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Abstract

Conventional decision forest based methods for image
labelling tasks like object segmentation make predictions
for each variable (pixel) independently [3, 5, 8]. This pre-
vents them from enforcing dependencies between variables
and translates into locally inconsistent pixel labellings.
Random field models, instead, encourage spatial consis-
tency of labels at increased computational expense.

This paper presents a new and efficient forest based
model that achieves spatially consistent semantic image
segmentation by encoding variable dependencies directly
in the feature space the forests operate on. Such corre-
lations are captured via new long-range, soft connectivity
features, computed via generalized geodesic distance trans-
forms. Our model can be thought of as a generalization
of the successful Semantic Texton Forest, Auto-Context, and
Entangled Forest models. A second contribution is to show
the connection between the typical Conditional Random
Field (CRF) energy and the forest training objective. This
analysis yields a new objective for training decision forests
that encourages more accurate structured prediction.

Our GeoF model is validated quantitatively on the task
of semantic image segmentation, on four challenging and
very diverse image datasets. GeoF outperforms both state-
of-the-art forest models and the conventional pairwise CRF.

1. Introduction

Many problems in computer vision can be formulated
in terms of structured output prediction. Here, the term
‘structured’ relates to the presence of dependencies be-
tween output variables. For instance, in image labelling
problems such as object segmentation or image denoising,
the variables associated with neighboring pixels are more
likely to take the same labels. In recent years, decision
forests [3, 5, 8] have become very popular for the solu-
tion of a wide variety of image labelling problems - from
anatomy delineation in 3D medical images [17] and seman-
tic segmentation in natural images [24, 25] to human pose
estimation for the Microsoft Kinect sensor [23].

The success of forest models is largely due to: their scal-
ability to large amount of data, ability to learn long-range
dependencies between features and output variables, rela-
tive robustness to overfitting, and finally, efficient predic-
tions. The last of these qualities is derived from the in-
dependence assumption made by these methods. In fact,
conventional decision forests ignore the structure in output
spaces and make predictions for each output variable inde-
pendently. This assumption prevents them from enforcing
dependencies between variables, and for semantic segmen-
tation tasks, translates into pixel labellings that do not fol-
low object boundaries and are inconsistent with context.

To overcome these problems, Markov or Conditional
random fields (MRF/CRF) [4] are used as a post-processing
step [19, 25]. For instance, in [10, 25] image segmentation
is achieved by first computing pixel-wise unaries via super-
vised classification, and then smoothing the labels with a
CRF. The more recent works in [11, 19] essentially present
a CRF model, where the pairwise potentials (and not just the
unaries) are conditioned on the data and predicted via a sin-
gle tree. Another way of mixing trees and fields is presented
in [20], where again, the underlying model is a CRF. In
the forest approach in [13], spatial smoothness is achieved
by combining structured class-labels that are learned by in-
corporating joint statistics in a small neighborhood. Al-
though all the above approaches lead to improved results,
this comes at the cost of increased computation at test time.

The main contribution of this paper is a new and efficient
forest-based model for structured output prediction. Our
framework overcomes the above-mentioned problem by in-
corporating learned spatial context directly within the forest
itself. This leads to smooth, pixel-wise labellings without
the need for field-based post-processing. Long-range corre-
lations between pixel labels are captured via new soft con-
nectivity features which can be computed efficiently using
generalized geodesic distance transforms. Another contri-
bution is to analyse the relationship between a typical CRF-
like energy and the forest training objective. This analysis
leads to a new objective for training decision forests that
produces more accurate semantic segmentation.

We validate our model on the task of segmenting four
challenging and very diverse image datasets: face images,
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medical scans, depth images and driving videos. Quantita-
tive results demonstrate the superiority of our model both
in terms of accuracy and efficiency, with respect to state-of-
the-art forest models and grid-based pairwise CRFs.
In the literature. Our work is related to methods based
on sequential classification. The recent work on auto-
context [24, 26], stacking [18, 28], deep learning [14, 15]
and entanglement [17] has shown how a sequence of clas-
sifiers using the output of the previous classifier as in-
put to the next can both effectively capture spatial context
(e.g. learning that the heart is between the lungs) and im-
prove accuracy. In [9], the relationship between anytime
classification and intermediate predictions within decision
trees is shown. In [21] the authors reinterpret conventional
message-passing inference on graphical models as a se-
quential probabilistic inference algorithm.

Our geodesic forest model (GeoF) can be seen as a gen-
eralization of semantic texton forests [24], auto-context [24,
26], and entanglement forests [17]. In fact, GeoF builds
upon these models by using: (i) new, long-range soft con-
nectivity features, and (ii) a new field-inspired objective for
forest training. The combination of those novel features
and objective function encourage GeoF to produce context-
consistent, spatially-smooth semantic image segmentation.

2. Background and Problem Formulation
In this work, an image1 is denoted J : Ω ⊂ N2 → R,

and a 2D pixel position is denoted p ∈ Ω. We cast the se-
mantic segmentation task as that of associating each pixel
p with its corresponding discrete class label c ∈ C. It is
a typical, supervised classification task, where we assume
provided a set of labelled training images {J} and their seg-
mentations. A vector of feature responses at position p is
denoted v(p) = (v1, . . . , vi, . . . vm) ∈ Rm. A set of train-
ing data points (and associated labels) is denoted S = {zi},
with each training point-class pair being z = (v, c). Let
c = {cp|p ∈ Ω} denote the vector of class variables pre-
dicted by our classifier on the entire image. We use cd to
denote predictions obtained at depth d in the tree. D de-
notes the maximum tree depth and T the number of trees.
Random field models. Given an image J , its most probable
labelling can be inferred by maximizing the posterior:

c∗ = arg max
c
p(c|J) = arg max

c
p(J |c)p(c) (1)

The conventional pairwise random field models assume that
the posterior distribution factorizes into a product of unary
and pairwise potential functions as:

p(c|J) =
∏
p

ψ (cp,v(p))
∏

(p,q)∈N

φ (cp, cq,v(p),v(q)) (2)

1For simplicity the notation refers to single-banded images. The exten-
sion to multi-channel images is straightforward.

Figure 1. Training a split node j of a tree. Our model training
seeks parameters θj which aim to maximize both the class purity
and spatial compactnes of pixel clusters in child nodes.

where the setN of pixel pairs describes a pre-defined neigh-
bourhood system. Although this factorization assumption
makes inference of the Maximum a Posteriori (MAP) so-
lution for many models tractable, it severely limits the ex-
pressive power of the model. Furthermore, inference and
learning are computationally expensive.
Decision forest models. Decision forests [3, 5, 8] further
assume that the posterior decomposes over individual vari-
ables as: p(c|J) =

∏
p ψ (cp,v(p)). Ignoring the depen-

dency between output variables makes predictions indepen-
dent and efficient.
Forest prediction. To make predictions, a series of feature
tests starting at the root node are applied to each pixel inde-
pendently. At each node a test is computed on the feature
response v(p) and, depending on the results, the pixel is
sent to the left or right child. The procedure is repeated
until the pixel reaches a leaf node. At this point the empiri-
cal class distribution ψ(cp,v(p)) associated with the leaf is
read off. The MAP label for the pixel is obtained as:

c∗p = arg max
cp

ψ(cp,v(p)). (3)

Forest training. Training involves: (i) selecting the feature
tests at each split node of each tree, and (ii) estimating the
distribution ψ(cp,v(p)) associated with each leaf. Typi-
cally, a decision tree is trained greedily, where for each split
node j the parameters θj associated with a low energy (e.g.
low class entropy) in the child nodes are selected. Figure 1
illustrates this point and suggests that ideally we would like
training to maximize class purity as well as encouraging
spatial compactness of the resulting pixel clusters.
Coupling forest predictions to reveal hidden correla-
tions. Although the independence assumption enables ef-
ficient training and rapid predictions with random forests,
it prevents the model from enforcing dependencies between
variables, and for image segmentation problems, translates
into pixel labellings that do not follow object boundaries
and are not consistent with local or global context. In this
paper, we overcome this problem and encourage forests



to produce spatially compact/coherent pixel labellings. In
what follows, we will show how a learned model of spa-
tial context can be encoded within a decision forest directly.
This leads to smooth, pixel-wise image labellings without
the need for additional post-processing.

One of the key theoretical insights of our work is the
observation that although forests make predictions for each
variable independently, these predictions are related due to
correlations at the feature level. For instance, in the seman-
tic image segmentation task consider the class predictions
of two pixels p and q. From (3) we can see that the MAP la-
bels c∗p and c∗q are functions of the input features responses
v(p) and v(q) i.e. c∗p = f(v(p)) and c∗q = f(v(q)).
Therefore, output-variable dependencies can be encoded in
the features that the forest operates on. We exploit this in-
sight to couple forest predictions in two ways: (i) we enable
long-range geodesic features for soft connectivity between
image regions; (ii) we train entangled classification forests,
where geodesically smoothed, intermediate class posteriors
estimated at higher levels in each tree are used as features
in the training of the tree lower levels. We describe details
of these two contributions in the next two sections.

3. Long-range, soft connectivity features
The need for long-range connectivity features. In [16,
23, 27] the authors have shown how simple pixel compar-
ison features can be effective in classification tasks when
used within a decision forest. Such features are extremely
fast to compute (they involve just pixel-wise read-outs), but
not very expressive. This is illustrated in Fig. 2 where we
compare pair-wise intensity difference features with an al-
ternative feature response based on the cost of the shortest
path connecting the two points. Intuitively, path-based fea-
tures should better capture connectivity between points. In
turn, this could be used within a supervised segmentation
algorithm to decide whether two points should be assigned
the same class label or not. For example, the points r3 and
p3 have identical intensity values. However, one is in the
lungs and the other in the air outside the body. Since the
shortest path connecting them has a high geodesic length
(it cuts through high image gradients, see definition in (4)),
this provides a hint that the two points may not be part of
the same object/class. Similarly, the points r2 and p2, de-
spite being far from each other in Euclidean terms, they are
close in geodesic terms. This provides evidence that they
may belong to the same object (the aorta in this case).
The problem. In theory using pixel-pair geodesic path
lengths within a supervised classifier could enable edge-
aware label smoothing, similar to CRFs. However, these
features need to be available at test time, for any pair of
pixels. But computing any-pair shortest paths within an im-
age on the fly is infeasible. We circumvent this problem
by proposing a novel set of visual features which are com-

Figure 2. Connectivity features. A 2D frontal slice through a 3D
computed tomography scan. (a) Given a pixel pair (a reference
and a probe pixel) popular features only look at the intensities at
the two pixel positions, and ignore what happens in between. (b)
In contrast, the length of the shortest path connecting the pixel pair
carries richer information. The geodesic length of the shortest path
connecting two points provides hints about the points belonging
(or not) to the same object class (e.g. the aorta in the figure).

putationally efficient and yet manage to capture the degree
of connectivity between probabilistically defined image re-
gions. They are based on the use of generalized geodesic
distances, as introduced in [7] and summarized next.
Generalized geodesic distances. Given a grey-valued im-
age J , and a real-valued object “soft mask” (that encodes
pixel likelihood) M(p) : Ω ∈ Nd → [0, 1] the generalized
geodesic distance Q is defined as follows:

Q(p;M,∇J) = min
p′∈Ω

(δ(p,p′) + νM(p′)) (4)

with the geodesic distance between two points p and q:

δ(p,q) = inf
Γ∈Pp,q

∫ l(Γ)

0

√
1 + γ2(∇J(s) · Γ′(s))2ds.

(5)
where Γ is a path connecting the two points and Pp,q is the
set of all possible paths. Thus (4) defines the distance of
any point in the image from a region in the image defined
via the “soft belief” M .
Soft connectivity between a pixel and a class region. Let
us assume that we have an image J and also the belief ma-
trixM associated with a chosen class. Now we can compute
the distance of every point in the image from the given class
region. Note that the class region is defined in a probabilis-
tic way and we do not need to select hard seed positions.
Also, the belief M could be the output of any given prob-
abilistic classifier2. We can think of having C such masks
and thusC such distances associated with each input image.

Figure 3 shows an illustration. Given a depth image
(e.g. acquired with Kinect), we assume we have a classi-

2For example, the map M could be defined as 1 − p, with p the prob-
ability of a pixel belonging to a given object class (In [7] M ∼ 0 when
p ∼ 1).



Figure 3. Generalized geodesic distances from probabilistic
class regions. (a) Ground truth body part labels for a depth image.
(b, c) Approximate class probability maps p(c|v); assumed given
here. (b’, c’) Geodesic-filtered probability maps g(c|v). Notice
how g may be interpreted as an edge-aware, diffused version of the
noisier probabilities p (see definition in (6)). The visual features
used in GeoF are pixel read-outs of the g maps. They efficiently
capture long-range connectivity (of a pixel to a class region).

fier which when evaluated on an image produces the class
probabilities p(c = torso) and p(c = left leg). We can use
those probabilities to construct the soft masksM needed for
the generalized geodesic distance transform, and the cor-
responding filtered probabilities will be g(c = torso) and
g(c = left leg). The g maps (definition in (6)) are an edge-
aware, smoothed version of the class probabilities p. Con-
trast sensitivity is modulated by the geodesic strength pa-
rameter γ ≥ 0 in (5). Next we incorporate geodesic dis-
tances as connectivity features within a classification forest.

4. Entangled geodesic forests
Here we are interested in extremely efficient semantic

segmentation. Thus, we build upon decision forests [3, 5,
8], because of their speed and flexibility. Next we describe
our extension to enable coherent segmentation.

4.1. Entangled soft connectivity features

As illustrated in Fig. 4 in the spirit of entangled
forests [17] we train all trees: (i) in parallel, (ii) in breadth-
first order, and (iii) in sections. When training the first sec-
tion (section 0) only appearance-based features (e.g. raw
intensities) are available. However, when training the next
section more derived features become available. In fact,
the class posteriors p(c|v) of the previous section may be
used as input features to the next [17]. In this paper we
further augment such features by using the geodesically fil-
tered versions of those posteriors, g(c|v).

More formally, we are given an ordered set of sections
(s0, s1, . . . , D), where si indicates the maximum depth of
the ith section and D is the maximum tree depth. Given a
class posterior psi(c|v) computed at the ith section (with
i > 0), its geodesically smoothed version is defined as

gsi (c|v(p)) =
1

W
psi(c|v(p)) e−

Q(p;psi
(c|v(Ω)),∇J)2

σ2 (6)

Figure 4. An entangled geodesic forest. A forest with three en-
tangled trees. The trees are entangled because intermediate pre-
dictions of their top section are used (together with raw intensity
features) as features for training of the lower sections. Only one
entanglement section is shown here, for clarity.

where W is a normalization factor to ensure probabilistic
normalization:

∑
c gsi(c|v) = 1. Q(·) is defined in (4). As

shown in Fig. 3, this operation has the effect of diffusing the
class probabilities spatially, while preserving strong edges.
Feature responses for a reference pixel r are defined as a
function of tree depth d, and as sum, differences or abso-
lute differences between two pixel probe values in different
feature channels3, i.e.

vdi (r) = F d
k (p1) + F d

k (p2),

vdi (r) = F d
k (p1)− F d

k (p2), or
vdi (r) = |F d

k (p1)− F d
k (p2)|

where k ∈ {0, 1, 2} denotes the channel where features are
computed, and: (i) F d

0 (p) = J(p), i.e. the raw image inten-
sities, (ii) F d

1 (p) = ps(d)(c|(p)), i.e. the intermediate class
posteriors computed in the section s(d) defined by the depth
d, and (iii) F d

2 (p) = gs(d)(c|(p)), i.e. the geodesic-filtered
posteriors, capturing connectivity of point p to the region
of class c. The entangled feature channels (k = 1, 2) are
available only for section s1 and greater, and are computed
very efficiently as table look-ups.

4.2. Field-inspired forest training objective

This section describes our second contribution: the use
of a new objective for the forest training procedure. In what
follows we depart from the traditional information-theoretic
training objective, typically used in classification forests,
and derive a random-field inspired objective function.
Information-theory based objective (I). Most algorithms
for training classification forests are greedy and find
the optimal parameters for a split node j as θj =
argminθ E(Sj ,θ) (Fig. 1). The traditional choice for the

3Here the term “feature channel” indicates both the original image
bands (e.g. three bands for color images) as well as derived bands where
features are computed (e.g. gradients or intermediate class probabilities).



objective function E is the Shannon entropy EIT, which af-
ter some algebraic manipulation reduces to

EIT(Sj ,θ) = −
∑

i∈{L,R}

∑
c∈C

n(c,Sij) log
n(c,Sij)
|Sij |

(7)

with n(c,S) denoting the number of training pixels of class
c in the training subset S (please refer to Fig. 1 for notation).
Field-inspired objective (I). Similarly, we can think of
training each tree split node by using an MRF energy E =
ERF, which is typically defined as

ERF(Sj ,θ) =
∑

i∈{L,R}

 ∑
zk∈Sij

ψ(zk;Sij) + λ
∑

zk∈Sij ,r∈N (zk)

φ(zk, r)


with N (zk) denoting a local neighborhood of the point zk.
As unary potentials we choose the commonly used log-loss
ψ(z;S) = − log p(c = c(z)|S). If we ignore the pairwise
term (by setting λ = 0) we get

ERF(Sj ,θ) = −
∑

i∈{L,R}

∑
c∈C

n(c,Sij) log
n(c,Sij)
|Sij |

. (8)

So, we discover that under the above assumptions, (8) and
(7) are identical. Thus, conventional entropy-based tree
training corresponds exactly to minimizing an MRF-like en-
ergy which uses the log-loss as unary and no pairwise term4.
Further interesting findings arise when we consider the ef-
fect of having unbalanced classes in the training set.

4.2.1 Correcting class imbalance

In general, in the original training set S0 we have
n(c1,S0) 6= n(c2,S0), c1, c2 ∈ C. So it is often benefi-
cial to re-balance the effect of different classes (as shown
e.g. in [24]). This is particularly important in the context of
semantic segmentation, where often the pixels in the back-
ground class are much more numerous than those in other
classes. Thus we define the following global re-balancing
factors: ωc =

∑
k∈C n(k,S0)

n(c,S0) and the corresponding node-
based normalization factor Z(Sj) =

∑
k∈C ωk n(k,Sj).

Information-based objective (II). Now, after some alge-
braic manipulation the energy in (7) becomes

EIT(Sj ,θ) = −
∑

i∈{L,R}

∑
c∈C

wc n(c,Sij) log
wcn(c,Sij)
Z(Sij)

.

(9)
Field-inspired objective (II). Analogously, the class-
rebalanced field unary in (8) becomes

ERF(Sj ,θ) = −
∑

i∈{L,R}

Z(Sij)
∑
c∈C

n(c,Sij) log
wcn(c,Sij)
Z(Sij)

.

(10)
4We will discuss the effect of removing the pair-wise interactions later.

Thus, after class re-balancing, the entropy-based en-
ergy in (9) and the field unary in (10) are no longer the
same. Quantitative comparisons in the next section will
show which training objective produces the most accurate
results. Also, as discussed later, the use of connectivity fea-
tures negates the need for a pair-wise term rich energy.

5. Results and Comparisons
We validate our semantic segmentation approach on

four, very diverse labelled image datasets.
LFW: Labelled Faces in the Wild. This is an augmented
version of the public dataset in [1], where we have manually
segmented a subset of 1250 images into the following 8 cat-
egories: background, nose, mouth, L/R eye, L/R eyebrow
and lower face. The contained faces exhibit strong varia-
tions in pose and appearance. Furthermore, the mouth and
eyes show considerable articulation.
CT: Computed Tomography. We tested our algorithm
also against a new dataset of medical images. It comprises
2D coronal slices taken at random positions within labelled,
3D CT scans. As ground truth, different anatomical enti-
ties have been segmented in 3D, using an interactive seg-
mentation tool. We have the following 9 classes: back-
ground (BG), heart (HR), liver (LI), spleen (SP), left/right
lung (LL/RL), left/right kidney (LK/RK) and aorta (AO).
KinBG: depth images. This is a new dataset, similar to the
body-part Kinect dataset in [23], with the difference that
the retargeted mocap characters have been inserted within a
Kinect acquired, real background scene. We have 12 body
parts (L/R head side, neck, torso, L/R arm, L/R hand, L/R
leg, L/R foot) and 3 background classes. In fact, in contrast
to [23], we do not assume a given FG/BG separation, and
the background is subdivided into: floor, back wall and ev-
erything else. This yields a total of 15 classes.
CamVid: video dataset. This road scene video dataset
was initially introduced in [6]. A subset of 711 image
frames are almost entirely segmented into 32 classes. In
our setup, we followed the training/test protocol as in recent
work [6, 13, 29] and used the following 11 object classes:
road, building, sky, tree, sidewalk, car, column-pole, sign-
symbol, fence, pedestrian and bicyclist.
Comparisons with related methods. We provide com-
parisons with various state-of-the-art forest-based ap-
proaches [13, 17, 29]. We also compare against ap-
proaches using forest-based unaries followed by CRF
smoothing [12]. In the latter, as energy model, we used a
log-loss as unary term and a contrast-sensitive Potts model
as pairwise term. Additionally, we also implemented an
auto-context [26] version of classification forests where: A
first forest is trained using raw intensity features; Then, a
second forest is trained using both raw intensities and the
probabilities from the first forest as features. Both entan-
gled geodesic features and un-entangled class posteriors are



Figure 5. The effect of geodesic entanglement on spatial coherence of the output semantic segmentation. (a, g, j) Input test images,
from the LFW, KinBG and CT datasets, respectively. (b, h, k) Ground truth labels (different colors for different classes). (c) Segmentation
results from conventional pixel-wise classification forest. The lack of spatial smoothing produces noisy labeling. Notice also the overly
large eye/eyebrow segments. (d) Results from forest with probability entanglement. Entangling the p feature channels only helps spatial
coherence of the output. (e) Results from forest with geodesic entanglement. Enabling the long-range geodesic feature channels g helps
spatial coherence further. The spurious hand region is gone. (f, i, l) Results from forest with geodesic entanglement and field-inspired
energy term. Using our field-inspired energy term helps further still. e.g. notice the better recovered eyebrow shape in (f).

considered here. A fair comparison is ensured by training
all forest-based algorithms to the same number of nodes.
All baseline algorithms have been individually optimized
so as to yield the highest Jaccard scores.
Qualitative results. Fig. 5 shows qualitative results on
three datasets. The combination of entangled geodesic fea-
tures and log-loss training produces coherent segmentations
without the need for field-based post-processing.
Quantitative results are summarized in Table 5 where we
compare the accuracy of various segmentation algorithms in
terms of their Jaccard score (as adopted also in [2]). For all
forest based algorithms we fix T = 10 and D = 20, except
for the CamVid dataset where we use a maximum depth
D = 17 since the number of training samples is consid-
erably smaller. We also report runtimes for similarly non-
optimized C# implementations. However, decision forests
are well-suited for GPU implementations [22].

Labelled Faces in the Wild. The baseline forest (01)
yields a mean Jaccard score of only 38.1% as it pro-
duces noisy segmentations and overly bold segments for the
smaller objects such as the eyebrows (see Fig. 5 (c)). CRF-
based post-processing (02) boosts the score to 45.2%, still
lower than what our implemented auto-context forest (03)
and our proposed geodesic forests achieve (07-16). Both
the use of entangled geodesic features and the field-inspired
energy help achieve the highest accuracy in this dataset. As
shown in fig. 5f, GeoF better delineates small structures.
Figure 6 plots the testing accuracy of algorithms (01,08,14
and 16) as a function of the tree depth. Entangled geodesic
forests using either of the two energy models (14,16) work
better than the conventional forest (01). Using the field-
inspired energy (16) works better than the conventional
information gain (14). Using two entanglement sections

10 11 12 13 14 15 16 17 18 19 20
15

20

25

30

35

40

45

50

55

60

Tree Depth

J
a
c
c
a
rd

 s
c
o

re

 

 

(01) Classification Forest

(08) Geo Auto−Context, 2
nd

 Forest

(14) Entangled Geo Forest (g), E
IT

(16) Entangled GeoForest (g), E
RF

Figure 6. Accuracy as a function of tree depth D, for different
forest variants, evaluated on the LFW face dataset.

works better than a single one on this data. Our auto-context
geodesic forest (08) does well, but the second forest does
not seem to yield much additional improvement.
In terms of runtime, the standard forest + CRF (02) takes
∼ 0.71s (per frame) vs. ∼ 0.42s for a single-section entan-
gled geodesic forest. Also, forest-based inference is simpler
and more easily parallelizable than using graph-cut algo-
rithms for inference on CRFs.
CT scans. Starting with baseline scores of 53.2% (01) and
68.3% (02) we find again that providing entangled geodesic
features improves on all our compared methods. The auto-
context forest performs well here too, even without these
additional features. However, the best results are achieved



with one or two sections of entanglement in geodesic forests
(12, 16). The CRF approach (02) takes∼ 1.2s per frame
while geodesic forests (12) need ∼ 0.72s.
KinBG depth images. In this dataset the best results are
achieved by our auto-context geodesic forests (07, 08)
which yield strong improvements over the baseline (+ 6.8%
over (01), + 3.9% over (02)). However, using auto-
context forest variants (e.g. 03, 07, 08) results in higher
runtimes as two forests need to be evaluated (resulting in
∼ 1.39s/frame). The CRF approach (02) takes ∼ 1.35s
per frame while entangled geodesic forests are much faster
(∼ 0.64s/frame). In contrast to [23], here we achieve si-
multaneous body parts and background labeling without the
need for a preliminary background removal stage.
CamVid videos. For this dataset we have followed the ex-
perimental setup described in [13], providing Lab raw chan-
nel intensities, first and second order image gradients and
HOG-like features. The baseline result for (01) is 33.3%
which we are able to considerably outperform with all our
geodesic forest variants. The best performing geodesic for-
est (16) improves over the recent work in [13] (+2.1%)
and [29] (+8.7%). The highest score is obtained by the
CRF (02) (41.7%), but at the expense of twice the runtime:
∼ 1.07s/frame for (02) ∼ 0.56s/frame for geodesic forests.
Smoother energy models? In further experiments we have
tried training forests by adding pairwise terms or other
global smoothness terms in the energy (10), but without
consistently improving the accuracy further. These results
suggest that perhaps our long-range connectivity features
already do a sufficient job at capturing spatial smoothness.
Capturing semantic context via entangled geodesic fea-
tures. Figure 7 illustrates how GeoF captures long-range
semantic context on the CT dataset. For a reference pixel of
a given class (e.g. liver) the elements of each matrix indicate
the frequency of classes in the two automatically selected
probes (probe 1 in the rows and probe 2 in the columns).
For example, in Fig. 7a we see that at depth 10 (after one
level of entanglement) when the reference pixel is in the
liver, the two probes tend to be selected (during training)
to also be in the liver. This encourages local context and
label smoothing; and can be thought of as a generaliza-
tion of MRFs where the discriminative cliques are learned
automatically, rather than being manually predefined. For
deeper trees we start to see the effect of longer-range se-
mantic context. For example, in Fig. 7b the probes tend to
be selected frequently also in the heart and right lung re-
gions. This indeed makes sense when the goal is to identify
liver pixels. Similar reasoning applies to other classes (e.g.
see Fig. 7a’,b’,c’ for pixels in the left kidney).

6. Conclusion
This paper has presented a new forest-based model for

structured-output learning, applied to the task of semantic
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Figure 7. Class co-occurrence matrices for the feature probe
pixels. (a, b, c) The reference point is in the liver. (a’, b’, c’) The
reference point is in the left kidney. Co-occurrence matrices are
shown for three different tree depths: D = 10, D = 13, D = 17.
In this dataset (CT) classes are: background (BG), heart (HR),
liver (LI), spleen (SP), l./r. lung(LL/RL), l./r. kidney (LK/RK) and
aorta (AO). This figure demonstrates capturing semantic context.
e.g. in b’ when trying to identify the left kidney it helps to use
probes either in the spleen region (just above the left kidney) or in
the left kidney itself (encouraging local smoothness).

image segmentation. Our model encourages spatial smooth-
ness and long-range, semantic context within the forest it-
self, via the use of new, soft connectivity features which
build upon entangled, generalized geodesic distances. In
addition, the paper shows how training forests by minimiz-
ing a new random field-inspired energy yields higher accu-
racy than entropy based approaches. Quantitative validation
on four diverse image datasets shows at par or better accu-
racy than state-of-the-art approaches, with faster runtimes.
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