. fi are then normalized to have
length 1. One important aspect in running K-means is that
the relevant distance here is the angle between different fea-
ture vectors which can be computed using cosine similarity.
Then the reduced dimensional vector Yi is created for each
user vector fi as follows: denote 1 ≤ Cls(a) ≤ K the cluster
assigned to feature a, we can compute Yi using:

Yi(j) =
∑

a:Xi(a)>0&Cls(a)=j

fi(a) (8)

To be able to extract a reasonable number of features us-
ing K-means we need to have a relatively large number of
clusters, since a small number of clusters (say 100) will re-
sults in large chunk of features to be in the same cluster
considering the size of user features to be 3.5M. This will
hence generate features that are difficult to learn useful pat-
tern from. In order to mitigate this issue, we set the number
of clusters to be 10k. This means that on average there are
350 features per cluster. The large size of clusters and raw
features makes K-means computationally expensive to run.
In our experiment, we use a cloud-based Map-Reduce im-
plementation for K-means [4].

6.3 Local sensitive Hashing
Local Sensitive Hashing (LSH) [10] works by projecting

the data using a random projection matrix into a much lower
dimensional space such that the pairwise cosine distance in
the original space is still preserved in the new space. LSH
requires a transformation matrix A ∈ Rd×k, where d is the
number of features in the original space and k is the number
of random projections used. This means That A contains k
different projection, indicated by Ai, each of which takes X
vector and output a single hash value Yi. The output vector
Y ∈ Rk of LSH can be found by concatenating all different
hash values of Yi. Specifically, to compute each Yi we use
the following equation:

Yi =

{

1 if AiX ≥ 0

0 else.
(9)

The cosine similarity between two vectors X1, X2 ∈ Rd

can be approximated by cos
(

H(Y1,Y2)
k

π
)

where H(Y1, Y2)

is the hamming distance between the LSH of input vectors.
In order to preserve cosine similarity with higher accura-
cy we need to increase the number of projections used k.
We used k = 10, 000, the same as used for K-means clus-
ters. While LSH can be applied to each vector indepen-
dently and all projection can be computed independently
which makes the algorithm highly distributable under the



Map-Reduce framework, the algorithm requires the genera-
tion of the transformation matrix A which is our case has
3.5M × 104 entries generated from N(0, 1), requiring about
300GB storage. Also, A must be stored on each node dur-
ing the computation of LSH vectors. These issues make LSH
prohibitively expensive in the Map-Reduce framework.

Many solutions have been proposed to address this prob-
lem. A lot of them are based on generating sparse A [13].
Here, we used the pooling trick introduced in [31]. The idea
is to keep a pool B of size m of random numbers generated
from N(0, 1) where m is usually significantly smaller than
the size of a transformation matrix A. To get the entry in
Aij one simply applies consistent hash function of i, j to get
an index in B and look up the value. In our experiments
we set m = 1, 000, 000 which is more than 10, 000 times re-
duction in memory requirement and can be easily stored in
each node in during Map-Reduce using only 10M storage.

6.4 Reduce the Number of Training Examples
The training data for each view contains a set of pairs

(Useri, Itemj) such that Useri liked Itemj. In practice, a
user may like many items which sometimes cause the train-
ing data to be very large. For example, in our News recom-
mendation data set, the number of pairs is well over 1 billion
and causes the training to be very slow even when using an
optimized GPU implementation.

To alleviate this problem, we compress the training data
so that it includes a single training example per user per
each view. Specifically, the compressed training example in-
cludes the user features paired with the features with an
average score of all items the user liked in that view. This
reduces the number of training examples per view to the
number of users in the training data, which greatly reduce
the training data size. Note that a concern of this technique
is that the objective function now becomes maximizing the
similarity between user features and the average features of
items the user liked. There is a slight difference when it
comes to evaluation since during test time each user is given
only one single item. However, this approximation is neces-
sary to make the system scale up well. Also, experimental
results will show that this approximation still generates very
promising results in practice.

7. EXPERIMENTAL SETUP
In this section, we explain the process of our empirical

study and briefly review several recommendation algorithms
we compared to as baselines.

For each data set, we aim at evaluating the system perfor-
mance on users who already have previous interaction in this
domain (old users) and users who did not have any previous
interaction but have some search and browsing history that
can be encoded into user view (new users). For evaluation,
the data sets were split into training and test sets using the
following criteria:

First, each user is randomly assigned a label of either
“train” or “test” with the probability ratio of 0.9:0.1. Then,
for each user with a “test” label, we further label them as
“old” or “new” user with the probability ratio of 0.8:0.2. For
those labeled as “old” users, 50% of their items are used for
training and the rest for test. On the other hand, for “new”
users, their items are only used for testing as the user-item
pairs are guaranteed to never appear in the training pro-

cess. This way, these users are indeed completely new to the
system. The details of the dataset breakdown is in table 2.

In terms of performance evaluation, for each (useri, itemj)
pair in the training data we select 9 other random items
itemr1, ...itemr9, where r1 though r9 are random indices,
and create 9 testing pairs (useri, itemrk), 1 ≤ k ≤ 9 and
added to the testing data set. The evaluation criteria is
to measure of how well the system ranks the correct pair
(useri, itemj) against the other random items for the same
user (useri, itemrk). Therefore, we employed two metrics
for this: (1) the Mean Reciprocal Rank (MRR), which com-
putes the inverse of the rank of the correct item among other
items and average the score across the whole testing data,
and (2) Precision@1 (P@1) which computes the percentage
of times the system ranks the correct item as the top item.

We compared to several baseline systems described below:
Standard SVD Matrix decomposition: In this base-

line, we construct the user/item matrix and perform matrix
decomposition using SVD. This is a standard baseline for
collaborative filtering techniques that does not use any fea-
tures from items or users. In practice, this baseline is com-
putationally feasible only on relatively small data set (in our
case, the Apps data). In addition, this approach cannot give
recommendation on new users since they do not appear in
the user-item matrix.

Most Frequent Items: Since SVD is unable to handle
new user recommendation, this approach is used as trivial
baseline for new users. It works by first computing the fre-
quency of each item in the training data, and then for each
testing sample it ranks (useri, itemj) with respect to other
random items according to their frequency in training set.

Canonical Correlation Analysis (CCA): CCA [29] is
a traditional multi-view learning technique aims at finding
two pairs of linear transformations, one for each input view,
such that the correlation between transformed data is maxi-
mized. It is similar to DSSM with two main differences: (1)
CCA often uses linear transformation, despite there exists
non-linear transformations through kernel versions of CCA,
which is often computationally prohibited in large-scale ex-
periments, and (2) CCA maximizes the correlation under
certain fixed variance constraints while DSSM maximizes
the rank of the correct pairs. The ranking objective has
shown be to a better objective recommendation systems. In
our experiment for CCA, we only used top-k users features s-
ince the other two dimension reduction techniques, K-means
and LSH, produce a non-sparse feature vectors which make
the correlation matrix too dense to be efficiently computed.

Collaborative Topic Regression (CTR): CTR [32]
is a recently-developed recommendation system that com-
bines both Bayesian matrix factorization and items features
to create a recommendation for items. It has shown to be
successful in academic paper recommendations. In the C-
TR model, two inputs are given: a collaborative matrix and
items features (represented using bag-of-words). The model
matches users to items by maximizing the reconstruction er-
ror of the collaborative matrix and leveraging item features
as an extra signal. This helps to model new items that did
not appear before in the training data. For new user rec-
ommendation in our scenario, we take the transpose of the
collaborative matrix A as input and supply user features
instead of items features.

For our proposed approach, for both Apps and News data
sets, we first run three sets of experiments to train single-



view DNNmodels, each of which corresponds to a dimension
reduction method in Section 6 (SV-TopK,SV-Kmeans and
SV-LSH). Then we run another three sets of experiments
for MV-DNN. The first two combine Apps and News data
using TopK and Kmeans user features (MV-TopK and MV-
Kmeans). The third set of experiments train a joint model
between Apps, News and Movie/TV features with TopK
user features (MV-TopK w/Xbox).

8. RESULTS AND DISCUSSION
Table 3 and 4 shows results obtained from different ap-

proaches in App and News data respectively1. We separate
the algorithms into three types for clarification: Type I are
baseline algorithms; Type II are our single-view models and
Type III are multi-view DNN models. We see that the naive
most-frequent-item baseline performs very poorly which con-
firms that the simple solutions to new users will not work
well in our cases. It is also shown that standard SVD ma-
trix factorization is not good enough in this task even for
the current users that have entries in the collaborative fil-
tering matrix. Surprisingly, the CCA model performed no
better than random guess in Apps data which shows that us-
ing the non-linear mapping in DSSM plus the ranking based
objective are important to the system. The CTR model [32]
performed reasonably well for current users but not as good
for the new users.

For the single-view DNN (shown as Type II), the results
indicated that the performance is dependent on the dimen-
sionality reduction approach used. It can be seen that the
best one for both Apps and News data was the top-K fea-
ture dimension method which outperformed other two by a
large margin. This can be viewed as a confirmation of the
hypothesis that users can be model with a relatively small
set of informative features. It also indicates that K-means
and LSH are less effective to capture the semantics of the
user behavior correctly. As a head-to-head comparison be-
tween our single-view models (Type II) and traditional rec-
ommendation methods (Type I), our best model (SV-TopK)
outperformed the best baselines CTR [32], which also lever-
aged item features for recommendation, by 11% for all users
(0.497 vs. 0.448 MRR score), and 36.7 % for new users
(0.436 vs. 0.319 MRR score), relatively. For P@1, we see
a much larger improvement: 13% for all users and 88.7%for
new users, which shows the effectiveness of our system on
recommending top-rated items.

Furthermore, for MV-DNN, results showed that adding
more domains indeed helps to improve all domains at the
same time. Specifically, by combining both News view and
App view for training, we see a significant improvement on
both News and App data sets in both metrics. Specifically,
for the App data shown in Table 3, the MRR score increased
from 0.497 to 0.517 for all users when comparing to the best
single-view model, which is a 4% relative increase comparing
to the single-view model. More importantly, we see a much
bigger improvement on new users where one view’s lack of
new user data can be compensated by the data from other
views. This is demonstrated by the 7% MRR (from 0.436
to 0.466) and 11% P@1 (from 0.268 to 0.297) relative im-
provement on the new users of App data set. Therefore, we

1Due to the sensitivity of Xbox data, we are unable to show
the individual results for Movie/TV recommendation per-
formance. However, in the tables, we still show how Xbox
view can be used to enhance the performance of other views.

are eager to know: can we safely conclude that more views
can indeed improve the performance of the system? To find
the answer to this hypothesis, we further added the Xbox
data into the framework and trained a MV-DNN model with
three user-item view pairs. The results are quite encourag-
ing: MRR scores are further improved by 6% for all users
and 8% for new users in App data, relatively. On the other
hand, by comparing to the state-of-the-art algorithm, our
best MV-DNN (with Xbox view) with top-K features per-
formed 25.2% better than the CTR model for all users (from
0.277 to 0.347) , and 115% better for new users (from 0.142
to 0.306), for P@1.

Similar results can also be observed for the News data in
Table 4, where MV-DNN scored 49% better for all users and
101% better for new users than the CTR model, relatively.
Note that in this table, the results for CCA and SVD are
missing. Due to the extreme size of the training data which
contains 1.5 Million users with over 1 Billion entries, these
two traditional algorithms failed miserably to handle such
big data. We will detail our discussion on the scalability in
the next section but it is quite evident here that our DNN
based approach can easily scale up to billion-entry comput-
ing capacity while yield excellent recommendation results.

In order to explore the effectiveness of the learned pat-
tern from the system, we perform the following experiment
to test the recommendation performance with single-feature

inputs. Specifically, we took the best performing system
(MV-DNN with top-k features) and construct user features
with only one domain feature turned on. The resulting user
feature thus has only one value which is the ID of the do-
main. We then run our model for prediction against other
views in order to find the top-matched News and Apps a-
mong all existing items. Table 5 shows some of those results.
It can be seen that the learned recommendation system is
indeed quite effective. In the first example, we assume a us-
er has only visited brackobama.com. The top matched news
show all related information regarding President Obama and
Obamacare health, which are all relevant to the website. On
the other hand, the top matched Apps are also related to
health in this case. In the second example, we have a user
who visited www.spiegel.de, a major online German News
Website, which is not telling a lot about users except they
can read German. The system matches articles for them on
FIFA world cup 2014 which seems to be a common inter-
est for Germans in this time span. In last example where
the user seems to have interests in baby-related information,
both the top matched News and Apps are quite relevant to
baby, pregnancy and etc.

9. EXPERIMENTS ON PUBLIC DATA
To further show the strength of our approach in modeling

cross-domain users, we perform a set of experiments on the
public data2 by the authors in [28]. The data set contain-
s authors from different research fields and the objective is
to recommend authors from another field for cross-domain
collaboration. The data contains 33,739 authors from five
domains (data mining, theory etc.), where each data en-
try specifies the name of the research field, the title and
abstract of a paper, the list of authors and the year the pa-
per got published. We use a single-view DNN to model this
cross-domain collaboration (e.g., collaboration between data

2Available at http://arnetminer.org/billboard/collaboration



Data Set Training Testing
Number Of u-
nique users

Number of u-
nique items

Number of
training pairs

Number of
new users

Number of
test pairs for
old users

Number of
test pairs for
new users

Apps Data 200K 55k 2.5M 1K 11K 2K
News Data 1.5M 5M > 1B 5K 50K 10K
Xbox Data 16K 10K 45K 1K 10K 3K

Table 2: Details of the Train/Test breakdown for the three data sets used to evaluate our proposed approach.

User View with
Single Domain
ID Feature

Top Matched News Top Matched Apps

barackobama.com

Obama to Delay Obamacare Again to Help Democrats 7 Minutes Fitter
Froma Harrop: Democrats should not run away from Obamacare Relax Meditate Escape Sleep
Democratic Senator: I am willing to defy Obama Sleep Tracker
Governor Jindal proposes Republican alternative to Obamacare U.S. Constitution

spiegel.de

Nazi-Era Jerseys on View in World Cup Exhibit ESPN Cricinfo
2014 World Cup Day 3 Lessons: Colombia Fun In The Sun... Golf News RSS
Belgium Vs. Algeria World Cup 2014: Live Stream... Pulse News
Colombia vs. Ivory Coast: Tactical Preview ... Dinamalar - Tamil News Paper

linkedin.com

RectorSeal, ... Acquires Assets of Resource Conservation... LinkedIn App
Berkshire Partners Teams With Glen T. Senk To Co-Invest ... LinkedIn Touch
TF Financial: National Penn Bancshares, Inc. to Acquire ... The Economist on Windows
H.I.G. Capital Portfolio Company Surgery Partners to Acquire ... The Wall Street Journal

babycenter.com

Jenelle Evans’ Baby Name: What We Know Parents Pregnancy & Baby Guide
Catelynn Lowell ... Are Reportedly Pregnant With Baby #2! ANIMALS FOR KIDS GAME
Jenelle Evans Can Take Drugs During Pregnancy If She Wants Minecraft Fan Hub
Pregnant Jenelle Evans: What Should She Name Her Baby? GS Preschool Games

Table 5: Examples of learned mapping between URL domains, News articles and Apps. For the domains, only their feature
IDs are used for training. The underlying domain names are unknown to the target applications.

Algorithm All Users New Users
MRR P@1 MRR P@1

I

Most Frequent 0.298 0.103 0.303 0.119
CF 0.337 0.142 / /

CCA (TopK) [29] 0.295 0.105 0.295 0.104
CTR [32] 0.448 0.277 0.319 0.142

SV- Kmeans 0.359 0.159 0.336 0.154
II SV-LSH 0.372 0.169 0.339 0.158

SV-TopK 0.497 0.315 0.436 0.268

MV-Kmeans 0.362 0.16 0.339 0.156
III MV-TopK 0.517 0.335 0.466 0.297

MV-TopK w/ Xbox 0.527 0.347 0.473 0.306

Table 3: Results for different algorithms on Windows App-
s Data Set. Type I algorithms are baseline methods we
compare with. Type II are single user-item view methods
trained using the original DSSM framework. Type III are
multi-view DNNmodels we proposed. The best performance
is achieved by training a MV-DNN on all three user-item
views with TopK as feature selection method.

mining and theory researchers). In this case, both the user
view and item view share the same feature representations.
Specifically, we use the unigram words from the titles and
abstracts of the papers that an authors published during the
training period (1990 to 2001) as features, which results in a
feature dimension of 31,932. Similar to the original authors
evaluation approach, we randomly selected a set of authors
who have already had cross-domain collaboration during the

Algorithm All Users New Users
MRR P@1 MRR P@1

I Most Frequent 0.301 0.111 0.305 0.111
CTR [32] 0.427 0.215 0.276 0.123

SV-Kmeans 0.386 0.192 0.294 0.143
II SV-LSH 0.45 0.247 0.34 0.186

SV-TopK 0.486 0.286 0.358 0.208

MV-Kmeans 0.391 0.194 0.296 0.145
III MV-TopK 0.494 0.303 0.368 0.222

MV-TopK w/ Xbox 0.503 0.321 0.398 0.245

Table 4: Results for the News Data Set. Similarly, the best
performance is achieved by our multi-view models. Note
that due to the extreme big size of this data set (> 1B en-
tries), traditional algorithms like CF (SVD) and CCA failed
to handle it due to memory constraint.

training period and have at least five cross-domain collabo-
rations during testing period to be our evaluation set. For
each set of collaboration between different fields, we train a
separate single-view DNN model in 100 iterations.

Table 6 shows the results. Overall, our method performs
significantly better than the CTL method in all four cross-
domain data sets except for the metric of P@20. In par-
ticular, we achieve a much higher recall at 100, with the
best improvement of 96% in the DM to theory recommen-
dation performance. The results indicate that using rich
user features with non-linear deep neural models can indeed
capture lots of semantics that cannot be accurately modeled



Cross
Domain

ALG P@10 P@20 MAP R@100

DM to CTL 37.7 36.4 40.6 35.6
Theory SV-DNN 40.0 24.2 41.2 69.8

MI to CTL 32.5 30.0 36.9 59.8
DB SV-DNN 35.7 20.6 39.7 70.9

MI to CTL 30.0 24.0 35.6 49.6
DM SV-DNN 37.2 21.5 41.8 63.3

Visual to CTL 28.3 26.0 32.8 36.3
DM SV-DNN 35.2 20.8 37.8 64.4

Table 6: Recommendation performance on the cross-domain
collaboration public data [28].

using traditional word-based co-occurrence models such as
generative topic models. We believe the performance can
be further improved using multi-view DNN models but we
leave that to future investigation.

In terms of efficiency, the authors reported 12-15 hours
training time for the CTL method for the entire data set.
Our algorithm runs much fast in that each model finished
100 iterations training within only 5-7 minutes on the same
amount of data on a GPU machine. We will detail the scal-
ability of our framework in the next section.

10. ALGORITHM SCALABILITY
This section we compare the performance of varies al-

gorithms in terms of their training time. Recall that in
the previous section, we mentioned that (in Table 4) for
the News data, SVD (CF) and CCA were unable to han-
dle the user-item matrix which has 1 Billion entries. This
shows one of the strengths of our deep learning framework
which is trained using SGD and thus able to handle mas-
sive amount of data using distributed training. The detail
of the performance is shown in Table 7. We can observe that
for the relatively small Apps data set, SVD and CCA fin-
ished relatively fast (around 4 hours, but yielded quite poor
recommendation performance). The single-view DNN mod-
el (SV-TopK) finished 100 training iterations in 33 hours.
The content-based CTR model, however, took a long time
to train. The reason is that CTR requires an initial seed of
topic proportion (θ) and topic distribution (β) trained using
an LDA model. CTR then took these files and optimized the
correlation between users and item features. Therefore, it
turned out to be more expensive to train CTR than our deep
learning model, for both data sets. On the other hand, we
saw that both SV-TopK andMV-TopK exhibited (sub)linear
training time to the data size, since usually SGD runs less
epochs to converge when more data become available.

Figure 3 shows the training error during each iteration of
the MV-TopK model for both News and Apps views. In
our experiment, we manually specify the training iterations
to be 100. One reason is that we continue to see improved
performance for all views even though the improvement be-
comes smaller and smaller over time. On the other hand, we
discovered that in practice the convergence of some views is
faster than others. For example, for that particular mod-
el in Figure 3, the News view converged quickly after 20
iterations, while it took around 70 iterations for the Apps
view to reach convergence. Due to the process of alternating
user-item view pairs during training as well as the different
convergence speed for different views, performing early stop-

Algorithm Data Set
Apps News

CF 4 hours OutOfMemory
CCA [29] 4 hours OutOfMemory
CTR [32] 40 hours 120 hours

SV-TopK 33 hours 50 hours
MV-TopK 60 hours

MV-TopK w/ Xbox 62 hours

Table 7: Training time for all algorithms in comparison. The
CTR model using Bayesian approach takes twice longer to
finish than our most expensive DNN model.

ping to further improve the scalability of our model becomes
a critical future work.
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Figure 3: Training errors for two views in MV-TopK model.

11. CONCLUSION AND FUTURE WORK
In this work, we presented a general recommendation frame-

work that uses deep learning to match rich user features to
items features. We also showed how to extend this frame-
work to combine data from different domains to further im-
prove the recommendation quality. We then discussed dif-
ferent ways to make this approach scalable to large data sets
through dimensionality reduction. The proposed model can
handle both existing user and new user recommendation.
Experiments on several large-scale real-world data sets indi-
cated that the proposed approach worked much better than
other systems by large margin.

As a pilot study, we believe that this work has opened
a new door to recommendation systems using deep learn-
ing from multiple data sources. Despite the fact that most
of the evaluation in this paper used proprietary data, the
framework should be able to generalize to other data sources
without much additional effort as shown in Section 9 using
a small public data set. For example, recommending music
to users based on their tweets, recommending restaurants
according to Facebook status updates, or recommending im-
ages and videos based on user search queries.

For future work, we aim at incorporating more user fea-
tures into the user view. We want to make our DNN learning
more scalable so that eventually the entire set of user fea-
tures can be used for training without dimension reduction.
We also aim at adding more domains into our multi-view
framework and further analysis its performance in details.
Another important direction is to investigate how to incor-
porate collaborative filtering with our approach which cur-
rently running only as content-based filtering approach.
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