

RECURSIVE METHOD TO EXTRACT RECTANGULAR OBJECTS FROM SCANS

Cormac Herley

Microsoft Research

ABSTRACT

In scanning photographs, receipts or other small objects
users will often scan many at a time. It would be
convenient to automatically detect that the scanned image
consists of many small objects rather than a single large
one, and segment appropriately. We present a simple,
efficient and robust way of doing this.

1. INTRODUCTION

The problem we address is simply stated: given an image
determine whether it contains rectangular objects, and if
so determine their vertices. The rectangles can be of any
sizes, at any positions and orientations and there can be
any number of them in the image. We merely assume that
they do not overlap with each other. The most obvious
application is to scanner images, so that multiple
photographs, receipts, or business cards might be
segmented and stored automatically. We are primarily
interested in objects on a constant color background. For
example, most scanners have a constant black, white or
grey color, but we also accommodate any other
background that is predominately of one color. Let us be
clear that we are not solving or addressing the compound
document analysis problem: we do not seek to separate
images from text on scans of magazine pages for example.

Given that we seek rectangles the obvious approaches
might be to seek lines and/or corners in the image and
match them up. While this might be feasible in certain
cases it can become very complicated as the number of
objects increases. Firstly, detecting either lines or corners
at arbitrary positions and orientations can be
computationally expensive. The Hough transform [1], a
standard method for determining the existence of lines in
an image, requires many operations and is error prone.
Secondly, certain images will have one or more edges that
are hard to distinguish from the background (e.g.
photographs of snow scenes scanned on a white
background). Thirdly, there is often sharing of lines
among objects: two or more objects at the same
orientation can often be confused as one.

In the next section we examine the question of estimating
the background color. In Section 3 we show that when an

image contains only a single rectangular object the
vertices are easily determined. In Section 4 we give an
example of how a recursive divide and conquer technique
can simplify the multiple object case to many single
object cases, and in Section 5 give the core of the
algorithm. In Section 6 we examine implementation
details, and how our algorithm fares when faced with real
data that deviates from our idealized assumptions.

2. DETERMINING THE BACKGROUND COLOR

A key assumption is that the background is a single color
and that most of the interior pixels of the rectangular
objects differ from that color. We will not assume that this
background is known, but rather estimate it from the data.
Most of the algorithms to estimate the background color
involve taking a histogram of the image or parts of the
image and seeking well defined peaks. The background
color, being constant, will often form a larger peak than
any of the other colors.

In many cases this simple scheme is adequate; however it
can fail when:

• The rectangular objects themselves contain large
amounts of constant color (e.g. saturated white in
snow scenes or black in underexposed images)

• The rectangular objects cover so much of the
image that the number of background pixels is
insufficient to form a discernible peak.

Since correctly determining the background color is of
paramount importance we actually use a more
sophisticated algorithm than the simple histogram
approach. In the interest of space we omit the details, and
will from here on assume that the background color has
been accurately determined. Interested readers are
referred to [2] for details.

3. SINGLE OBJECT CASE
We now demonstrate that if the image consists of a single
rectangular object the problem is easily solved. The
situation is as shown in Figure 1. We assume that the
background color b has been estimated, and that at least a
majority of the pixels in the interior of the rectangle differ
from b by more than a threshold amount. Call any pixel
for which |Im(i,j) – b| > threshold a data pixel, and all
others background pixels. Suppose we calculate the

number of data pixels in the j-th row P(j), and the i-th
column Q(i). These functions have been plotted in Figure
1. Observe that for the first and last few rows we have P(j)
= 0, since there are no data pixels at the top and bottom of
the image. P(j) becomes non-zero at rows a and d (the
rows that contain the corners of the rectangular object),
and ramps from there to it’s maximum width between
rows b and c. Similarly Q(i) has a trapezoidal shape as
also shown in Figure 1.
Elementary geometry gives that the top part of the graph
of P(j) is equal to x Cos(theta) and of Q(i) is y cos(theta),
where x and y are the dimensions of the rectangle, and
theta the angle at which it is oriented. The corners of the
rectangle are the four points (g,a), (h, c), (f,d) and (e,b)
which correspond to the inflexion points of the trapezoids
P(j) and Q(i).

There is actually a second possible rectangular object that
would produce the same P(j) and Q(i) functions, as shown
in Figure 2. This rectangle with coordinates (h,b), (g,d),
(e,c) and (f,a) is at the same position as the first, but
oriented at angle –theta, and is the only other possible
rectangle that would generate the observed trapezoids.

Clearly, in this simple case, if we knew that our image
consisted of only a single rectangle, and there were no risk
of confusing data pixels and background pixels, then we
could calculate P(j) and Q(i), estimate the inflexion points
(a,b,c,d) and (e,f,g,h) and then explicitly check which of
the rectangles is present. We defer until later discussion
of departures from this ideal case; for example where not
all interior pixels satisfy |Im(i,j)-b| > threshold, or the
knee points are not well defined, or the background is not
of uniform color.

The kernel of our algorithm is a method that, given the
functions P(j) and Q(i) calculated over that image or sub-
image, determines the inflexion points, and from this
determines whether either of the two possible rectangles is
a plausible fit to the data. If either of them is then it
returns the vertices of the rectangle. For notational
convenience, let’s call a routine to accomplish all of this
singleObject(Im, P, Q), which takes as arguments a
portion of an image, and the P(j) and Q(i) functions as
defined above.

4. MULTIPLE RECTANGLES: EXAMPLE
When the image consists of multiple rectangles the
situation becomes a great deal more complicated. The
quantities P(j) and Q(i) will now consist of the sums of the
trapezoids generated by each of the individual rectangles.
See for example Figure 3, where three rectangles are
present. In the ideal case it might be possible to estimate
the parameters if one knew, or guessed, that three
trapezoids were present. But such an approach is unlikely
to be robust when faced with real data, and will become

P(j)

Figure 1: A single rectangular object. We graph P(j)
and Q(i), the number of data pixels per row and per
column respectively. Observe that the knee points of
the trapezoids give the vertices of the rectangular
object in the image.

f

Q(i)

h g

d

c

a

b

e

x

y

t

Q(i)

h g f e

d

c

a

b

P

x

y

t

xCos(t)

yCos(t)

Figure 2: Two rectangular objects at different
orientations give the same P(j) and Q(i) functions. To
distinguish between these two possibilities one can
explicitly check which rectangular object is present.

very complicated as the number of rectangles (and hence
trapezoids) increases.

Observe from Figure 3 however, that P(j) contains a gap
at row j0, that is there is a location where P(j) is zero. This
indicates that there is no image data at this location, and
the problem can be decoupled to examine the portions of
the image above and below row j0 separately. This is an
important simplification as it allows us to split the
problem in two.

Having discovered this gap, we can decouple the parts of
the problem above and below j0. This is shown in Figure
4. Let’s calculate the quantities P(j) and Q(i) over the two
parts of the image (the rows above j0 and the rows below).
We see from Figure 4 (a) that the part above consists of a
single rectangle so P(j) and Q(i) end up being simple
trapezoids. Thus this subproblem is solved by routine
singleObject(). The part below j0 consists of two
rectangles and P(j) is the sum of two trapezoids. The
handling of this sub-image is shown in Figure 4 (b).
Observe that now there is a gap in Q(i) at location i1
indicating again that this sub-image can be broken into
even simpler sub-images by taking those columns to the
left of i1 and those to the right. Those sub-sub-images
each contain a single rectangle and their P(j) and Q(i)
functions are simple trapezoids, allowing them to be
solved using routine singleObject().

The example shown in Figures 3 and 4 illustrates that a
gap in the P(j) or Q(i) function of the image will allow us
to break the problem into sub-problems, and even these
sub-problems can often be similarly decomposed. In this
example the simplification carried us all the way to sub-
images that each contained only a single rectangle and
could be solved using function singleObject().

It is not the case that the simplification always leads to
sub-images that each contain a single rectangle. However,
every simplification makes further simplifications more
likely. In the majority of cases where a user places objects
on a scanner, the algorithm simplifies all the way to sub-
images containing single objects. Figure 5 shows
examples of several images that can be simplified and one
that cannot. Further details are in [2].

5. RECURSIVE DIVIDE AND CONQUER
Our approach will be to calculate P(j) and Q(i) for a given
image. If gaps are found, we simplify and re-apply to the
sub-images until no further simplifications are possible.
At the lowest level we have sub-images for which the P(j)
and Q(i) functions contain no gaps. We then use routine
singleObject() and if a single rectangle is found add it to
the global list. Otherwise we decide that no rectangle has

been found in the given sub-image. In either case we
proceed with the other sub-images until no more sub-
images remain. Because we apply much the same
processing to an image and its sub-images the overall
algorithm is efficiently implemented recursively.

function procMult(Im);
[P, Q] = getProjections(Im);
[gP, gQ] = getGaps(P, Q);

if (#(gaps in P) + #(gaps in Q) == 0)
 singleObject(Im, P, Q);
else
 for m = 1 to #(gaps in Q)
 for n = 1 to #(gaps in P)
 procMult(Im(gQ(m):gQ(m+1), gP(n):gP(n+1))
 end
 end
end

Where the called functions are as follows:
getProjections(Im) is a routine to calculate P(j), Q(i)
over sub-image Im, getGaps(P,Q) determines position
of any gaps in P(j), Q(i), and singleObject(Im, P, Q)
examines P(j) and Q(i) for a single rectangular object and
adds to the global list if found.

6. IMPLEMENTATION ISSUES

We’ve dealt primarily with the case where there is no
confusion between background pixels and data pixels. Of
course this idealization seldom holds in practice. For

j0

Q(i)

P
(j)

Figure 3: Example of three rectangular objects. The
P(j) and Q(i) functions are now the sums of trapezoids.
Observe that P(j) has a gap at row j0, indicating that
the problem can be simplified into sub-problems
above and below this row.

example if the background color is saturated white then
any pixels interior to the rectangles will be confused as
background, resulting in P(j) and Q(i) functions that
deviate from perfect trapezoids, even when only a single
object is present. The main role of P(j) and Q(i) is to
show where gaps occur; only approximate location of the
knee points is needed in singleObject() and once we
know a sub-image contains at most a single object it is
possible to estimate its vertices with care. Tested on
hundreds of groups of scanned photos, receipts and
business cards the algorithm behaves very robustly. Figure
6 shows an example.
Being recursive, the algorithm is inherently efficient, with
little duplication of effort. A detailed analysis of
complexity is in [2].

[1] A. Jain, “Fundamentals of Image Processing,” Prentice-Hall.
[2] C. Herley, “Recursive Extraction of Objects from Images,”
in preparation.

 Figure 5. Examples of various configurations of
rectangular objects. All but the top left example are
simplified to sub-images that contain a single object. The
splits generated by our algorithm are shown as dotted
lines.

P(j)

Q

Q(i)

P
(j)

i1

j0

(b)

Figure 4: decoupling the example of Figure 3 by splitting
above and below row j0. We recalculate P(j) and Q(i) for
the new sub-images. (a) We find the sub-image above j0
is now the single object case (b) The sub-image below j0
now has a new split in Q(j) at column i1 (allowing further
simplification).

(a)

Figure 6. Actual segmentation of a scanned image. The
image consists of four rectangular objects; the dotted
black lines indicate the splits generated by our algorithm.
All vertices were correctly found.

