
Automatically Segregating Greedy and
Malicious Internet Flows

Jośe Carlos Brustoloni
Department of Computer Science

University of Pittsburgh
Pittsburgh, PA 15260, USA

Email: jcb@cs.pitt.edu

Shuo Chen
Cybersecurity and Systems Management Group

Microsoft Research
Redmond, WA 98052, USA

Email: shuochen@microsoft.com

Abstract— In the current Internet, compliance with TCP
congestion control rules is voluntary. Noncompliant flows can
gain unfair performance advantages or deny service to other
flows. We propose a scheme that automatically detects and
segregates noncompliant flows and preserves network availability
for compliant flows. Our scheme requires modifications only
in access routers and is incrementally deployable. Experiments
demonstrate that our scheme is effective and has acceptable
overhead.

I. I NTRODUCTION

Most Internet traffic uses TCP. Interestingly, TCP did not
originally provide congestion control [1]. It provided only flow
control, which prevents senders from overrunning receivers but
not the network. By the mid-eighties, the Internet was on the
brink of congestive collapse[2]: senders were injecting into it
so much traffic that most packets were dropped before reaching
their destination. TCP congestion control was introduced at
that time, causing senders to increase transmission rate addi-
tively while there is no packet loss and decrease transmission
rate multiplicatively when there is loss. This simple end-to-
end scheme enabled the Internet to grow orders of magnitude
larger while averting congestion.

However, even today, many senders on the Internet do
not implement TCP’s congestion control mechanisms. Internet
flows with congestion control compatible to that of TCP are
often calledTCP-friendly, while other flows are calledTCP-
unfriendly. Applications that require a constant bit rate or are
ill-served by TCP’s error recovery, such as voice and video
applications, often use UDP and are TCP-unfriendly. Greedy
or malicious applications can also use UDP or ICMP or imple-
ment TCP without congestion control, so as to gain an unfairly
large, TCP-unfriendly share of the network’s bandwidth and
thus boost their own performance or deny service to other
flows.

TCP-unfriendly flows jeopardize Internet stability and scala-
bility [3]. By enabling targeted or generalized denial-of-service
(DoS) attacks, such flows also threaten Internet security. There
has been significant progress toward TCP-friendly protocols
for applications such as voice and video [4], [5]. Techniques
have also been proposed for tracing back or throttling greedy
or malicious flows. However, some of these proposals may
be impractical because they require massive [6] or even

universal [7] deployment to be effective. Many proposals also
impose capital or operational costs without economic return
to the parties that bear those costs [8], [9], [10], [11].

This paper contributes ASTUF (Automatic Segregation of
TCP-Unfriendly Flows), an architecture for a novelvalue-
added servicethat leverages already-deployed quality-of-
service (QoS) mechanisms to limit the impact of TCP-
unfriendly flows on the performance of TCP-friendly flows. In
ASTUF, a subscribing server’s and respective client’s access
routers monitor, classify, and mark traffic between client and
server as either TCP-unfriendly (default) or TCP-friendly.
Routers between the client and the server forward packets
in separate classes of service, such that TCP-friendly flows
gain at least a minimum share of the network bandwidth,
regardless of concurrent TCP-unfriendly flows. Thus, ASTUF
isolates TCP-friendly flows of subscribing servers and their
clients from many of the current Internet’s vulnerabilities to
greedy or malicious flows.

Many TCP-friendly schemes have been analyzed and sim-
ulated before. Recent results show, however, that correctly
implementing such schemes can be tricky [12]. This paper
describes an actual implementation and gives a rare perspec-
tive on critical details and actual performance and resource
requirements. Unlike many previous proposals, ASTUF is
effective even if deployed only by a few service providers,
and enables service providers to recover, via server subscrip-
tions, the costs involved in its deployment. ASTUF requires
modifications only in the access routers of service providers
of subscribing servers and respective clients. Other routers
between a subscribing server and respective clients need to
have their QoS mechanisms configured, but do not need to be
otherwise modified. Remaining routers on the Internet require
no reconfiguration or modification.

The rest of this paper is organized as follows. Section II
reviews the QoS and TCP modeling techniques used by
ASTUF. Section III describes ASTUF’s threat model, QoS and
revenue handling, and packet marking algorithms. Section IV
presents our experimental results. Section V discusses related
work, and Section VI concludes.

II. BACKGROUND

A. Internet QoS mechanisms

The current Internet provides a single (best-effort) class of
service (CoS). Differentiated Services (DiffServ) [13] enables
Internet routers to support a larger (albeit limited) number
of classes of service. DiffServ edge routers mark for some
CoS each packet arriving from a host, according to the host’s
Service-Level Agreement (SLA) and the flow’s conformance
to that SLA. SLA policing requires per-flow state. Edge
routers can maintain such state because of their relatively low
bandwidth and number of flows. On the contrary, DiffServ
core routers service packets based solely on packet markings,
and therefore do not need per-flow state. Because DiffServ
requires per-flow state only in edge routers, it scales well.

Most commercially available edge and core routers support
DiffServ and one or more packet scheduling algorithms other
than FIFO. Two popular alternatives are priority scheduling
and deficit round-robin (DRR) [14]. Within a CoS, service is
always FIFO. However, if there are packets of different classes,
priority scheduling always serves first the highest-priority
class. Priority scheduling may cause starvation of lower-
priority classes. In DRR, each classi is configured with some
quantumi. Given any two classesi andj, DRR serves packets
in such order that, on average,bandwidthi/bandwidthj =
quantumi/quantumj . DRR guarantees that, ifquantumi 6=
0, i does not suffer starvation. Both priority and DRR schedul-
ing are simple to implement and haveO(1) complexity. They
are alsowork-conserving, i.e., do not adversely impact network
utilization.

B. TCP modeling

Padhye et al. [15] have shown that the maximum data
transmission rateBe of a TCP Reno sender (in segments per
second) is:

Be = min(
Wmax

RTT
,B′

e) (1)

B′
e =

1

RTT
√

2bp
3 + TO min(1, 3

√
3bp
8)p(1 + 32p2)

(2)

where Wmax is the receiver’s maximum advertised window
size,RTT is the round-trip time between sender and receiver,
p is the packet-loss event rate,b is the number of data segments
acknowledged by an ACK segment (typically 2), andTO is
the timeout, with resolution of 0.5 s.

Note that a single packet-loss event may cause several
consecutive lost packets. Goyal, Guerin and Rajan have ana-
lyzed the relationship betweenp and the unconditional packet-
loss ratep′ on the same path [16]. Note also that Padhye
et al. validated 1 and 2 usingRTT and p values actually
experiencedby the respective TCP flows. He, Dovrolis and
Ammar have shown thatlarge errors can occur if RTT
and p are measured byping probes before the TCP flow
is injected into the network [12]. This is because the TCP
flow can significantly impactRTT and p. Smaller but still
significant errors can occur ifRTT andp are estimated by

periodicpingprobesduring the TCP flow. These errors are due
to the mismatch between the probes’ fixed period and TCP’s
burstiness and variable sampling period [12].

Equations 1 and 2 are for TCP Reno. Similar equations exist
for other TCP-friendly protocols [5].

III. D ESIGN

This section describes ASTUF’s threat model, QoS and
revenue handling, and packet marking algorithms.

A. Threat model

ASTUF assumes that greedy or malicious users may arbi-
trarily modify or use nodes or links they control. They may
control any number of hosts connected to any service provider.
They may also control routers and links of service providers
that do not support ASTUF. However, they cannot control
any router or link of any ASTUF service provider or internet
exchange that an ASTUF service provider connects to.

B. QoS handling

ASTUF assumes that a host’s uplink to and downlink from
an ASTUF service provider directly or indirectly connect to
a same access or edge router within that service provider (for
simplicity, called “access router” in the following). All access
routers of ASTUF service providers need to be modified so as
to classify and mark packets as either TCP-friendly or TCP-
unfriendly, as described in Section III-D. Packet markings use
a QoS scheme’s identifiers, e.g. DiffServ codepoints [13].

ASTUF also assumes that all routers on paths between any
two ASTUF access routers support distinct classes of service
for TCP-friendly and TCP-unfriendly flows. Such support
may use, e.g., DiffServ with priority or DRR scheduling, as
discussed in Section II-A. Typically, such configuration does
not require modifications in existing routers.

The QoS schemes used by different ASTUF service
providers need not be the same. It suffices that, in each
ASTUF service provider, the impact of TCP-unfriendly traffic
on the performance of TCP-friendly traffic be limited. Packets
arriving from a first ASTUF service provider and being
forwarded to a second ASTUF service provider may need
to have markings translated to denote equivalent classes in
each service provider. Moreover, at Internet exchanges or
peering points, packets arriving from a service provider that
does not support ASTUF need to be marked TCP-unfriendly,
which is the default classification. The ability to perform
such translations can be expected to already exist in internet
exchanges and peering routers that support QoS schemes such
as DiffServ.

ASTUF is incrementally deployable. If a router of an
ASTUF service provider does not mark packets or separate
classes of service as described above, greedy or malicious
users may be able to exploit it to obtain unfair advantage or
deny service to TCP-friendly flows. However, ASTUF does
not suffer any degradation if deployed in only one or a few
service providers.

ASTUF service providers may offer SLAs for best-effort
traffic, e.g., gold, silver, and bronze levels, each with different

TCP−unfriendly class

router

access

router

access

router

access

router

access

exchange

Internet

router

access

router router

router

client A

client B

server C

server D

attacker T

SP X SP Y

SP Z

(ASTUF) (ASTUF)

(no ASTUF)

(subscriber)

(nonsubscriber)

TCP−friendly class

Fig. 1. Incremental deployment of ASTUF

bandwidth limits. If present, such best-effort SLAs form
subclasses within ASTUF’s TCP-friendly and TCP-unfriendly
classes. On the other hand, SLAs for traffic other than best-
effort (e.g., video or voice) are subject to admission control
and SLA enforcement that prevents their use for DoS attacks.
They are handled separately from ASTUF.

C. Revenue handling

An ASTUF service providerX can offer ASTUF protection
to any Internet serverC that has Internet access via some
ASTUF service providerY (where possiblyX 6= Y). This is
illustrated in Fig. 1. Typically, ASTUF would be offered on a
subscription basis. ASTUF service providers (e.g.,X andY)
can share such revenues much like they currently share access
fees (e.g., via peering agreements).

A packet that arrives on an ASTUF access router’s access
link is eligible for the TCP-friendly CoS only if: (1) the
packet’s destination is an ASTUF subscribing server or a client
of such a server, and (2) the sender has specified the packet
to be TCP-friendly. A packet’s sender uses the IP header’s
protocol field (sometimes augmented by a port number) to
specify the packet’s transport-layer protocol (e.g., a TCP-
friendly protocol). The protocol (e.g., TCP) and source and
destination IP addresses and port numbers in a packet’s header
identify what flow the packet belongs to. A connection is a
pair of flows, one in each direction, between a client and a
server.

For example, in Fig. 1, TCP connections between clients
A or B and server C are eligible for the TCP-friendly class.
On the other hand, ASTUF marks TCP-unfriendly any flows
(TCP or other) between clients A or B and server D, because
D is not a subscriber. ASTUF also marks TCP-unfriendly any
flows involving attacker T, because T’s access provider does
not support ASTUF.

Each ASTUF access router needs to keep state proportional
to the number of connections in the TCP-friendly CoS that go
through it. Since these routers are in the network’s edge, the

number of such connections can be expected to be reasonably
small. If this number becomes excessive, the service provider
can reduce it by increasing the ASTUF subscription price
(which can be expected to be inversely related to the number
of subscribing servers). ASTUF does not require state in other
routers.

D. Packet marking

An ASTUF access router marks a packet for the TCP-
friendly CoS only if: (1) the packet iseligible, as discussed
in the previous section,and (2) the router’s measurements
verify that the packet belongs to a connection that indeed is
TCP-friendly. Otherwise, the router marks the packet TCP-
unfriendly. ASTUF access routers make three types of mea-
surements for verifying TCP friendliness: (1) flow data trans-
mission rate; (2) flow overhead; and (3) number of connections
between a given client and server. These measurements are
used for packet marking and affect packet scheduling only via
such markings.

ASTUF access routers use Eqs. 1 and 2 (or similar equa-
tions, depending on the specific TCP-friendly protocol) to ver-
ify that a flow’s data transmission rate is TCP-friendly. These
equations require estimates of the flow’sp and connection’s
RTT . ASTUF access routers cannot rely on transport-layer
headers set by hosts to make such estimates, because hosts can
spoof these headers. ASTUF access routers do not use periodic
ping probes, either, because the latter can cause large errors,
as discussed in Section II-B. Therefore, ASTUF access routers
estimatep andRTT by inserting measurement probes into
the TCP-friendly segments themselves.

ASTUF measurement probes are carried as transport-layer
(e.g., TCP) options. After inserting a probe into a segment, an
ASTUF access router updates the transport-layer checksum,
so that the latter remains valid. To avoid fragmentation of
maximally-sized packets, ASTUF access routers reduce by the
size of their measurement probes the maximum transmission
unit (MTU) of their backbone links. Senders that discover

and adjust to path MTUs as specified in [17] learn the
ASTUF-reduced MTUs. Therefore, when a path is protected
by ASTUF, these senders automatically leave room in each
TCP-friendly segment for insertion of an ASTUF measure-
ment probe. A sender cannot itself insert a (possibly spoofed)
ASTUF measurement probe into a packet because (1) ASTUF
access routers replace such probes in TCP-friendly packets,
and (2) ASTUF access routers ignore measurement probes in
TCP-unfriendly packets (including any packets received from
service providers that do not support ASTUF).

ASTUF measurement probes are 12 bytes long and con-
tain: (1) the ingress router’s current timestamp, (2) the latest
timestamp the ingress router received from the egress router,
(3) the count of flow’s segments forwarded by ingress router,
and (4) the count of reverse flow’s packet-loss events detected
by the ingress router. The egress router looks for gaps in the
ingress router’s segment counts to detect the flow’s packet-
loss events. A sliding-window bitmap is used to allow for
out-of-order segment reception. The egress router obtains a
samplers of the connection’s round-trip time by taking the
difference between the egress router’s current timestamp and
the latest timestamp the ingress router received from the egress
router. The egress router also obtains a sampleps of the reverse
flow’s packet-loss event rate by taking the difference between
the counts of the reverse flow’s packet-loss events detected
by the ingress router at different egress router timestamps,
and dividing the result by the difference in the counts of the
reverse flow’s segments forwarded by the egress router at those
timestamps. Exponentially-weighted moving averages of the
samplesrs and ps are then used as estimates ofRTT and
p in Eqs. 1 and 2. Because ASTUF estimatesRTT and p
between access routers, instead of between the end hosts, the
resulting value ofBe can be expected to be an upper bound
for the data transmission rate of a TCP-friendly sender under
the prevailing network conditions.

For each flow that is eligible for the TCP-friendly CoS,
ASTUF ingress routers count the flow’s number of data
bytes sent, and obtain samplesba of the flow’s actual data
transmission rate by taking the difference in these counts at
different ingress router timestamps and dividing the result
by the interval between those timestamps. An exponentially-
weighed moving average of the samplesba is then used as an
estimate of the flow’s actual data transmission rateBa. ASTUF
access routers mark a flow’s packets TCP-friendly only if the
flow satisfiesBa < φ1Be, whereφ1 ≥ 1 is a safety margin.
In our experiments, we setφ1 = 3.

Transport-layercontrol segments(e.g., TCP ACKs)are not
limited by Be, because they can be sent without any data.
Therefore, ASTUF access routers also count and limit flow
overhead (e.g., TCP SYN, ACK, FIN, and RST segments). A
TCP flow’s limits for SYN, FIN, and RST segments are small
constants. In our experiments, we use the value 10. A TCP
flow’s limit for ACK segments is equal to the ceiling of the
reverse flow’s count of segments timesφ2, whereφ2 ≥ 1/b is
a safety margin. In our experiments, we useφ2 = 1.125.

Greedy or malicious users might attempt tocircumvent

Server 2

Router 1 Router 3 Router 2

Client 2

Client 1 Server 1

Fig. 2. Experimental setup.

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30 35

Le
gi

tim
at

e
T

C
P

 fl
ow

’s
 th

ro
ug

hp
ut

 (
se

g/
s)

Time (ms)

ASTUF with priority
ASTUF with DRR
FreeBSD default

Fig. 3. Throughput of legitimate TCP flow from client 1 to server 1,
with concurrent DoS attack from client 2 to server 2, starting att = 10.
Unlike FreeBSD’s default protocol stack, ASTUF segregates the DoS flow
and enables throughput of the legitimate TCP flow to recover.

limits on flow data transmission rate or control overhead
by creating a large number of connections. Therefore,
ASTUF access routers also limit the number of connections
in the TCP-friendly CoS between a client and a server to a
configurable valueLf . ASTUF access routers also monitor
such connections’ activity, and mark for eviction a connection
that has been inactive for longer than a configurable interval
Ti. If a client requests a new TCP-friendly connectionC2 (e.g.,
sends a TCP SYN segment) that would exceedLf , and there
is another connectionC1 between the same endpoints marked
for eviction, then the ASTUF access router deletesC1’s state
and starts monitoringC2; otherwise, the router does not keep
state forC2. An ASTUF access router marks for the TCP-
unfriendly CoS any packet whose flow the router does not have
the state of. (For example, ifC1 resumes transmission after its
eviction, then it will be forwarded in the TCP-unfriendly CoS.)
Appropriate values forLf andTi may depend on the server.
In our experiments, we useLf = 10 andTi = 5 minutes.

IV. EXPERIMENTAL RESULTS

This section reports results of experiments performed to
evaluate ASTUF.

We implemented ASTUF on FreeBSD’s TCP/IP protocol
stack. FreeBSD’s stack supports natively only one CoS. We
modified the stack such that there are two IP input queues and
two network driver output queues, separating TCP-friendly and
TCP-unfriendly classes of service. We could not duplicate the

hardware transmit FIFO; toreduce interference between the
two classes of service, we configured thisFIFO to hold at
most only a few (in our experiments, 4) packets. We also
added priority-based and DRR scheduling options to the IP
input and network driver output dequeue operations. Finally,
we added options to configure a system as an ASTUF access
router, including lists of incident access links and of sub-
scribing servers. These options implement the packet marking
algorithms described in Section III-D. The per-connection state
required by this implementation is 164 bytes.

In our experiments, we connected two clientsC1 and C2

to an ASTUF access routerR1 and two serversS1 andS2 to
another ASTUF access routerR2, as illustrated in Fig. 2. In
this testbed, all nodes are PCs running FreeBSD and all links
are FastEthernet crossover cables operating at 100 Mbps. The
TCP maximum segment size (MSS) was set to 1448 bytes.

We implemented a well-behaved TCP applicationL that
sends about 100 MSS segments per second fromC1 to S1

if the network is otherwise idle, but backs off according to
TCP’s congestion control rules if the packet-loss event rate
increases. We also implemented a DoS attack applicationA
that transmits over 8,000 TCP MSS segments per second from
C2 to S2, without TCP’s error, flow, or congestion control
mechanisms and regardless of round-trip time or packet-loss
event rate. We setA to start only well afterL reaches steady
state.

Fig. 3 showsL’s throughput, in segments per second,
when R1 and R2 were configured with the default FreeBSD
stack, ASTUF with priority-based scheduling, or ASTUF
with DRR scheduling. In the latter case, TCP-friendly and
TCP-unfriendly classes of service were both configured with
quantum equal to 1000. The figure shows that after the DoS
attack starts, throughput of the legitimate TCP connection
drops precipitously. With the default FreeBSD stack, there is
no automatic recovery, and the legitimate TCP flow continues
to have very little throughput as long as the attack continues.
With ASTUF, however, the access routers eventually detect
thatA is TCP-unfriendly and markA’s segments accordingly.
BecauseA’s segments are then segregated in another CoS,
L’s throughput recovers to its pre-attack level, even though
the attack continues. Similar recovery is observed regardless
of the particular scheduling algorithm used (priority or DRR).

To measure ASTUF’s overhead, we replacedL by TTCP,
a well-known TCP benchmarking utility. Table I shows
the TTCP throughput betweenC1 and S1, with or without
concurrent DoS attack betweenC2 andS2 and with or without
R1 andR2 configured as ASTUF access routers with priority
scheduling. The table shows that without the DoS attack,
ASTUF reduces TTCP throughput only slightly (about 2%).
This overhead is due to ASTUF’s TCP option, which is
inserted, carried, and processed in each TCP segment. As the
table also shows, this overhead pays off handsomely when
the network is under attack: with ASTUF, the DoS attack
reduces TTCP throughput by less than 10%, while without
ASTUF, the DoS attack reduces TTCP throughput by more
than 99%. ASTUF has moderate impact on the access routers’

TABLE I

ASTUF IMPOSES LITTLE OVERHEAD(2%) ON THROUGHPUT OF

TCP-FRIENDLY FLOWS AND CAN PROTECT THEM FROMDOS ATTACKS

(> 90%)

Access router TTCP throughput (KB/s) CPU utilization
configuration no attack with attack with attack

FreeBSD default 10716 82 26.3%
ASTUF/priority 10487 9455 39.4%

TABLE II

DRR WITH EQUITABLE QUANTA PREVENTS STARVATION OF

TCP-UNFRIENDLY FLOWS, BUT GUARANTEES LESS BANDWITH FOR

TCP-FRIENDLY FLOWS UNDER ATTACK

Scheduling TTCP throughput [σ] (KB/s)
(quanta: TCP-friendly, TCP-unfriendly) under DoS attack

Priority 9455 [22]
DRR (2000, 50) 9106 [63]
DRR (2000, 500) 7562 [21]
DRR (3000, 1000) 7208 [24]
DRR (1000, 1000) 5191 [8]

CPU utilization, increasing the latter from 26.3% to 39.4%
under DoS attack.

To better characterize ASTUF performance with priority or
DRR scheduling, we measured TTCP throughput with DoS
attack and various scheduling settings. Averages and standard
deviations of ten repetitions are shown in Table II. The table
shows that DRR performance can be very similar to that of
priority scheduling if the quantum of the TCP-friendly CoS is
much larger than that of the TCP-unfriendly CoS. However,
DRR with such a setting may nearly starve UDP, ICMP, and
other TCP-unfriendly flows (as does priority scheduling). With
more equitable quantum settings, DRR avoids such starvation,
but does not guarantee as much bandwidth to TCP-friendly
flows when the network is under attack (e.g., if the quota are
the same for both classes, ASTUF saves only about 50% of
the bandwidth to TCP-friendly flows under DoS attack).

V. RELATED WORK

Floyd and Fall have proposed that congested routers attempt
to identify TCP-unfriendly flows and preferentially drop pack-
ets from such flows so as to encourage conformance to TCP
congestion control [10]. Their scheme assumes that round-trip
times and packet-loss rates of congested links approximate
the corresponding end-to-end values, and uses such measures
to estimate the maximum transmission rate that would be
expected in a TCP-friendly flow under such conditions. They
use such estimates to regulate (by packet dropping) the flows
that consume the most bandwidth in a congested router. Their
approach differs from ours in several important ways. First, it
requires modifications in backbone routers, which may be less
feasible than modifying access routers. Second, its round-trip
time and loss rate measurements may more significantly differ
from end-to-end values, resulting in less precise control. Third,
it controls only the heaviest flows. Fourth, attackers may evade

detection simply by using more connections and/or control
segments. Fifth, it does not compensate service providers.

Brustoloni has proposed VIPnet, whereby e-commerce sites
pay service providers to carry traffic of the sites’ most impor-
tant clients in a privileged class [18]. To send packets to a
subscribing site in such a class, a client needs to have a VIP
right issued by the site. VIP rights are time- and usage-limited,
and need to be renewed after expired. A site may choose to
renew VIP rights only of well-behaved clients that bring in the
most revenue. VIPnet’s strategy for incremental deployment
and service provider compensation is similar to that of ASTUF.
VIPnet can protect any transport-layer protocol, but is most
appropriate for e-commerce applications, whereas ASTUF can
protect only TCP-friendly protocols, but is appropriate for a
much wider range of applications.

Yaar, Perrig, and Song have proposed SIFF, a scheme
whereby routers on the path between a client and a server
verify or modify a capability field in packets’ headers [11].
Each router’s key changes periodically, causing the path’s
capability to change. A server returns the current capability to
a client only if the client is well-behaved. Routers drop packets
whose capability is incorrect, and forward packets with correct
capability with priority strictly higher than that of packets
without capability. SIFF’s use of capabilities and classes of
service makes it similar to VIPnet. However, SIFF differs from
VIPnet and ASTUF in several important ways. First, SIFF
requires modifying backbone routers, whereas VIPnet and
ASTUF modify only access routers. Second, SIFF can directly
cause packet dropping and therefore its parameters’ tuning
may be more critical. Third, SIFF uses a priority scheme that
may starve packets without a capability. Fourth, a SIFF client
may experience great difficulty to get authenticated and get
an initial capability if the server is under attack, whereas
a VIPnet client gets authenticated by its access router and
therefore can more easily break through such attacks (ASTUF
clients do not need authentication and therefore may be less
prone to such difficulties). Fifth, SIFF does not compensate
service providers. Sixth, SIFF can be ineffective if attackers
have control of a host near a victim (e.g.,S2 in Fig. 2). In
SIFF, the colluding host can send capabilities to an attacker
that can then clog links shared by the victim and colluding
host. On the contrary, in VIPnet and ASTUF, flows destined to
a colluding host are segregated in a separate class of service if
the colluding host is not a subscribing server, or, in ASTUF, if
the flows are not actually TCP-friendly. If the colluding host is
a VIPnet or ASTUF subscribing site, the attack is also limited
by the attacker’s need to keep paying service providers during
the attack, while preventing tracing of such payments.

VI. CONCLUSIONS AND FUTURE WORK

Greedy or malicious users often disregard TCP congestion
control in order to maximize their own performance or deny
service to other users. We described Automatic Segregation
of TCP-Unfriendly Flows (ASTUF), a novel scheme whereby
access routers measure certain parameters of subscribing
servers’ flows and use these measurements to verify such

flows’ TCP-friendliness. Flows that declaredly (e.g., UDP or
ICMP) or measurably disregard TCP congestion control rules
are forwarded in a class of service separate from that of
subscribing servers’ verified TCP-friendly flows. Therefore,
ASTUF protects the latter from many vulnerabilities of the
current Internet. ASTUF is incrementally deployable and en-
ables service providers to recover the costs involved in its
deployment. We implemented ASTUF and evaluated it on
an emulated network testbed. Experimental results show that
ASTUF is effective and imposes little overhead. Future work
should include replicating these results on larger simulated or
production networks for more extensive validation.

Acknowlegments

Part of this research was performed while the authors
were with Networking Software Research Department, Bell
Laboratories, Lucent Technologies, Holmdel, NJ 07733. José
Brustoloni was partly supported by NSF grant ANI-0325353.

REFERENCES

[1] J. Postel, “Transmission Control Protocol,” RFC 793, IETF, Sept. 1981.
[2] V. Jacobson, “Congestion avoidance and control,” inProc. SIG-

COMM’88, ACM, Aug. 1988.
[3] B. Braden et al., “Recommendations on queue management and con-

gestion avoidance in the Internet,” RFC 2309, IETF, Apr. 1998.
[4] D. Sisalem and H. Schulzrinne, “The Loss-Delay Adjustment algorithm:

a TCP-friendly adaptation scheme,” inProc. Network and Operating
System Support for Digital Audio and Video (NOSSDAV), Cambridge,
UK, July 1998.

[5] M. Handley, S. Floyd, J. Padhye and J. Widmer, “TCP Friendly Rate
Control (TFRC): Protocol Specification,” RFC 3448, IETF, Jan. 2003.

[6] K. Park and H. Lee, “On the effectiveness of route-based packet filtering
for distributed DoS attack prevention in power-law internets,” inProc.
SIGCOMM’01, ACM, 2001, pp. 15-26.

[7] P. Ferguson and D. Senie, “Network ingress filtering: defeating denial of
service attacks which employ IP source address spoofing,” RFC 2827,
IETF, May 2000.

[8] S. Savage, D. Wetherall, A. Karlin, and T. Anderson, “Practical network
support for IP traceback,” inProc. SIGCOMM’2000, ACM, 2000, pp.
295-306.

[9] A. Snoeren, C. Partridge, L. Sanchez, C. Jones, F. Tchakountio, S. Kent,
and W. Strayer, “Hash-based IP traceback,” inProc. SIGCOMM’01,
ACM, 2001.

[10] S. Floyd and K. Fall, “Promoting the use of end-to-end congestion con-
trol in the Internet,”IEEE/ACM Transactions on Networking, 7(4):458–
472, Aug. 1999.

[11] A. Yaar, A. Perrig and D. Song, “SIFF: A stateless Internet flow filter
to mitigate DDoS flooding attacks,” inProc. Security and Privacy
Symposium, IEEE, 2004.

[12] Q. He, C. Dovrolis and M. Ammar, “On the Predictability of Large
Transfer TCP Throughput,” inProc. SIGCOMM’05, ACM, Aug. 2005.

[13] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An
architecture for differentiated services,” RFC 2475, IETF, Dec. 1998.

[14] M. Shreedhar and G. Varghese, “Efficient fair queueing using deficit
round-robin,” IEEE/ACM Transactions on Networking, 4(3):375–385,
June 1996.

[15] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP
throughput: a simple model and its empirical validation,” inProc.
SIGCOMM’98, ACM, Aug. 1998.

[16] M. Goyal, R. Guerin and R. Rajan, “Predicting TCP Throughput From
Non-invasive Network Sampling,” inProc. INFOCOM’2002, IEEE,
2002.

[17] J. Mogul and S. Deering, “Path MTU discovery,” RFC 1191, IETF, Nov.
1990.

[18] J. Brustoloni, “Protecting electronic commerce from distributed denial-
of-service attacks,” in Proc. 11th Int’l World Wide Web Conf.
(WWW2002), ACM, May 2002. [Online]http://www2002.org/
CDROM/refereed/528/

http://www2002.org/CDROM/refereed/528/
http://www2002.org/CDROM/refereed/528/

	Introduction
	Background
	Internet QoS mechanisms
	TCP modeling

	Design
	Threat model
	QoS handling
	Revenue handling
	Packet marking

	Experimental results
	Related work
	Conclusions and future work
	References

