
“When times are mysterious
Serious numbers will speak to us always.
That is why a man with numbers
Can put your mind at ease.
We’ve got numbers by the trillions
Here and overseas.”

—Paul Simon, “When Numbers 
Get Serious,” 1983

Increasingly in the 21st century, 
our daily lives leave behind a 
detailed digital record: our shifting 
thoughts and opinions shared on 
Twitter, our social relationships, 
our purchasing habits, our infor-
mation seeking, our photos and 
videos—even the movements of 
our bodies and cars. Naturally, for 
those interested in human behav-
ior, this bounty of personal data 
is irresistible. Decision makers of 
all kinds, from company execu-
tives to government agencies to 
researchers and scientists, would 
like to base their decisions and 
actions on this data. In response, 
a new discipline of big data analyt-
ics is forming. Fundamentally, big 
data analytics is a workflow that 
distills terabytes of low-value 
data (e.g., every tweet) down to, 
in some cases, a single bit of 
high-value data (Should Company 
X acquire Company Y? Can we 
reject the null hypothesis?). The 
goal is to see the big picture from 
the minutia of our digital lives.

It is no surprise today that big 
data is useful for HCI researchers 
and user interface design. As one 
example, A/B testing is a standard 
practice in the usability commu-
nity to help determine relative 
differences in user performance 
using different interfaces. For 
many years, we have used strict 
laboratory conditions to evaluate 
interfaces, but more recently we 
have seen the ability to implement 
those tests quickly and on a large 
population by running controlled 

Interactions 
with Big Data 
Analytics

Danyel Fisher 
Microsoft Research | danyelf@microsoft.com

Rob DeLine 
Microsoft Research | rob.deline@microsoft.com

Mary Czerwinski 
Microsoft Research | marycz@microsoft.com

Steven Drucker 
Microsoft Research | sdrucker@microsoft.com

in
te

ra
c

ti
o

n
s 

 
M

a
y 

+
 j

u
n

e
 2

0
1

2

50

CoVer STorY



experiments on the Web [1]. These 
experiments allow practitioners 
to identify causal relationships 
between changes in design and 
changes in user-observable behav-
ior on a potentially massive scale. 
Even more recently, practitioners 
are starting to identify usability 
issues by mining query logs for 
commonly asked questions by 
users of certain applications [2]. 
This can help product teams dis-
cover large, real-world usability 
issues while supplementing labora-
tory techniques that tend to focus 
on smaller, more isolated problems.

Other companies use the data 
more directly to modify their offer-
ings. The online game company 
Zynga creates games and studies 
data on how its audience plays 
them in order to update the games 
immediately. “We’re an analyt-
ics company masquerading as a 
games company,” said Ken Rudin, 
a Zynga vice president in charge of 
its data-analysis team. He contin-
ued, “We are totally disrupting the 
traditional video games industry; 
a huge portion of that disruption 
is the ability to use data” [3].

Of course, big data analytics, 
like any research method, has its 
limits and pitfalls. Just because 
analysts have big data to work with 
doesn’t guarantee the sample they 
need is sufficiently representa-
tive of their entire user population 
(bigger is not better); nor does it 
mean they have the ground truth 
around their users’ motivations or 
needs from their behavior logs. For 
instance, boyd and Crawford argue 
that working with big data is still 
subjective and that automated data 
collection is not self-explanatory—
it requires selection and inter-
pretation [4]. They point out that 
the data sampling and cleaning 
processes in particular are prone 
to potential error and bias. So, the 

challenge for HCI researchers is to 
leverage the big data that will be 
increasingly available, but to do so 
judiciously. 

Here we report on the state of 
the practice of big data analytics, 
based on a series of interviews we 
conducted with 16 analysts. While 
the problems uncovered are pain 
points for big data analysts (includ-
ing HCI practitioners), the oppor-
tunity for better user experience 
around each of these areas is vast. 
It is our hope that HCI research-
ers will not only turn their atten-
tion toward designs that improve 
the big data research experience, 
but that they will also cautiously 
embrace the big data available 
to them as a converging line of 
evidence in their iterative design 
work. The big data user experience 
challenge will affect every one of 
us. As Pat Hanrahan, a professor 
at Stanford, recently said: “The 
reason big data is impacting every 
one of us is the data oozing out of 
everything… It’s like electricity 
flowing throughout an organiza-
tion—everyone can tap into it on 
command to answer the individual 
questions their jobs demand” [5].

The Nature of Analytics Work
The term analytics (including its big 
data form) is often used broadly 
to cover any data-driven deci-
sion making. Here, we use the 
term for two groups: corporate 
analytics teams and academic 
research scientists. In the cor-
porate world, an analytics team 
uses their expertise in statistics, 
data mining, machine learning, 
and visualization to answer ques-
tions that corporate leaders pose. 
They draw on data from corporate 
sources (e.g., customer, sales, or 
product-usage data) called business 
information, sometimes in combina-
tion with data from public sources in
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In the academic world, research 
scientists analyze data to test 
hypotheses and form theories. 
Though there are undeniable dif-
ferences with corporate analytics 
(e.g., scientists typically choose 
their own research questions, exer-
cise more control over the source 
data, and report results to knowl-
edgeable peers), the overall analy-
sis workflow is often similar.

This article is an alert and 
a call to action. It is an alert 
that big data computing is com-
ing to us all: As we collect data 
from sensors and stream it from 
logs, traditional usability test-
ing is being complemented by big 
data analytics. Increasingly, the 
usability professional must learn 
how to do large-scale analytics 
to provide valuable insights into 
how millions of users are work-
ing on large-scale applications.

It is a call to action in that we 
highlight important UX challenges 
in handling large datasets. There 
is a great opportunity to make 
the analysis of big data easier 
to do and faster. While systems 
researchers are building ever-larg-
er designs, there is a great need to 
improve the experience of doing 
analysis with these systems.

Defining Big Data
When does analytics become 
big data analytics? The size that 
constitutes “big” data has grown 
according to Moore’s Law. In 1975 
attendees of the first VLDB (Very 
Large Databases) conference wor-
ried about handling the millions 
of data points found in U.S census 
information [6]. In the context 
of information visualization, 
Shneiderman describes a dataset 
as big when it’s too big to fit on a 
screen—at one item per pixel, most 
desktops would stop at a few mil-
lion data points today [7]. 

(e.g., tweets or demographics). For 
example, the CFO of a games com-
pany might turn to the analytics 
department when considering 
several schemes to sell “extras” 
to improve a game’s revenue. To 
help this decision making, the 
analyst’s role is to choose informa-
tive metrics that can be computed 
from available data, to perform 
the necessary computations, and 
to report the results in a way the 
CFO can comprehend and act 
upon. This role is marked by sev-
eral characteristics:

• The work is exploratory and 
demand-driven. While some ana-
lytics work is routine, analytics 
teams need flexibility to deal with 
new and changing data sources, 
new types of questions, and new 
techniques and technology.

• The ultimate goal of the work 
is clear communication, often to an 
audience with little background in 
analysis techniques like statistics.

• The work must produce high-
confidence results, often under 

pressure. Reporting the limits of 
the analysis is often as important 
as reporting the results. These 
limits arise both from a poor fit 
between the available source data 
and the “ideal” data for answering 
the question, and from the “lossy” 
nature of the data transforma-
tions. To reduce these limits, the 
analysts sometimes improve the 
raw data, for example, by request-
ing that the engineering team log 
specific product usage.

• The work creates a strong need 
to preserve institutional memory, 
both by tracking the origins of 
past decisions and by allowing 
repeatability across analyses. 
Larger analytics departments 
often share “tribal knowledge,” 
including the meaning of data 
values (e.g, how missing values 
are represented), domain-specific 
analysis techniques (e.g., how 
to filter spam bots out of Web 
requests logs), and general analysis 
techniques (e.g., when to apply a 
correction in a statistical test).

Acquire Data

Shape Data into 
Architecture

Code/Debug

Reflect

Choose Architecture

•  Figure 1. The big-
data pipeline.
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More often, big data means data 
that cannot be handled and pro-
cessed in a straightforward man-
ner. A spreadsheet fits in memory; 
it is reasonably quick to determine 
if the data is clean, the values are 
reasonable, and the results can be 
computed rapidly. In contrast, a 
big dataset won’t fit in memory, so 
it will be hard to check whether it 
is clean. Computations will take a 
long time. New data may well be 
constantly streaming in, so that 
the processing system needs to 
make decisions about which part 
of the stream to capture. The data-
set may consist of images, natural 
language text, or heterogeneous 
data, so it will be hard to predict 
where the database join keys are. 

Finally, a big dataset will prob-
ably be so large as to not fit on a 
single hard drive; as a result, it 
will be stored on several different 
disks, and will be processed on a 
number of cores. Queries will have 
to be distributed and written to 
work across a network. 

An Old “New” Way of  
Analyzing Data
In many ways, today’s big data 
analytics is a throwback to an 
earlier age of mainframe comput-
ing. To illustrate this, let’s contrast 
the familiar interactive approach 
to analyzing data in spreadsheets 
with the brave new world of big 
data. If you had a dataset at the 
turn of the 21st century, you 
tended to copy your data to your 
disk, which typically took seconds 
or less. You would load the dataset 
into memory and then interactive-
ly perform one or more analyses 
on the data. There was no need to 
examine preliminary results and 
iterate, unless you were consider-
ing performing different tests or 
transforming the data. The whole 
process was very fast, and results 

would be ready in seconds. You 
knew right away if you were satis-
fied with your findings. 

In today’s world of big data, the 
luxuries of interactivity, direct 
manipulation, and fast system 
response are gone. You can’t copy 
your data to your personal com-
puter in whole; it’s more than can 
be processed in real time, as well 
as more than can be visualized 
all at once, and it requires much 
work to get the right sample and 
amount of data. In some sense, 
with existing tools a data scientist 
may not really know if she got the 
most appropriate answer or not. 
Because of these issues, we feel the 
workflow of computing has taken 
a giant step backward—back to the 
punch cards of the 1960s! Most of 
the cloud systems used for big data 
analysis feel more like batch jobs, 
in which you submit a job and go 
get some coffee, with little insight 
into what’s really going on behind 
the scenes, how long it will take, or 
how much it’s going to cost.

Challenges Involved in Big Data
To understand the challenges of 
conducting big data analytics in 
more detail, we interviewed 16 
data analysts at Microsoft. Each of 
them was working with large data-
sets and using a variety of cloud 
and distributed services to process 
their overwhelming quantity of 
data. As an example, one of our 
analysts was a social psycholo-
gist who works intimately with 
Twitter data. He receives the raw 
Twitter “fire hose” dump of data, 
often years’ worth of it. He then 
analyzes the feed to study trends 
such as changing sentiment over 
time, or how information spreads 
through the Twitter feed. Several 
of the other analysts we inter-
viewed do machine learning over 
very large datasets, for example, 

over all of the search queries com-
ing out of the Bing search engine. 

Although each analyst’s workflow 
varies in specific ways, analyst 
activities are generally clustered 
into five steps, shown in Figure 1: 1) 
acquiring data, 2) choosing an archi-
tecture, 3) shaping the data to the 
architecture, 4) writing and editing 
code, 5) reflecting and iterating on 
the results. This sort of workflow 
is in line with other documented 
workflows, such as the software-
development waterfall model. 

These steps differ jarringly from 
the way data is handled in Excel: 
Cloud computation is fundamen-
tally different from local comput-
ing. Whether Microsoft’s Azure, 
Amazon’s EC2, or a Hadoop cluster, 
parallel computation is a differ-
ent way of building code. In these 
highly parallel systems, identical 
code is run on multiple virtual 
machines (VMs). Users typically 
first get their code running on a 
single instance that runs locally, 
and then deploy the code to a 
series of VMs that run remotely 
on a network. The data is stored 
across multiple servers to ensure 
that it can be processed as rapidly 
as possible; the code itself con-
tains rules that help decide which 
machines execute the code, and 
in what sequence. Whereas com-
puting against local data is fast 
and efficient, computing against 
data that is stored on a separate 
machine can be a slow operation.

In a spreadsheet, the user can 
choose the type of analysis on the 
fly or can export the dataset into 
the appropriate tool. Computation 
doesn’t cost much in Excel, so cost 
planning is not very important. On 
a VM, each step costs a measur-
able amount of money and time, 
and different designs can have 
substantially different financial or 
temporal implications. in
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We describe the challenges of 
each of these steps in turn, using 
examples from our interviewees to 
illustrate them. Each of these steps 
provides the HCI practitioner with 
ample room to improve the user 
experience.

Acquiring data. The first chal-
lenge our analysts identified was 
determining where the data in 
their big-data systems came from. 
How do they discover sources of 
data? Increasingly, data is avail-
able in a wide variety of sources 
and formats: Online databases 
of public statistics are provided 
by the U.S. government (http://
data.gov) and the United Nations 
(http://unstats.org); private com-
panies sell data from data market-
places, such as Microsoft’s Azure 
Marketplace and Infochimps. 
Experts ran into many problems 
with data available online, how-
ever. They struggled to figure out 
what data was available; even 
when it was available in machine-
readable formats, it would often 
be stored in a schema that made it 
hard to use. In many of these sys-
tems, however, the data is avail-
able only after running an aggre-
gation query—or worse, only in 
PDF files filled with text. Once this 
data was ready to go online, our 
analysts would combine it with 
information they collected them-
selves from sensor systems. This, 
in turn, caused new challenges: 
For example, it could take a third 
dataset to link the zip codes in a 
crime database to the area codes 
in a phone directory.

There are new opportunities for 
improving standards for announc-
ing data, helping people find data, 
and formatting data so it can be 
more easily entered.

Choosing architecture based on 
cost and performance. Whatever 
platform the big data analysis is 

BIG DATA 
a map of the frequency 

with which people in 
different places reply to 

each other on Twitter. The 
brightness of each arc is 
proportional to the log of 

the number of tweets from 
one place addressing 

someone in another place, 
with locations chunked to 
20-mile squares. Commu-
nication is shown moving 

clockwise from the person 
sending the tweet to the 

person being addressed. 
Data from Twitter  

streaming aPI, may 15 –  
october 10, 2011. 

See something or say 
something: los angeles. 
Red dots are locations of 
Flickr pictures. Blue dots 

are locations of Twitter 
tweets. White dots are 

locations that have been 
posted to both.

This graph charts the 
frequency of mentions 

in the New York Times of 
the five u.S. presidents 

between 1984 and 2009. 
It also depicts story 

weights—the darkest lines 
shows front-page stories, 

the lighter lines indicate 
stories buried deeper in 

the paper.
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performed on, the platform orga-
nizes the computation around a 
set of programming abstractions 
substantially different from those 
of the normal desktop environ-
ment. Analysts trained on the 
desktop environment have to learn 
these new abstractions and plan 
their computation around them, 
often facing a new set of engineer-
ing trade-offs and failure modes.

A completely new part of design-
ing a data analysis for the cloud is 
planning for the economic impact 
of the design choices. With cloud 
computing, nearly every choice 
about computation, uploading/
downloading data, and storage has 
a direct dollar cost. In addition, 
each choice has an effect on how 
long a job will take to execute. 
Planning and monitoring these 
costs is unfamiliar and poorly sup-
ported for end users, and making 
mistakes can be quite expensive. 
Many of these decisions need to 
be made before the first byte is 
uploaded to the cloud and before 
the first line of code is written.

Using cloud computing can sup-
port a broad selection of VMs; for 
more computation, you simply 
pay more, by buying either more 
machines or larger ones. Doubling 
the memory or computation speed 
of a machine, however, does not 
double its speed; it can impose 
non-linear costs as communica-
tion overhead, storage, and other 
aspects change. For example, 
in certain systems, a developer 
who takes a larger-scale VM gets 
access to lower-level systems of the 
machine and better guarantees of 
performance; smaller VMs do not 
get this access. 

There is no support for estimat-
ing the cost or the duration of a 
computation before performing it. 
Programmers end up iteratively 
re-running their application to 

adjust the number of VMs, the 
size of queues, and so on, incur-
ring larger bills while empirically 
finding the right time-cost balance 
point. When working with VMs 
in a shared cloud, their perfor-
mance characteristics may even 
vary over repeated experiments. 

Current cloud-computing plat-
forms provide little to no support 
for partitioning an application 
across VMs. Users must do their 
own empirical measurements, 
gauging not only how long a job 
takes to compute, but also how 
much overhead is involved in 
starting a job on a new VM. In 
our users’ projects, this overhead 
could be substantial, and so the 
cost of a job was often needed to 
factor in this long startup time. 
The time a job takes is affected 
by both the startup time and the 
computation time; adding more 
cores reduces the latter but doesn’t 
affect the former. 

Our analysts found it difficult to 
estimate the effects of these dif-
ferent potential configurations on 
task and computation time. 

Shaping the data to the architec-
ture. Once the analyst has found a 
dataset and a computing platform, 
he or she must upload the data into 
the platform. The analyst must 
ensure that the data is uploaded 
in a way that is compatible with 
how the computation will be struc-
tured, and distributed and parti-
tioned appropriately.

Cloud-computing systems use 
data storage differently than 
desktop machines. Cloud systems 
are still evolving models for stor-
age: They offer cloud-based data-
bases (such as Amazon’s RDS and 
Microsoft’s SQL Azure), distrib-
uted file systems (as in Hadoop), 
and novel data structures (as in 
Azure’s queues and blobs). These 
structures are meant to be adapt-

able to users’ coding needs, but 
they represent a way of thinking 
about storage and communica-
tion that is distinct from what 
users have previously experienced. 
These structures hide underlying 
structure: A queue, for example, is 
a distributed data structure across 
a number of machines, and a par-
titioned table is silently split across 
multiple machines.

Several of our interviewees com-
mented that moving files back and 
forth between the cloud and a local 
machine was extremely common 
but a huge pain point. When the 
files are large, efficiency is critical, 
so it’s not simply an issue of find-
ing some way to get files uploaded, 
but an issue of doing it right. 
The files need to be organized, 
partitioned, and prepared before 
they are uploaded to the cloud. 
Different techniques for importing 
can take very different amounts of 
time; for example, converting files 
to a binary representation rather 
than a comma-delimited text file 
could radically change the inges-
tion process on the far side.

Currently, tooling is limited: 
Analysts are used to a rich set 
of tools for handling local files, 
including moving and renaming 
them, looking at their content, and 
referring to them from applica-
tions. Each of these steps is more 
complex in the cloud. Our experts 
had difficulty inspecting and 
working with files once they had 
been moved up into the cloud. 

Once data has been uploaded, it 
must be cleaned. Cleaning can be 
a difficult process, requiring mul-
tiple people’s expertise; as a result, 
some of our analysts had collab-
oratively cleaned their dataset. 
Unfortunately, it was then often 
difficult to understand who had 
touched which part of the data. In 
particular, analysts found them- in
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selves jury-rigging mechanisms to 
capture descriptions of what the 
data cleaner was trying to accom-
plish and what features were used. 

Fairly often, cleaning was a pro-
cess that occurred only after code 
had been written and errors hit: 
They would go back and look for 
aberrations after a crash, or when 
a model looked odd. As a result, 
the analysts also wanted to cap-
ture the justifications for cutting 
aberrant data points: How had they 
detected the error? What model 
had found the issue? 

Most data tables have the 
built-in notion that data should 
be stored and edited in place. 
Interviewees stressed the expec-
tation that data storage is com-
paratively cheap: Rather than 
mutating it in place and losing 
history, they would prefer to cre-
ate additional clean versions of 
columns and new datasets.

Write code. With an architecture 
selected and the data in place, 
the analyst begins to select their 
analysis. In the examples we stud-
ied, the analyses were articulated 
through code, written in C# and 
Microsoft’s SCOPE; outside these 
environments, analysts might work 
in languages such as R, Python, 
or PIG (a database-like language), 
usually over Hadoop. High-level 
languages that make it easy for the 
compiler to support parallelism—
such as DryadLINQ or Matlab’s 
matrix-based language—will 
ultimately help users write cloud-
based jobs.

Users must design their code and 
systems around the idea of sepa-
rating their work into parallelizable 
jobs. Algorithms need to be written 
in new ways in order to do this, 
and data must be stored differ-
ently. For example, some resources 
might need to be duplicated, one 
per node. In order to reduce costly 

communication, an analyst might 
store a copy of a reference lookup 
table on each VM.

Abstracting away the cloud. These 
high-level languages are designed 
to allow analysts to “abstract 
away” the cloud. Analysts should 
spend less effort considering 
where their data is being pro-
cessed, and more effort consider-
ing the nature of computation. 
Unfortunately, the abstraction 
can be leaky. Several of our users 
complained of times when one 
process or another was blocked 
based on transient network 
issues. The symptoms of these 
issues can be masked by other 
failures, as redundant systems 
and parallel code attempt to 
recover. As a result, from the 
analysts’ perspective, sometimes 
the work simply stops, without a 
clear message; later, the system 
spins back up and the lag time is 
not accounted for. So a fine bal-
ance between transparency and 
abstraction seems to be required.

Directly manipulating data ver-
sus scripting. Our analysts are 
accustomed to working in Excel 
for their smaller data jobs. As 
a result, they often compared 
their procedures to working in an 
Excel-like tool. Needless to say, 
the cloud was found wanting: 
Cloud analysis is far more complex 
than when using desktop tools, 
even when the type of analysis 
is similar. They hoped for direct-
manipulation environments.

On the other hand, several ana-
lysts emphasized the importance 
of scripting an analysis rather than 
carrying it out “by hand” through a 
direct manipulation interface. (R is 
an example of a scripting interface; 
SPSS is a direct-manipulation envi-
ronment that generates a script in 
the background.) Scripting leaves 
a log of analysis, which makes it 

easy to repeat later or to share 
with teammates. Logs also make it 
easier to repeat experiments, to try 
variants when new questions or 
new data arise, and to fix mistakes 
in later runs. Finally, scripts docu-
ment the derivation of high-level 
information and charts. 

Of course, neither of these is 
available now; instead, analysts 
write compiled code.

Debugging and iteration. After 
the execution run is complete, the 
analyst wants to know if their test 
worked. This leads to a process of 
debugging and looking for errors, 
iteration and changing code to 
work, and visualization, in order to 
interpret results.

Code rarely works the first 
time. While modern program-
ming environments will usually 
break into a debugger on a crash, 
a cloud-based computing solution 
will often be far more difficult to 
debug. Our users reported that 
they often found themselves por-
ing through trace files, which 
reminded some respondents of 
debugging in the 1980s. While 
it is simple to write out trace 
files, a job distributed across a 
group of VMs means that a single 
crash might be distributed across 
multiple VMs, with trace files 
stored on a variety of machines.

This is compounded by the 
temporary nature of VMs. If a VM 
fails or stops responding, the infra-
structure cleanly recovers from 
the fault, moving jobs to a different 
machine. Unfortunately, the trans-
parency of this process can have 
the effect of hiding errors when 
they occur, making it a challenge 
to diagnose and eliminate them.

Data analytics is inherently 
exploratory, which makes rapid 
iteration highly desirable. After 
a job completes, for example, 
an analyst may want to tweak in
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a parameter and try again. In 
machine learning, for example, 
a user may want to check differ-
ent combinations of parameters 
and feature sets to run after run-
ning one iteration suggests dif-
ferent features to try out. As one 
interviewed analyst put it, “Fast 
iteration is key but incompatible 
with the way jobs are submit-
ted and processed in the cloud.” 
It’s frustrating to wait for hours 
only to realize you need a slight 
tweak to your feature set.

Analysts moved back and forth 
from local machines to cloud-
based systems. For an iterative 
machine-learning process, some 
of the feature generation could 
be done locally, but the raw data 
then needed to be uploaded to the 
cloud. If the feature set was not 
correct or of high enough quality, 
they needed to go back to the raw 
data. They would sample data to a 
local machine, which they would 
use to both explore features and 
test models they had generated 
from a full run-through. This back 
and forth from local to cloud was 
poorly supported. 

Most, if not all, interviewees 
stressed the critical role of visual-
ization (“Visualization is huge” was 
a frequent comment). The common 
need was that of inspecting data at 
multiple scales. With large datas-
ets, one must frequently start wide 
and zoom into very small details. 
Visual interfaces are extremely 
well suited to this scenario and 
can be used in conjunction with 
statistical analyses (e.g., suggesting 
to the user a number of clusters 
to specify in a cluster analysis). A 
related scenario is the need to see 
context. Especially in large datas-
ets, getting lost in the data is easy. 
Visualization provides a way to 
maintain context by showing data 
as a subset of a larger part of the 

data, showing correlated variables, 
and so on. Visualization is also rel-
evant to data streams that are now 
common, in that they can help 
identify patterns over time. 

Hope for the Future
This list of complaints and pain 
points can be exhausting. This 
new paradigm of computation has 
placed stumbling blocks before 
analysts who try to take advantage 
of the opportunities. Yet it also 
means new opportunities for bet-
ter user experiences and improved 
tools for analysis and investigation. 
As one frustrated analyst asked, 
“Can we take a typical Excel user 
and empower them to become a 
data scientist?”

When we picture a system that 
addresses these issues, we believe 
this leads to a new way of writing 
queries and analysis scripts. Here, 
we imagine a hypothetical system, 
called an analytics cloud environment 
(ACE), which helps bring together 
these many ideas under one roof. 
Constructing this system requires 
critical contributions from HCI 
researchers, who can help under-
stand the user experience of inter-
acting with big data and can help 
figure out what aspects to bring to 
the fore—in the end, benefitting 
the process that HCI researchers 
will eventually need to participate 
in themselves!

To support rapid iteration on 
data in the cloud, the environ-
ment must be interactive, one in 
which users iteratively pose que-
ries and see rapid responses. We 
already know about the power of 
interactive environments: Tools 
like R, Python, and Matlab are 
popular for data analysis. Projects 
like CONTROL [8] have begun 
to point the way toward online 
computation, in which large jobs 
are broken into small portions 

whose results are reported incre-
mentally. Fisher et al. [9] point to 
ways to integrate visualization 
with online systems, allowing 
users to get visual feedback on 
their queries. This rapid iteration 
over partial results would allow 
analysts to catch bugs and explore 
alternatives more quickly. 

The ACE would retain the team’s 
institutional memory by allowing 
the user to save, share, browse, 
and reuse previous interactions 
with a data source. This would be 
richer than a standard R or Python 
shell—a tool that can introspect 
on the code it runs. This, in turn, 
may allow partial computations, 
letting users drill down into the 
workflow so they can use only 
part of a previous iteration. 

Part of storing history is remem-
bering where the data came from. 
The ACE would have an intrinsic 
notion of provenance. Inspired 
by tools like VisTrails [10], which 
today can remember both where 
a given data item came from and 
how users have changed their 

Most interviewees 

stressed the critical 

role of visualization. 

The common need was 

that of inspecting data 

at multiple scales. 

With large datasets, 

one must frequently 

start wide and zoom 

into very small details.
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and CPU utilization, computation 
rate and queue lengths, and errors 
for a user. This feedback should 
be brought in as an integral part 
of the ACE, so that when a user 
writes a line of code they can see 
how many rows per second it can 
compute—and how much it will 
cost if it continues to run.

Additionally, just as the back-
end can be abstracted, so might 
the data itself. As stated, ana-
lysts we interviewed frequently 
worked with samples on their local 
machines before carrying out a 
full analysis in the cloud. This 
allowed them both to regain the 
interactive, exploratory experi-
ence of working with small data 
and insulated them from the 
complexities and expenses of 
computing in the cloud. Given 
the vast differences between the 
two computing environments, 
we feel that working locally with 
samples will continue to have pro-
ductivity and economic benefits 
and deserves better support.

The ACE should be able to sam-
ple data from the cloud for local 
experiments and equally be able 
to push those experiments back 
up into the cloud. Sampling should 
also be a first-class activity, allow-
ing users to create samples with 
desirable properties like statistical 
distributions or the ability to test 

scripts, the ACE would store com-
putation histories. A user could 
click on a result and see where 
it came from: what operations 
have been called on it, what que-
ries it has passed through, and 
perhaps even what rows in the 
source data caused it to exist. 

Contemporary high-level lan-
guages are increasingly being 
adapted for distributed computa-
tion, allowing analysts to express 
their queries as parallelizable 
entities. The ACE should simi-
larly divide queries transparently 
among multiple machines. It 
draws on existing systems, such 
as Distributed-Computing Matlab, 
Hadoop’s PIG, and DryadLinq, high-
level languages that allow parallel 
computation. The ACE should come 
with a robust library of algorithms 
that are known to be efficient in 
the cloud. 

Abstracting away the back-end 
does not mean hiding all execu-
tion details from users, particu-
larly with respect to resources 
and failures. The ACE should 
allow users to feel fully in control 
of the resources and tools that 
the system is using. It is a chal-
lenge to visualization-oriented 
HCI researchers to figure out what 
makes for the best combination of 
tools for tracking and monitoring 
the states of storage, job execution 

corner cases of the scripts. This 
will steer users away from typical 
samples of convenience, such as 
the first 10,000 rows. In addition to 
sampling, users should also have 
robust tools for cleaning, preview-
ing, and exploring their data both 
locally and in the cloud; groups of 
users working together should be 
able to distribute and make com-
ments about their cleaning work.

One of the most valuable 
aspects of the language R is the 
substantial community that has 
grown up around it. Our analysts, 
too, did not work alone, but rather 
worked with teams. While permis-
sion models for cloud computing 
might still be primitive, the CSCW 
community has a rich history of 
supporting complex collaboration. 
The ACE should encourage col-
laboration around data, including 
allowing users to share not just 
scripts, but also data sources, ver-
sions of data sources that have 
already had a round of computa-
tion done on them, and even data 
runs that are in progress.

The ACE, then, is an umbrella 
vision for a system that smoothly 
lives both locally and in the cloud. 
Users enter commands, but rather 
than waiting for arduous computa-
tion to complete, they get incre-
mental results as soon as they are 
available. It keeps a rich history 
of computation and provenance, 
allowing communities of users 
to understand how their data is 
being manipulated and how they 
are interacting with it. It provides 
high-level constructs for efficient 
coding against parallel systems 
and also allows users to introspect 
on costs and uses in detail. The 
challenge for HCI designers is to 
expose many of these capabilities 
to users in ways that empower 
sophisticated users without over-
whelming them.

•  Figure 2. Heat 
maps of problem 
areas in Halo 3 
(image courtesy of 
Microsoft Studios).
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Supporting non-specialists. 
Universities are quickly creating 
advanced degree programs in ana-
lytics and minting as many new 
statisticians as they can; nonethe-
less, in the near term, demand 
will exceed supply. This shortfall 
creates the opportunity for tools 
to allow data-savvy end users to 
do their own analyses, without 
expert supervision. On the one 
hand, this creates the opportu-
nity for rapid discovery, akin to 
citizen science; on the other hand, 
this exposes end users to the pit-
falls that scientists are trained 
to avoid. Some pitfalls, like being 
careless with missing data val-
ues, misapplying statistical tests, 
or overfitting models, are inher-
ent to the workflow, creating the 
opportunity to develop tools to 
recognize and mediate them. Other 
problems are more philosophi-
cal, such as confusing correlation 
with causation or ascribing too 
much importance to statistical 
significance. These larger pitfalls 
are typically avoided through 
apprenticeship with experts, which 
is difficult to apply to large num-
bers of people. If emerging tools 
allow end users to analyze large 
datasets without the rigor of sci-
entific practice, the tools could 
lend the aura of science to oth-
erwise poor conclusions. Societal 
issues with ample source data, like 
healthcare and climate change, 
could be acted on more on the 
basis of “truthiness” than truth.

Big Data Analytics Is the Future of 
Interaction Testing and Research
Here we have described big data 
analytics as an emerging type of 
knowledge work, with plenty of 
opportunities for study and pro-
ductivity improvements. However, 
even for those who are not inter-
ested in this form of knowledge 

work, big data analytics cannot 
be ignored: It’s an important new 
avenue to learn about how people 
interact with computing. 

Product teams are already tak-
ing advantage of product usage 
data from tens of thousands to 
millions of customers. As one 
example, Bungie Studios recorded 
the deaths of all players of Halo 3 
and produced heat maps to spot 
problems in game play [11] (see 
Figure 2). If too many players were 
dying in a particular game loca-
tion, they could adjust the game, 
for example, by moving ammuni-
tion to a more obvious location. 
Another example is the creation 
of the Ribbon UI in Microsoft 
Office 2007 [12]. By analyzing the 
customer experience data from 
previous releases of the product 
(about 1.3 billion sessions), the 
Office team could make informed 
choices about the most commonly 
used features. This kind of analy-
sis, which is based on simple tal-
lies of operations, just scratches 
the surface of what is possible.
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