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ABSTRACT
Modern Web 2.0 applications, such as GMail, Live Maps, Face-
book and many others, use a combination of Dynamic HTML,
JavaScript and other Web browser technologies commonly referred
to as AJAX to push application execution to the client web browser.
This improves the responsiveness of these network-bound applica-
tions, but the shift of application execution from a back-end server
to the client also often dramatically increases the amount of code
that must first be downloaded to the browser. This creates an unfor-
tunate Catch-22: to create responsive distributed Web 2.0 applica-
tions developers move code to the client, but for an application to
be responsive, the code must first be transferred there, which takes
time.

In this paper, we present DOLOTO1, an optimization tool for
Web 2.0 applications. DOLOTO analyzes application workloads
and automatically rewrites the existing application code to intro-
duce dynamic code loading. After being processed by DOLOTO,
an application will initially transfer only the portion of code neces-
sary for application initialization. The rest of the application’s code
is replaced by short stubs—their actual implementations are trans-
fered lazily in the background or, at the latest, on-demand on first
execution of a particular application feature. Moreover, code that
is rarely executed is rarely downloaded to the user browser. Be-
cause DOLOTO significantly speeds up the application startup and
since subsequent code download is interleaved with application ex-
ecution, applications rewritten with DOLOTO appear much more
responsive to the end-user.

To demonstrate the effectiveness of DOLOTO in practice, we
have performed experiments on five large widely-used Web 2.0 ap-
plications. DOLOTO reduces the size of application code down-
load by hundreds of kilobytes or as much as 50% of the origi-
nal download size. The time to download and begin interacting
with large applications is reduced by 20-40% depending on the ap-
plication and wide-area network conditions. DOLOTO especially
shines on wireless and mobile connections, which are becoming
increasingly important in today’s computing environments. While
we performed out experiments on existing large JavaScript appli-

1DOLOTO stands for DOwnLOad Time Optimizer.
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cations, techniques outlines in this paper can be readily incorpo-
rated into the next generation of distributing compilers such as Sil-
verlight [12] and Volta [11].

1. INTRODUCTION
Over the last several years, we have witnessed the creation of a

new generation of sophisticated distributed Web 2.0 applications as
diverse as GMail, Live Maps, RedFin, MySpace, and NetFlix. A
key enabler for these applications is their use of client-side code—
usually JavaScript executed within the Web browser—to provide
a smooth and performant experience for users while the rendered
Web page is dynamically updated in response to user actions and
client-server interactions. As the sophistication and feature sets of
these Web applications grow, however, downloading their client-
side code is increasingly becoming a bottleneck in both their initial
startup time and subsequent application interactions. Given the im-
portance of performance and “instant gratification” in the adoption
of applications, a key challenge thus lies in maintaining and im-
proving application responsiveness despite increased code size.

Indeed, for many of today’s popular Web 2.0 applications, client-
side components are already approaching or exceeding 1 MB of
code (uncompressed). Clearly, however, having the user wait until
the entire code base is transferred to the client before the execution
can commence does not result in the most responsive user experi-
ence, especially on slower connections. For example, over a typical
802.11b wireless connection, the simple act of opening an email in
a Hotmail inbox can take 24 seconds on a first visit. Even on a sec-
ond visit takes 11 seconds—even after much of the static resources
and code have been cached. Users on dial-up, cellphone, or slow in-
ternational networks see much worse latencies, of course, and large
applications become virtually unusable. Live Maps, for example,
takes over 3 minutes to download on a second (cached) visit over
a 56k modem. (According to a recent Pew research poll, 23% of
people who use Internet at home rely on dial-up connections [15].)
In addition to increased application responsiveness, reducing the
amount of code needed for the application to run has the benefit
of reducing the overall download size which is important in the
mobile and some international contexts, where the cost of network
connectivity is often measured pay per byte instead of a flat rate.

One solution is to structure Web application code such that only
the minimal amount of code necessary for initialization is trans-
ferred in the critical path of Web application loading; the rest of the
application’s code would be dynamically loaded either on-demand
or in the background. While modern browsers do support explicit
loading of JavaScript code on-demand, after a Web page’s initial
download, few applications make extensive use of this capability.
Manually architecting a Web application to correctly support dy-
namic loading of application code is a challenging and error-prone



process. Web developers have to track the dependencies between
user actions, application functionality, and code components. They
have to schedule background downloads of code at the appropri-
ate times to avoid stalling a user’s interactions. Finally, developers
have to maintain and update the resultant code base as the applica-
tion code and typical user workloads evolve.

1.1 Doloto
In this paper, we propose DOLOTO, a tool that performs auto-

mated analysis of Web application workloads and automatic code
splitting as a means to improve the responsiveness of Web 2.0 ap-
plications and reduce their download size. DOLOTO takes as input
the existing client-side code of a Web application and traces of ap-
plication workloads, and then proceeds to output a rewritten version
of application code.

Code splitting in DOLOTO is performed at the level of individual
JavaScript functions, which are clustered together to form an ac-
cess profile computed based on function access times computed in
a training phase with the help of runtime instrumentation. Training
is performed entirely on the client-side without the need to access
the server. This allows for a quick estimation of potential DOLOTO
improvements without affecting the existing deployment.

In the execution phase, access profiles guide the process of on-
demand code loading. Additionally, code is transferred to the client
via a background prefetching queue. Function definitions are re-
placed with short stubs that block to fetch actual function bodies
whenever necessary. Doing so in a sound manner is quite tricky in a
language such as JavaScript that supports high-order functions and
the eval construct. In particular, to preserve the lexical scoping of
function definitions in the original program, we still must eagerly
transfer function declarations, however, function bodies are trans-
ferred lazily. DOLOTO effectively introduces dynamic code loading
to applications that have been developed without it in mind.

We envision DOLOTO as a deployment-time tool that “repack-
ages” existing Web application code to improve the end-user re-
sponsiveness. The developer may experiment several different ac-
cess profiles and even deploy them in parallel to measure their ef-
fectiveness. Given an access profile approved by the developer,
DOLOTO deploys a statically rewritten, optimized version of the
original application on the server. We envision re-training and
rewriting to only be necessary whenever there is a new application
release of if the typical workloads change drastically.

To show the effectiveness of DOLOTO in practice, we have per-
formed an evaluation on a set of five large widely-used Web 2.0
applications for a range of of bandwidth and latency values. The
benefits of code splitting are particularly pronounced for slower,
but increasingly common and important types of connections, such
as wireless and mobile, where the execution penalty is especially
high if the entire code base is blindly transferred to the client, es-
pecially if the user is paying for their connectivity per byte trans-
ferred. Moreover, in the international setting, achieving better ap-
plication responsiveness often means choosing between building
more data centers and creating more performant applications, and
a tool like DOLOTO helps the developer with the latter.

In our experiments, DOLOTO reduces the size of application
code download by hundreds of kilobytes or as much as 50% of
the original download size. The time to download and begin in-
teracting with large applications is reduced by 20-40% depending
on the application and wide-area network conditions. Moreover,
with background code loading enabled, the rest of the application
can be downloaded while the user is interacting with the applica-
tion; in our experiments it took 30-63% extra time compared to the
original application initialization time for background prefetch to

download the entire application code.

1.2 Contributions
This paper makes the following contributions:

• We propose code splitting as a means of improving the
perceived responsiveness of large and complex distributed
Web 2.0 applications within the end-user’s browser. Effec-
tively, DOLOTO introduces dynamic code loading into appli-
cations that have been designed without it in mind.

• We propose a runtime training technique and a clustering
scheme for the collected data that automatically groups func-
tions into clusters roughly corresponding to individual high-
level application features based on function access times.

• We describe a code rewriting strategy that breaks the code
of JavaScript functions into small stubs that are transferred
to the client eagerly and fetch remaining function bodies at
runtime on-demand, without requiring application-specific
knowledge or changes to existing code.

• We perform a detailed evaluation of DOLOTO for a set of five
popular Web 2.0 applications and demonstrate the effective-
ness of our techniques for a range of network conditions.

1.3 Paper Organization
The rest of the paper is organized as follows. Section 2 provides

background on Web 2.0 applications and also gives an overview
of common application construction patterns, motivating why code
splitting is a good strategy for improving application responsive-
ness. Section 3 gives a description of our runtime training and code
rewriting techniques. Section 4 discusses our experimental results.
Finally, Sections 5, 6, and 7 describe related and future work and
provide conclusions.

2. OVERVIEW
In this section, we provide background on the mechanics of code

loading in Web applications, and illustrate how applications today
take advantage (or not) of dynamic code loading to improve their
user-perceived performance.

2.1 Mechanics of Dynamic Code Loading
In its most basic form, the client-side component of a typical dis-

tributed Web 2.0 application consists of a number of HTML pages
that refer to resources such as images, cascading style sheets (CSS),
and JavaScript code. The most natural way to transfer JavaScript
files or, indeed, any resource is by specifying their names directly
in HTML. This approach causes the Web browser to block until the
entire code base is transferred to the client, leading to long pauses
in application loading and execution. Before the advent of dynamic
HTML, this was the only technique for client-side code loading.

Modern browsers, however, allow for dynamic code loading,
where resources can be fetched on-demand from a server, using
a remote procedure call over HTTP [25]. Just like with data, the
code in question may be fetched as a string and then executed us-
ing eval using the XmlHttpRequest object, as shown in Figure 2.

Dynamic code loading enables application architectures in which
only a small portion of the code — the basic application frame-
work — is transferred to the client initially. The rest of the code
is loaded dynamically at a later point. Some JavaScript program-
ming toolkits have begun to include basic support for dynamic code
loading in order to support these scenarios. For example, the Dojo
Toolkit [2], modeled after the Java class loader, provides a small
bootstrap script dojo.js and enables dynamic loading through a
library function dojo.require("dojo.widget.*").
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Figure 1: Size breakdown of different Web 2.0 application components. Provided sizes are given in KB after gzip compression.

var xhr = new XmlHttpRequest();
// synchronous AJAX call to fetch function foo
xhr.open("http://code.server.com/code=foo", false);
xhr.send(null);

// code is returned from the server as text
var code = xhr.responseText;

// eval is used to get a function closure for foo
var foo = eval(code);
// proceed to use newly loaded function foo
var x = foo(3);

Figure 2: Dynamic downloading of JavaScript code.

Despite this support for dynamic code loading in the underlying
JavaScript language and toolkits, building an application that suc-
cessfully exploits dynamic code loading to improve user-perceived
performance is a difficult task. In the next several subsections, we
show how today’s Web 2.0 applications are structured to load their
code and point out opportunities for improvement.

2.2 Dynamic Code Loading in Practice
It is important to point out that JavaScript is often the dominat-

ing component of a Web 2.0 application download. To illustrate
this point, we have collected size statistics for a range of popular
applications, as shown in Figure 1. The figure shows the break-
down of (compressed) sizes for different application components.
The largest two categories of resources by far are JavaScript code
and images. In the remainder of this section we describe how some
representative applications address the issue of code loading.

2.2.1 All-at-once Loading: Bunny Hunt
Bunny Hunt is an application with a relatively small JavaScript

code base of 17 KB. This application takes an extreme approach
to resource loading. During the application splash screen, it pre-
loads all the relevant code and images. Essentially, Bunny Hunt’s
approach to resource usage is fully conservative: the entire network
transfer cost is paid upfront. By downloading every single resource,
including both JavaScript code and image files while the splash
page is loading, page rendering can never block waiting for either
of these types of resources. While the opposite extreme would be to
download every resource on demand, most applications fall some-
where in between.

2.2.2 Dynamic Loading: Pageflakes
A contrast to Bunny Hunt is the Pageflakes application, an

industrial-strength mashup page providing portal-like functional-
ity. While the download size for Pageflakes is over 1 MB, its initial
execution time appears to be quite fast. Examining network ac-
tivity reveals that Pageflakes downloads only a small stub of code
with the initial page, and loads the rest of its code dynamically in
the background. As illustrated by Pageflakes, developers today can
use dynamic code loading to improve their web application’s per-
formance. However, designing an application architecture that is
amenable to dynamic code loading requires careful consideration
of JavaScript language issues such as function closures, scoping,
etc. Moreover, an optimal decomposition of code into dynamically
loaded components often requires developers to set aside the se-
mantic groupings of code and instead primarily consider the exe-
cution order of functions. Of course, evolving code and changing
user workloads make both of these issues a software maintenance
nightmare.

2.2.3 Typical Monolithic Application: Live Maps
Live Maps is an example of a large, feature-rich application, pro-

viding multiple-views of maps and satellite photos, driving direc-
tions, business search, vector drawing capabilities, advertising, and
more. It loads over 200 KB of code compressed or over 900 KB
uncompressed on the initial page load. While the entire code base
is downloaded upfront, only a fraction of it is executed on the ini-
tial page load. Furthermore, code execution takes place in “bursts”:
while the entire JavaScript file is available on the client, some func-
tions are executed right away, as indicated by the initial block, some
are executed within 100 ms. Many functions are not executed until
triggered by user interaction (such as a request for driving direc-
tions, clicking a button, or performing map search) and in many
common usage scenarios, these functions will not be needed at all.

3. DOLOTO ARCHITECTURE
The goal of DOLOTO is to automate the process of optimal code

decomposition. DOLOTO’s processing of application code auto-
matically handles language issues such as closures and scoping;
DOLOTO’s analysis discovers an appropriate code decomposition
for the likely execution order of functions. As a consequence of this
sort of automation, developers no longer have to manually maintain
the decomposed version of the application as the application or typ-
ical usage scenarios change, but simply re-apply the analysis and



Figure 3: DOLOTO training tool that allows the developer to adjust clustering settings and training thresholds.

decomposition as necessary.
DOLOTO’s primarily targets feature-rich Web applications such

as Live Maps. The code base of these applications is growing as
they expand to provide functionality once reserved for traditional
desktop software. Unfortunately, the latency cost of downloading
this additional code is paid whether or not the additional features
are used. This suggests that splitting the code of these features out,
and dynamically loading them outside the critical-performance-
path of initialization is likely to improve initial page loading times.

3.1 Overview
DOLOTO processing consists of two phases, the training and the

execution phase described in the rest of this section. The training
phase of DOLOTO’s processing consists of running the application
with its client-side JavaScript component instrumented to collect
function-level profile information. The result of this training is an
access profile, a clustering of original functions by time of their
first use. In our implementation, training is performed by observ-
ing a user performing a fixed workload, although it is possible to
train in a distributed manner, by combining workloads from multi-
ple users with varying workloads, resulting in better code coverage
and higher quality access profiles.

Access profiles may be either static, determined during initial
training, or dynamic, being updated continuously and adjusting to
operating conditions during application deployment. In DOLOTO,
we present the profile information to the developer so that they
can tweak the training parameters and review the resulting clus-
ters. Notice that depending on how the application is executed, dif-
ferent cluster decompositions may make sense: for an application
that is deployed on mobile devices, small clusters are appropriate,
whereas going to the server to fetch a cluster consisting of only sev-
eral kilobytes of code is probably wasteful for a Web application
running on a desktop computer. Next, DOLOTO proceeds to stati-
cally rewrite existing application JavaScript code based on a given
access profile to split the existing code base into small stubs that
are transferred eagerly and the rest of the code that is transferred
either on-demand or in the background using a prefetch queue.

The basis for our approach is to rewrite every JavaScript function

f(x) with a stub that in its simplified version looks as follows:

function f(x){
var real_f_text = blocking_download("f");
var real_f_func = eval(real_f_text);
return real_f_func.apply(this, arguments);

}

Where blocking_download is a synchronous call that retrieves
the body of function f from the server. A network call is made
only once per cluster: if the body of f has already been trans-
ferred to the client either on-demand or background code loading,
blocking_download returns it immediately. We proceed to eval

the body at runtime and apply the resulting function to the argu-
ments that are being passed into f. We refine and optimize this
simplified pseudo-code in Section 3.3.1. The execution phase of
DOLOTO is illustrated in Figure 5.

3.2 Collecting Access Profiles
At its core, our instrumentation approach is based on the ability

to parse and instrument JavaScript code and to insert timestamps
that allow us to group functions into clusters by the time of their
first access. Our instrumentation machinery is based on a proxy-
based JavaScript rewriting platform provided by AjaxScope [7].
This approach allows us to use a local proxy to obtain timing in-
formation for external sites that we do not have access to. The be-
ginning of every function is instrumented to record the timestamp
as well as the size of the function. At runtime, timestamps are col-
lected by the instrumentation DOLOTO proxy and post-processed
to extract the first-access time tsi for every function fi that is ob-
served at runtime. To avoid excessive network traffic, timestamp
data is buffered on the client before being sent over to the training
proxy. We refer the interested reader to the AjaxScope paper for
details of JavaScript instrumentation.

The list of timestamps is sorted and traversed to group functions
into clusters c1, . . . , cn. As we are traversing the sorted list we are
looking to terminate the current cluster cj at function fi according
to the following criterion:

tsi+1 − tsi > Tgap ∧ size(cj) > Tsize ,



i.e. the time gap between the two subsequent functions exceeds the
predefined gap threshold Tgap and the size of the current cluster
exceeds the predefined size threshold Tsize . Note that we disregard
the original decomposition of functions into files: functions from
different JavaScript files may and do end up belonging to the same
cluster because of temporal proximity to each other.

Note that as with any runtime analysis, a potential weakness of
this approach is that some code may not be used for the workload
we apply: for instance, if the “help” functionality of an online map-
ping application is not utilized during the training run, functions
implementing this functionality will be group into an special clus-
ter ⊥. As part of the process, map

P : {f1, . . . , fk} → {c1, . . . , cn,⊥}

from functions to clusters is saved as the access profile.
In practice, the cluster decomposition changes drastically de-

pending on the threshold values. In our experiments in Section 4
we favored threshold settings that produced about a dozen clusters
that roughly correspond to high-level application activities. For in-
stance, the activities of the initial page load, double-clicking on the
map, moving the map around, asking for directions, printing the
map for Live Maps may each be grouped in their own cluster.

However, for an application that is likely to run in a mobile set-
ting where the user might be paying for byte transferred, produc-
ing many clusters of a few kilobytes each is actually a good idea.
It is also common to have slightly different versions of the same
application for different browsers, so performing training for each
browser separately, and then using the appropriate application ver-
sion based on the execution environment is the right approach.

Examples above illustrate that there is no “perfect” access profile
and that the access profile should be customized based on how the
application is likely to be used. Moreover, a small benchmark can
be injected into the beginning of the application run to determine
the network and CPU conditions for a particular user; this infor-
mation can be cached on the client for subsequent application runs.
Based on this data, the application will proceed to download one
of several application versions. However, unlike the current prac-
tice of developing a separate “mobile” version of an application, all
versions would be based on the same code.

3.3 Code Rewriting
As mentioned above, the basis of our approach is to replace origi-

nal JavaScript functions with short stubs and then fetch (potentially
large) function bodies either on demand or whenever extra band-
width becomes available. The client-side component of a Web 2.0

// read access profile
{c1, . . . , cn,⊥} = read_clusters();

// for each file js
foreach ( js ∈ application ) {

transfer DOLOTO helper functions

// for each function f
foreach ( f ∈ in js ){

if ( isLarge(f) && (f /∈ c1) ) {
replace f with stub for f

} else {
transfer f verbatim

}
}

}

Figure 4: Pseudo-code for server-side processing in DOLOTO.

application consists of a set of JavaScript files; JavaScript code may
also be included directly in HTML, but each inline script block is
conceptually treated as a separate file. Each JavaScript file consists
of top-level code that is executed unconditionally and a set of func-
tion declarations. Each function declaration in its turn may contain
top-level code as well as local function declarations.

The pseudo-code for our server-side processing is shown in Fig-
ure 4. For each file we rewrite with DOLOTO, we start by injecting
helper functions such as blocking_download, etc. that are re-
quired for dynamic code loading, background code prefetch, and
generating stub code on the client. Next, for every function in the
file, we decide whether to transfer it verbatim or to replace it with
a stub. This decision is based on the length of the function (in prac-
tice we only rewrite functions that are longer than 50 characters)
and whether the function is in the first cluster c1, which we transfer
eagerly, i.e. without stubbing.

3.3.1 Client-Side Execution
The client-side execution of the rewritten application is affected

by DOLOTO in the following way.

• When a new JavaScript file is received from the server on
the client, we let the browser execute it normally. This in-
volves running the top-level code that is contained in the file
and expanding stubs that correspond to declaration of top-
level functions contained therein, as further explained in Sec-
tion 3.3.4.

• When a function stub is hit at runtime,

– if there is no locally cached function closure,
download the function code using helper function
blocking_download, apply eval to it, and cache the
resulting function closure locally;

– apply the locally cached closure and return the result

• When the application has finished its initialization and a
timer is hit, fetch the next cluster from the server and save
functions contained in it on the client.

3.3.2 Illustrative Example
We first illustrate DOLOTO rewriting with examples and then de-

scribe implementation details and important corner cases of local
functions and function closures as well as optimizations to reduce
both the runtime overhead as well as the size of the code that needs
to be transferred to the client.

Figure 7 illustrates how function rewriting works by showing the
result of rewriting global functions f1 and f2 shown in Figure 6
that both belong to cluster c1. In our discussion below we focus on
function f1; function f2 is treated similarly:

1. For each function, DOLOTO turns its body into a short
stub shown on lines 1–10 (our example uses longer variable
names for clarity). The stub first invokes the guard for the
cluster the function belongs to (c1 in this case). This is a
blocking action that only returns after the body of the func-
tion has been saved in the global associative array func.

2. Next, the function body is retrieved as text and evaluated us-
ing the eval construct of JavaScript. Note that the call to
eval is performed in the same scope as the original func-
tion definition for f1 on line 5. This way, since the body of
f1 refers to global variable g, at the time of applying eval,
variable g will be resolved properly. This is why we cannot,
for example, perform the eval of the original function body
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var g = 10;
function f1(y){

var x = g + y;
...
return ...;

}

function f2(z){
...
return ...;

}

Figure 6: Example before DOLOTO rewriting.

within the guard function and return the closure correspond-
ing to the actual code of f1. The result of the eval call is
saved in global variable real_f1 so that the if body is only
entered once per function.

3. Lastly, on line 9 we return the result of applying the real func-
tion body stored in real_f1 to the original set of arguments
(variable y in this case) on object this.

3.3.3 Runtime Optimizations
Additionally, for the example above, we perform the following

optimizations at the time of rewriting to reduce the runtime over-
head experienced by the rewritten code compared to the original.

Reassigning function value. As an optimization tactic, we assign
the closure returned from eval to f1 on line 6. This way, the
second invocation of f1 will go directly to the original code
completely circumventing our rewriting. However, things are
more complicated in the presence of function aliasing: if a
references to f1 was obtained prior to f1 being executed,
then the guarded version of f1 may still be called through
that reference, so it is unsafe to eliminate it completely.

Guard elimination. Before existing, guard_cluster_c1 “elim-
inates itself” by assigning the empty closure to global vari-
able guard_cluster_c1 on line 34. This way, the guard
body will only be executed once per cluster. For instance, if
function f2 is invoked after f1, the guard will be a no-op.

1 var g = 10;
2 var real_f1 = null;
3 function f1(y){
4 if(real_f1 == null){
5 guard_cluster_c1();
6 real_f1 = eval(func["f1"]);
7 f1 = real_f1;
8 }
9

10 return real_f1.apply(this, arguments);
11 }
12
13 var real_f2 = null;
14 function f2(z){
15 if(real_f2 == null){
16 guard_cluster_c1();
17 real_f2 = eval(func["f2"]);
18 f2 = real_f2;
19 }
20
21 return real_f2.apply(this, arguments);
22 }
23
24 function guard_cluster_c1(){
25 var xhr = new XmlHttpRequest();
26 xhr.open("http://code.server.com/cluster=c1",
27 /* synchronous AJAX call */ false);
28 xhr.send(null);
29 var code = xhr.responseText;
30 // split code into function bodies
31 foreach(<func_name, func_code> in code) {
32 func[func_name] = func_code;
33 }
34 // empty closure
35 guard_cluster_c1 = function() {};
36 }

Figure 7: Rewriting by introducing stubs and a download guard.

Another potential optimization opportunity not explored in the ex-
ample above involves eliminating blocking calls to the server by
converting the program into continuation-passing style. While it is
easy to perform an asynchronous server call and to register a call-
back, the difficulty lies in the fact that we still need to evaluate the



1 var xhr = new XmlHttpRequest();
2 function next_cluster(){
3 xhr.open("http://code.server.com/next",
4 /* asynchronous AJAX call */ true);
5
6 xhr.onreadstatechange = handle_cluster;
7 xhr.send(null);
8 }
9

10 function handle_cluster(){
11 if (xhr.readyState != 4) { return; }
12 var code = xhr.responseText;
13 if (code == "") return; // last cluster
14
15 // split code into function bodies
16 foreach(<func_name, func_code> in code) {
17 func[func_name] = func_code;
18 }
19
20 // go fetch the next cluster
21 next_cluster();
22 }
23
24 // initial invocation of next_cluster
25 // after the document is done loading
26 document.attachEvent("onload", next_cluster);

Figure 8: Background code prefetching.

code in the proper lexical scope when it arrives, which is not really
possible within the callback. A notable exception is global (or top-
level) functions, where blocking calls may indeed be eliminated.

3.3.4 Additional Code Size Optimizations
Note that the stubs shown in the example above tend to still be

fairly long. To save extra space, we apply the technique described
below that typically reduces the size of a stub from several hun-
dred characters to under 50. A key insight is that JavaScript is a
dynamic language that allows function introduction at runtime; we
do not have to transfer complete stubs over the network as long as
we can generate them on the client. Therefore, we parameterize the
text of each stub with its name and argument names and then intro-
duce a helper function exp(function_name, argument_names)
to generate the stub body at runtime.

In the example in Figure 7, we would replace stubs for function
f1 and f2 as well as the guard for cluster c1 with

eval(exp("f1",""));eval(exp("f2",""));

This runtime code generation reduces the download size at the ex-
pense of introducing extra runtime overhead for running function
exp and applying eval to the resulting string. Also note that for
nested functions, their stubs are introduced at runtime lazily, after
the body of containing functions have been expanded. In practice,
techniques described in this section save hundreds of kilobytes of
JavaScript for large applications such as Live Maps.

3.3.5 Code Rewriting Caveats
In many ways, the example above illustrates the “best case sce-

nario” for our rewriting technique. There are several concerns we
have to address when performing function rewriting. Unlike many
other mainstream languages, JavaScript allows nested function def-
initions. Local functions complicate our rewriting strategy, making
it necessary to cache real function bodies (real_f1 and real_f2
in examples above) in a local context just before the function de-
finition. Also notice that since local declarations may close over
variables in the lexical scope, we are careful to perform evaluation

of real function bodies in the same context as the original function
declaration. Clearly, performing an eval in the top-most lexical
scope, for example, may create references to undefined variables.

JavaScript allows the developer to define function closures,
which may be assigned to variables, passed around, and invoked ar-
bitrarily. Unlike regular function definitions, closures are allowed
to be anonymous. When rewriting anonymous closures, we have
to traverse up the AST to find an appropriate place for introduc-
ing cache variables. Furthermore, the optimization of reassigning
the function value does not apply to function closures, which often
have multiple aliases within the program.

It is important to recognize that our rewriting relies of the ab-
straction of functions that are entities that may only be created,
assigned, or applied. However, if the original program, for in-
stance, chooses to examine the code of a function by calling
f.toString(), clearly, the stubbing we perform is going to pro-
duce unexpected results. Fortunately, we have not encountered
cases such as this is practice.

3.4 Background Code Prefetching
Background code prefetching allows us to push code to the client

instead of having the client pull code from the server. When trans-
lating JavaScript files, we inject prefetch code shown in Figure 8
into each HTML file passed to the client. Our approach relies on
the server maintaining per-client status with respect to the code that
has already been transferred over. A viable alternative would be to
transfer cluster information to the client so that it would be able to
specify to the server which function to fetch. Note that when fetch-
ing a cluster it is not necessary to specify the entire cluster: a single
function from it will suffice.

Function next_cluster requests the next cluster in the access
profile that has not yet been transferred over from the server. Func-
tion handle_cluster is registered as an AJAX callback on line 6
to process the server response to update the global array func with
the function bodies it retrieved. As the last step, on line 21 function
handle_cluster calls next_cluster again. This way, there is
a continuous queue of downloads from the server that is driven by
the client. The initial code request is performed by registering an
onload handler for the page as shown on line 26. Cluster ⊥ which
contains functions that are never seen as part of runtime training is
never eagerly returned by the server.

Note that we are careful to only download one cluster at a time.
This is because most browsers only allow a total of two open con-
nections per server at a time. We do not want to use up all the con-
nectivity just by downloading code. Newer browsers, however, typ-
ically increase this threshold to allow for more connections. Viable
alternatives to “constant” code prefetching include putting fetching
the next cluster based on a timer event or perhaps even detecting
periods of user inactivity by intercepting UI events.

4. EXPERIMENTAL RESULTS
In this section, we evaluate the performance of DOLOTO’s code

splitting against the five benchmark applications shown in Figure 9.
These applications were chosen to represent a range of small to
large applications, and to test a range of code vs. resource demands.
At one extreme, the relatively small application Bunny Hunt uses
very little JavaScript code and many images. At the other extreme,
Google Spreadsheets is composed of very few images and a large
body of JavaScript code.

4.1 Experimental Setup
The goal of our experiments was to evaluate the impact of code

splitting on the download size and initial responsiveness of real-



Web application Application URL Description

Chi game http://chi.lexigame.com Online arcade game
Bunny Hunt http://www.themaninblue.com/experiment/BunnyHunt Online arcade game
Live.com http://www.live.com Customizable mash-up page
Live Maps http://maps.live.com Interactive mapping and driving directions application
Google Spreadsheets http://spreadsheets.google.com Online spreadsheet application

Figure 9: Summary of information about benchmark Web 2.0 applications used in this paper.

world, third-party Web applications for a variety of realistic net-
work conditions. When setting up an experimental testbed, we
faced several challenges:

Modifying third-party applications: While it is our proposal that
DOLOTO become part of server-side Web application deployment,
we do not have any control over the server-side environments of
the applications with which we are experimenting. In order to ap-
ply DOLOTO to these applications, we implemented DOLOTO as a
rewriting proxy that intercepts the responses from third-party Web
servers and dynamically rewrites their JavaScript content using our
code splitting policies. In all our experiments, our client-side Web
browsers are chained to the proxy implementation of DOLOTO.
To accurately simulate a server-side deployment of DOLOTO with
off-line rewriting of application code, we ensure that our dynamic
rewriting is not in the critical path of serving Web pages. Thus,
our DOLOTO proxy caches the results of its rewritings such that a
second visit to the page is immediately fulfilled.

Sites serving multiple versions of Web application code: Web
applications frequently serve different versions of their code over
time, either as part of a rolling upgrade or as part of a concur-
rent A/B test of new functionality. To get comparable and con-
sistent results, our experiments rely on training and executing on
the same Web application code. To be sure that our experiments
are always run against the same version, we deployed the Squid
caching proxy [19] that held a single copy of our benchmark Web
application code. To ensure that all components of the Web appli-
cations were cached, we used an additional HTTP rewriting proxy,
Fiddler [9], that forces all components of a Web application to be
cache-able by modifying the HTTP cache-control headers set by
the original Web site.

Simulating realistic network conditions: In order to collect ex-
ecution times for a realistic range of network conditions, we used
a wide-area network simulator that provides control over the ef-
fective bandwidth, latency, and packet loss rates of a machine’s
network connection. We use this network simulator to simulate
three different environments: a Cable/DSL connection with a low-
latency network path to a Web site (300 kbps downstream band-
width and 50 ms round-trip latency); a Cable/DSL connection with
a high-latency network path (300 kbps downstream bandwidth and
300 ms round-trip latency); and a 56k dial-up connection (50 kbps
downstream bandwidth and 300 ms round-trip latency).

Our training setup uses Fiddler, Squid, and DOLOTO as shown
in Figure 10(a). The DOLOTO proxy is running on a machine with
a dual Intel Xeon, 3.4GHz CPU, with 2.5GB of RAM. The client-
side machine is a Pentium 4 3.6 GHz machine equipped with 3 GB
of memory running Windows Vista with Firefox 2.0 used as the
browser. The physical network connection between all our test ma-
chines is a 100 Mb local area network over a single hub.

The corresponding testing setup is shown in Figure 10(b). We
first populate a Squid cache running a workload through DOLOTO
so that the DOLOTO-processed version of the application is saved

in the cache. We then put a a wide-area network simulator between
the Squid cache and the browser to evaluate a range of network
conditions and replay the same application workload.

4.2 Training Phase Statistics
To train the clusters and create the access profiles for a Web ap-

plication, we collected a profile of several minutes of each Web
application’s execution under a manual workload that exercised a
variety of each application’s functionality. For example, the manual
workload for Bunny Hunt and the Chi game consists of playing the
game and the workload for maps.live.com consists of browsing
and searching through the map.

A summary of results for the training phase is shown in Fig-
ure 11. Column 2 shows the total (uncompressed) download size
for each application in our benchmark suite. Columns 3–6 show
information about the code coverage observed during our train-
ing run, detailing the number of functions called during the run
(absolute number and percentage in columns 3–4) and the size of
these functions (absolute number and percentage in columns 5–6).
Columns 7–10 show a distribution of function sizes that we have
observed at runtime. While small functions are quite common, es-
pecially in obfuscated sites that deliberately introduce them, there
are quite a number of large functions as well, indicating the poten-
tial to benefit from removing functions from the initial download.

Finally, columns 11–13 show information about the clusters we
constructed. Column 11 shows the minimum-average-maximum
number of functions per cluster. As can be seen from the table, it
is fairly typical to have a dozen clusters for the larger applications,
with some clusters being quite sizable, containing several hundred
functions and tens of kilobytes of code in the case of larger appli-
cations. Also, it is quite common for a cluster to contain functions
from more than one file. This demonstrates our reliance on real-
istic workloads to re-compose the code instead of the initial code
decomposition provided by the developer. Column 13 shows the
average cluster size, in KB.

Note that the number of clusters is quite sensitive to the thresh-
old selection. For these results, we used a threshold of 25 ms for
the gap between first-run times for functions and a minimum clus-
ter size threshold of 1.5 KB. We created at least one cluster for
application frame for applications that contained multiple FRAME

or IFRAME tags. For the purposes of measuring download size and
time improvements, we ensured that all the functions used during
page initialization were included in the initial cluster together.

4.3 Execution Phase Statistics
Figure 12 shows the reduction of size achieved with DOLOTO

rewriting for our application benchmarks. Columns 2 and 3 show
information about the number of percentage of the functions that
are rewritten to insert stubs. Since the first cluster is not rewrit-
ten and is pushed to the application verbatim, less than 100% of
all functions end up being stubbed. Columns 4–6 show the size
of the regular (uncompressed) code in its original version, the
size of the initial DOLOTO download that includes all the stubs
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Figure 10: (a) DOLOTO training setup and (b) testing setup described in Section 4.1.

that are sent to the client initially, and the resulting space sav-
ings. Columns 7–10 show the same numbers with the code hav-
ing been run through a JavaScript crunching utility that removes
superfluous whitespace — a common strategy for optimizing re-
leased JavaScript code. The tool configuration we used did not per-
form any additional optimizations such as shortening local variable
identifiers. Finally, columns 11-14 show the same set of numbers
after the code has been crunched and run through a gzip compres-
sion utility. Gzip compression is a common and perhaps the easiest
strategy for reducing the amount of data transferred over the net-
work and it is used widely by the sites we chose as our benchmarks.

In addition to size reduction measurements, we also performed
detailed experiments with several representative benchmarks to de-
termine the effect of code size reduction on the overall applica-
tion execution time for a range of network parameters, as shown in
Figure 13. For each group of columns in Figure 13, we show the
original execution time, the time with DOLOTO, and the percent-
age of time savings. Clearly, whether the size reduction is accom-
plished by DOLOTO will translated into execution time reduction
depends heavily on application decomposition; more information
about sizes of individual components of our benchmarks is shown
in Figure 1. It is common to have images and JavaScript code as
the biggest application components; below we consider applica-
tions with different ratios of the two.

It is not too surprising that, as an application whose download
is dominated by images, Bunny Hunt does not show any signifi-
cant improvements with DOLOTO. On the other hand, mash-up site
Live.com, which has JavaScript as its most significant download
component, shows pretty significant speed-ups, especially in the
case of a low-latency high-bandwidth connection. For high-latency
connections, the time savings are tangible, but not as significant
because the execution time is dominated by the need to connect to
many servers to fetch data to be shown on the mash-up page.

Live Maps shows 26-28% improvements for a range of network

conditions, with dozens of seconds being saved on the slowest con-
nection. This is quite impressive given that a significant portion of
the application execution is spent on retrieving map images. How-
ever, as Figure 12 shows, these time savings can be explained by the
fact that about 45% of the application code is not being transferred
in the DOLOTO version. Time savings are most significant for
Google Spreadsheet, in which code is the most significant down-
load component. Because the entire application is under 200 KB in
size and the image component is quite small, savings accomplished
with DOLOTO result in noticable speedups. However, on a 300 ms
latency connection, third-party server requests that are used for an-
alytics collection dominate the download time, masking the savings
achieved with DOLOTO.

Figure 14 shows the additional time it takes to download the
entire code base of an application with background downloading.
In general, we see that the additional time to download an appli-
cation is roughly proportional to the benefit received from code
splitting. The intuition behind this is that the total download size,
and hence the download time, is increased by the number of stubs
and code added to remove functions from the critical download
path. Because users can interact with and use an application while
background downloading is occurring, we believe this trade-off of
longer total download time for shorter latency until a page responds
to user interactions is more than worthwhile.

5. RELATED WORK
While much work has been done on improving server-side Web

application performance and reducing the processing latency [14,
20, 21], recent studies of modern Web 2.0 applications indicate
that front-end execution contributes 95% of execution time with
an empty browser cache and 88% with a full browser cache [18].
Moreover, browser-side caching of Web content is less effective
than previously believed because about 40% of users come with an
empty cache [17]. This, along with a trend towards network deliv-



Code coverage in training Function characterization Cluster statistics

Download Number % Total % Size distribution (characters) Number of Functions Average
Web application size, in KB functions size, in KB <100 100-200 200-500 >500 clusters per cluster size, in KB
Chi game 104 103 29% 43 41% 22 26 28 27 7 3/14/43 6.2
Bunny Hunt 16 22 44% 10 60% 5 0 9 8 3 2/7/19 3.3
Live.com 1,436 689 21% 572 39% 203 149 165 172 14 5/49/461 40.9
Live Maps 1,909 803 16% 835 43% 284 188 177 154 12 6/66/689 69.7
Google Spreadsheets 499 794 24% 179 35% 442 156 121 75 15 3/52/648 12.0

Figure 11: Training statistics for our benchmark applications.

Application size, in bytes
Web Functions Regular Crunched Crunched and Gzipped

application rewritten Original DOLOTO Savings Original DOLOTO Savings Original DOLOTO Savings

Chi game 202 71% 125,045 69,469 44% 124,647 69,073 45% 34,227 21,004 39%
Bunny Hunt 24 61% 17,371 7,841 55% 17,216 7,692 55% 4,836 3,033 37%
Live.com 1,680 58% 882,438 472,706 46% 882,409 472,680 46% 220,544 129,278 41%
Live Maps 1,463 42% 1,125,618 617,183 45% 1,125,600 617,171 45% 270,644 155,992 42%
Google Spreadsheets 1,382 48% 654,192 402,060 38% 654,142 402,010 38% 180,367 96,452 46%

Figure 12: Size reduction after DOLOTO rewriting for our benchmarks.

50kbs/300ms 300kbs/300ms 300kbs/50ms
Web application Orig. Dol. % Orig. Dol. % Orig. Dol. %

Chi game 37 37 0 13 15 13 8 8 0

Bunny Hunt 100 92 8 43 41 5 22 22 0

Live.com 99 82 17 31 28 10 18 13 28

Live Maps 155 112 28 31 23 26 26 19 27

Google Sp’sheet 58 45 22 20 20 0 18 11 39

Figure 13: Reduction in execution times achieved with DOLOTO.
Orig. is the original download time, Dol. is the time to download
the whole application in the background, both measured in seconds,
and % is the percentage difference.

ery of increasingly sophisticated distributed Web applications, as
exemplified by technologies such as Silverlight [12], highlights the
importance of client-side optimizations for archieving good end-to-
end application performance.

Other than the MapJAX project’s work on data prefetching in
Web 2.0 applications [13], we are not aware of research directly
pertaining to responsiveness of Web 2.0 applications, though sev-
eral projects have focused on software that is delivered over the
network. In particular, Krintz et al. propose a technique for split-
ting and prefetching Java classes to reduce the application transfer
delay [8]. Class splitting is a code transformation that involves

50kbs/300ms 300kbs/300ms 300kbs/50ms
Web application Orig. Dol. % Orig. Dol. % Orig. Dol. %

Chi game 37 40 8 15 15 0 8 17 113
Bunny Hunt 100 100 0 42 43 2 22 22 0
Live.com 99 216 118 31 44 42 18 36 100
Live Maps 155 210 35 31 57 84 26 52 100
Google Sp’sheet 58 70 21 20 24 20 18 18 0

Figure 14: Background code loading overhead. Orig. is the orig-
inal download time, Dol. is the time to download the whole appli-
cation in the background, both measured in seconds, and % is the
percentage difference.

breaking a given class into part: hot and cold, depending on us-
age patterns observed a profile time. The cold part is shipped to
the client later in a demand-driven fashion. Our profile construc-
tion approach may be seen as a generalization of their technique,
in particular, the code clusters we identify represent “degrees of
urgency”: the first cluster must be transferred right away, while
others can be transferred later so their transfer is overlapped with
client-side execution. Finally, code whose execution was not ob-
served in our profile runs often constitutes a significant portion of
the application.

Other researchers have focused on reducing the amount of code
that is shipped over the wire, most notably in the case of extracting
Java applications [23, 24]. There are several distinguishing char-
acteristics between that work and ours. First, with some notable
exceptions, JavaScript applications have not yet taken advantage
of library-based application decomposition. Exceptions include re-
liance on Ajax libraries such as AJAX.NET, the Dojo Toolkit, and
others, which suggests that going forward, the issue of application
extraction may become important once again. Second, the reason
for performing extraction was the need to minimize space require-
ments for applications that are designed to be deployed in embed-
ded settings such as J2ME.

Related work includes research into automatic partitioning of
programs to execute in a distributed environment [5, 22]. DOLOTO
shares many similarities with these tools, such as the automatic in-
sertion of proxy references. The key difference is that all code par-
titioned by DOLOTO eventually executes on a single machine, and
the optimization is to minimize the execution delay due to critical-
path code transfer time, not data communication between distrib-
uted components.

Recently developed Web 2.0 frameworks such as the Dojo
toolkit [2] support explicit code loading of JavaScript in a manner
similar to languages with dynamic code loading such as Java and
C# [10, 6, 3]. This approach relies on the developer breaking the
application into meaningful pieces, as opposed to our work that fo-
cuses on existing large applications and can work with them with-
out any modifications. In fact, Web 2.0 application performance
guides suggest decomposing the application into meaningful pieces
manually [18]. Our work can be seen as an attempt to automatically



introduce dynamic code loading for legacy applications.
The BrowserShield, CoreScript, and AjaxScope projects use au-

tomatic JavaScript rewriting to enforce security policies and mon-
itor the runtime behavior of JavaScript applications [16, 26, 7]. In
contrast, DOLOTO uses code rewriting for optimization.

6. FUTURE WORK
In this paper we have described a basic code splitting approach.

While it results in significant download size and time savings in
practice, there are ways in which it can be further enhanced. We
list some of the possible directions below.

Static analysis to remove guards: currently, our approach de-
scribed in Section 3.3 conservatively assumes that every single
function needs to be guarded, requiring a lot of guards to be in-
troduced. With some static analysis, however, these guards can be
optimized away. Indeed, if we construct a call graph of the applica-
tion and build dominators for it [1], clusters may be arranged so that
a guard for every f1 dominating f2, guard_f1 fetches the body of
f2. The fact that f1 dominates f2 implies that there is no way to in-
voke f2 without calling f1 first, making our approach sound. With
this technique, stubs for many functions would not be transferred at
all, unless they become required by a higher-level guard; currently,
we conservatively assume that any function in the program may be
called.

Static analysis instead of runtime training: In fact, give an appli-
cation call graph, we may even be able to do away with the training
stage of our approach entirely: we can use trees in the dominator
forest as clusters that we pass to the second stage of DOLOTO. Of
course, the main obstacle to call graph construction or, indeed, any
form of static analysis in JavaScript is the presence of eval state-
ments. There are applications, especially those that are generated
from tools such as the GWT [4] that either do not use eval or use
in is a controlled manner that is amenable to static analysis.

Compiler integration: We hope that the ideas of DOLOTO will
be integrated in the next generation of distributing compilers such
as Silverlight, Volta, and GWT [12, 11, 4]. Being within a
compiler will not only enable static analyses described above, it
will also make DOLOTO-like code rewriting part of profile-driven
code generation and the runtime environment instead of a separate
deployment-time tool.

7. CONCLUSIONS
This paper proposes DOLOTO, a system for splitting client-side

code of large modern Web 2.0 applications that often contain hun-
dreds of kilobytes of JavaScript code. DOLOTO consists of a train-
ing phase that groups code according to the temporal access pat-
terns and a rewriting phase, where the original code is rewritten
to contain stubs that fetch the actual code on demand. When de-
ployed on the server, applications rewritten with DOLOTO exhibit
a significant reduction of the amount of code that is necessary for
the application to execute, leading to smaller code downloads and
more responsive applications.

Our experiments show that DOLOTO reduces the size of the
JavaScript code component by as much as 50% and execution times
by as much as 39%, with time savings over 20% being common.
We expect code splitting to be a key enabler Web 2.0 applications
to continue growing in size and sophistication without placing un-
due code download burden on the user.

We believe that techniques explored in this paper will become
more and more important as distributed Web applications grow in
size and complexity, while being increasingly deployed over GSM

and 3G networks. Techniques such as Doloto would reduce the
need for both geolocation of costly data centers to perform well in
an international setting as well as maintaining parallel, slimmed-
down versions of existing applications to run on mobile devices.

Moreover, while this paper presents our experiments on
JavaScript-based applications, DOLOTO can be seen as a general
dynamic code loading approach for distributed applications run-
ning on a variety of emerging runtime platforms such as Silverlight
and AIR. It is our hope that the code analysis and rewriting tech-
niques proposed in this paper will be integrated in the next genera-
tion of distributing compilers such as Volta and GWT, thus making
the profile-drive optimizations that DOLOTO implements an inte-
gral part of the application development and deployment process.
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