
Design Principles for End-to-End Multicore Schedulers

Simon Peter?, Adrian Schüpbach?, Paul Barham†, Andrew Baumann?,
Rebecca Isaacs†, Tim Harris†, Timothy Roscoe?

?Systems Group, ETH Zurich † Microsoft Research, Cambridge

Abstract

As personal computing devices become increasingly par-
allel multiprocessors, the requirements for operating sys-
tem schedulers change considerably. Future general-
purpose machines will need to handle a dynamic, bursty,
and interactive mix of parallel programs sharing a het-
erogeneous multicore machine. We argue that a key
challenge for such machines is rethinking scheduling as
an end-to-end problem integrating components from the
hardware and kernel up to the programming language
runtimes and applications themselves.

We present several design principles for future OS
schedulers, and discuss the implications of each for OS
and runtime interfaces and structure. We illustrate the
implementation challenges that result by describing the
concrete choices we have made in the Barrelfish multik-
ernel. This allows us to present one coherent scheduling
design for an entire multicore machine, while at the same
time drawing conclusions we think are applicable to the
design of any general-purpose multicore OS.

1 Introduction

We argue that the key challenge of effective OS schedul-
ing for tomorrow’s multicore computers is not well ad-
dressed by existing work.

The problem is recent: in the past, highly-parallel ma-
chines were generally the domain of high-performance
computing. Applications had long run times, and gener-
ally either had the machine to themselves or ran in static
partitions; the OS was often more of a nuisance than an
essential part of the system. In contrast, we believe that
future general-purpose machines will need to handle a
dynamic mix of parallel programs with interactive and/or
real-time response times.

Much excellent work has examined scheduling al-
gorithms for multicores, but this has typically been in
the context of conventional models of OS structure that
themselves may be unable to handle machines with hun-
dreds of heterogeneous cores.

On the other hand, work which has proposed new OS
architectures has appealed to high-level paradigms for
scheduling (such as co-scheduling applications on par-
titions of a machine), but with little attention so far to the
feasible algorithms, or the implementation problems to
which such architectures lead.

In this paper we step back and take a high-level, princi-
pled view of scheduling for multicore. Rather than look-
ing at specific algorithms, we are interested here in the
implications of OS interfaces and structure (and, by ex-
tension, the design of concurrent language runtimes) for
the kinds of scheduling that are possible in a multicore
OS, and the implementation challenges that result.

We distill our current thinking on multicore OS
scheduling into a set of design principles. While some
of these are not novel in themselves, the contribution of
this paper is to describe the implications of these princi-
ples for the design of any OS which aims to effectively
schedule a dynamic, bursty mix of parallel applications
on a heterogeneous multicore machine.

We illustrate the implications using the implementa-
tion choices we have made in the Barrelfish OS [4], in-
cluding several novel features: phase-locked scheduling,
the system knowledge base, scheduling manifests, and
dispatcher groups. While this is one point in the de-
sign space, it allows us to present a coherent schedul-
ing design for the whole OS. Moreover, other proposals
for multicore operating systems sufficiently resemble the
multikernel model for the ideas to be widely applicable.

2 Background
We start by observing that the trend towards multicore
systems means that commodity hardware will become
highly parallel, and mainstream applications will in-
creasingly exploit this hardware. However, most work on
parallel computing to date has been in the field of high-
performance computing (HPC). Our argument is moti-
vated by three aspects of parallel computing which have
either been absent, or addressed very differently, in the
techniques employed in HPC and related fields.

1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2 4 6 8 10 12 14 16

R
el

at
iv

e
R

at
e

of
 P

ro
gr

es
s

Number of BARRIER Threads

CPU-Bound
BARRIER

Figure 1: Relative progress for 2 concurrent OpenMP
jobs on a 16-core system. We show mean, minimum, and
maximum observed over 20 runs of 15 seconds each.

System diversity The systems on which mainstream
parallel applications will run are increasingly diverse but
performance is often highly sensitive to hardware char-
acteristics like cache structure [30]. Manual tuning for a
given machine is no longer an option in the market.

The HPC community has long used autotuners like
ATLAS [28] to effectively specialize code for a spe-
cific hardware platform. However, their usefulness in a
desktop scenario is limited to the subset of applications
amenable to offline analysis [20].

Online adaptation is made easier by models like
OpenMP [18], Grand Central Dispatch [2], ConcRT [16]
and MPI [15] which make the communication and syn-
chronization aspects of a program explicit. Such run-
times can improve performance by e.g. dynamically
choosing the best thread count for a parallel code section,
or accounting for hardware characteristics like whether
two cores are on the same package.

Such heuristics can work well for batch-oriented HPC
jobs on a small range of machines, but may not work
across all architectures, and may not be suited for more
complex interactive, multi-phase applications which mix
parallel and sequential components. They may not even
reflect all program requirements, such as a need for some
threads to be scheduled simultaneously [8, 19].

Multiple applications HPC workloads have generally
enjoyed exclusive use of hardware, or a static partition
thereof. However, in a general-purpose system multi-
ple simultaneous parallel programs can interfere signifi-
cantly.

Figure 1 shows two OpenMP applications interfer-
ing on a 16-core Linux computer. A CPU-bound pro-
gram competes with a synchronization-intensive pro-

gram, which uses a BARRIER directive in a tight loop
enclosed in a PARALLEL directive, causing all threads
to wait on the barrier before the next iteration. We mea-
sure the progress of each by the number of loop iterations
executed, and vary the total number of threads demanded
by the BARRIER program from 2 to 16. The CPU-bound
application always uses 8 threads.

When there are fewer total threads than cores, BAR-
RIER’s progress depends both on the number of threads
and how the OS places them on cores: a barrier between
threads on the same package costs about half as much
as one between different packages. This accounts for
the high performance variance for BARRIER with low
thread counts, even though enough cores are available
to schedule all threads simultaneously. When the ap-
plications contend for cores their performance degrades
unequally: the CPU-bound process slows down linearly,
but BARRIER’s progress rate collapses since preemption
of any thread can cause synchronization to take an order
of magnitude longer.

This simple study shows the pitfalls of scheduling a
mix of workloads on multicore systems, a problem which
to date has not been well studied in the literature. Smart
runtimes such as McRT [23] cannot solve this problem,
since it is one of lack of coordination between runtimes.

Interactive workloads Desktop and other interactive
workloads impose real-time requirements on scheduling
not usually present in HPC settings. Applications often
fall into one of three categories:

Firstly, there are long-running, background applica-
tions which are elastic: they are not sensitive to their
precise resource allocation, but can make effective use of
additional resources if available. One example is a back-
ground process indexing a photo library and using vision
processing to identify common subjects.

In contrast, some background applications are quality-
of-service sensitive. For example, managing the display
using a hybrid CPU-GPU system should take precedence
over an elastic application using GPU-like cores.

Thirdly, we must handle bursty, interactive, latency-
sensitive applications such as a web browser, which may
consume little CPU time while idle but must receive re-
sources promptly when it receives user input.

Moreover, multicore programs internally may be more
diverse than most traditional HPC applications. The var-
ious parts of a complex application may be parallelized
differently – a parallel web browser [12] might use data-
parallel lexing to parse a page, while using optimistic
concurrency to speculatively parallelize script execution.

Traditional work on scheduling has not emphasized
these kinds of workloads, where the resource demands
may vary greatly over interaction-timescales (≈ 10ms).

2

Figure 2: The Barrelfish scheduling architecture

3 Design principles
In this section we present five scheduler design principles
that are important for supporting the mix of workloads
we expect to find on a general-purpose multicore OS. We
don’t claim that the set is complete, nor that we have even
necessarily picked the right way of addressing the issues
at hand. However, we believe that the inevitable paral-
lelization of software brought about by multicore raises
some new and challenging issues for OS schedulers of
the future, which we attempt to highlight here.

The principles are independent of particular schedul-
ing algorithms, policies or performance metrics
(throughput, energy efficiency, etc.), and are applicable
to any viable approach which aims at addressing all the
layers of the scheduling stack. Nevertheless, to explore
the concrete implications of each point, we describe our
ongoing implementation of the scheduling architecture
for the Barrelfish multikernel OS [4], shown in Figure 2.

Barrelfish is structured as a set of low-level CPU
drivers, each of which manages a processor core in iso-
lation. Across the cores, a distributed system of coop-
erating processes known as monitors communicate ex-
clusively via message passing. Barrelfish uses scheduler
activations [1], and so each application runs a set of dis-
patchers, one per core, which collectively implement an
application-specific user-level thread scheduler.

3.1 Time-multiplexing cores is still needed
Hardware resources will continue to be time-
multiplexed, rather than using spatial partitioning
on its own. We give three reasons:

First, unlike many HPC and server systems, machines
will not be dedicated to individual applications. A desk-
top computer may run a parallel web browser alongside
an application that uses a managed runtime system (such
as the JVM or CLR). If parallel programming models

are successful, then any of these applications could po-
tentially exploit all of the resources of the machine.

Second, even if a machine contains a large number of
cores in total, these may vary greatly in capabilities. Hill
and Marty’s analysis [10] suggests that a small number
of “big” cores is useful to allow sequential phases of an
application to execute as quickly as possible (and reduce
the Amdahl’s-law impact of these phases). Access to
these cores will need to be time-multiplexed

Third, the burstiness of interactive workloads means
that the ability to use processing resources will vary ac-
cording to the user’s behavior. Time-multiplexing gives
a means of providing real-time QoS to these applications
without needlessly limiting system-wide utilization.

Implications The need to time-multiplex cores means
that resource management cannot solely operate by par-
titioning the resources of a machine at the point when a
new application starts. The scheduling regime should be
sufficiently nimble to react to rapidly changing resource
demands by applications. At the same time it must rec-
oncile short-term demands, such as by interactive appli-
cations, with coarser-grained requirements, for example
a virtual machine monitor needing to gang-schedule the
virtual CPUs of a multicore VM.

Implementation In Barrelfish we support different
types of workload at the lowest level of CPU alloca-
tion. The scheduler in the CPU driver, see Figure 2, is
based on RBED [5], a rate-based, earliest deadline first
scheduling algorithm, which supports applications with
and without deadlines on the same core, while remain-
ing flexible in distributing the slack generated naturally
by this scheduling technique. For example, similar to
a technique known as “preemption control” in the So-
laris scheduler [14], a best-effort dispatcher with a thread
in a critical section may request to receive more slack
in order to finish the section as quickly as possible. In
combination with techniques for scheduling at different
timescales that are discussed in the following section,
this gives the ability to time-multiplex CPUs while still
accommodating the time-sensitive requirements of some
applications.

3.2 Schedule at multiple timescales
OS scheduling for multicore will involve a combina-
tion of techniques at different time granularities, much
as in grid and cluster scheduling [22]. The multikernel
model [4], which reflects trends in other proposed mul-
ticore operating systems [13, 17, 27], calls for designs
that eschew globally-shared data in favor of decentral-
ized communication. Due to the distributed nature of
such systems, we argue that scheduling will involve:

3

• long-term placement of applications onto cores, tak-
ing into account application requirements, system
load, and hardware details – this is where global op-
timizations and task migration decisions occur;

• medium-term resource reallocation, in response to
unpredictable application demands, subject to long-
term limits;

• short-term per-core (or hardware thread) schedul-
ing, including gang-scheduled, real-time and best-
effort tasks.

In contrast to prior HPC systems, in a general-purpose
OS gang scheduling will need to occur over timescales
typical of interactive timeslices (on the order of millisec-
onds). This means thread dispatch times must be much
more accurately synchronized, and also that the overhead
of this synchronization must be much smaller.

Implementation The scheduler inside each CPU
driver on Barrelfish carries out the short-term alloca-
tion of timeslices to threads. We introduce the concept
of phase-locked schedulers to support fine-grained gang
scheduling: core-local clocks are synchronized out-of-
band and schedules coordinated, so that CPU drivers lo-
cally dispatch tasks at deterministic times to ensure that
gangs are co-scheduled without the need for expensive
inter-core communication on every dispatch; we are ex-
tending our RBED scheduler in this manner.

Long- and medium-term scheduling decisions are
made by the planner as shown in Figure 2, which is im-
plemented as a distributed application inside user-space
monitors. Planners on each node cooperate to compute
coarse-grained temporal and spatial allocations, while
each individual planner updates local scheduling param-
eters appropriately in response to application demands.

3.3 Reason online about the hardware
New processor and system architectures are appearing all
the time [11]: portability as hardware evolves is as criti-
cal as portability across different processor architectures.
Both OS and applications must be able to adapt well to
diverse hardware environments. This requires reasoning
about complex hardware, beyond what can be achieved
by offline autotuners or careful platform-specific coding.

The performance of parallel software is closely tied
to the structure of the hardware, and different hard-
ware favors drastically different algorithms (for exam-
ple, the performance of Dice and Shavit locks [7] de-
pends critically on a shared cache, as opposed to other
options [9, 25]). However, the appropriate choice at run-
time is hard to encode in a program.

Implications Adapting scheduling policies to diverse
hardware, whether across applications or among threads
in a single program, requires (1) extensive, detailed in-
formation about the hardware in a usable form, and (2) a
means to reason about it online in the scheduler.

Limited versions of such functionality exist, e.g.
/proc and /sys on Linux, and the CPUID instruc-
tion on x86 processors. However, these APIs are ad-
hoc, making it complex and non-portable to process
their contents. Although performance models such as
Roofline [29] and LogP [6] help by capturing some per-
formance characteristics of available hardware, it is now
time to explicitly address the broader problem.

Implementation Barrelfish combines a rich represen-
tation of the hardware in a subset of first-order logic, and
a powerful reasoning engine, in a single system knowl-
edge base (SKB) service [24]. The SKB is populated by
hardware discovery information (e.g. cache parameters,
interconnect topology), online measurement (including
a detailed set of memory and cache latencies obtained
at boot) and pre-asserted facts that cannot be inferred.
It uses the ECLiPSe constraint logic programming sys-
tem [3], and the OS can issue complex queries as opti-
mization programs. While it is no magic bullet, the SKB
makes it easy to express and prototype longer-timescale
scheduling – a complex spatio-temporal thread schedul-
ing algorithm involving memory and cache-affinity can
be expressed in about 10 lines of Prolog which (with
care) execute in less than a millisecond, and are inde-
pendent of the hardware configuration.

Applications can also query the SKB. The common,
expressive representation of hardware and the reasoning
engine further allow the OS to present to applications
raw resources described in detail (for example, specific
core IDs). This facilitates an Exokernel-like approach
where intra-application resource management (e.g. mi-
grating threads to accelerators or cores with less cache
contention) is handled inside the application and its li-
braries, rather than in the OS proper.

3.4 Reason online about each application

In addition to the need for applications to exploit the
structure of the hardware on which they are running, the
OS should exploit knowledge of the structure of the ap-
plications which it is scheduling. For example, gang
scheduling can eliminate the problems shown in Sec-
tion 2 by avoiding pre-emption of synchronized threads.
However, simple gang scheduling of all threads within
applications is overly restrictive. For instance, OpenMP
typically only benefits from gang scheduling threads
within each team. Similarly, threads performing unre-

4

lated operations would favor throughput (allocation of as
much time to all threads as possible) over contempora-
neous execution. Finally, a single application may con-
sist of different phases of computation, with changing
scheduling and resource requirements over its lifetime.
The optimal allocation of hardware cores and memory
regions thus changes over time.

Implications An application should expose as much
information about its current workload and resource re-
quirements as possible to allow the OS to effectively al-
locate resources. For example, MapReduce applications
follow fixed data-flow phases, and it is possible to deter-
mine this information at compile-time for programming
paradigms like OpenMP [26].

Implementation At startup, or during execution, Bar-
relfish applications may present a scheduling manifest to
the planner, containing a specification of predicted long-
term resource requirements, expressed as constrained
cost-functions in an ECLiPSe program. A manifest may
make use of any information in the SKB including hard-
ware details as well as application properties, such as
data proximity and working set size bounds. The SKB
includes common functionality to express, for example,
the placement of synchronization-intensive threads on
closely-coupled cores. We expect that much of the infor-
mation in manifests could be inferred by compile-time
analyses or provided by language runtimes.

The planner uses the application’s manifest along with
knowledge of current hardware utilization to determine
a suitable set of hardware resources for the application,
which may then create dispatchers and negotiate appro-
priate scheduler parameters on those cores (as described
in the following section). In general, an application is
free to create a dispatcher on any core, however only
by negotiating with the planner will it receive more than
best-effort resources.

3.5 Application and OS must communicate

The allocation of resources to applications requires re-
negotiation while applications are running. This can oc-
cur when a new application starts, but also as its ability
to use resources changes (in an extreme example, when
a sequential application starts a parallel garbage collec-
tion phase), and in response to user input or changes in
the underlying hardware (such as reducing the number of
active cores to remain within a power budget).

Hints from the application to the OS can be used to
improve overall scheduling efficiency, but should not
adversely impact other applications, violating the OS
scheduler’s fairness conditions.

Implications Efficient operation requires two-way in-
formation flow between applications and OS. First, ap-
plications should indicate their ability to use or relinquish
resources. For instance, an OpenMP runtime would in-
dicate if it could profitably expand the team of threads
it is using, or if it could contract the team. Secondly,
the OS should signal an application when new resources
are allocated to it, and when existing resources are pre-
empted. This allows the application’s runtime to respond
appropriately; for instance, if the number of cores was
reduced, then a work-stealing system would re-distribute
work items from the queue of the core being removed.

De-allocation is co-operative in the sense that an ap-
plication receives a de-allocation request and is expected
to relinquish use of the resources in question. If this is
not done promptly then the OS virtualizes the resource
to preserve correctness at the expense of performance.

Implementation Applications express short- and
medium-term scheduling requirements to the OS by
placing dispatchers into one or more dispatcher groups
and then negotiating with the planner how each group
is scheduled. Dispatcher groups extend the notion of
RTIDs [21], describing requirements such as real-time,
gang scheduling and load-balancing parameters.

Membership of dispatcher groups varies dynamically
with workload. For instance, a managed runtime using
parallel stop-the-world garbage collection would merge
all its dispatchers into one group during collection, and
then divide them into several groups according to the ap-
plication’s work once garbage collection completes.

Scheduling of dispatchers is made explicit via sched-
uler activations [1]. De-scheduling is made explicit
by the scheduler incrementing a per-dispatcher de-
allocation count. This allows a language runtime to de-
termine whether a given dispatcher is running at any in-
stant and, for example, allows active threads to steal work
items from a pre-empted thread via a lock-free queue.

4 Summary
General-purpose multicore computing faces a different
set of challenges from traditional parallel programming
for HPC, and exploiting existing work in scheduling in
this new context requires a principled, end-to-end ap-
proach which considers all layers of the software stack.

We have outlined a set of such principles which we
feel apply to any viable scheduling architecture for mul-
ticores. We have also described the consequences and
innovations (phase-locked scheduling, the system knowl-
edge base, scheduling manifests, dispatcher groups) that
these lead to in the Barrelfish multikernel.

5

References
[1] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and

H. M. Levy. Scheduler activations: Effective kernel sup-
port for the user-level management of parallelism. In
Proc. of the Thirteenth ACM Symposium on Operating
Systems Principles, pages 95–109, Oct. 1991.

[2] Apple. Grand Central Dispatch Technology Brief, 2009.
[3] K. R. Apt and M. G. Wallace. Constraint Logic Program-

ming using ECLiPSe. Cambridge University Press, 2007.
[4] A. Baumann, P. Barham, P.-E. Dagand, T. Harris,

R. Isaacs, S. Peter, T. Roscoe, A. Schüpbach, and
A. Singhania. The multikernel: a new OS architecture
for scalable multicore systems. In Proc. of the 22nd ACM
Symposium on Operating Systems Principles, Oct. 2009.

[5] S. A. Brandt, S. A. Banachowski, C. Lin, and T. Bis-
son. Dynamic integrated scheduling of hard real-time,
soft real-time and non-real-time processes. In Proc. of
the 24th IEEE Real-Time Systems Symposium, 2003.

[6] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E.
Schauser, E. Santos, R. Subramonian, and T. von Eicken.
LogP: towards a realistic model of parallel computation.
In Proc. of the 4th ACM SIGPLAN symposium on Princi-
ples and practice of parallel programming, 1993.

[7] D. Dice and N. Shavit. TLRW: Return of the read-write
lock. In Proc. of the 4th ACM SIGPLAN Workshop on
Transactional Computing, Feb. 2009.

[8] D. G. Feitelson and L. Rudolph. Gang scheduling perfor-
mance benefits for fine-grain synchronization. Journal of
Parallel and Distributed Computing, 16:306–318, 1992.

[9] B. He, W. N. Scherer III, and M. L. Scott. Preemption
adaptivity in time-published queue-based spin locks. In
Proc. of the 12th International Conference on High Per-
formance Computing, pages 7–18, 2005.

[10] M. D. Hill and M. R. Marty. Amdahl’s law in the multi-
core era. IEEE Computer, July 2008.

[11] Intel Corporation. Single-chip cloud computer.
http://techresearch.intel.com/articles/Tera-Scale/
1826.htm, December 2009.

[12] C. G. Jones, R. Liu, L. Meyerovich, K. Asanović, and
R. Bodik. Parallelizing the web browser. In Proc. of
the 1st USENIX Workshop on Hot Topics in Parallelism,
March 2009.

[13] R. Liu, K. Klues, S. Bird, S. Hofmeyr, K. Asanović, and
J. Kubiatowicz. Tessellation: Space-time partitioning in a
manycore client os. In Proc. of the 1st USENIX Workshop
on Hot Topics in Parallelism, March 2009.

[14] J. Mauro. The Solaris Process Model: Managing
Thread Execution and Wait Times in the System Clock
Handler, 2000. http://developers.sun.com/solaris/
articles/THREADexec.

[15] Message Passing Interface Forum. MPI: A Message-
Passing Interface Standard, September 2009.

[16] Microsoft. C++ Concurrency Runtime, 2010. http://
msdn.microsoft.com/en-us/library/dd504870.aspx.

[17] E. B. Nightingale, O. Hodson, R. McIlroy, C. Hawblitzel,
and G. Hunt. Helios: heterogeneous multiprocessing
with satellite kernels. In Proc. of the 22nd ACM Sym-
posium on Operating Systems Principles, 2009.

[18] OpenMP Architecture Review Board. OpenMP Applica-
tion Programming Interface, 2008. Version 3.0.

[19] J. Ousterhout. Scheduling techniques for concurrent sys-
tems. In IEEE Distributed Computer Systems, 1982.

[20] V. Pankratius, C. Schaefer, A. Jannesari, and W. F. Tichy.
Software engineering for multicore systems – an experi-
ence report. In Proc. of the 1st International Workshop
on Multicore Software Engineering, May 2008.

[21] M. Rajagopalan, B. T. Lewis, and T. A. Anderson.
Thread scheduling for multi-core platforms. In Proc. of
the 11th USENIX Workshop on Hot Topics in Operating
Systems, May 2007.

[22] R. Raman, M. Livny, and M. H. Solomon. Matchmak-
ing: Distributed resource management for high through-
put computing. In Proc. of the 7th IEEE International
Symposium on High Performance Distributed Comput-
ing, July 1998.

[23] B. Saha, A.-R. Adl-Tabatabai, A. Ghuloum, M. Ra-
jagopalan, R. L. Hudson, L. Peterson, V. Menon,
B. Murphy, T. Shpeisman, E. Sprangle, A. Rohillah,
D. Carmean, and J. Fang. Enabling scalability and per-
formance in a large scale CMP environment. In Proc. of
the 2nd ACM SIGOPS/EuroSys European Conference on
Computer Systems, Mar. 2007.

[24] A. Schüpbach, S. Peter, A. Baumann, T. Roscoe,
P. Barham, T. Harris, and R. Isaacs. Embracing diversity
in the Barrelfish manycore operating system. In Proc. of
the 1st Workshop on Managed Multi-Core Systems, 2008.

[25] M. L. Scott and W. N. Scherer III. Scalable queue-based
spin locks with timeout. In Proc. of the 8th ACM SIG-
PLAN Symposium on Principles and Practices of Paral-
lel Programming, pages 44–52, 2001.

[26] Z. Wang and M. F. P. O’Boyle. Mapping parallelism
to multi-cores: a machine learning based approach. In
Proc. of the 14th ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming, 2009.

[27] D. Wentzlaff and A. Agarwal. Factored operating sys-
tems (fos): the case for a scalable operating system
for multicores. SIGOPS Operating Systems Review,
43(2):76–85, 2009.

[28] R. C. Whaley, A. Petitet, and J. J. Dongarra. Auto-
mated empirical optimization of software and the ATLAS
project. Parallel Computing, 27(1–2):3–35, 2001.

[29] S. Williams, A. Waterman, and D. Patterson. Roofline:
an insightful visual performance model for multicore ar-
chitectures. Comm. of the ACM, 52(4):65–76, 2009.

[30] E. Z. Zhang, Y. Jiang, and X. Shen. Does cache sharing
on modern CMP matter to the performance of contempo-
rary multithreaded programs? In Proc. of the 15th ACM
SIGPLAN Symposium on Principles and Practice of Par-
allel Programming, Jan. 2010.

6

