

High-Level Executable Specification of the

Universal Plug and Play Architecture

U. Glässer, Y. Gurevich and M. Veanes

Microsoft Research, Redmond, WA

{glaesser, gurevich, margus}@microsoft.com

Abstract

Recently, Microsoft took a lead in the development of a

standard for peer-to-peer network connectivity of various

intelligent appliances, wireless devices and PCs. It is

called the Universal Plug and Play Device Architecture

(UPnP). We construct a high-level Abstract State Machine

(ASM) model for UPnP using AsmL. AsmL is an advanced

ASM-based executable specification language that has

been developed at Microsoft Research. It provides a

modern specification environment that is object-oriented

and component-based. AsmL is integrated into Microsoft

Visual Studio, Word and COM.

1 Introduction

The group on Foundations of Software Engineering at

Microsoft Research has developed a high-level executable

specification language based on the concept of Abstract

State Machines (ASMs) as defined in [14]. The language

is called AsmL, the Abstract state machine Language [22],

and is integrated with Microsoft‟s software development

environment including Visual Studio, Word, and

Component Object Model (COM). AsmL effectively

supports specification and rapid prototyping of object

oriented and component oriented software.

The main strength of ASMs in general and AsmL in

particular is their precise, rigorously defined semantics

together with an application oriented view of specification

as a practical tool for systems design and reverse

engineering. Based on an abstract operational computation

model, ASM specifications often look like pseudo code

over abstract data structures. As such, they are easy to

read and understand by system engineers and program

developers. Moreover, practical experiences with

industrial applications helped to establish a pragmatic

understanding of how to model complex system behavior

with a degree of detail and precision as needed.

ASMs have been used to specify architectures,

protocols and languages [1] including both programming

languages, e.g. Java [24], and modeling languages, e.g.

VHDL [6] and SDL [12]. Also, they have been used as a

basis for industrial standardization. For instance, the

International Telecommunication Union (ITU) recently

approved an ASM-based formal definition of SDL as the

current SDL standard [21].

AsmL was developed in order to deploy the ASM

technology for industrial software development, in

particular at Microsoft; see [18] for an overview. A well-

known problem in industrial software development is that

the documentation of a system and its actual

implementation are often miles apart. Starting from high-

level requirements and design specifications, which

typically come in the form of natural language documents,

software developers usually produce no further

documentation other than the implementation itself. Also,

the informal documentation is based on an initial design

and is usually not kept up-to-date with the actual

implementation as the latter evolves.

In several pilot projects, we introduce ASM technology

to Microsoft product groups in an attempt to bridge the

gap between specification and implementation. In this

context, we use AsmL as a domain-specific language [10]

for the development of high-level executable specifi-

cations of dynamic system properties. Our approach is

based on an abstract operational view of system behavior

and as such offers appropriate notations and abstractions

to formalize operational semantics. The language has

therefore built-in abstract data structures such as sets,

maps and sequences, and abstract control constructs

including non-deterministic choice and parallel trans-

actions. However, AsmL is not intended to be an

implementation or programming language, especially if

performance is a major concern.

In this paper we summarize our experience from using

ASM technology in a recent pilot project at Microsoft.

This project was done with a group that has developed a

standard for peer-to-peer network connectivity of various

intelligent appliances, wireless devices and PCs. The

current version of the standard is the Universal Plug and

Play (UPnP) Device Architecture V 1.0 defined in [26];

see also the website [25] of the industrial UPnP Forum.

Here is how UPnP is described in [26]:

Universal Plug and Play is a distributed, open

networking architecture that leverages TCP/IP and the

Web technologies to enable seamless proximity

networking in addition to control and data transfer

among networked devices in the home, office and

public spaces.

Starting from an informal specification of the UPnP

standard, we construct two models, a higher-level model

described in Section 4, and a lower-level model that is

described in full detail in the technical report [13]. These

models are concurrent, interactive, and real-time

dependent.

What are executable mathematical models good for?

Unlike traditional engineering disciplines, like mechanical

or electrical engineering, systems engineering heavily

relies on informal documentation. Such informal

documentation is necessary and, as in the case of UPnP,

may be informative and useful. Still, informal

documentation is informal and thus may be and often is

ambiguous, incomplete, and even inconsistent. Properly

constructed, mathematical models are consistent, avoid

unintended ambiguity and are complete in the appropriate

sense. In contrast with informal documen-tation, our

mathematical models are executable and so they can be

used to explore and test the design. You can validate your

models and generate test suites for conformance testing of

your implementation. Let us emphasize that our

mathematical models build on the given informal

description. We fix loose ends, resolve ambiguities and

inconsistencies, separate concerns, etc. Gradually the

given informal description gives rise to an executable

mathematical model or to a hierarchy of such models.

The Document Structure. Section 2 gives a very brief

overview of the UPnP protocol and illustrates a sample

UPnP device without going into technical details.

Section 3 introduces distributed real-time ASMs, the

mathematical framework used here. However, it is not

strictly necessary to read this section in detail, as the main

idea of AsmL is that it should read like pseudo code over

abstract data structures and be widely self-explanatory.

Section 4 exemplifies the construction of the UPnP

machine model. The emphasis here is on the modeling

paradigm. Therefore we will concentrate on one core part

of the model (the part that is used to model the network)

rather than try to give a comprehensive overview of the

entire model. The interested reader may thus consult the

technical report [13] for further details. New language

constructs, unless self-explanatory, are explained step by

step as we introduce more parts of the model.

Related work is discussed in Section 5. Some

concluding remarks are presented in Section 6.

2 The UPnP protocol

In the given application context, we attempt to

accurately reflect the abstraction level of the informal

description of the UPnP Device Architecture as defined in

[1]. Nonetheless, one wants to abstract from those details

that are irrelevant for the understanding of the principle

protocol behavior. To figure out what is relevant and what

can be neglected is often not trivial and sometimes

impossible without consulting the application domain

experts. In our case these experts are the UPnP developers

at Microsoft.

We briefly summarize here the basic characteristics of

the UPnP architecture. Technically, this is a layered

protocol architecture built on top of TCP/IP networks by

combining various standard protocols, e.g. such as DHCP,

SSDP, SOAP, GENA, etc. It supports dynamic

configuration of any number of devices offering services

requested by control points. To perform certain control

tasks, a control point needs to know what devices are

available (i.e. reachable over the network) and what

services these devices advertise. A concrete example of a

UPnP service is illustrated below.

2.1 Protocol restrictions

In general, the following restrictions apply.

Devices may come and go at any time with or without

prior notice. Consequently, there is no guarantee that a

requested service is available in a given state or will

become available in a future state.

An available service may not remain available until a

certain control task using this service has been completed.

Control points and devices interact through exchange

of messages over a TCP/IP network, where specific

network characteristics (like bandwidth, dimension,

reliability) are left unspecified. As such, communication is

considered to be neither predictable nor reliable, i.e.

message transfer is subject to arbitrary and varying delays,

and certain messages may even get lost.

2.2 Protocol phases

The UPnP protocol defines 6 basic steps or phases.

Initially, these steps are invoked one after the other in the

order given below, but may arbitrarily overlap afterwards.

0) Addressing is needed for obtaining an IP address when

a new device is added to a network. 1) Discovery informs

control points about the availability of devices and their

services. 2) Description allows control points to retrieve

detailed information about a device and its capabilities. 3)

Control provides mechanisms for control points to access

and control devices through well-defined interfaces. 4)

Eventing allows control points to receive information

about changes in the state of a service at run time. 5)

Presentation enables users to retrieve additional device

vendor specific information.

2.3 Sample UPnP sevice

As an example we consider a CD player. In the full

model [13] this device has two different services, called

ChangeDisc, and PlayCD, where Figure 1 illustrates

only the first one. It allows a control point to add or

remove discs from the CD player, to choose a disc to be

placed on the tray, and to toggle (open/close) the door.

The figure illustrates the relevant state information

associated with the service.

Figure 1. ChangeDisc service of a CD Player.

3 Distributed real-time ASMs

This section briefly describes the model of distributed

real-time ASMs and the related notions of concurrency

and time. Aiming at an intuitive understanding, we treat

here the underlying semantic concepts in a rather informal

style.
1
 We start by explaining some basic concepts.

3.1 Abstract State Machines

An ASM A is defined over a fixed vocabulary V, some

finite collection of function names and relation names.

Technically speaking, relations are actually represented as

Boolean valued functions; however, it is convenient to

make this distinction. Names in V may be marked as static

1 For a rigorous mathematical definition of the theory of Abstract

State Machines (formerly called evolving algebras), see the original
literature [14, 15].

indicating that they have the same interpretation in all

states of A. Non-static names are called dynamic.

States of A are first-order structures with a fixed

common base set. Different states may interpret dynamic

names of V in different ways over the same base set.

Unary relations defined on the base set have a special role;

they can be interpreted as universes, or domains,

classifying the objects under consideration. To represent

additional computational resources, the base set contains a

potentially infinite set, the reserve. Elements from the

reserve serve to extend dynamic universes at run time.

Given a vocabulary, A is defined by its program P and

a set of distinguished initial states S0. The program P

specifies possible state transitions of A in terms of finite

sets of local function updates on a given global state. Such

transitions are atomic actions. Starting from an initial

state, executions of P produce finite or infinite runs as

illustrated in Figure 2 (where the i refer to updates sets).

Figure 2. Abstract State Machine run.

3.1.1 Program. A program P consists of transition rules.

We define complex rules inductively as composition of

basic update instructions using a few simple rule

constructors. A basic update instruction operates on a giv-

en functions f and has the general form f(t1, t2,, tn) t0,

where the ti „s (i = 0,,n) are ground terms. The effect of

this instruction is a local value assignment, where the

value of f at the given location identified by t1, t2,, tn is

replaced by the value denoted by of t0.

The canonical rule constructor is the block construct,

also called “do in-parallel”, which allows for the

synchronous parallel composition of rules. It has the

general form illustrated below, where the “do in-parallel”

part is optional (and usually is omitted). The update set

computed by R over a given state is defined to be the

union of the individual update sets as associated with R1

and R2 respectively.

R = do in-parallel R1 R2

3.1.2 Examples. The following ASM program (written in

AsmL) shows the part of the specification of the

ChangeDisc service that is executed when invoked with

the "AddDisc" action. The declarations of the function

names are as follows, where all but SLOT and AllSlot

are declared as dynamic. We will use the following style

throughout this document to highlight AsmL code.

universe SLOT
DiscSlots as Set of SLOT
var OccupiedSlots as Set of SLOT

10

.

9

8

7

6

5

4

3

2

1

.

.

.

.

.

.

CurrentSlotDeviceSlots

DoorIsOpen

DoorIsStuck

Occupied

Slots

10

.

9

8

7

6

5

4

3

2

1

.

.

.

.

.

.

CurrentSlotDeviceSlots

DoorIsOpen

DoorIsStuck

Occupied

Slots

S0 S1 S2 S3

0 1 2

S0 S1 S2 S3

0 1 2

var DoorIsStuck as Boolean
var DoorIsOpen as Boolean
var CurrentSlot as Integer

Upon invocation of the AddDisc action, the door of the

CD player is opened (unless stuck) and one of its un-

occupied slots (if any) is made current. The non-

deterministic choose construct chooses some available

slot. Notice that this is a specification of all the allowed

behaviors. When this specification is executed, the choice

is made randomly. However, any particular

implementation conforming to this specification could use

some deterministic algorithm for choosing an empty slot.

AddDisc() =

 let emptySlots= DeviceSlots-OccupiedSlots
 if not(DoorIsStuck or emptySlots={}) then
 DoorIsOpen := true
 choose slot in emptySlots do
 CurrentSlot := slot
 else
 raise error condition

This is to illustrate the use of another key control

construct of ASMs: do-for-all. We consider a specific-

ation of a hypothetical action that re-moves all currently

occupied slots as a single transaction.

RemoveDiscs() =
 forall s in OccupiedSlots do
 OccupiedSlots(s) := false

3.1.3 Abstract data structures. In order to simplify

modeling and to stay close to the informal understanding,

AsmL provides a rich background structure. In particular,

we use dynamic sets and maps in our model. Both maps

and sets may be viewed as aggregate entities and may be

updated point-wise, for instance, as done for Occupied-

Slots in the above example.

3.2 Real-time behavior

For dealing with real-time constraints, we employ a

discrete notion of time abstractly representing time in a

distributed system as global system time. Time values are

represented as real numbers by the elements of a linearly

ordered domain TIME. We can assume here that TIME is a

subset of the real numbers and define the relation “” on

time values through the corresponding relation on real

numbers. Our notion of time is based on the view that we

can only observe, but not control, how physical time

evolves. Accordingly, we introduce a nullary function now

taking values in TIME.

var now as TIME

Intuitively, now represents the global system time as

measured by some discrete clock. One can reasonably

assume that the values of now change monotonically over

ASM runs. This way, we model timeout events through

timer mechanisms that refer to the global system time.

In a real-time context it is appropriate to assume that

rules are fired instantaneously, i.e. as soon as a state is

reached in which the rules are enabled. (Strictly speaking,

one must assume here some non-zero delay to preserve the

causal ordering of actions and events; though, this delay is

immaterial from an application point of view.).

3.3 Distributed computation model

The distributed ASM model is a generalization of the

basic model described in Section 3.1. A distributed ASM

consists of a collection of autonomously operating agents

interacting through globally shared states. Cooperatively

these agents perform some distributed computation based

on a concurrent execution model, where the computation

steps of the individual agents are atomic actions.
2
 The

underlying semantic model regulates interaction between

agents so that potential conflicts are resolved according to

the definition of partially ordered runs [14].

Agents are elements of a dynamic universe AGENT.

Each agent has a program defining its behavior much like

in the basic ASM model of Section 3.1. A distinguished

nullary function me is used as a self reference for agents.

When a new agent is introduced at run time, some

program Program(me) from a statically defined set of

programs is assigned to that agent.

3.3.1 The external world. Any interaction between the

model and the external world, as observable at the

respective interfaces, is reduced to interaction between

two different categories of agents: (1) explicitly defined

agents of the model, and (2) implicitly given agents of the

environment. The non-deterministic nature of environ-

ment agents naturally reflects the system view of the

external world. Thus the environment may also affect state

transitions by altering dynamic functions. However, this

does not mean that the environment behaves in a

completely unpredictable way; rather one can formulate

reasonable integrity constraints on external actions and

events where appropriate.

3.3.2 Interleaving. In the current implementation of

AsmL distributed agents are not fully supported in the

language. In order to execute a distributed ASM written in

AsmL, a top-level scheduling loop is needed to interleave

the agents. Such a scheduler may be defined as follows.

RunToplevel() =
 choose a in AGENT do Program(a)

2 Note that we do not make any particular assumptions about the

duration of atomic computation steps, although, they are basically
considered as time-consuming actions.

4 Abstract State Machine model of UPnP

A reasonable choice for the construction of an abstract

UPnP protocol model is a distributed real-time ASM

consisting of an arbitrary number of asynchronously

communicating components. Intuitively, a component

either represents a device, a control point or some fraction

of the underlying communication network. With each

component type we associate one or more interfaces such

that any interaction between a component and any other

component is strictly restricted to actions and events as

observable at these interfaces. Additionally, actions and

events in the external world, the environment into which

the system under consideration is embedded, may affect

the system behavior in various ways. For instance, the

transport of messages over the communication network is

subject to delays and sometimes messages may even get

lost. Also, the system configuration itself may change as

devices come and go. Such actions and events are

basically unpredictable. We therefore introduce an

additional GUI that allows for user-controlled interaction

with the external world. The overall organization of the

model is illustrated in Figure 3.

Figure 3. The distributed ASM model of UPnP.

At the component level, control points and devices are

further decomposed, where each individual component

splits into some collection of synchronously operating

functional units. This decomposition is such that each of

the resulting units participates in a different protocol step.

Accordingly, we model control points and devices as

parallel compositions of synchronously operating ASMs.

4.1 TCP/IP network and protocols

To model the network behavior, we define an

abstraction of TCP/IP networks using standard network

terminology [9]. Our network model is based on a

distributed execution model faithfully reflecting the fact

that a TCP/IP network usually consists of some (not

further specified) collection of interconnected physical

networks. However, we abstract here from topological

details, e.g. how a global network is formed by

interconnecting local networks by means of routers (or

gateways); rather we describe the overall network

behavior through a collection of concurrently operating

communicators, each of which refers to some local

network in conjunction with its adjacent routers.

Conceptually, we separate the behavior of the network and

its routers from the behavior of the hosts attached to this

network as illustrated in Figure 4.

Figure 4. Communicators.

Based on the two standard transport level protocols, the

User Datagram Protocol (UDP) and the Transmission

Control Protocol (TCP), user level processes, or

application programs, interact with each other by

exchanging messages over the network. According to this

view, there may be several application programs running

on a single host. The address of an application program is

given by the IP address of its host in conjunction with a

unique protocol port number on this host. In our case,

several control point programs may run on the same host.

Devices, however, are considered as individual hardware

units; therefore they are identified with the hosts on which

they run.

4.2 Basic agent types

This section introduces various universes identifying

the basic types of agents and gives an overview on how

they are related with each other. The main types of agents

are the following.

universe AGENT
universe COMMUNICATOR

Controller Model

synchronous

Device Model

synchronous

Network Model

Asynchronous
Abstraction of TCP/IP networks

Interface

GUI

External World

(Visual Basic)
Interface

Controller Model

synchronous

Device Model

synchronous

Network Model

Asynchronous
Abstraction of TCP/IP networks

Interface

GUI

External World

(Visual Basic)
Interface

R2

R3

R1

Hosts

Router

Communicator 1 Communicator 2

Network 2 Network 1

R2

R3

R1

Hosts

Router

Communicator 1 Communicator 2

Network 2 Network 1

universe CONTROLPOINT
universe DEVICE

The Dynamic Host Configuration Protocol (DHCP)

enables automatic configuration of IP addresses when

adding a new host to a network. We model interaction

between a DHCP server and the DHCP client of a device

explicitly only as far as the device side is concerned. The

server side is abstractly represented through one or more

external DHCP server agents whose behavior is left

implicit. In our model, the DHCP server represents

another type of application program.

universe DHCPSERVER

Control points, devices and DHCP servers are

collectively called applications. The applications and the

communicators are modeled as autonomous agents.

APPLICATION = CONTROLPOINT

 DEVICE

 DHCPSERVER

AGENT = APPLICATION COMMUNICATOR
An overview of the various agent types and the

relations between them is presented in the form of a UML

class diagram in Figure 5.

4.3 Timeout events

A universe DURATION represents finite time intervals

as differences between time values.

universe DURATION

Every agent a may employ several distinct timers for

different purposes. Each individual timer t has its own

predefined duration effectively determining the expiration

time when setting t. In a given state, a timer t is active if

and only if its expiration time time(a,t) is greater than

the value of now. Otherwise, t is said to be expired.

universe TIMER = {discovery, }

duration(me as AGENT,
 t as TIMER) as DURATION

var time(me as AGENT,
 t as TIMER) as TIME

For a given timer t of an agent, the operation of setting

t can be defined as follows.

SetTimer(me as AGENT, t as TIMER) =
 time(me, t):= now + duration(me, t)

In a given state, a predicate Timeout indicates for a

given timer t and agent me whether or not t has expired.

Timeout(me as AGENT, t as TIMER) as

Boolean = now time(me, t)

Figure 5. UML class diagram of the agents.

4.4 Addressing and messaging

This section defines the representation of addresses and

messages together with the mechanisms for sending and

receiving messages. Our model abstractly reflects the

view of the transports TCP and UDP. At the given level of

abstraction, the actual difference between TCP and UDP

is that the former is reliable whereas the latter provides a

best-effort, connectionless packet delivery service, i.e.

message may get lost, duplicated or received out of order.

4.4.1 Addresses. We introduce a static universe

ADDRESS of IP addresses extended by protocol port

numbers to refer to the global TCP/UDP address space.

Each application under consideration has a dynamic

function address identifying an element from ADDRESS.

universe ADDRESS
var address(me as APPLICATION) as ADDRESS

When a new device is added to the network, it does not

yet have an IP address, but uses its hardware address for

communication with a DHCP server. We abstractly model

hardware addresses as elements of some static universe

HWADDRESS.

universe HWADDRESS
hwAddress(me as DEVICE) as HWADDRESS

mailbox: Set of MESSAGE

AGENT

routingTable:

ADDRESS Set of COMMUNICATOR

adressTable: ADDRESS Set of ADDRESS

COMMUNICATOR

address: ADDRESS

network: COMMUNICATOR

APPLICATION

status: DEVICESTATUS

services: Set of SERVICE

type: String

uid: String

DEVICE

search: DATA

action: DATA

CONTROLPOINT

DHCPSERVER

mailbox: Set of MESSAGE

AGENT

routingTable:

ADDRESS Set of COMMUNICATOR

adressTable: ADDRESS Set of ADDRESS

COMMUNICATOR

address: ADDRESS

network: COMMUNICATOR

APPLICATION

status: DEVICESTATUS

services: Set of SERVICE

type: String

uid: String

DEVICE

search: DATA

action: DATA

CONTROLPOINT

DHCPSERVER

4.4.2 Messages. Messages are uniformly represented as

elements of a dynamic universe MESSAGE. Each message

is of a certain type from the static universe MSGTYPE. The

message type in fact determines whether a message is to

be transmitted using UDP or TCP, though we do not make

this distinction explicit here.

universe MESSAGE initially {}
universe MSGTYPE =
 {advertisement, revocation, ...}

A message uniquely identifies a sender, a receiver, a

message type, and the actual message data, or payload.

The payload can be any finite representation of data to be

transferred from a sender to a receiver. To limit the

maximum number of routers that a message can pass on

its way from the sender host to a destination host, a time-

to-live or TTL, is assigned when the message is created.

(UPnP defines the initial TTL to be 4).

universe DATA
var sndr(me as MESSAGE) as ADDRESS
var rcvr(me as MESSAGE) as ADDRESS
var type(me as MESSAGE) as MSGTYPE
var data(me as MESSAGE) as DATA
var ttl (me as MESSAGE) as {0,1,2,3,4}

4.4.3 Messaging. An application is running on some host

connected to one or more local networks. The operation of

sending a message as well as the delivery of a message

both require some form of direct interaction between this

host and one of its local networks. We can assume that the

network is uniquely determined by the application.

network(me as APPLICATION) as COMMUNICATOR

Local Mailboxes. Every agent has a local mailbox for

storing messages until these messages will be processed.

According to this view, the mailbox of a network agent

represents the set of messages that are currently in transit

on the related network and its routers. The mailbox of an

application represents its local input port as identified by

the respective port number for this application.

var mailbox(me as AGENT) as
 Set of MESSAGE initially {}

4.5 High-level protocol model

In this section we define a high-level ASM model of

the UPnP protocol. In [13], this model is further refined

into an executable model by adding more details.

4.5.1 Initial states. An initial state reflects the particular

system configuration under consideration. As such it

identifies some finite collection of a priori given agents,

one for each control point, each device and each

communicator.

4.5.2 Network model. Assume that both TCP and UDP

are used as protocols for the transfer of messages between

applications running on different machines. Since UDP is

based on the same unreliable datagram delivery semantics

as IP [9], it is in the responsibility of an application to

tolerate this behavior.

Delivery and Routing. Collectively, the communicators

solve the task of globally transferring messages between

applications running on hosts connected to the network.

Communicators thus imitate the behavior of IP routers,

where we encode the topological information in two

separate tables, an address table and a routing table.

An addressTable is a mapping from addresses of

multicast groups to addresses of related group members.

Some of the resulting addresses may be local, some not.

addressTable(me as COMMUNICATOR,
 a as ADDRESS) as Set of ADDRESS

A routingTable maps non-local addresses to the

correct neighboring communicators.

routingTable(me as COMMUNICATOR,
 a as ADDRESS) as COMMUNICATOR

Message Transfer. The transfer of messages may be

delayed in an unpredictable manner depending on

resource limitations of the underlying physical network.

Since we abstract here from lower level network layers,

the decision whether a messages is ready to be delivered

in a given state of the network is expressed through an

externally controlled unary predicate ReadyToDeliver

defined on messages. (Notice that for some UDP message m

the condition ReadyToDeliver(m) may never hold,

implying that the message effectively gets lost.)

var ReadyToDeliver(me as MESSAGE)
 as Boolean

Program. The program of a communicator performs

three different steps: 1) limited broadcasting within the

local network; 2) delivery of multicast messages on a local

network; 3) routing of messages through a global network.

To identify local networks, a unique network identifier,

called netid, is associated with each communicator.

The network identifier can be derived from an IP address

by inspecting the network mask that is part of the address.

universe NETID
netid(me as COMMUNICATOR) as NETID
netid(a as ADDRESS) as NETID

A communicator is responsible for delivering messages

that are ready to be delivered, in which case the message

is removed from the mailbox.

In the AsmL rules below, we use global rule macros to

support modular descriptions and stepwise refinements.

Formally, such macros are syntactic abbreviations that

often are parameterized. That is, each occurrence of a

macro within a rule is to be replaced by the related macro

definition, effectively replacing formal parameters with

actual ones.

Program(me as COMMUNICATOR)=
 choose msg in me.mailbox where
 ReadyToDeliver(msg) do
 me.mailbox(msg) := false
 Deliver(me, msg)

Delivery can either mean limited broadcasting, or the

destination address is resolved, using the address table, to

a set of outbound addresses. Each of those addresses is

either local or non-local.

Deliver(me as COMMUNICATOR, msg as MSSAGE)=
 if m.rcvr = broadcast then
 Broadcast(me, msg)
 else
 forall adr in
 addressTable(me, msg.rcvr) do
 if netid(adr) = me.netid then
 DeliverLocally(me, msg, adr)
 else
 Route(me, msg, adr)

Limited broadcasting implies delivery to all local

applications.

Broadcast(me as COMMUNICATOR,m as MESSAGE)=
 forall app in APPLICATION where
 app.network = me do
 DeliverMessage(m, app.address, app)

Local delivery of a message is accomplished by finding

out the local destination and delivering the message to it.

DeliverLocally(me as COMMUNICATOR,
 msg as MESSAGE,
 adr as ADDRESS)=
 choose app in APPLICATION where
 app.address = a do
 DeliverMessage(msg, adr, app)

A message is routed to a neighboring communicator

only if its TTL is greater than 0.

Route(me as COMMUNICATOR,
 msg as MESSAGE, adr as ADDRESS) =
 if ttl(m) > 0 then
 let c = routingTable(me, adr)

 if c ≠ undef then
 DeliverMessage(msg,adr,c)

The operation of delivering a message to the mailbox

of a given agent is defined below. Applications and

communicators are treated uniformly. They are both

agents that have a mailbox and the operation performed on

this mailbox (i.e., inserting a copy of some message) does

not depend on the particular type of agent.

DeliverMessage(msg as MESSAGE,
 adr as ADDRESS,
 agt as AGENT) =
 let m = new MESSAGE

 m.sndr : msg.sndr

 m.rcvr : adr

 m.data : msg.data

 m.type : msg.type
 m.ttl := msg.ttl - 1

 agt.mailbox:= agt.mailbox {msg}

Overall Network Behavior. The above program

describes one atomic step of a communicator. In a

particular network model there may be one or more

concurrently operating communicators. Note that only

adjacent communicators may interact with each other by

inserting messages into each others mailboxes. Adjacency

here is defined by the routing tables.

4.5.3 Device model. This model abstractly describes the

UPnP protocol core. The status of a device may be one of

the following three modes, where byebye means that the

device is about to become inactive.

universe DEVICESTATUS =
 {inactive, alive, byebye}
var status (me as DEVICE) as DEVICESTATUS

The device program handles all the protocol phases (all

of which may overlap with each other).

Program(me as DEVICE) =

 if me.status inactive then
 RunAddressing(me)
 RunDiscovery(me)
 RunDescription(me)
 RunControl(me)

 RunEventing(me)
 RunPresentation(me)

Every device is connected to a set of services through

abstract service interfaces.

universe SERVICE
srvcs(me as DEVICE) as Set of SERVICE

We just show one of the protocol phases here (see the

technical report for details). The control part executes only

if the device has an address. It then handles some request

that has a matching service by calling the corresponding

service and deletes that request.

RunControl(me as DEVICE) =

 if me.adr ≠ undef then
 choose msg in me.mailbox,
 s in me.srvcs where
 IsServiceRequest(msg,s) do
 CallService(msg,s)
 me.mailbox(msg) := false

5 Related work

General introductions to domain-specific languages are

given in [10, 19]. The annotated bibliography [10]

categorizes the domains of various domain-specific

languages into five different groups. The group on

software engineering is further subdivided into several

subgroups including one for software architectures. The

main focus of a software architecture description

language (ADL) is to provide features for modeling a

system's conceptual architecture, rather than its actual

implementation. Recent surveys of ADLs are given in [8,

23]. This is a quote from [23] regarding the prevailing

argument for using ADLs:

They are necessary to bridge the gap

between informal, "boxes and lines" diagrams

and programming languages which are deemed

too low-level for application design activities.

We have not been able to find a definite agreement in

the literature on the precise definition of which languages

classify as ADLs. Below we argue why AsmL may be

considered as an ADL in terms of the general definition

and classification frame-work of ADLs proposed in [23].

An ADL must provide means for explicit specification

of the building blocks of an architectural description. The

building blocks are 1) components, 2) connectors, and 3)

configurations.

Components in AsmL are ASMs together with a

collection of interfaces defining the interaction points with

the environment. The interfaces may be declared as native

COM [7] interfaces, automation interfaces or abstract

model interfaces, depending on their usage. For example,

in the UPnP model, device models are components that

interact with the communicator through abstract model

interfaces and with the GUI trough automation interfaces.

Connectors are special components for modeling the

interaction of other components. Their behavior is clearly

separated from the core behavior of the model. For

example, in the UPnP model the communicators are the

connectors; indeed they do not reflect any UPnP specific

behavior.

Configurations describe the architectural structure of

the system, i.e. the topology of the components. In AsmL,

configurations are normally described explicitly in the

state. For example, the address table and the routing table

in the UPnP protocol constitute the configurations.

However, AsmL does not have an explicit configuration

sublanguage, which, according to [23], may be seen as a

counterargument for AsmL being classified as an ADL.

The main strength of AsmL is the unified semantic

model based on ASMs [14]. This is in contrast to many

existing ADLs, which lack formal semantics completely,

or use different formal semantics for components vs.

connectors [23]. A rigorous semantics is often a

prerequisite for many tool generators [20]. AsmL

specifications can be used for automatic test case

generation [17], conformance checking [3, 4], and to

provide behavioral interfaces for components [2].

Methodological guidelines and epistemological reasons

how and why the ASM paradigm offers a mathematically

well founded approach to high-level systems design and

analysis of complex system behavior, also in relation to

other formal methods, are discussed in [5].

6 Conclusions

In this paper we showed how to construct a high-level

Abstract State Machine (ASM) model for the Universal

Plug and Play Architecture based on the ASM paradigm

and AsmL, the Abstract state machine Language,

developed at Microsoft Research. In general, the proposed

modeling approach requires three equally important steps:

1) construction of the high-level model, 2) its refinement

to a lower level model that can be simulated, and 3)

construction of a GUI for control and animation of

simulation runs. In this paper we focused on some parts of

1). For a comprehensive description of the full model

including the GUI, sample control points and services, we

refer to our technical report [13].

Conceptually, we concentrated here on interoperability

aspects rather than on details of individual components.

Components operate concurrently and interact with each

other by exchanging messages over the communication

network. They use actuators and sensors to interact with

the external world, the environment into which the entire

system is embedded. The ASM paradigm allows us to

combine synchronous with asynchronous execution

models in one uniform model of computation. That is, the

component models themselves are parallel compositions

of synchronously operating ASMs, whereas the system as

a whole is formed by a composition of asynchronously

operating components, called agents.

7 Acknowledgements

We thank Jeffrey Schlimmer from the UPnP group at

Microsoft for several inspiring discussions and helpful

background information about the development and

standardization of UPnP. We thank Colin Campbell at

Modeled Computation LLC for his valuable criticism and

his active support on modeling individual UPnP devices.

We also thank the anonymous referees for many useful

comments that greatly helped to improve the final paper

and for pointing out relevant literature in the area of

domain-specific languages.

8 References

1. Abstract State Machines, website: www.eecs.umich.edu/

gasm/.

2. M. Barnett and W. Schulte. The ABCs of Specication:

AsmL, Behavior, and Components, Informatica. To

appear in 2002.

3. M. Barnett, C. Campbell, W. Schulte, and M. Veanes.

Specification, simulation and testing of COM

components using Abstract State Machines. In Formal

Methods and Tools for Computer Science, Eurocast 2001,

pp. 266-270. IUCTC Universidad de Las Palmas de Gran

Canaria, February 2001.

4. M. Barnett, L. Nachmanson, and W. Schulte.

Conformance checking of components against their non-

deterministic specifications. Technical Report MSR-TR-

2001-56, Microsoft Research, June 2001.

5. E. Börger, High Level System Design and Analysis using

Abstract State Machines. In D. Hutter, W. Stephan, P.

Traverso, M. Ullman, eds., Current Trends in Applied

Formal Methods (FM-Trends 98). Springer LNCS 1641,

pp. 1-43, 1999.

6. E. Börger, U. Glässer and W. Müller. Formal Definition

of an Abstract VHDL'93 Simulator by EA-Machines. In

C. Delgado Kloos and Peter T. Breuer, editors, Formal

Semantics for VHDL, Kluwer Academic Publishers,

1995, 107-139.

7. D. Box, Essential COM, Addison-Wesley, Reading, MA,

1998.

8. P. Clements, A Survey of Architecture Description

Languages Eighth Intl. Workshop in Software

Specification and Design, Paderborn, Germany, March

1996.

9. D. E. Comer. Internetworking with TCP/IP, Principles,

Protocols, and Architectures. Prentice Hall, 2000.

10. A. van Deursen, P. Klint, and J. Visser. Domain-Specific

Languages: An Annotated Bibliography. ACM SIGPLAN

Notices, 35(6):97-105, June 2000.

11. R. Eschbach, U. Glässer, R. Gotzhein and A. Prinz. On

the formal semantics of SDL-2000: a compilation

approach based on an Abstract SDL Machine. In Abstract

State Machines - Theory and Applications. Y. Gurevich,

P.W. Kutter, M. Odersky and L. Thiele (Eds.), Lecture

Notes in Computer Science, Vol. 1912, Springer, 2000.

12. R. Eschbach , U. Glässer, R. Gotzhein, M. von Löwis and

A. Prinz. SDL Formal Semantics: Compiling and

Running SDL Specifications as ASM Models. Submitted

for publication in E. Börger and U. Glässer (editors),

Proc. ASM’2001.

13. U. Glässer, Y.Gurevich and M. Veanes, Universal Plug

and Play Machine Models, Microsoft Research,

Technical Report MSR-TR-2001-59, June 15, 2001.

14. Y. Gurevich. Evolving Algebras 1993: Lipari Guide,

Specification and Validation Methods, ed. E. Börger,

Oxford University Press, 1995, 9-36.

15. Y. Gurevich. Sequential Abstract State Machines Capture

Sequential Algorithms", ACM Transactions on

Computational Logic, vol. 1, no. 1, July 2000, 77-111.

16. Y. Gurevich. The ASM Paradigm, in Proc. ASM'2001,

2001.

17. W. Grieskamp, Y. Gurevich, W. Schulte and M. Veanes.

Testing with Abstract State Machines. In Proc.

ASM'2001.

18. Y. Gurevich, W. Schulte and M. Veanes, Toward

Industrial Strength Abstract State Machines, in Proc.

ASM'2001, 2001.

19. J. Heering. Application software, domain-specific

languages, and language design assistants, in:

Proceedings SSGRR 2000 International Conference on

Advances in Infrastructure for Electronic Business,

Science, and Education on the Internet, May 2000.

20. J. Heering and P. Klint, Semantics of programming

languages: A tool-oriented approach, ACM SIGPLAN

Notices, 35(3):39-48, March 2000.

21. ITU-T Recommendation Z.100: Languages for

Telecommunications Applications - Specification and

Description Language (SDL), Annex F: SDL Formal

Semantics Definition, International Telecommunication

Union, Geneva, 2000.

22. Microsoft Research, Foundations of Software

Engineering, Redmond, USA, website:

research.microsoft.com/foundations.

23. N. Medvidovic and R.N. Taylor, A Classification and

Comparison Framework for Software Architecture

Description Languages, IEEE Transactions on Software

Engineering, 26(1):70-93, January 2000.

24. R. Stärk, J. Schmid and E. Börger. Java and the Java

Virtual Machine: Definition, Verification, Validation.

Springer, 2001.

25. Universal Plug and Play Forum. Official web site of the

UPnP Forum. URL: www.upnp.org.

26. UPnP Device Architecture V1.0. Microsoft Universal

Plug and Play Summit, Seattle 2000, Microsoft

Corporation, Jan. 2000.

