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Abstract—The increasing pervasiveness of location-acquisition
technologies has enabled collection of huge amount of trajectories
for almost any kind of moving objects. Discovering useful
patterns from their movement behaviours can convey valuable
knowledge to a variety of critical applications. In this light, we
propose a novel concept, called gathering, which is a trajectory
pattern modelling various group incidents such as celebrations,
parades, protests, traffic jams and so on. A key observation
is that these incidents typically involve large congregations of
individuals, which form durable and stable areas with high
density. Since the process of discovering gathering patterns
over large-scale trajectory databases can be quite lengthy, we
further develop a set of well thought out techniques to improve
the performance. These techniques, including effective indexing
structures, fast pattern detection algorithms implemented with
bit vectors, and incremental algorithms for handling new tra-
jectory arrivals, collectively constitute an efficient solution for
this challenging task. Finally, the effectiveness of the proposed
concepts and the efficiency of the approaches are validated by
extensive experiments based on a real taxicab trajectory dataset.

I. INTRODUCTION

The increasing availability of location-acquisition technolo-
gies including telemetry attached on wildlife, GPS set on cars,
WLAN networks, and mobile phones carried by people have
enabled tracking almost any kind of moving objects, which
results in huge volumes of spatio-temporal data in the form of
trajectories. Such data provides the opportunity of discovering
usable knowledge about movement behaviour, which fosters
ranges of novel applications and services [1]. For this reason,
it has received great attention to perform data analysis on
trajectories. In this paper, we move towards this direction and
address one particular challenge to do with discovering the
so-called gathering patterns from trajectories in an efficient
manner.

Informally, a gathering represents a group event or incident
that involves congregation of objects (e.g., vehicles, people,
animals). Examples of gatherings may include celebrations,
parades, large-scale business promotions, protests, traffic jams
and other public gatherings. A gathering is expected to imply
something unusual or significant happening. As such, the
detection of gatherings over trajectories can help in sensing,
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monitoring and predicating non-trivial group incidents in ev-
eryday life.

However, discovering the gatherings from trajectories is not
an easy task, where challenges are two-fold. First, how to
define the concept of gathering appropriately such that it intu-
itively captures the properties of the above mentioned events,
while being rigid from algorithmic aspect in the mean time.
Second, how to develop a solution that can discover gatherings
from large scale trajectories efficiently, and more importantly,
handle new data arrivals in an incremental manner. In the
sequel, we will elaborate the two challenges and brief our
contributions for addressing them respectively.

A. Challenge 1: Appropriate Model

To get some inspirations on how to choose the appropriate
model for gatherings, we first review some related concepts
in previous work. The problem of dense area detection or
density query[2][3] has been proposed with the objective of
identifying where and when there are regions of high density.
But the dense area cannot be adopted to model gatherings
due to their limitations in two aspects. First, previous work
typically identifies dense areas by overlaying a fixed grid on
the geographical space, which might not correspond to the real
shape of congregation in a gathering. Although this issue can
be tackled to some extent by using a grid with finer granularity,
the exponential increase in complexity makes this solution
computationally infeasible. Second, a more intrinsic problem
lies in that, the only criterion of a dense area is whether
its a congregation of individuals exceeds a given threshold,
regardless of whether the individuals within the area share
common behaviours. Consider Figure 1a in which there are
three groups of objects moving towards different directions.
At t = 2, group c1 and c2 encounter and form a dense area
A. After that, c2 departures with c1 and meets c3 at t = 3,
resulting in another dense area B. From this example, we can
see that dense areas may be the places where individuals come
by each other coincidently (e.g. major road intersections),
since it does not take into account the common movements
of the objects inside this area.

On the other hand, there also exist some concepts with
the aim to discovering a group of objects that move together
for a certain time period, such as flock [4][5][6][7][8], con-
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Fig. 1: Comparison of the related concepts

voy [9][10] and swarm [11]. These concepts, which we refer
to as group patterns, can be distinguished based on how the
“group” is defined and whether they require the time period to
be consecutive. Specifically, a flock is a group of objects that
travel together within a disc of some user-specified size for
at least k consecutive timestamps. A major drawback is that
a circular shape may not reflect the natural group in reality,
which may result in the so-called lossy-flock problem [9].
To avoid rigid restrictions on the sizes and shapes of the
group patterns, the convoy is proposed to capture generic
trajectory pattern of any shape and extent by employing the
density-based clustering. Instead of using a disc, a convoy
requires a group of objects to be density-connected to each
other during k consecutive time points. While both flock and
convoy have strict requirement on consecutive time period, Li
et al [11] propose a more general type of trajectory pattern,
called swarm, which is a cluster of objects lasting for at least
k (possibly non-consecutive) timestamps. Figure 1b illustrates
these concepts. Let k = 2, the group 〈o2, o3, o4〉 is a flock
from t1 to t3. Though o5 is an obvious company of the group,
it cannot be included due to the fixed size of disc employed
by the flock definition. But the convoy can include o5 into the
group since 〈o2, o3, o4, o5〉 is density-based connected from
t1 to t3. It is also easy to see that all the five objects form a
swarm during the non-consecutive time period {t1, t3}.

However, using the group patterns to model gatherings is
also problematic, since they all require the group to contain the
same set of individuals during its lifetime. This is unrealistic
since in a practical group event such as business promotion,
members joining and leaving the event frequently is inevitable.
But the critical part is, though each individual may only stay
for a short while, they can collectively make the event last for
a long time. It is worth mentioning that, there exists another
notion of group pattern, called moving cluster [12], which
does not retain the same set of objects in its lifetime. But
they require any two groups in consecutive timestamps to
share (large) enough number of common objects, which is
still hard to be satisfied by a group event in practice. Besides,
two consecutive groups in a moving cluster can be far away
from each other, while a gathering usually occurs within a
relatively stable area.

Contributions. Given the insights from the above concepts,
we regard a gathering as a dense and continuing group of
individuals. Besides, the shape and location of the group do not
change too fast, since the mobility of individuals in this group
is low. Unlike the group patterns, there is no requirement for
coherent membership in the gathering, i.e., members can enter
and leave this group any time. However, we do desire some
dedicated members who can commit a certain time period,
though may not be consecutive, to participate the group event.

The above observations can be summarized with five key
attributes, which should be possessed by the appropriate model
of the gathering.

1) Scale. A gathering typically involves a relatively large
number of individuals.

2) Density. Those individuals form a dense group.
3) Durability. It should last for a certain time period

continuously.
4) Stationariness. The geometric properties (e.g., shape,

location) of the group is relatively stable.
5) Commitment. At any time of the gathering, there exist

several dedicated members who stick to the group for a
certain time (possibly non-consecutive).

In this paper we first propose a concept called crowd,
which captures the first four attributes. Specifically, a crowd
is a sequence of density-based clusters of objects’ locations
which lasts for at least kc timestamps. In order to restrict the
geometrical changes of the clusters at consecutive timestamps,
we adopt the widely-used Hausdorff distance [13] to measure
the distance between two clusters. Then we further define the
gathering pattern as a special kind of crowd that additionally
satisfies the fifth attribute. Formally, each cluster of a gathering
should contain at least mp so-called participators, which refer
to the objects appearing in at least kp clusters of this gathering.
These concepts can be illustrated with Figure 1c. Let kc = 3,
the two sequences of clusters 〈c1, c2, c4〉 and 〈c1, c3, c4〉 form
two crowds. 〈c1, c2, c5〉 (〈c1, c3, c5〉) is not a crowd since
c5 is too far away from c2(c3). Let kp = 2,mp = 3,
then only 〈c1, c2, c4〉 is a gathering since it contains three
participators all the time. We will re-visit this example with
more explanations in Section II.



B. Challenge 2: Efficient Discovery Algorithm

Now another question is: can we simply apply or extend the
algorithms for group pattern mining to discover the gathering
patterns? Apparently the solutions for detecting flocks cannot
work since they can only find the group within a fixed disc.
The moving cluster algorithm [12] repeatedly appends a clus-
ter of the next timestamp as long as it shares enough common
objects with the current cluster. The CuTS algorithm [9] firstly
clusters the simplified trajectories to obtain convoy candidates,
and then applies the moving cluster algorithm to get the correct
results. Both of them do not apply to our problem, since we
do not require any two consecutive clusters to share common
objects. Last, the ObjectGrowth algorithm [11] basically tries
to enumerate all subsets of the object set and checks if it
is a swarm. To keep the computation complexity tractable,
they propose apriori pruning, backward pruning and forward
closure checking to reduce the search space significantly. But
we cannot borrow these techniques either, since the gathering
pattern does not have the downward closure property, as will
be demonstrated later in Section III.

Naturally, the solution for discovering the gatherings from
trajectories can be divided into two phases: finding all the
crowds over the trajectory data and validate each crowd to see
if it is a gathering. Both of them can raise efficiency issues.

For the crowd discovery phase, one challenge is how to
find all the pairs of clusters, the Hausdorff distances between
which do not exceed a given threshold, at consecutive time
points efficiently. Given the quadratic complexity of Hausdorff
distance computation and enormous clusters at each time
instant, testing all possible pairs in the brute-force manner will
render the discovery process prohibitively time consuming. In
addition, we also need to take care of the redundancy problem
since many crowds have containment relationship. In such
cases, should we output all of them or does it suffice to just
keep a subset of them?

As for the second phase, a major issue is what action should
be taken whenever a crowd fails to be a gathering. Obviously, it
is not wise to validate all the subsequences of the crowd due to
the exponential complexity. Therefore, a smarter algorithm that
examines only a few subsequences yet guarantees the correct
results is desired.

Besides, a practical trajectory database often needs to be up-
dated with new collection of trajectory data periodically. With
the growth of the database size, it will become computationally
infeasible eventually, if we perform the whole process from
scratch whenever new trajectory data arrive. So it is of high
importance to devise incremental algorithm that can handle
database updates efficiently.

Contributions. To speed up the crowd discovery process,
we explore different spatial indexing techniques, namely R-
tree and grid index, to organize the clusters at each time point.
By this means, a large portion of cluster pairs can be safely
pruned and the left candidates can also be refined at lower
costs without knowing the exact Hausdorff distances. Besides,
with the observation of downward closure property of crowds,

we propose an efficient growth-style algorithm to produce the
closed crowds only, i.e., the ones with no super-crowds.

In the gathering detection phase, we propose a test-and-
divide algorithm, which splits the whole crowds into sub-
sequences by removing the invalid clusters, i.e., the ones
with not enough participators, and tests each subsequence
recursively. Since repetitively counting the occurrences of a
large number of objects in a long crowd can still be lengthy,
we build bit vector signature for each object in the crowd
and apply the fast bit operations to count its occurrence.
More importantly, the bit vector signatures only need to be
constructed once and can be re-used by all the recursive
procedures.

At last, corresponding to the database updates, we propose
an incremental algorithm that checks only a small subset
of crowds or crowd candidates in the old database to see
if they can be extended into longer crowds with the new
trajectory data. Further, once an existing crowd is extended
to a new crowd, we are also able to speed up the test-and-
divide algorithm by taking advantage of the old gatherings
that have already been found in the crowd.

The remainder of this paper is organized as follows. We
define the necessary concepts and formulate the focal problem
of this paper in Section II. Efficient solutions for discovering
gatherings on archived and new arrivals of trajectory data are
presented in Section III. Section IV reports the experimental
observations, followed by a brief review of related work in
Section V. Section VI concludes the paper.

II. PROBLEM DEFINITION

In this section, we will present the definitions of all nec-
essary concepts used throughout the paper, and formally state
the focal problem to be solved. The list of major symbols and
notations in this paper is summarized in the following table.

TABLE I: Table of notations

Notation Definition
ODB moving object database
TDB time domain of the database
o the trajectory of a moving object
t a time point in TDB

o(t) the location of object o at time t
ci a snapshot cluster at time ti
Ci the set of snapshot clusters at time ti
Cr a crowd
Cr.τ the lifetime of a crowd
dH(P,Q) the Hausdorff distance between point sets P and Q
δ the variation threshold in the definition of crowd
kc the lifetime threshold of a crowd
mc the support threshold of a crowd
Par(Cr) the participator set of a crowd Cr
kp the lifetime threshold of a participator
mp the support threshold of a gathering
B(o) the bit vector signature of an object o

Let ODB = {o1, o2, ..., on} be the set of all moving objects
in the database and TDB = {t1, t2, ..., tm} be the time domain,
where each ti is a time point. The trajectory of a moving object



o is represented by a polyline that is given as a finite sequence
of timestamped locations during a closed time interval [t1, tn],
i.e., o = 〈(p1, t1), (p2, t2), ..., (pn, tn)〉, where pi ∈ <2 is the
geo-spatial position sampled at ti ∈ TDB . For simplicity, we
use o.τ to denote the lifespan of o and o(ti) to refer to the
location of o at time instant ti.

In our paper, we consider a practical trajectory database
model, which assumes each trajectory may have different
lengths and sampling rates (i.e., they are not synchronized in
temporal aspect). Therefore, some trajectories may not have
a sampled location for a given time instant ti. In this case,
we apply linear interpolation to create the virtual points pi for
those trajectories.

Now we adopt the notion of density-based clustering [14] to
define the snapshot cluster. Given a distance threshold ε and a
set of points S, the ε-neighborhood of a point p is defined as
Nε(p) = {q ∈ S|D(p, q) ≤ ε}, where D(·) is the Euclidean
distance between two points. A point p is directly density-
reachable from a point q w.r.t. a given distance threshold ε
and an integer m if p ∈ Nε(q) and |Nε(q)| ≥ m. A point
p is called density-reachable from q if there is a chain of
points p1, p2, ..., pn in S s.t. p1 = q, pn = p, and pi+1 is
directly density-reachable from pi. Then a point p is said to
be density-connected to a point q if there exists a point x ∈ S
s.t. both p and q are density-reachable from x.

Definition 1 (Snapshot Cluster): Given a trajectory set of
moving objects ODB , a distance threshold ε, and an integer
m, the snapshot cluster ct at timestamp t is a non-empty subset
of objects O ⊆ ODB satisfying the following conditions:

1) ∀op, pq ∈ O, op(t) is density-connected to oq(t) w.r.t. ε
and m.

2) O is maximal, i.e., if oq ∈ O and op(t) is density-
reachable from oq(t) w.r.t. ε and m, then also op ∈ O.

A snapshot cluster is a group of objects with arbitrary
shape and size, which are density-connected to each other at
a given timestamp. Following the notion in DBSCAN [14],
such snapshot clusters are spatially maximal so that no two of
them with the same timestamp overlap in their objects. In the
sequel we will abbreviate the snapshot cluster to cluster and
omit the parameters m, ε when no ambiguity can be caused.

Definition 2 (Crowd): Given a trajectory set of moving
objects ODB , a support threshold mc, a variation threshold
δ, and a lifetime threshold kc, a crowd Cr is a sequence
of snapshot clusters at consecutive timestamps, i.e., Cr =
〈cta , cta+1

, ..., ctb〉, which satisfies the following requirements:
1) The lifetime of Cr, denoted by Cr.τ , is not less than

kc, i.e., Cr.τ = b− a+ 1 ≥ kc.
2) There should be at least mc objects at any time, i.e.,
∀a ≤ i ≤ b, |cti | ≥ mc.

3) The distance between any consecutive pair of snapshot
clusters is not greater than δ, i.e., Dist(cti , cti+1) ≤
δ,∀a ≤ i ≤ b− 1.

Besides, a subsequence (supersequence) of a crowd Cr is
called a sub-(super-)crowd of Cr, if it is also a crowd. Cr is
said to be closed if it has no super-crowd.

Since a snapshot cluster is essentially a set of points, we
adopt the Hausdorff distance [13] to measure how far two
clusters are from each other. Hausdorff distance is a widely
used metric for point sets in the community of computer vision
and image processing. Given two sets of points P and Q, their
Hausdorff distance dH(P,Q) is defined as

dH(P,Q) = max{max
p∈P

min
q∈Q

d(p, q),max
q∈Q

min
p∈P

d(p, q)}

Informally, the Hausdorff distance is the longest distance
one can be forced to travel by an adversary who chooses a
point in one of the two sets, from where you must travel to
the other set. As such, two clusters are close in the Hausdorff
distance if their locations and shapes are similar with each
other, which is exactly what we expect for the stationariness
property as mentioned in Section I.

Essentially, the concept of crowd captures all the properties
of a gathering except the last one, i.e., it has no restriction on
the membership. Before defining the gathering, we introduce
the notion of participator first.

Definition 3 (Participator): Given a crowd Cr, an object
o is called a participator of Cr iff it appears in at least kp
snapshot clusters of Cr. Let Cr(o) denote the set of snapshot
clusters in Cr that contains object o, i.e., Cr(o) = {ct | ct ∈
Cr, o(t) ∈ ct}. Then the participators of Cr are the object set
Par(Cr) = {o | |Cr(o)| ≥ kp}.

Note that a participator needs not to stay in the crowd for
continuous kp timestamps. As long as an object occurs in the
crowd for long enough time, it is regarded as a participator.
This kind of flexibility allows an individual to enter and leave
a crowd multiple times, which is an usual phenomenon.

Definition 4 (Gathering): A crowd Cr is called a gathering
iff there exists at least mp participators in each snapshot cluster
of Cr, i.e., ∀ct ∈ Cr, |{o | o(t) ∈ ct, o ∈ Par(Cr)}| ≥ mp.
A gathering is said to be closed if there is no super-crowd of
Cr that is also a gathering.

Example 1: Let’s consider Figure 1c again with kp =
2,mp = 3. To make our explanation clearer, we list the
occurrence of each object in both crowds in Table II. The
participators are highlighted with bold symbols, and the bot-
tom row shows the number of participators in each cluster.
Then it is easy to see that 〈c1, c2, c4〉 satisfies the support
threshold at every time instant, while 〈c1, c3, c4〉 only has three
participators in c1.

TABLE II: Occurrences of the objects in the crowds

object c1 c2 c4 # object c1 c3 c4 #
ooo1 – – 2 o1 – 1
ooo2 – – – 3 ooo2 – – 2
ooo3 – – 2 ooo3 – – – 3
ooo4 – – 2 o4 – 1
o5 – 1 ooo5 – – 2
o6 0 o6 – 1

# Par. 3 3 3 # Par. 3 2 2

Problem Statement. Given a trajectory set of moving
objects ODB , two support thresholds mc,mp, two lifetime



thresholds kc, kp, and a variation threshold δ, our goal is to
find all the closed gatherings from ODB .

III. DISCOVERING CLOSED GATHERING

In this section, we will present our framework for discover-
ing all closed gatherings from a trajectory database. Basically,
our framework consists of three phases: snapshot clustering,
crowd discovery and gathering detection. In the first phase, we
perform density-based clustering on the trajectories of objects
at each time point in TDB to find all the snapshot clusters.
To reduce the cost incurred by clustering, we can apply the
techniques in [9], which simplifies the original trajectories first
by the Douglas-Peucker algorithm and then perform clustering
on the line segments. Each cluster of line segments contains
the objects that are possible to form a snapshot cluster at
some time point. Finding snapshot clusters on such a set of
objects is much more efficient than on the whole object set
directly. The details of this phase are omitted due to space
limitation, and it finally outputs a database of snapshot clusters
CDB = {Ct1 , Ct2 , ..., Ctn}.

The second phase aims to find all the closed crowds from
CDB , while the third phase will validate each closed crowd to
see if it is or contains closed gathering(s). In the next two
subsections, we will elaborate our proposed techniques for
improving the performance of these two phases respectively.
The last subsection will discuss how to handle the new data
arrivals more efficiently.

A. Crowd Discovery

It is easy to observe that the crowd satisfies the downward
closure property, which means any l-length subsequence of a
crowd (l ≥ kc) is also a crowd, making it redundant to output
all the sub-crowds. More importantly, gatherings detected from
a non-closed crowd is not guaranteed to be closed since there
may exist longer gatherings in its super-crowds. Therefore,
instead of finding all the crowds, we only discover the closed
crowds in this phase. At first glance, this needs to check
every supersequence for a crowd in order to decide whether
it is closed. But actually, according to the following lemma,
checking the supersequence of a crowd by appending one more
snapshot cluster suffices.

Lemma 1: Given a crowd Cr = {cti , cti+1
, ..., ctj}, if

@ctj+1 ∈ Ctj+1 , s.t. appending ctj+1 to Cr will generate a
new crowd, then Cr is a closed crowd. Otherwise, Cr is not
closed.

Based on this lemma, we can discover the closed crowds
by incrementally appending the snapshot clusters at the next
time point to the current set of crowd candidates (denoted as
V). Algorithm 1 outlines this process. At each timestamp, we
check the last cluster of each crowd candidate to see if it can
be extended by appending one more cluster. If so, the extended
crowd candidates are inserted back to V as new candidates.
Otherwise, we can conclude it is either a closed crowd (if the
length is not smaller than kc) based on Lemma 1, or not a
crowd at all. Note that, at any timestamp the clusters (denoted
by R) that cannot be appended to any existing crowd candidate

Algorithm 1: Discovering Closed Crowds
Input: CDB , mc, kc, δ

1 Vcc ← ∅; // set of closed crowds
2 V ← ∅; // set of current crowd candidates
3 for ti = t1 to tn do
4 R← ∅;
5 for each crowd candidate Cr ∈ V do
6 cti−1 ← the last snapshot cluster of Cr;
7 C′

ti
← RangeSearch(cti−1 , Cti , δ); // find the set of

snapshot clusters that are within δ distance to Cr
8 R← R ∪ C′

ti
;

9 if C′
ti

= ∅ then // Cr cannot be extended
10 if Cr.τ ≥ kc then
11 Vcc ← Vcc ∪ Cr; // Cr is a closed crowd

12 else
13 for each cti ∈ C′

ti
do

14 if |cti | ≥ mc then
15 Cr′ ← append cti to Cr;
16 V ← V ∪ Cr′;

17 Remove Cr from V;

18 Insert Cti \R into V; // the snapshot clusters than cannot be
appended to any current crowd candidate will become new crowd
candidates

19 return Vcc;

should also be regarded as a new candidate, since it is possible
to grow into a crowd later.

t1 t2 t3 t4 t5 t6 t7 t8
c16

c13 c14 c15
c11 c12 c25

c22 c23 c35
c26 c17 c18
c36

(a)

time V Vcc
1 〈c11〉
2 〈c11, c12〉,〈c11, c22〉
3 〈c11, c12, c23〉,〈c11, c22, c23〉,

〈c11, c12, c13〉
4 〈c11, c12, c13, c14〉
5 〈c11, c12, c13, c14, c15〉,

〈c11, c12, c13, c14, c25〉, 〈c35〉
6 〈c11, c12, c13, c14, c15, c16〉,

〈c35, c26〉, 〈c36〉
〈c11, c12, c13, c14, c25〉

7 〈c35, c26, c17〉, 〈c36, c17〉 〈c11, c12, c13, c14, c25〉,
〈c11, c12, c13, c14, c15, c16〉

8 〈c35, c26, c17, c18〉,
〈c36, c17, c18〉

〈c11, c12, c13, c14, c25〉,
〈c11, c12, c13, c14, c15, c16〉

9 〈c35, c26, c17, c18〉,
〈c11, c12, c13, c14, c25〉,
〈c11, c12, c13, c14, c15, c16〉

(b)

Fig. 2: Illustration of closed crowd discovery

Example 2: We use the example in Figure 2a to illustrate
this discovery process. To keep its simplicity, we assume the
two clusters in the same row or adjacent rows of the table
are close to each other (i.e., their Hausdorff distance is not
greater than δ). Let kc = 4, the intermediate status of the



crowd candidate set V and result set Vcc at each timestamp is
shown in Figure 2b

It is easy to see that the most costly part in Algorithm
1 is the procedure RangeSearch(), which looks for the
clusters from the cluster set at current timestamp Ctc , whose
Hausdorff distance with ci is not greater than δ. A naive
implementation of this procedure is to calculate dH(ci, cj) for
each cj ∈ Ctc . Apparently, a single calculation of dH(ci, cj)
requires O(|ci||cj |) time, and it should be performed over all
pairs between current crowd candidates and the clusters at the
current time point. This will make the overall computation
prohibitively expensive for a large dataset. To address this
issue, we will explore spatial indexing techniques to organize
the clusters and speed up the search process.

1) Indexing Clusters with R-tree: Actually we do not need
the exact Hausdorff distance between two clusters. Instead, it
suffices to just know whether their distance is below or above
δ. Let M(c) denote the minimum bounding rectangle (MBR)
of cluster c and dmin(, ) the minimum distance between two
rectangles. The following lemma holds naturally.

Lemma 2: Given two clusters ci and cj ,
dmin(M(ci),M(cj)) ≤ dH(ci, cj)

Based on this lemma, we firstly retrieve a candidate set
of clusters from Ctc whose minimum distance with ci is not
greater than δ and then refine the candidates to get the final
results. To support efficient candidate search, we index the
MBRs of the clusters in C by a R-tree, and then perform a
window query against the R-tree, in which the window is the
enlarged MBR of ci by δ. Obviously, clusters contained in the
nodes not overlapping with the window are not candidates.

However, dmin is rather a loose lower bound for the Haus-
dorff distance since the latter is the maximum of minimum
distance from one cluster to the other. The following lemma
provides a tighter lower bound for the Hausdorff distance.

Lemma 3: Let M.la denote the a-th side of a rectangle M
(a = 1, 2, 3, 4). Define the distance function dside to be

dside(M(ci),M(cj)) = max
a∈[1,4]

dmin(M(ci).la,M(cj))
1

Then we have dside(M(ci),M(cj)) ≤ dH(ci, cj).
Proof: Let pa be the point of the cluster ci that lies

on the side M(ci).la. Naturally, dmin(M(ci).la,M(cj)) ≤
dmin(pa,M(cj)). From the definition of Hausdorff distance,
dmin(pa,M(cj)) ≤ dH(ci, cj) since pa ∈ ci. As such,
dmin(M(ci).la,M(cj)) ≤ dH(ci, cj), ∀a ∈ [1, 4]. By taking
their maximum, dside still lower bounds dH .

To retrieve candidates in the R-tree by utilizing dside, we
need slight modifications to the aforementioned window query
process as follows. First we enlarge each side of M(ci) by δ
to obtain four rectangles, denoted by ra, a = 1, 2, 3, 4. During
the traversal of R-tree, a node needs to be further examined
only if it intersects with all the four rectangles.

1dmin here is used to compute the minimum distance between a side and
a rectangle since the side can be regarded as a degenerated rectangle

2) Indexing Clusters with Grid: Indexing clusters with R-
tree, though improving the discovery performance by ruling
out many disqualifying clusters, still suffers from three major
drawbacks. First, an R-tree needs to be constructed and
maintained for each time point, which may incur high cost.
Second, since the density-based clusters may have arbitrary
shapes, rectangular bounding box cannot always capture the
distribution of points in a cluster, which will affect its pruning
effect. Third, the brute-force refinement is still needed to
evaluate the Hausdorff distances for those candidate clusters.
To address them, we propose a grid-based index for clusters.
As we shall see shortly, the grid index is easier to construct
since the clusters at all timestamps can share the same grid
structure. More effective pruning can be performed as the
composition of grid cells can approximate the shape of a
cluster better. Besides, a smarter refinement algorithm can be
devised by utilizing the grid index, which is able to validate
a candidate without calculating the exact Hausdorff distance.

To start, we partition the whole space by a grid, each cell of
which is a square with the side length equal to

√
2
2 δ. Then for

each time point t, we can build a grid index Gt with two kinds
of data structures by scanning the set of clusters once, namely
a cell list for each cluster c.cl that keeps the cells occupied by
the cluster, and an inverted list for each cell g.inv that stores
the clusters covering this cell. Before describing the algorithm,
we define the affect region for a cell.

Definition 5 (Affect region): Given a cell gab locating at the
a-th row and b-column of a grid G, its affect region is the set
of cells whose minimum distance with gab is not greater than
δ. More precisely, AR(gab) = {gij ∈ G | |i−a| ≤ 2, |j−b| ≤
2, and |i− a|+ |j − b| < 4}.

Intuitively, the affect region of a cell g may contain some
point whose distance with a point in g is not greater than δ.
Now given the query cluster ci, (i.e., the last cluster of some
crowd candidate) and grid index Gti+1

at the next timestamp,
the procedure RangeSearch() of Algorithm 1 works in the
pruning-refinement style, stated as follows.

In the pruning phase, we select each cell g from ci.cl and
find the clusters in Cti+1

whose cell list intersects with AR(g).
Easy to know that, only the clusters that overlap with the
affect region of every cell in ci.cl can be the candidates, since
otherwise there exists at least one point in the cluster that is
farther away from ci than δ.

In the refinement phase, we will validate each candidate
to determine the final results. For a candidate cj , we first
perform a set join on ci.cl and cj .cl to get their common
cells. The rational behind is that the distance between any
two points within the same cell cannot be greater than δ.
In other words, the Hausdorff distance between the subsets
of ci and cj that fall inside their common cells will not
exceed δ. In an extreme case, if ci.cl = cj .cl, we can
immediately conclude dH(ci, cj) ≤ δ. For this reason, we
just need to check the cells in their difference set, i.e.,
dif(ci.cl, cj .cl) = (ci.cl ∪ cj .cl) \ (ci.cl ∩ cj .cl). For each
point p within dif(ci.cl, cj .cl), assuming p ∈ ci without loss
of generality, we calculate its minimum distance with cj . Note



that we only need to calculate the distances between p and the
points falling inside the affect region, since all the other points
will definitely have distances with p greater than δ.

B. Gathering Detection

In this subsection, we will discuss the algorithm to detect
closed gatherings on each closed crowd obtained from the
last step. It seems that we can apply the similar methodology
with the crowd discovery – incrementally extending a shorter
cluster sequence into a longer one until it fails to be a
gathering. However, the downward closure property does not
hold for gatherings. In other words, a non-gathering cannot
imply its supersequences also not being gatherings. To see
this, consider a crowd with four clusters c1 = {o1, o2, o3},
c2 = {o1, o2, o4}, c3 = {o1, o3, o4}, c4 = {o2, o3, o4}, and
let kp = 3,mp = 2. Obviously, neither the crowd 〈c1, c2, c3〉
nor 〈c2, c3, c4〉 is a gathering as the number of participators in
c2(c3) is less than m (only 1). But when we see their super-
crowd 〈c1, c2, c3, c4〉, it is a gathering indeed. As such, for a
gathering found so far, we have to check all the super-crowds
in order to know if it is closed. Undoubtedly, this will incur
high computation cost especially when the given crowd is a
long sequence.

1) Test-and-Divide Algorithm: In the sequel, we propose a
test-and-divide (TAD) algorithm that can detect all the closed
gatherings in a given crowd efficiently. As shown in Algorithm
2, it starts from the whole closed crowd and tests if it is
a gathering. If so, as we shall prove shortly, it is a closed
gathering and can be returned immediately. Otherwise, we
identifies the invalid clusters, which does not have enough
participators, and divide the crowd into several subsequences
by removing these clusters (some subsequences may not be
crowds as their lengths are less than k). For each subsequence
that is still a crowd, we repeat the above steps again since some
objects may become non-participators now due to the deletion
of invalid clusters. This procedure is performed recursively
until no crowd can be found any more .

c1 c2 c3 c4 c5 c6 c7 c8
o1 o1 o1 o1

o2 o2 o2 o2 o2 o2
o3 o3 o3 o3 o3 o3
o4 o4 o4 o4 o4 o4 o4

o5 o5 o5
o6 o6

Fig. 3: Illustration of test-and-divide algorithm

Example 3: Consider a closed crowd illustrated in Figure
3, and let kc = kp = 3, mc = mp = 3. According
to the TAD algorithm, we first apply the Test() procedure
on the whole crowd. It is easy to see that, the objects
o1, o2, o3, o4, o5 are participators w.r.t. the whole crowd. So c5
is an invalid cluster as it only contains two participators (< 3).
By removing c5, we divide the original crowd into two sub-
crowds Cra = 〈c1, c2, c3, c4〉 and Crb = 〈c6, c7, c8〉. Again,
we perform Test() recursively on Cra and Crb respectively.
For Cra, though o1 changes to a non-participator, all the

Algorithm 2: Test and Divide (TAD)
Input: Cr, kc, kp, mp

1 R← ∅; // the set of closed gatherings
2 if Test(Cr,kp,mp) is true then // test if Cr is a gathering
3 return Cr;

4 else
5 C ← find the invalid clusters;
6 Scr ← Divide(Cr, C); // divide Cr by removing clusters in C
7 for each Cr′ ∈ Scr do
8 if Cr′.τ ≥ kc then // if Cr′ is still a crowd
9 R← R∪ TAD(Cr′, kc, kp, mp);

10 return R;

clusters still have enough number of participators, so we output
Cra as a gathering. But for Crb, both o1 and o2 become non-
participators, making all the three clusters invalid. Since we
cannot get any more sub-crowds from Crb, the TAD algorithm
will terminate.

Theorem 1: The gatherings output by TAD are closed.
Proof: We can prove it by contradiction. Suppose at some

stage of TAD, we get a sub-crowd Cr = 〈ci, ci+1, ..., cj〉 that
turns out to be a gathering. According to the work flow of
TAD, the reason we get Cr is that both ci−1 and cj+1 are
invalid clusters. On the other hand, if there exists any super-
crowd of Cr such that it is also a gathering, then at least one
of ci−1 and cj+1 should have enough participators, which is
contradictory to the previous claim. Therefore Cr is a closed
gathering.

2) Efficient Implementation with Bit Vector Signature: A
straightforward implementation of TAD algorithm is to count
the occurrence for each object in the crowd to see if it is
a participator, and then check the number of participators for
each cluster in the crowd. Obviously this requires O(m ·Cr.τ)
time where m is the number of objects in Cr. Even worse, we
have to perform the above operations repeatedly from scratch
for each sub-crowd obtained.

For a more efficient implementation of TAD, we propose to
construct a bit vector signature (BVS) for each object of Cr,
and all the subsequent steps can be performed with fast bitwise
operations. Specifically, given a crowd Cr = 〈c1, c2, ..., cn〉,
the BVS for an object o ∈ Cr is an n-length bit vector with
each bit representing the existence of o in the corresponding
cluster.

The BVSs of all the objects in Cr can be constructed by
a single scan of the crowd. More importantly, the BVSs only
need to be built once and can be used for all the recursions
of TAD. The BVS of each object in the crowd of Figure 3 is
shown as follows.

B(o1) 0 1 1 0 1 1 0 0
B(o2) 1 1 1 1 0 0 1 1
B(o3) 1 1 0 1 0 1 1 1
B(o4) 1 0 1 1 1 1 1 1
B(o5) 0 1 1 1 0 0 0 0
B(o6) 0 0 0 0 1 1 0 0

Next, we elaborate how to implement the two procedures
Test() and Divide() in Algorithm 2 by utilizing the BVS.



Test step. With the BVS of some object o, denoted by B(o),
the procedure Test() essentially turns out to be counting the 1
bits in B(o), which is also known as the Hamming weight [15]
of a bit vector. While a naive method is to iterate over all the
bits of B(o), more efficient implementations have been well
studied. One of the best solution known is based on adding
the counts in a binary tree pattern [15], in which we first get
the number of 1s in every 2-bit piece of B(o), and then in
every 4-bit piece,..., and so on so forth. The example below
shows how we can get the Hamming weight of B(o1) in just
3 steps. Let x = B(o1),

1) Let m1 = 01010101,
x = (x&m1) + ((x� 1)&m1) = 01011000

2) Let m2 = 00110011,
x = (x&m2) + ((x� 1)&m2) = 00100010

3) Let m4 = 00001111,
x = (x&m4) + ((x� 1)&m4) = 00000100

Now the decimal number of x is 4, which is exactly the
number of 1s in B(o1). In the above operations, m1,m2,m4
are called masks and can be defined properly once the length
of the bit vector is known. In general, for any bit vector with n
bits, its Hamming weight can always be obtained in dlog2(n)e
steps.

Divide step. In this step we will divide the crowd into a
set of subsequences if it fails to be a gathering. Essentially
this is to split the BVS of each object into a set of subvectors.
But it is worth pointing out, there is no need to process the
BVSs of non-participators since a non-participator of a crowd
must remain a non-participator in any of its sub-crowds. We
also do not have to split the BVS physically, instead of which
we can just use a mask to extract the desired part from the
original BVS. The mask is also a bit vector having the same
length as the BVS. It sets to 1 in the bits corresponding the
sub-crowd, and 0 in all the other bits. By performing the AND
operation on the original BVS and the mask, we get a new
BVS where the bits of the desired sub-crowd are kept while
all other bits are zero. For example, in Figure 3 the mask to
extract the crowds Cra and Crb are 11110000 and 00000111
respectively. As such, the Divide() just needs to return a set of
masks, which is more compact compared to the subsequences
of a crowd, and pass it to the subsequent Test() procedure.
By this means, the Test() procedure can use each mask to
get the BVSs of the objects in the corresponding sub-crowd
directly, thus avoiding the re-construction of BVSs for each
sub-crowd.

C. Discovering Gathering Incrementally

We have discussed the efficient algorithms for discovering
closed gatherings in a trajectory archive. But in real applica-
tions, trajectories are often received incrementally. As such,
the latest batch of trajectory data should be appended to
the database periodically (e.g., every day, week or month).
Specifically, consider a trajectory database ODB with the
time domain TDB = {t1, t2, ..., tn}. After a new batch of
trajectories Onew with the time domain Tnew = {tn+1, ..., tu}
has been collected and appended to ODB , we obtain an

updated database O′DB = ODB ∪ Onew with the extended
time domain T ′DB = TDB ∪ Tnew.

A great challenge posed by this incremental update is
that, some closed crowds found in the old database may not
be closed any more, since they may be extended with the
clusters in Onew. Consequently, a closed gathering is also
possible to change if its resident crowd is extended. To get
the correct results up-to-date, a straightforward solution is
to directly apply the aforementioned techniques to find the
gatherings in T ′DB from scratch. Obviously this approach
becomes more expensive as the size of the database grows,
which will make it intractable eventually. To address this issue,
we propose an incremental algorithm that can produce the new
closed gatherings efficiently by taking full advantage of the
previously found crowds and gatherings in the old database.

1) Crowd Extension: First of all, the following lemma
states that only some of the crowds (or crowd candidates) in
the old database are extensible.

Lemma 4: Given a closed crowd Cr = {ci, ..., cj} in ODB ,
if its last cluster is not at the most recent time point of TDB ,
i.e., cj /∈ Cn, where Cn is the cluster set at tn, then Cr cannot
be extended in O′DB .

Based on this lemma, we only need to consider the set CS
of cluster sequences that end at tn in ODB to see if they can
be extended into new crowds. These cluster sequences include
closed crowds and the crowd candidates (whose lengths is
still less than k) in the old database. To this end, we slightly
modify Algorithm 1, such that it saves the crowd candidates
and the closed crowds, which end at the last timestamp. Then,
after the new set of trajectories Onew has been received and
transformed into the cluster database, i.e., 〈Cn+1, ..., Cu〉, the
process of Algorithm 1 can be resumed by setting the time
cursor ti to tn+1 and the current crowd candidate set V to
CS.

t1 t2 t3 t4 t5 t6 t7 t8 t9t9t9 t10t10t10 t11t11t11 t12t12t12
c16 c110

c13 c14 c15 c111 c112
c11 c12 c25 c19 c210

c22 c23 c35
c26 c17 c18 c29
c36

(a)

time V Vcc
9 〈c35, c26, c17, c18, c29〉,

〈c36, c17, c18, c29〉, 〈c19〉
10 〈c19, c210〉, 〈c110〉 〈c35, c26, c17, c18, c29〉,

〈c36, c17, c18, c29〉
11 〈c19, c210, c111〉, 〈c110c111〉 〈c35, c26, c17, c18, c29〉,

〈c36, c17, c18, c29〉
12 〈c19, c210, c111, c112〉,

〈c110c111, c112〉
〈c35, c26, c17, c18, c29〉,
〈c36, c17, c18, c29〉

13 save 〈c110c111, c112〉,
〈c19, c210, c111, c112〉 to
CS for further possible
extension

〈c19, c210, c111, c112〉,
〈c35, c26, c17, c18, c29〉,
〈c36, c17, c18, c29〉

(b)

Fig. 4: Illustration of crowd extension



Example 4: Continuing with Example 2, a new set of
clusters during the time period {t9, t10, t11, t12} has been
appended to the original database, as shown in Figure 4a.
Based on Lemma 4, the two closed crowds of the old database
〈c11, c12, c13, c14, c25〉 and 〈c11, c12, c13, c14, c15, c16〉 cannot be extended
since they end before t8. The only two cluster sequences
we have to consider for extension are 〈c35, c26, c17, c18〉 that is
already a crowd and 〈c36, c17, c18〉 that is a crowd candidate. By
initializing V to contain these two candidates, and setting the
current time to be t9, we resume the iteration of Algorithm 1.
This process is illustrated in Figure 4b.

2) Gathering Update: Suppose a crowd Crold =
{ci, ..., cn} in ODB has been extended into a new closed
crowd Crnew = {ci, ..., cn, cn+1, ..., cm} in O′DB . Now our
goal is to find the closed gatherings in Crnew. Trivially, we
can perform the TAD algorithm on Crnew from scratch. But as
some gatherings have already been detected for Crold already,
it is possible to speed up the discovery process by making use
of them wisely. This optimization will bring more benefits
when Crold occupies a large portion of Crnew.

As before, we firstly build the BVS for each object in
Crnew, and then run the Test() procedure to detect the invalid
clusters. The following lemma indicates that some original
invalid clusters in Crold may become valid in Crnew.

Lemma 5: Denote the set of invalid clusters of a crowd Cr
as IC(Cr). Then we have IC(Crnew)∩Crold ⊆ IC(Crold).

This is natural since some non-participators in Crold may
turn to be participators because of the new clusters in Crnew.
In other words, the gatherings in Crold may expand or merge
with their neighboring gatherings in Crnew. However, if we
find some invalid cluster cj in Crnew which also belongs to
Crold, it is guaranteed that all the closed gatherings before
tj remain unchanged in Crnew. More precisely, we have the
following theorem,

Theorem 2: Given an invalid cluster cj ∈ IC(Crnew) with
j ≤ n + 1, then any closed gathering Gr ⊂ 〈ci, ..., cj−1〉
remains closed in Crnew.

Proof: Since cj is an invalid cluster, we can only
find closed gathering from Cra = 〈ci, ..., cj−1〉 and Crb =
〈cj+1, ..., cm〉. a). If j = n + 1, Cra is actually Crold. So
they have the same set of closed gathering. b). If j < n+ 1,
then cj ∈ IC(Crnew) ∩Crold. From lemma 5, we know that
cj ∈ Crold. This means in Crold, the closed gatherings locate
in Crc = 〈ci, ..., cj−1〉 and Crd = 〈cj+1, ..., cn〉. Cra = Crc,
hence their closed gatherings are also the same.

Motivated by Theorem 2, we can improve the original TAD
algorithm by utilizing the gatherings found in Crold. After
a set of invalid clusters IC has been obtained in the test
phase, we look for the “rightmost” invalid cluster before the
timestamp tn+1, i.e., cj ∈ IC(Crnew)(j ≤ n + 1), s.t.
@cj′ ∈ IC(Crnew) that j < j′ ≤ n+1. Theorem 2 guarantees
that the closed gatherings on 〈ci, ..., cj−1〉 remain the same as
before, which have already been discovered. Therefore only
the sub-crowds within 〈cj+1, ..., cm〉 need to be examined
further since they may contain new or updated gatherings.

IV. EXPERIMENT

In this section, we conduct extensive experiments to evaluate
the effectiveness and efficiency of our proposed concepts
and algorithms based on a real trajectory dataset, which
contains about 120K trajectories generated by over 33,000
taxis of Beijing in a period of 3 months (March, April and
May in 2009) [16], [17]. After discretizing the time domain
into the granularity of minute, we get 132,480 time points
(60× 24× 92) in TDB . Then as a offline preprocessing step,
we find the snapshot clusters for every minute by applying the
DBSCAN [14] with the settings m = 5, ε = 200(meters). All
the algorithms in the following experiments are implemented
in C# and run on a computer with Intel Xeon Core 4 CPU
(2.66GHz) and 8GB memory.

A. Effectiveness

Although the gathering is capable of modelling various
group incidents as mentioned in Section I, in this part we
use the traffic condition (e.g.,traffic jams) as a study case to
evaluate the effectiveness of our proposals. Intuitively, a traffic
jam can be captured by a gathering, since many vehicles with
slow speeds form a dense area, and usually most of the vehi-
cles stay within this area for a relatively long time. Essentially,
GPS-equipped taxicabs can be viewed as ubiquitous mobile
sensors of the city-wide traffic flows. For instance, Beijing
has approximately 67,000 licensed taxis generating over 1.2
million occupied trips per day. This figure is around 4.2% of
the total personal trips (35 million) within the Six Ring Road
of Beijing City (reported by Beijing transportation bureau in
July 2010), which is a significant sample reflecting the traffic
condition of the city.

In the first experiment, we divide a day into three time
periods, peak time (6am to 10am and 5pm – 8pm), work time
(10am to 5pm) and casual time (8pm to 5am). Then we find
all the closed crowds and gatherings from the trajectory set
and group them by the time period with the setting mc = 15,
δ = 300m, kc = 20, kp = 15 and mp = 10. As comparison,
we also search for the closed swarms and convoys from the
trajectories with the settings mino = 15,mint = 10 (i.e., a
group of 15 or more objects travelling together for a period of
at least 10 time units). In cases a pattern crosses multiple time
periods, we simply duplicate assign it to each of them. Figure
5a shows the average number of each pattern in a single day
w.r.t. the time period. It is easy to see that, we can find the
most gatherings during the peak time and much fewer for the
rest. This observation is consistent with the traffic condition of
Beijing, since it experiences severe traffic congestion during
the rush hours every day. Interestingly, though there also exist
many crowds in casual time, only a small portion turns out
to be gatherings. This is because, many crowds are located
around restaurants, shopping malls and other entertainment
places, where taxicabs usually drop the passengers and leave
quickly. As such, these crowds will not form gatherings since
there are not enough participators. On the other hand, we can
find more swarms and convoys in peak and casual time than
in work time. To explain this, many taxicabs have common



destination areas during peak (e.g., CBD, residential suburbs)
and casual time (e.g., entertainment places). On the contrary,
the destinations of most taxicabs are widely distributed during
work time, resulting in fewer swarms and convoys.

Next, we categorize the total 92 days into three groups
according to the weather condition, namely clear, rainy and
snowy. Then we compare the average number of each pattern
in a single day with different weather conditions. As shown in
Figure 5b, we can find the least number of gatherings in clear
days and the most in snowy days. The reason is that, as the
weather condition becomes worse for the traffic, vehicles tend
to move more slowly which makes it easier to cause traffic
jams. We also notice the great gap between the number of
crowds and gatherings in snowy days. This may be caused by
the large number of minor accidents on the roads, in which
most vehicles around the accident can bypass it in a short
time. We also note that the number of swarms seems quite
insensitive to the weather, while there are fewer convoys in
snowy days. A possible explanation is that vehicles try not to
travel too closely to each other in snowy weather.
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Fig. 5: Effectiveness study

B. Efficiency

In this subsection, we study the efficiency of our proposed
algorithms. In particular, we will measure the run time of
the algorithms for discovering closed crowds, detecting closed
gatherings and handling the database update incrementally in
different parameter settings.

Performance of crowd discovery algorithm. In the first
set of experiments, we compare the performances of three
pruning schemes in the crowd discovery algorithm: a) SR,
simple R-tree based pruning with dmin; b) IR, improved R-
tree based pruning with dside; c) GRID, grid-based pruning.
The default parameters used in this set of experiments are:
|ODB | = 30, 000, mc = 15, δ = 300m, kc = 20. Below we
show the average runtime cost of searching for the closed
crowds in a single day, i.e., |TDB | = 1440. It is worth
mentioning that, since Algorithm 1 sequentially sweeps all
the time points, the parameter kc only affects the number of
gatherings we can find, but has no impact on the time cost of
the algorithm. So we omit the experiment studying kc in the
sequel.

As we can see from Figure 6, IR significantly improves
the pruning effect of SR by using a tighter lower bound
of dH . GRID further enhances the performance of IR and
outperforms SR by at least one order of magnitude constantly.

Specifically, as shown in Figure 6a, the runtime costs of all
algorithms decrease when mc increases, since there are less
number of clusters satisfying this support threshold at each
time instant. As such, there are fewer candidates to consider
when we attempt to expand the current crowd candidates. On
the contrary, the performances of all methods deteriorate as δ
increases (Figure 6b), since the search space increases when
we look for the candidate clusters of the next timestamp.
Finally, in Figure 6c we study the impact of database size
by randomly choosing the subsets of the original dataset with
different sizes. As expected, all the schemes need more time
to complete on a larger database, since there tends to be
more clusters at each time point. Interestingly, however, the
grid-based pruning is relatively insensitive to the size of the
database. This is due to the fact that, as the affect region of
each cluster remains unchanged (since δ remains the same),
the refinement cost increases slowly (we only refine the grids
in the affect region) even though there may be more clusters
considered as candidates.

Performance of gathering detection algorithm. We eval-
uate the performances of three algorithms for detecting closed
gatherings from a given crowd: a) Brute-force method which
will recursively test all the i-length sub-crowds (i = n, n −
1, ...), until either it finds a gathering or no sub-crowd can be
found (i < kc); b) TAD algorithm; c) TAD*: TAD algorithm
implemented with the bit vector signature. The default parame-
ters used in this set of experiments are: mp = 11 and kp = 14.
For each experiment, we run the algorithms on 1000 closed
crowds that are randomly selected and record the average time
cost.

From Figure 7, it is easy to see that TAD outperforms the
brute-force method by one to two orders of magnitude, and
TAD* further improves TAD by about 30%. In Figure 7a,
we show the performances of all three algorithms with the
variation of mp, i.e., the least number of participators for a
cluster to be valid. As mp increases, a cluster is more likely to
be invalid. For this reason, the brute-force method has to check
the shorter sub-crowds with more recursions until it finds
a gathering. Although TAD and TAD* also have recursive
procedures, they do not enumerate all the subsequences of a
crowd. Interestingly, with the further increase of mp, the time
costs of TAD and TAD* turn to decrease. This is because
too many invalid clusters in the original crowd will result in
a large number of subsequences that are non-crowd, hence
making the recursion terminate more quickly. Figure 7b shows
the effect of the other parameter kp, which is the least time
period for a participator to stay within the crowd. As the
previous experiment, there will be less valid clusters with
greater kp since the number of participators decreases. We
omit the analysis for kp due to its similarity with mp.

We also investigate the runtime cost when the algorithms
are performed on the crowds with different lengths (Cr.τ ), the
results of which are shown in Figure 7c. As expected, the time
cost of the brute-force method increases almost exponentially
with Cr.τ , since the number of subsequences is exponential
to the length of a crowd. The performances of the other two



 1

 10

 100

 1000

 10000

5 10 15 20 25

ru
nt

im
e 

(s
)

simple pruning with R-tree
improved pruning with R-tree

pruning with grid

(a) Running time w.r.t. mc

 1

 10

 100

 1000

 10000

100 200 300 400 500

ru
nt

im
e 

(s
)

simple pruning with R-tree
improved pruning with R-tree

pruning with grid

(b) Running time w.r.t. δ (meter)

 1

 10

 100

 1000

 10000

10000 15000 20000 25000 30000

ru
nt

im
e 

(s
)

simple pruning with R-tree
improved pruning with R-tree

pruning with grid

(c) Running time w.r.t. |ODB |

Fig. 6: Running time of closed crowd discovery
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Fig. 7: Running time of closed gathering detection

algorithms also deteriorate with the length of the crowd, but
the changes are more smooth. In addition, TAD* exhibits more
benefits on longer Cr.τ , since using the BVSs for a longer
sequence can save more computation time.
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Fig. 8: Runtime costs of incremental vs. re-computation meth-
ods when handling new data arrival

Performance of incremental algorithms. Finally we anal-
yse the performances of incremental algorithms for handling
database update compared with the method of re-computation
from scratch. To study the benefit of the crowd extension
algorithm, we set the trajectories in one day randomly selected
from the 92 days as the initial dataset, and then append the
trajectories of the next consecutive 4 days (there are 1440
time points for each day), one at a time, to construct a newer
dataset. Figure 8a illustrates the average runtime costs of
different methods (with grid-based pruning) for discovering
the closed crowds after each update. Not surprisingly, the
time cost of re-computation method increases proportionally
with the time domain. It is easy to predicate that, with the
continuing increase of the database size, this method will
become prohibitively expensive eventually. On the other hand,

the consumed time of the crowd extension algorithm remains
almost constant since it can skip processing of the most
trajectories in the old dataset. Note that the computation on
each successive update is a bit more expensive than on the
initial dataset. The extra cost is caused by the processing of
the crowd candidate set saved from the old dataset.

Next, we compare the time costs of re-computation and
gathering update algorithm (both employing TAD* method)
for detecting closed gatherings on the extended crowds. Figure
8b summarizes their average running time w.r.t. the ratio
r between the lengths of the old crowd and the extended
crowd. As expected, the variation of r does not affect the re-
computation method, which applies the TAD* algorithm on the
extended crowds from scratch. On the contrary, the gathering
update algorithm can detect the closed gatherings faster when
the old crowd occupies a larger portion of the new crowd, since
it takes full advantage of the previously computed gatherings
in the old crowd.

We also test the performance of the incremental algorithms
w.r.t. all other parameters as in the experiments of Figure 6
and Figure 7. Since they exhibit the similar behaviours with
the previous experiments, we omit the presentation of these
results due to the space limitations.

V. RELATED WORK

Most of the related work on group pattern mining has been
discussed in Section I. In addition, Tang et al [18] recently
study the problem of discovering travelling companions from
streaming trajectories. The concept of travelling companion
is essential the same as convoy [9]. But they focus on
incremental discovery algorithms when new trajectory data



arrive continuously. In the sequel, we give a brief review about
the research on dense area detection and trajectory clustering.

Dense area detection. Dense area detection was initially
presented in the data mining community as the identification
of the set(s) of regions, from spatio-temporal data, that sat-
isfy a minimum density threshold. The STING method [19]
is a fixed-size grid-based approach to generate hierarchical
statistical information from spatial data. Density query for
moving objects is first proposed in [2]. Its objective is to find
regions with the density higher than a given threshold at a
time point or for a period of time in the near future. They find
the general density-based queries difficult to answer efficiently
and hence turn to simplified queries. Specifically, they partition
the data space into disjoint cells, and the simplified density
query reports cells, instead of arbitrary regions, which satisfy
the query conditions. Later, Jensen et al. [3] defines a more
delicate types of density query with desirable properties to
address the answer loss problem in [2]. Some other solutions to
detect dense areas are based on the identification of local max-
ima by using the techniques from computer vision [20][21].
Common to all the above methods is that a fixed-size non-
overlapping grid is employed to aggregate the values over
the spatial dimensions, which might not correspond to the
real shape of the underlying dense area. On the contrary, the
gathering pattern in our work can capture the dense areas with
arbitrary shapes.

Trajectory clustering. Trajectory clustering techniques aim
to find groups of moving object trajectories that are close
to each other and have similar geometric shapes. Gaffney et
al. [22][23] propose trajectory clustering methods based on
probabilistic modelling of a set of trajectories. As pointed out
by Lee et al [24], distance measure based on whole trajectories
may miss interesting common paths in sub-trajectories. Moti-
vated by this, Lee et al. [24] designed a partition-and-group
framework, which partitions trajectories into line segments and
then build groups for those close segments. More recently, Li
et al. [25] further study the efficient algorithms for maintain-
ing and updating the clusters when trajectories are received
incrementally. Different with the group pattern mining and
our work, this category of proposals does not consider the
temporal aspects of the trajectories. As such, moving objects
whose trajectories are in the same cluster may not actually
stay together temporally.

VI. CONCLUSION

In this paper, we study the problem of discovering closed
gathering patterns from a large-scale trajectory database. Dif-
ferent from the earlier proposed concepts, such as flock,
convoy and swarm, which aim to identify groups of mov-
ing objects travelling together for a certain time period, the
gatherings are able to model a variety of non-trivial group
events or incidents. Since the whole discovery process with
straightforward solutions can be very lengthy in a practical
dataset, we propose a series of techniques which address the
indexing, searching and updating issues respectively. At last
we validate the effectiveness and efficiency of our proposals

by conducting extensive experiments based on a real and large-
scale taxicab trajectory dataset.
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