
Intelligent Camera Control in a Virtual Environment
Steven M. Drucker David Zeltzer

MIT Media Lab             MIT RLE

Cambridge, MA. 02139, USA

smd@media.mit.edu

dz@irts.mit.edu

Abstract problematic and forces the human VE participant to at-
tend to the interface and its “control knobs” in addition
to  — or instead of — the goals and constraints of the
task at hand. If the intention of the human VE partici-
pant is, e.g., to observe some object X, then allowing
him or her to simply tell the system, “Show me object
X” is a more direct and productive interface. This is an
instance of task level interaction. In earlier work we
characterized the levels of abstraction at which one can
interact with virtual objects and processes, and we
described the varying “access panels” one obtains (5).
Here we will describe a system for specifying behaviors
for virtual cameras in terms of task level goals and
constraints. As in our earlier work on camera control (6,
7), we make task level control available as well as
enabling various direct manipulation metaphors.

This paper describes a framework for exploring
intelligent camera controls in a 3D virtual environment.
It presents a methodology for designing the underlying
camera controls based on an analysis of what tasks are
to be required in a specific environment.  Once an un-
derlying camera framework is built, a variety of inter-
faces can be connected to the framework. A virtual
museum is used as a prototypical virtual environment
for this work.  This paper identifies some of the tasks
that need to be performed in a virtual museum; presents
a paradigm for encapsulating those tasks into camera
modules; and describes in detail the underlying
mechanisms that make up the camera module for
navigating through the environment.

We share the view of many in the user interface
community that one of the first steps in interface design
should be a task analysis of the application  (e.g., (8,
9)). While this may be a difficult exercise in and of
itself, it allows us to identify with reasonable confi-
dence the objects and operations we should provide at
the interface, and to specify the necessary software
abstractions.  While it is impossible to completely
describe human behavior at the visual interface for all
applications, our analysis, and suggests that the generic
visual operations we need to support involve:

Keywords: Virtual Environments, Camera Control,
Path Planning, Task Level Interfaces.

1. Introduction
Current interest in so-called immersive interfaces

and large-scale virtual worlds serves to highlight the
difficulties of orientation and navigation in synthetic
environments, including abstract “data spaces” and
“hypermedia” as well as more familiar modeled exterior
and interior spaces. As Ware and Osborne point out,
this is equivalent to manipulating a viewpoint — a
synthetic camera — in and through the environment (1),
and a number of recent articles have discussed the
camera control problem in detail (1, 2, 3, 4).

• orientation — i.e., visual comparison of ego-
centric and  exocentric coordinate frames;

• navigation from point to point;

Nearly all of this work, however, has focused on
techniques for directly manipulating the camera. In our
view, this is the source of much of the difficulty. Direct
control of the six degrees of freedom (DOFs) of the
camera (or more, if field of view is included) is often

• exploration of unknown areas; and

• presentation to external observers.

 Here we will describe one of the applications we
have chosen in which to implement these ideas, one
which we feel is a visually rich domain — that of an art
museum. The museum contains both two- and three-
dimensional objects spatially arranged in many different
rooms. We chose the museum application because it is a
kind of spatial information space within which we can
formulate a task level description fairly easily. Based on
the chosen  task domain, we interviewed several

 This work was supported in part by ARPA/Rome
Laboratories, NHK (Japan Broadcasting Co.), the
Office of Naval Research, and equipment gifts from
Apple Computer, Hewlett-Packard, and Silicon
Graphics.



architects, museum designers, and interactive exhibit
designers to find out for what basic tasks they might
want assistance. This formed the basis for the task anal-
ysis that underlies the framework for the virtual
museum system.

Hill, has, of course, focused for some time on the
architectural “walkthrough,” and one can argue that
such direct manipulation devices make good sense for
this application. While the same may be said for the
virtual museum, it is easy to think of circumstances —
such as reviewing a list of paintings — in which it is
not appropriate to require the human participant to
physically walk or ride a bicycle. That is, at times, one
may wish to interact with topological or temporal ab-
stractions, rather than the spatial.  Nevertheless, our
camera modules will accept data from arbitrary input
devices as appropriate.

In the next section, we discuss related work.  In
Sections 3 and 4 we describe the basic design of the
virtual museum, including the camera modules  we use
to encapsulate various behaviors for the synthetic
camera. Finally, in Section 5, we present the path-
planning algorithms we have developed which enable
an intelligent camera to actively assist and guide the
human participant as he or she explores the virtual
museum.

Blinn (13) suggested several modes of camera
specification based on a description of what should be
placed in the frame than than just describing where the
camera should be and where it should be looking.2. Related Work

Our current research draws mainly from two
areas: computer graphic work on camera specification
in 3D environments, and robotics research on pathplan-
ning.

Philips et al suggest some methods for automatic
viewing control (3). They primarily use the “camera in
hand” metaphor for viewing human figures in the
Jack™ system, and provide automatic features for
maintaining smooth visual transitions and avoiding
viewing obstructions. They do not deal with the prob-
lems of navigation, exploration or presentation.

Miller et al (10) created a virtual museum as a
multimedia database. They used video segments to
create the feeling of choosing a path through a museum
and selecting objects within the museum. Since video
clips were used, only preexisting paths through the
museum could be selected, although the use of video
did permit real-time display of a high quality virtual
environment on general-purpose hardware. Our
emphasis, however, is on performing multiple tasks in a
synthetic, three-dimensional environment.

Karp and Feiner describe a system for generating
automatic presentations, but they do not consider inter-
active control of the camera (14).

Gleicher and Witkin (26) describe a system for
controlling the movement of a camera based on the
screen-space projection of  an object, but their system
works primarily  for manipulation tasks.

Ware and Osborne (1) described several different
metaphors for exploring 3D environments including
“scene in hand,” “eyeball in hand,” and “flying vehicle
control” metaphors. All of these use a 6 DOF input
dev ice  to  con t ro l  t he  camera  pos i t i on  in  the
virtual environment.  They discovered that flying
vehicle control was more useful when dealing with
enclosed spaces, and the “scene in hand” metaphor was
useful in looking at a single object. Any of these
metaphors can be easily implemented in our system.

Our own prior work attempted to establish a pro-
cedural framework for controlling cameras (6).
Problems in constructing generalizable procedures led
to the current, constraint-based framework described
here.  Although this paper does not concentrate on
methods for satisfying multiple constraints on the
camera position, this is an important part of the overall
camera framework we outline here. For a more com-
plete reference, see (15).

The problem of finding a collision free path
through a complicated environment has been examined
a great deal in the context of robot motion planning.
There have been several attempts at incorporat-
ing pathplanning systems into a graphical environment,
or using the special capabilities of graphics hardware to
assist in path planning (16). In general, the problem can
be thought of as either vector-based approaches or
bitmap approaches, somewhat akin to hidden surface
removal in computer graphics. The vector based
approaches involve decomposing the problem into an
e q u i v a l e n t  g r a p h  s e a r c h i n g  p r o b l e m  b y

Mackinlay  e t  a l  (4)  descr ibe  techniques
for scaling camera motion when moving through virtual
spaces, so that, for example, users can always maintain
precise control of the camera when approaching objects
of interest. Again, it is possible to implement these
techniques using our camera modules.

Brooks (11, 12) discusses several methods for
using instrumented mechanical devices such as
stationary bicycles and treadmills to enable human VE
participants to move through virtual worlds using
natural body motions and gestures. Work at Chapel



constructing visibility graphs or connected regions (17,
18). The bitmap approaches involve discretizing space
into regular occupied or free cells and traveling through
bitmap from one adjacent cell to the next (16, 19, 20).

The overall structure of the Virtual Museum
system is based on a framework for specifying and
controlling the placement and movement of virtual
cameras. This framework is proposed as a formal
specification for many different types of camera control
(15). The central notion of this framework is that
camera placement and movement is usually done for
part icular  reasons,  and that  those reasons can
be expressed formally as a number of constraints on the
camera parameters. We identity these constraints based
on  analysis of the tasks required in the museum. The
entire framework involves a network of camera
modules which encapsulate user control, constraints,
and branching conditions between modules. The work
presented here does not cover the entire framework, but
concentrates on the components of individual camera
modules, some of the types of constraints for the
camera, and different interfaces that can be built to the
system. A more complete description of the entire
framework is available in (15).

Schröder and Zeltzer implemented an algorithm
introduced by Lozano-Perez (17) in a virtual environ-
ment system called BOLIO (21, 22). A visibility graph
was constructed based on the projection of all the
objects in the environment onto the floor plane.  The
actor’s position and the destination position were then
connected to the visibility graph and the A* algorithm
w a s  r u n  t o  s e a r c h  t h e  v i s i b i l i t y  g r a p h .  T h e
entire algorithm needed to be rerun whenever an object
was moved. The visibility graph method tends to
produce paths that graze objects as closely as possible
as well as paths with straight lines connected to
other straight lines which may be an unnatural way to
move a camera. The algorithm also does not take
advantage of the graphics hardware capabilities present
in a graphics workstation. The path planning scheme
described in this paper uses a room-to-room visibility
graph to first determine the overall path for the camera,
but then uses other more appropriate techniques for
negotiating each room.

Our concept of a camera module is similar to the
concept of a shot in cinematography. A shot represents
the portion of time between the starting and stopping of
filming a particular scene. Therefore a shot represents
continuity of all the camera parameters over that period
of time. The unit of a single camera module requires an
additional level of continuity, that of continuity of
control of the camera. This requirement is added
because  o f  t he  ab i l i t y  i n  compu te r  g r aph i c s
to identically match the camera parameters on either
side of a cut, blurring the distinction of what makes up
two separate shots. Imagine that the camera is initially
pointing at character A and following him as he moves
around the environment. The camera then pans to char-
acter B and follows her for a period of time. Finally the
camera pans back to character A. In cinematic terms,
this would be a single shot since there was continuity in
the camera parameters over the entire period. In our
terms, this would be broken down into four separate
modules. The first module’s task is to follow character
A. The second module’s task would be to pan from A
to B in a specified amount of time. The third module’s
task would be to follow B. And finally the last modules
task would be to pan back from B to A. The notion of
breaking this cinematic shot into 4 modules does not
specify implementation, but rather a formal description
of the goals or constraints on the camera for each
period of time.

The local path planning technique used here is
somewhat based on (20)in which the scene is rendered
from an overhead view and a bitmap is constructed with
each pixel representing either free space or an obstacle.
This bitmap was then turned into a configuration space
by growing each obstacle region by the size of the
moving object for several different orientations.  In our
system, we assume a spherical size for the camera
so the configuration space does not need to be concern
with rotation. A numerical function was propagated
through the bitmap from a destination location to the
current location and an appropriate path through
the configuration space was found by following the
downward gradient of the numerical function. Their
goal was not for camera motion planning or even for
graphics animations, but to use a graphic workstation
to assist in robot motion planning. Their paths were not
necessarily suitable for camera movements due to the
distance metric which they chose to propagate through
the configurations space.  They propagated the
numerical function only until it reached a given
starting point. In contrast, our algorithm is designed to
be used in a building environment, precomputing as
much as possible, and is specifically tailored to
controlling a camera in a natural fashion. Most of the modules that are present in the

virtual museum are fairly straightforward and could be
implemented in many different fashions. It is only the
most complicated modules, – e.g. those that handle

3. System Design



moving along a computer generated constructed path –
that show the utility of the framework since they com-
b i n e  c o m p l e x  m o v e m e n t s  w i t h  m u l t i p l e
other constraints.

SGIs and HPs are supported), or software to create a
high quality antialiased image.

•  An object  database for a  part icular
environment. In this case, the database is the virtual
museum which has precalculated colors based
on radiosity computations which the W3D system sup-
ports. The database also contains information about the
placement and descriptions of all artwork within the
museum.

•  Camera modules. These will be described in
detail in the following section.  Essentially, they encap-
sulate the behavior of the camera for different styles of
interaction.  They are prespecified by the user
and associated with various interface widgets. Several
widgets can be connected to several camera modules.
The currently active camera module handles all user
inputs and attempts to satisfy all the constraints con-
tained within the module,  in order to compute
camera parameters which will be passed to the renderer
when creating the final image. Currently, only one
camera module is active at any one time, though if there
were multiple viewports, each of them could be
assigned a unique camera.Figure 1: Overall Virtual Museum System

The overall system for the Virtual Museum is
shown in figure 1.  The W3D system is an extension to
the 3D virtual environment software testbed developed
at MIT (23).  The Virtual Museum system is structured
this way to emphasize the division between the virtual
environment database, the camera framework, and the
interface that provides access to both. The system con-
tains the following elements.

The diagram also shows that there are 7 different
types of interface widgets that can be used to control the
camera within the museum. These different widgets
illustrate different styles of interaction based on the task
level goals of the user.

4. Camera Modules
As shown in figure 2, the generic module will

contain the following components:•  A general interpreter that can run pre-
specified scripts or manage user input.   T h e
interpreter is an important part in developing the
entire runtime system.  Currently the interpreter used is
TCL with the interface widgets created with TK (24).
Many commands have been embedded in the system
including the ability to do dynamic simulation, visibility
c a l c u l a t i o n s ,  f i n i t e  e l e m e n t  s i m u l a t i o n ,
matrix computations, and various database inquiries. By
using an embedded interpreter we can do rapid proto-
typing of a virtual environment without sacrificing too
much performance since a great deal of the system can
sti l l  be writ ten in a low level language l ike C.
The addition of TK provides convenient creation of
interface widgets and interprocess communication. This
is especially important because some processes might
need to perform computation intensive parts of
the algorithms; they can be offloaded onto separate
machines.

Figure 2: Generic camera module containing a controller,
an initializer, a constraint list, and local state

•  the local state vector. This must always
c o n t a i n  t h e  c a m e r a  p o s i t i o n ,  c a m e r a  v i e w
normal, camera "up" vector, and field of view.  State•  A built in renderer. This subsystem can use

either the hardware of a graphics workstation (currently



can also contain values for the camera parameter
derivatives, a value for time, or other local information
specific to the operation of that module. While
the module is active, the state's camera parameters
are output to the renderer.

further the map view. This module's controller maps the
(x,y) position of the user's mouse click  directly into the
current state of the camera.

The view saver module either retrieves the cur-
rent view and saves it as part of the local state, or
retrieves a saved view from the local state information
and sets the camera parameters based on that.

• initializer. This is a routine that is run upon ac-
tivation of a module. Typical initial conditions are to set
up the camera state based on a previous module's state. The joystick module's controller maps the x & y

location of the viewer's mouse click into motion
through the environment.  There is one constraint in the
joystick module that prevents movement through a wall.
Essentially, the constraint draws a line between the
old position of the camera and the new position of the
camera.  If this line does not intersect with any walls in
the environment, then that position is placed into the
camera's state.  If, however, the line does intersect with
a wall, then the old state is kept without any changes. 

•  controller. This component translates user
inputs either directly into the camera state or into con-
straints, there can be at most one controller per module.

•  constraints to be satisfied during the time
period that the module is active. Some examples of
constraints are as follows:

• maintain the camera's up vector to align with
world up.

• maintain height relative to the floor
The painting list is connected to several different

modules.  One module's controller (the paint module)
responds to a double click of the middle mouse button
and sets its state based on the painting's position in the
environment.  In addition,  a constraint is added to the
DOF controller module that constrains the camera to
point toward the specified painting. When double click-
ing with the left button, not only is this constraint added
to the DOF controller module, but source information
and destination information is added to the local state of
the path module.  The source information is based on
the current state of the camera, the destination is based
on the position of the painting in the environment. The
path module contains a constraint which uses this local
informat ion to  construct  a  col l is ion f ree  path
through the environment from the initial state to the
specified final position. 

• maintain the camera's gaze (i.e. view normal)
toward a specified object

• maintain the camera's position on a collision-
free path through world.

In this system, a constraint can be viewed simply
as a black box that produces values for some DOFs of
the camera. The constraint solver combines these con-
straints to come up with the final camera parameters for
a particular module.  Some constraints are desired
values  for  a  degree  of  f reedom,  for  example ,
specifying the up vector for the camera or the height of
the camera.  Some involve calculations that might
produce multiple DOFs,  such as adjusting the view
normal of the camera to look at a particular object.
Some, like the path planning constraint, are quite com-
plicated, and construct a path through the environment
based on an initial and final position.  This allows the
user to see objects within the museum based on some
spatial context or sequence. At any one time step, the
path planning constraint still produces only 2 DOFs for
the camera: the x & y position in world space.

Figure 4: Schematic view of the "path" camera module

In the virtual museum system, modules are acti-
vated by selecting the corresponding interface widget.
The selected widget also passes information to
the controller of the module.

Here is a description of what occurs when the
user  c l i cks  on  the  map view widget .   F i r s t ,  the
corresponding map view module is activated, which
means that this module's state will be used during
rendering. The initializer for this module retrieves the
camera state from the previous module. This allows the
user to control the camera using a single set of controls,
while making it possible to further adjust the position



T h e  path  module is the most complicated
module (see figure 4).  It contains a constraint that
calculates a path from a start position to a destination
position (set when clicking on the painting list). It uses
the local state's time (modified by the time widget) to
indicate the current position of the camera in the (x,y)
plane.  The time widget can either set a particular time,
or continuously update time in order to move forwards
or backwards along the path. The path camera module
uses several additional constraints in calculating the
final camera parameters.  The height is constrained to
be a desired height off the ground (which is adjustable
through the height constraint).  The camera's up vector
is constrained to always point in the same direction as
the world up vector. The gaze direction is adjusted to
look at the destination object when it is visible, or to
look straight ahead (based on the current derivatives of
the camera parameters) when the destination object is
not visible.  Furthermore, the gaze direction is con-
strained to change at a rate no greater than a specified
maximum pan velocity. 

accessibility requirements (such as handicapped access
between rooms).

Traversing the graph is done by a well known
graph searching technique called A* (25).  The A*
process, described in section 5.1, produces a list of
“straight-line” node-node paths. Paths then need to be
computed between each node to avoid obstacles within
each room.

The process of finding the path from a doorway
to any point within a room, or finding the path from any
point in the room to the doorway is discussed in section
5.2. This algorithm is optimized for finding paths that
originate or terminate at a doorway, so another
algorithm must be used to navigate from one point to
another point within a room. This second algorithm,
described in section 5.3, can also deal with a partially
dynamic environment as opposed to the strictly static
environment discussed in the first algorithm. Finally, a
method for generating a guided tour through the
environment is discussed in the last part of section 5.4.

5.1 A*
If instead of a single painting, multiple paintings

have been selected, the path module's path planning
constraint generates a guided tour through all the
selected paintings.  The immediate destination is
kept track of by the controller and placed in the local
state's destination slot.  All the other constraints act in
the same manner as before.

The A* algorithm is based on (25). It is guaran-
teed to return a path of minimum cost whenever that
path exists and to indicate failure when that path does
not exist.

As discussed in Robot Motion Planning (20), the
A* algorithm iteratively explores the node-graph by
following paths that originate at a particular node. At
the beginning of each iteration, there are some nodes
that have already been visited, and some that are as yet
unvisited. For each node that has already been visited,
only the path with minimum cost to that node is
memorized. Eventually the destination node is reached
(if that node is reachable), and the minimum cost path
can be reconstructed. Since the A* is such a common
algorithm, readers are referred either to Hart et al or
LaTombe for a description of the implementation.

5. Pathplanning
The most complicated constraint in the current

framework is used to achieve automatic navigation
through the environment.  The following section
describes this process in detail.

The pathplanning process is decomposed into
several subalgorithms, many of which can be precom-
puted in order to speed calculation as much as possible.
First, a general description of the overall process is
given, then more detailed descriptions of each
subalgorithm follow.

The problem of traveling from one point in the
museum to another point is first decomposed into
finding which doors to travel through. A node to node
connectivity graph is pre-computed based on the
accessibility between adjacent rooms in the environ-
ment. Accessibility can either be indicated by hand, or
by an automatic process which uses a rendered image of
the building floor, clipped at door level, and a simple
visibility test between points on either side of a door.
This visibility graph can be updated based on special Figure 5: Room connectivity graph for the museum with a

path found by A*



5.2 Room to Room Planning the major axes. By using a different distance metric, we
were able to generate paths that made movement along
more axes possible. See figure 7.Once the A* algorithm has produced a list of

node to node connectivities, each of the rooms must be
negotiated from one doorway to the next in turn.  The
method we use is somewhat similar to that of (19)
except for the following: we use a different distant
metric more suited to natural motion,  we pre-compute
and store a navigation function from each door for a
room,  and we fit the results using a spline for a final
representation of the path.

Figure 7: 3 distance metrics and resulting paths.  L1
allows 4 distinct directions of movement.  L2 allows 8, L3
allows 16. We used L4  which allows 32  directions.

To avoid obstacles within the room, we plan a
path based on a two dimensional projection of the
obstacles in the room onto the plane of the floor. Much
of the following work can be done in a preprocessing
stage so that the actual computation of a path through a
room is extremely rapid. The 2D projection of the room
can be rendered using the hardware rendering of a
graphic  workstat ion at  whatever  resolut ion is
appropriate for the path planning. Subsequently a global
numerical navigation function (19) is calculated in a
wavefront expansion from each of the doorways. A
separate navigation map is stored for each doorway into
a room. To demonstrate, a Manhattan (L1) distance
metric is used for the following example, the manhattan
distance metric implies that only the 4 cells surrounding
a cell to the N, S, E and W are considered neighbors.

• the paths produced are discretized into the
space of the rendered image and must be converted into
continuous paths in the space of the room.  We can
transform the points into the proper space using an
affine transformation, and then fit a spline curve to the
points using a least squares curve fitting method to find
the best path. The control points are chosen to be as
evenly spaced as possible while minimizing the differ-
ence between the spline and the sample points. We can
also apply additional tangency constraints at the starting
and ending points to make sure that the path goes
through doorways in a perpendicular fashion.

Figure 6: Navigation function calculated with a manhattan
metric (L1) starting from the 0. One path planned from
the upper right by following the gradient downwards.

Once the navigation function is computed for a
room, it is possible to travel to anywhere within the
room by simply following the gradient of the distance
function from the goal point back to the origin of the
navigation function. There are a few problems that exist
in using the algorithm as is:

 • the paths generated by the algorithm tend to
graze objects as closely as possible which is unaccept-
able for camera motion.  To fix this,  the objects are
increased in size by a fixed amount in all directions.
This prevents the navigation function from passing too
close to any object in the environment.

Figure 8: An eventual path from left middle, to middle
bottom through 5 rooms of the museum. The navigation
function that was used for each room is pictured.  Usually
the navigation is chosen for a room is the one generated
that leads to the exit door of that room. In the final room,
the algorithm is run backwards and calculates a path from
the destination location to the entry room.  The resultant
path is reversed and combined with the other paths.

• the paths generated from using a Manhattan
metric produce paths that are unacceptably aligned to



5.3 Travel within a Room
Path planning using the global navigation

function as described in section 5.2 is extremely
convenient because all the computation intensive work
can be performed in a preprocessing stage (all the
renderings of the scene, and the propagation of the
distance function along the image, for each doorway).
The final path planning process is extremely rapid on a
typical workstation (less than .5 secs on an R3000 SGI).
There are however 2 drawbacks to this algorithm: 

Figure 9: A precalculated repulsive potential is added to a
run-time attractive potential to produce the final
navigation function on the right.  This is used to guide a
breadth first search through potential space to find the
resultant path.

Simple gradient following tends to get trapped
into local minima. Instead of always following the
gradient, the gradient information in the discrete grid is
used as a breadth first guide in a search of the entire
grid space. When the algorithm heads into a local
minima, the algorithm essentially backs out of the
minima on its way to finding the appropriate path to the
goal. Again, the algorithm produces discretized paths
which must then be fi t  by splines to produce a
continuous path.

• it does not deal with planning a path from one
point within a room to another point within the room.
Because the navigation function is calculated from the
doorways of a room, we can conveniently find a path
from any point in the room to a doorway, or from a
doorway to any point in the room.  But we can not
easily find a path between two points in a room except
via a doorway.

•  it does not deal with dynamically changing
environments. The entire, computation intensive parts
of the algorithm must be rerun whenever an obstacle in
the environment moves.

5.4 Tour Planning
Finally, we developed an algorithm to generate

the shortest path that will view all the artwork that is
specified by the user. In a similar fashion to the point to
point navigation, the tour planner divides the problem
up in several stages. First, the algorithm locates all the
rooms that are slated to be visited. Then, an exhaustive
search is made of all the paths that connect each room.
This is an exponential time algorithm, but since there is
a relatively low branching factor for each room (as well
as a fairly small number of rooms), the algorithm is still
rapid enough to be used interactively. After the rooms
have been ordered, the paintings within each room need
to be ordered based on the entry and exit doors (visit the
painting first which is closest to the door from which
the room is entered, and visit the painting last next to
the exit door). At this point we have a list of paintings
that will  be visi ted in the order specified.  The
algorithms discussed in the previous three sections can
be used to plan paths between each of the paintings and
the results can be combined into the global tour.

To address the problems described above, an
alternate path planning algorithm loosely based on (19)
can be used. More computation needs to be done for
this algorithm so it is only used when necessary.

Again, as much preprocessing as possible is
performed to make the algorithm as interactive as
possible. As before, the static part of a scene is
projected onto a 2D plane by graphics hardware.
Wavefront expansion is used to propagate a penalty
distance function outwards from each object. The
wavefront expansion is stopped as soon as the wave
meets another wave coming from some other object (or
from another place on the same object).  We can use a
manhattan (L1) distance metric, but we keep track of
the origin pixel of each wavefront.  For each pixel, we
can then calculate the Euclidean distance to the nearest
object.  This preprocess generates a distance map which
can be turned into a repulsive gradient field by using a
function like a/dn where d is the distance, a and n are
constants that can be chosen for the task. An absolute
cutoff value beyond which repulsion effects are ignored
can be used if desired.

6. Summary
We have presented an overall framework for

exploring camera controls in a 3D virtual environment.
Special constraints based on an analysis of task
requirements can be designed and combined with a host
of other constraints for camera placement. Interfaces
can be connected to the system to explore human
factors issues while maintaining a consistent underlying
structure.  We feel that it is important to separate the

At runtime, an attractive potential is created to
the goal destination (using a function of the form c*dn

where d is the distance and c and n are chosen for the
task) and this is summed with the repulsive potential.
Any moving obstacles can also generate a repulsive
potential.  The sum of the potentials produces the
overall gradient.



underlying framework which can incorporate task level
requirements  from the user interface.

10. Miller, G., et al.,  The Virtual Museum: Interactive 3D
Navigation of a Multimedia Database. The Journal of
Visualization and Computer Animation, 3(3), pp. 183-197.

Future  work  can  be  in  severa l  d i f fe ren t
directions.  More efficient path planning algorithms can
be substituted into the camera module framework as
they are implemented.  In particular, algorithms to deal
with totally dynamic environments would be useful.
One common task in many virtual environments is the
presentation of the information to a third party observer.
While the path planning constraint goes toward
convenient automatic presentation, a number of other
considerations must be made, including the difficult
problem of editing a single move into several, smaller
cuts.   We are incorporating a  variety of constraints
from cinematography into the camera framework and
current work is progressing on techniques that combine
those constraints in a meaningful fashion.

11. Brooks, F.P., Jr. Grasping Reality Through Illusion --
Interactive Graphics Serving Science in Proc. Proc. CHI ‘88,
May 15-19, 1988, pp. 1-11.

12. Brooks, F.P., Jr. Walkthrough -- A Dynamic Graphics
System for Simulating Virtual Buildings in Proc. Proc. 1986
ACM Workshop on Interactive 3D Graphics, Chapel Hill
NC, October 23-24, 1986, pp. 9-21.

13 Blinn, J. Where am I? What am I looking at? IEEE
Computer Graphics and Applications :76-81; (July 1988).

14 .  Karp ,  P .  and  S .  Fe iner .  Issues in the Automated
Generation of Animated Presentations i n  Proc.  Graphics
Interface ‘90, Halifax, Nova Scotia, pp. 39-48.

15 Drucker, S.M. Intelligent Camera Control in Graphical
Environments, PhD Thesis,  1994, Massachusetts Institute of
Technology, Cambridge, MA.

16. Lengyel,  J. ,  M. Reichert,  B.R. Donald, and D.P.
Greenberg. Real-Time Robot Motion Planning Using
Rasterizing Computer Graphics Hardware i n  Proc.  ACM
SIGGRAPH 90, Dallas TX, August 6-10, 1990, pp. 327-335.

References
1. Ware, C. and S. Osborn. Exploration and Virtual Camera
Control in Virtual Three Dimensional Environments in Proc.
Proc. 1990 Symposium on Interactive 3D Graphics,
Snowbird, Utah, March 25-28, 1990, pp. 175-184.

17. Lozano-Perez, T. and M.A. Wesley, An Algorithm for
Planning Collision-Free Paths among Polyhedral Obstacles.
Communications of the ACM,  22(10), October 1970, pp.
560-570.2. Chapman, D. and C. Ware. Manipulating the Future:

Predictor Based Feedback for Velocity Control in Virtual
Environment Navigation i n  Proc. 1992 Symposium on
Interactive 3D Graphics, Cambridge, MA: ACM Press,
March 30-April 1, 1992, pp. 63-66.

18. Brooks, R.A. Solving the Find-Path Problem by Good
Representation of Free Space in IEEE Trans. Systems, Man
and Cybernetics, SMC-13(3), March/April 1983, pp. 190-
197.3. Phillips, C.B., N.I. Badler, and J. Granieri. Automatic

Viewing Control for 3D Direct Manipulation in  Proc.  1992
Symposium on Interactive 3D Graphics, Cambridge MA:
ACM Press, March 29 - April 1, 1992, pp. 71-74.

19. Barraquand, J., B. Langlois, and J.C. Latombe. Numerical
Potential Field Techniques for Robot Path Planning,
STAN-CS-89-1285, 1989, Stanford University.

20. Latombe, J.-C., Robot Motion Planning. 1991, Kluwer
Academic Publishers.

4 Mackinlay,  J .S. ,  S.  Card,  and G. Robertson, Rapid
Controlled Movement Througha Virtual 3d Workspace.
Computer Graphics, 24(4), pp. 171-176. 21. Schröder, P. and D. Zeltzer. Path Planning in BOLIO in

Course Notes, Synthetic Actors: The Impact of Artificial
Intelligence and Robotics on Animation, Atlanta GA,
August 2, 1988.

5. Zeltzer, D., Task Level Graphical Simulation: Abstraction,
Representation and Control,  i n  Making Them Move:
Mechanics, Control and Animation of Articulated Figures,
N. Badler, B. Barsky, andD. Zeltzer, eds., 1991,  Morgan
Kaufmann: San Mateo CA, pp. 3-33.

22. Zeltzer, D., S. Pieper, and D. Sturman. An Integrated
Graphical Simulation Platform in Proc. Graphics Interface
‘89, London, Ontario, Canada, June 19-23, 1989, pp. 266-274.6. Drucker, S., T. Galyean, and D. Zeltzer. CINEMA: A

System for Procedural Camera Movements i n  Proc.  1992
Symposium on Interactive 3D Graphics, Cambridge MA:
ACM Press, March 29-April 1, 1992, pp. 67-70.

23. Chen, D.T. and D. Zeltzer. The 3d Virtual Environment
and Dynamic Simulation System, Computer Graphics And
Animation Group, August 1992, MIT Media Lab, Cambridge
MA.7. Zeltzer, D. and S. Drucker. A Virtual Environment System

for Mission Planning in Proc. 1992 IMAGE VI Conference,
Phoenix AZ, June 19-23, 1992, pp. 125-134.

24.  Ousterhout ,  J .K.  Tcl: An Embeddable Command
Language in Proc. Proc. 1990 Winter USENIX Conference.

8. Brooks, R., Comparative Task Analysis: An Alternative
Direction for Human-Computer Interaction Science,  i n
Designing Interaction:  Psychology at the Human-
Computer Interface, J.M. Carroll, ed., 1991, Cambridge
University Press: Cambridge, England, pp. 50-59.

25. Hart, P.E., N.J. Nilsson, and B. Raphael, A Formal Basis
for the Heuristic Determination of Minimum Cost Paths.
IEEE Transactions on Systems Man and Cybernetics,
4(2), 1968, pp. 100-107.

26. Gleicher, M. and A. Witkin Through-the-Lens Camera
Control..Computer Graphics 26(2), 1992, pp. 331-340.9. Bass, L. and J. Coutax, Developing Software for the User

Interface. 1992, Reading MA: Addison-Wesley.



        

        


