
Instrumenting Scenarios
in a Model-Driven Development Environment

Wolfgang Grieskamp, Nikolai Tillmann and Margus Veanes

Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA
{wrwg,nikolait,margus.}@microsoft.com

Abstract

SpecExplorer is an integrated environment for model-
driven development of .NET software. In this paper we
discuss how scenarios can be described in
SpecExplorer’s modeling language, Spec#, and how the
SpecExplorer tool can be used to validate those
scenarios by various means.

Keywords: Model-driven development, scenarios, use-cases,
validation, verification, automated testing

1 Introduction
SpecExplorer is an integrated environment for model-
driven development of .NET software which is being
developed at Microsoft Research. It is a successor of a
tool previously known as the AsmL test tool [5].
SpecExplorer supports authoring models in a C#-like
modeling language, Spec#, exploring their behavior by
various means, and relating them to implementations.

This paper shows how SpecExplorer and its language,
Spec#, can be applied for scenario-oriented modeling
and how these models can be instrumented for
validation purposes. The paper refines and extends
earlier work of the authors on scenarios [1,15].

Scenario-oriented modeling is understood as a
methodology for describing the behavior of a system
from a global perspective by looking at the observable
interactions between components in the system. A use-
case, in our understanding given by a set of scenarios,
describes how the components interact for a certain
purpose (or service). This view on scenarios and use-
cases is not necessarily restricted to a particular notation
like message sequence charts (MSCs). Rather, we
describe scenarios in this paper in an algorithmic way,
using the modeling language Spec#. Our ultimate goal is
to have tailored notations like MSCs as front-ends to
this kind of descriptions. However, the focus here is not
on these user-level notations, but on the underlying logic
and instrumentation which we propose can be faithfully
implemented in Spec# and instrumented in
SpecExplorer.

The paper is organized as follows. We start with a
sketch of Spec#, and then describe how we encode in
principle scenarios in Spec#. We then introduce, as a
non-trivial example, a model for the weather control
logic of CTAS, a flight control system, which has been
selected as a common case study for the ICSE 2003
Workshop on Scenarios and State. We will then use the
SpecExplorer tool for exploring the CTAS model by
generating a finite state machine which gives a coherent
view of the behavior modeled by the scenarios. Finally,
we discuss test automation based on these results. The
paper concludes with a discussion and comparison of
related work.

2 A Sketch of Spec#
Since Spec# is an extension of C#, we are confident to
rely on the readers’ intuitive understanding of the
language as used in the examples. 1

Spec# integrates features known from modeling
languages like VDM, Z and ASM into a C# notation
style which is supposed to be easily comprehensible by
users in an industrial development context. Spec# is a
true superset of C#, providing all features of C#
(objects, interfaces, inheritance, method overriding,
properties, events, and so on), and adding a few
constructs which support modeling. Among those the
most important are:
− Contracts. One can define pre- and post-conditions,

as well as invariants in Spec#.
− High-Level data types. There is library and language

support for high-level data types such as finite sets,
maps, bags, sequences and so on.

− Comprehensions. Spec# provides a generalized
comprehension notation for denoting aggregate type
comprehensions (e.g. the "set of all numbers which
satisfy a condition"), as well as logical connectives,
like universal and existential quantification.

− Nondeterminism. Spec# provides non-deterministic
choice which is required in particular for supporting
partial/loose models, avoiding over-specification.

1 Spec# is the successor of an earlier modeling language

developed at Microsoft Research, called AsmL. It takes over
many concepts of AsmL, but in an appearance similar to C#.

Spec# documents can be authored as plain text, XML,
or Microsoft Word documents and can be compiled
from Visual Studio .NET or from Micorosft Word
(which is integrated as an editor into SpecExplorer).
Round tripping between XML and Word is possible.
Note that this paper is itself a valid Spec# document
which can be fed directly as a source file into
SpecExplorer.

In addition to syntactic and semantic language
features, Spec#'s implementation supports meta-
programming and introspection that allows a systematic
exploration of the model's behavior, e.g. for the purpose
of model checking, test generation, and test evaluation.
On the meta-level the state of a Spec# model is a first-
class citizen, which enables us to realize various search
strategies over the state space of a model, which can be
written in Spec# itself or any other .NET-compliant
language.

3 Scenarios in Spec#
We consider a use case to be semantically a set of
interaction sequences consisting of actions, where each
action in turn is an observable activity of a component
of a system. Use cases are described by a set of
scenarios, where scenarios can describe one or more
instances of similar interaction sequences2.

The scenarios of a use-case describe the collaboration
of the components of the system for a particular
purpose, also called service. The same components can
be involved in different use-cases, collaborating on
different purposes/services. A use-case thus is a
viewpoint on the system's integrated behavior.

The power of scenario-oriented modeling stems from
that it
− allows to model the feature interactions between

components, in contrast to direct component-wise
modeling, where the interactions only follow
indirectly from the component interface models; and
it

− allows to keep open details of component behavior,
which is useful in particular during early requirement
specification.

Our goal is to describe scenarios programmatically by
using the modeling features of Spec#. To this end, we
first need to fix the understanding of an action. In an
object-oriented programming world as it is provided by
.NET, an action naturally amounts to a method call on a
component class or interface, with given parameters and
possible return values. Observing an action thus

2 2 Other authors identify uses cases and scenarios. We prefer

to make a distinction like in Jacobson's original definition of
use cases [7]. However, we don't restrict scenarios to
describe just one interaction sequence; by parameterization
or other means, they can describe many (similar) sequences.

amounts to observing a method call. To describe such
observations in scenarios, we extended Spec# by the so-
called expect statement. This statement is introduced by
the expect keyword, followed by a method call or an
equality test over the result of a method call:

expect o.M(x1,...); // void action

expect y == o.M(x1,...); // non-void

As an illustrating example, let us consider a simple
example, a keycard controlled door. The actors of this
system consist of a user and the door, which are
described by two interfaces:

interface IUser {

 void SwipeCard();

}

interface IDoor {

 void WaitForCard();

 void ReleaseLock();

 void SignalInvalidCard();

}

The use-case consists of a global state containing the
data base of known users, and two scenarios, describing
the behavior for the "good" path (a valid user) and the
"bad" path (an invalid users):

Set<IUser> knownUsers;

IDoor door;

void GoodPath(User user) {

 require user in knownUsers;

 expect door.WaitForCard();

 expect user.WipeCard();

 expect door.ReleaseLock();

}

void BadPath(User user) {

 require user notin knownUsers;

 expect door.WaitForCard();

 expect user.WipeCard();

 expect door.SignalInvalidCard();

}

Note the use of pre-conditions for describing enabling of
scenarios. A pre-condition should be read as a logical
implication: we allow the specified behavior to happen
only when the pre-condition holds.

An independent formal description of the semantcsi
of such use-case descriptions can be given easily (e.g.
by the set of traces of method calls they denote), but
here we prefer to give our actual underlying
implementation in Spec#, which turns out to be not
complicated either. The expect statement is just
syntactic sugar for firing an event which is passed
reflection information about the method call. Thus, for
the general case of expect with result, we translate

expect y == o.M(x1,...)

to the code:

if (ExpectEvent != null)

 ExpectEvent(y,o,Info("M"),x1,...);

This event is declared (in Spec# or C#) as

delegate void ExpectEventHandler(

 object expectedResult,

 object instance,

 MethodInfo method,

 params object[] args);

event ExpectEventHandler ExpectEvent;

Subscribers to the expect event handler determine the
actual meaning of the use-case. A simple case could be
that we just want to "print" the expected method call, in
order to see what kind of actions the use-cased induces.
In this case we would define (in Spec# or C#) the
following event handler:

void PrintHandler(

 object expectedResult,

 object instance,

 MethodInfo method,

 params object[] args) {

 Console.WriteLine(

 "{0} == {0}.{1}({2})",

 expectedResult, instance,

 info.Name,args);

}

A more sophisticated event handler could first perform
an actual call to a method implementing the desired
semantics, and then compare whether the actual result
matches the one expected by the use case, thus realizing
conformance testing. This will be discussed in greater
detail later in this paper.

We could define at this point a simple Spec# model
program which realizes the "playing" of the door control
use-case, using Spec#'s modeling features like non-
deterministic choice to provide parameters for the
scenarios, and exploration features to see all possible
behaviors for a given configuration of users and a door.
However, this kind of application is much better done
using the SpecExplorer tool. We will see how that
works after we introduce a more interesting use-case
example.

4 CTAS Weather Control Logic
CTAS weather control logic has been suggested by the
organizers of the ICSE 2003 workshop on Scenarios and
State Machines as a case study to compare tools and
notations [3]. CTAS (Center TRACON Automation
System) is a set of tools designed to help air traffic
controllers. CTAS consists of a set of processes with
one of them acting as the connection manager (CM) to
which the other processes are clients. One task in the
CTAS system is to synchronize weather information
between a weather forecast provider and the variety of

clients, which is safety critical since adverse weather
conditions can grind an entire traffic control system to a
halt. The weather control logic is given as a "real world"
informal specification consisting of a set of axioms and
scenarios written by NASA. Here, we will model a
fragment of the logic, more specifically, the updating of
the weather information between the CM and its clients.
Our approach to use-case modeling in Spec# allows us a
nearly one-to-one translation from the original spec (we
changed some identifiers and other small details for
reasons of comprehensibility).

The interesting aspect of the weather updating
process is that it has to guarantee atomicity: new
weather information becomes effective only if all clients
successfully receive the new weather information.
Essentially, the logic realized between the connection
manager and its clients is a two-phase transaction
protocol.

We start by defining the types of the actors of the
system, which are the connection manager and its
clients. The connection manager provides methods for
representing the connection attempt of a client, for
receiving a new weather forecast, and for receiving
whether a client has successfully got, used, or reverted a
weather report which has been distributed to him:

class ConnectionManager {

 void Connect(Client client);

 void NewForecast();

 void ReceivedGet

 (Client client, bool ok);

 void ReceivedUse

 (Client client, bool ok);

 void ReceivedRevert

 (Client client, bool ok);

}

A client has methods for representing the get
command of a weather report, the command to use the
last received weather (only if all clients successfully
received a weather report, they should start using it), the
command to revert to a previous weather report, and
finally the command to close the connection:

class Client {

 void GetNewWeather();

 void UseNewWeather();

 void RevertWeather();

 void CloseConnection();

}

Note that the methods of the classes above are
unimplemented (and not abstract). Spec# allows us to
define methods without a body, in which case the body
is automatically generated to throw an "unimplemented
method" exception. In general, our approach to
scenario-modeling can refer directly to the classes of an
existing implementation to obtain the vocabulary of

actions, can use interfaces, or can use unimplemented
classes as above which are later filled in with the
implementation. To run a use-case for validation, we
only need to be able to create objects of the given actor
classes, which don't need to be implemented until we
actually want to perform conformance checking, for
example.

In order to define the use-case for CTAS, we next
define some enumerations and global state variables
which represent the status of the connection manager
and the clients in the system.

enum CMStatus {

 Ready, Updating,

 PostUpdating, Reverting

};

enum CLStatus {

 Ready,

 Updating, PostUpdating, Reverting

};

bool initialized = false;

ConnectionManager cm;

CMStatus cms = CMStatus.Ready;

Map<Client,CLStatus> cls = Map{};

The boolean flag initialized indicates whether the
configuration for the CTAS is initialized; the
initialization includes creating a connection manager
object cm and client objects. The initialization scenario
will not be defined here but later on when we put things
together.

We are now ready to define the scenarios. The first
one describes the connection of a client to the
connection manager (requiring that the use case is
initialized). Connection is only possible for clients who
are not yet connected and only if the status of the
connection manager is Ready:

void Connect(Client c) {

 require initialized;

 require cms == CMStatus.Ready;

 require c notin cls;

 expect cm.Connect(c);

 cls[c] = CLStatus.Ready;

}

Next we describe the scenario for a new weather
forecast, which is enabled only when the status of the
connection manager is Ready. On a new forecast, the
connection manager and all connected clients change
their status to Updating, and all clients are expected to
receive the new weather information:

void NewForecast() {

 require initialized;

 require cms == CMStatus.Ready;

 expect cm.NewForecast();

 cms = CMStatus.Updating;

 foreach (c->s in cls) {

 expect c.GetNewWeather();

 cls[c] = CLStatus.Updating;

 }

}

Next we describe the scenario where the connection
manager gets the notification that a client has or has not
successfully received weather information:

void Got(Client c, bool ok) {

 require initialized;

 require cms == CMStatus.Updating;

 require cls[c] == CLStatus.Updating;

 expect cm.ReceivedGet(c,ok);

 if (ok) GotOk(c);

 else GotNotOk(c);

}

If getting weather information was successful, the client
status changes to PostUpdating. If all clients in the
system are in this state, then the connection manager
itself also changes its status accordingly, and clients are
expected to receive the command to use the new
weather information:

void GotOk(Client c) {

 cls[c] = CLStatus.PostUpdating;

 if (Forall{s==CLStatus.PostUpdating:

 c1->s in cls}) {

 cms = CMStatus.PostUpdating;

 foreach (c1->s in cls)

 expect c1.UseNewWeather();

 }

}

If a client was not successful in getting weather
information, the system changes it status to Reverting.
All clients are expected to receive the command to
revert weather information:

void GotNotOk(Client c) {

 cms = CMStatus.Reverting;

 foreach (c1->s in cls) {

 expect c1.RevertWeather();

 cls[c1] = CLStatus.Reverting;

 }

}

We next describe the scenario where the connection
manager gets the notification that a client has
successfully used the new weather information. It is
very similar to the Got scenario, except that in case of a
failure, the system shuts down:

void Used(Client c, bool ok) {

 require initialized;

 require cms == CMStatus.PostUpdating;

 require

 cls[c] == CLStatus.PostUpdating;

 expect cm.ReceivedUsed(c,ok);

 if (ok) UsedOk(c);

 else Shutdown();

}

void UsedOk(Client c) {

 cls[c] = CLStatus.Ready;

 if (Forall{s == CLStatus.Ready:

 c1->s in cls})

 cms = CMStatus.Ready;

}

On shut-down, all connected clients are disconnected,
and the connection manager resets its status to Ready:

void Shutdown() {

 foreach (c->s in cls)

 expect c.CloseConnection();

 cls = Map{};

 cms = CMStatus.Ready;

}

Finally, we model the reverting phase of the protocol,
where the connection manager receives notification
whether a client could successfully revert its weather
information. It is very similar to the Used-scenario. If
revert failed, the system shuts down:

void Reverted(Client c, bool ok) {

 require initialized;

 require cms == CMStatus.Reverting;

 require

 cls[c] == CLStatus.Reverting;

 expect cm.ReceivedRevert(c,ok);

 if (ok) RevertedOk(c);

 else Shutdown();

}

void RevertedOk(Client c) {

 cls[c] = CLStatus.Ready;

 if (Forall{s == CLStatus.Ready:

 c1->s in cls})

 cms = CMStatus.Ready;

}

This finishes the CTAS model. In the next sections, we
discuss how to use such a model for validation under
SpecExplorer.

5 A Sketch of SpecExplorer
The SpecExplorer tool is an integrated environment for
model-driven development of .NET software. It
provides a platform for tool developers to integrate
various techniques which leverage models in the

development process. The tool, developed on base of
experiences with its predecessor, the so-called AsmL
test tool, is rather new. By the time of this writing it
encompasses the following functionality:
− Authoring of (literate) models in various editors, in

particular Microsoft Word.
− Annotating the model with information about its use

in execution and exploration: what are the main
actions of the model (the main entry points), which
parameters to provide to these actions, predicates on
states to be omitted in exploration, and so on.

− Exploring the model, continuously or in single-
stepping mode, in various modes: random execution,
state reachability checking, exhaustive exploration
pruned by state partitioning, and so on.

− Displaying results of exploration by means of a state
machine diagram.

− Generating test suites from state machines generated
by exploration.

− Running conformance checks of test suites against
actual implementations.

In this paper, we will only use some of those features,
namely random execution and state machine generation.
We also sketch a conformance checking algorithm
which is tailored for the particular scenario-oriented
modeling style we present, and which is currently being
implemented for SpecExplorer.

6 Random Execution of CTAS
It is straightforward to employ a model like CTAS under
SpecExplorer for random execution. An
ExpectEventHandler, which prints out expected
calls (as given in Sect. 3) can be used to get first insights
into the behavior of the model.

In order to enable random execution, we need to
annotate the CTAS model with information about the
top-level actions3 and their parameters. The actions in
our case are the scenarios of the CTAS model, plus one
further pseudo-scenario which sets up a configuration of
a connection manager and its installed clients. This
scenario is parameterized over the number of clients we
want to install:

3 Please note the overloading of notions of actions in scenarios

and in SpecExplorer. An action in a scenario is an method
call on the interface of a component which we observe using
the expect-statement. An action in SpecExplorer is a top-
level entry point of the model.

Set<Client> installedClients = Set{};

void Initialize(int numOfClients) {

 require !initialized;

 cm = new ConnectionManager();

 installedClients =

 Set{new Client():

 i in Set{1..numOfClients}};

 initialized = true;

}

Domain annotations can be done in SpecExplorer on a
per-type and per-method base. If a parameter has no
domain annotation, then its domain defaults to that of
the type of the parameter. For CTAS, it is sufficient to
annotate domains on a per-type base:
− The type int, which is used as an parameter for the

Initialize scenario, is assigned the expression
Set{2} (so we configure the CTAS to execute with
two clients; other values are easily possible);

− The type Client is annotated with the expression
installedClients (so all scenarios which expect
a client parameter are tried with all installed clients;

note, however, the pre-condition of the scenario
might filter out clients for which it is not enabled);

− The type bool, used in various scenario parameters
for representing acknowledge of a message, is
annotated with the expression Set{true,false}.

Note that domain annotations are arbitrary expressions
which are evaluated in the current state of the model
(consider the case of the installedClients domain
annotation).

Fig. 1 shows a screenshot of SpecExplorer after a
random execution experiment. In the upper left corner,
Microsoft Word is running as an embedded control,
editing the CTAS model. On the upper right corner, the
metadata explorer is shown, which allows annotating
actions and domains of the model. The lower right
corner displays information about the annotations for the
method Got, which is configured to be an action of a
certain kind, with parameter domains to be taken over
from the annotation of the parameter types. The lower
left corner shows the printout of the expect event
handler on one random execution run. Different
executions will result in different runs, determined by

the random selection of parameters from the given
parameter domains.

7 Generating an FSM for CTAS
Random execution is a simple application of the
underlying powerful exploration engine of
SpecExplorer. In general, this engine allows us to
explore a model by various means, using techniques
similar to that of an explicit state model checker.
Another application of the exploration engine is finite
state machine generation, which is used in the
SpecExplorer tool primarily for test case generation, but
is also useful on its own for validating the design of a
model. We will show how to generate an FSM for
CTAS.

The FSM generator does an exhaustive exploration of
the model's state space. If directly applied to the
annotations we have given for random execution (where
two clients are involved), it produces an FSM with 48
transitions and 22 states. However, this FSM is already
too large to be comprehensible. SpecExplorer provides a
collection of techniques to prune exploration, which is
essential if the model's state space is infinite (which is

not the case for the CTAS as configured), and useful if
one wants to get a coherent picture of the behavior. The
pruning techniques are the followings:
− Filters: predicates over the state, which characterize

the states to be included in the exploration. If a state
does not satisfy all filters, it will be excluded.

− State Partitioning: one can define a projection
function on the state which partitions the state space
into state groups, where a group is the set of states
areequal under the projection. If during exploration a
state is visited, for which a configurable number of
representatives in its class hasgroup already been
explored, then this state will not be considered for
further exploration [2].

− Bounds: one can define an upper bound of the
number of states to visit.

− Coverage: one can define model coverage goals
which, if reached, will prune exploration.

For the CTAS example, we will make use of filters and
state partitioning. First, we define a filter which
excludes the trivial behavior of a cycle of the CTAS
with zero or one connected client. The filter reads as
follows:

bool StateRestriction {

 get {

 return cms != CMStatus.Ready ==>

 cls.Size > 1; }

}

This filter demands that in any state where the
connection manager's status is not Ready, the number of
connected clients should be greater than one.

We next define a state projection which abstracts in
which order clients are interacting with the connection
manager, effectively reducing the number of
interleavings explored. The state abstraction delivers a
pair of values, where the first element is the connection
manager's status, and the second is a bag (multi-set) of
the status of the clients:
<CMStatus,Bag<CLStatus>>

 StateProjection {

 get {

 return <cms,Bag{s: c->s in cls}>;

 }

 }

Using this filter and partitioning an FSM will be
generated as visualized in the screenshot in Fig. 2. Note
that the transitions of the FSM are the scenarios of the
model, and not the expected actions of the actors of the
use-case. The FSM clearly visualizes the intended
behavior of the CTAS protocol, thus serving for
validating the adequacy of the model.

8 Scenario Conformance Checking
The SpecExplorer tool contains an engine for checking
conformance of implementations against models. This
engine takes test suites generated by traversal algorithms
on the FSM and executes them on an implementation. It
supports the automatic binding of model actions against
implementation actions, instruments the implementation
by inserting callbacks for bounded implementation
methods into the conformance engine, and checks the
implementation by lock-step execution of model and
implementation. Actions of SpecExplorer are thereby
distinguished to be either controllable or observable. A
controllable action is an input to the system under test,
whereas an observable action is an output (in .NET,
usually an event or callback).

This engine cannot be directly applied to our
scenario-oriented modeling approach, since the actions
of the implementation do not correspond to the actions
explored by SpecExplorer, which are the scenarios. We
have developed a simple tailored version of
conformance checking for scenario models which is
currently implemented.

The scenario checker works as follows. As
SpecExplorer's actions, scenarios are distinguished to be
either controllable or observable. By the nature of

scenario-modeling, which describes observations over
an autonomous system, scenarios will be configured to
be observable most of the time. Exclusion of the rule is
for example the Initialize scenario of CTAS, which
controls setting up a system configuration; all other
CTAS scenarios are observable.

For checking the scenarios, we define the expect
event handler (conceptually) as follows:

bool isControllable;

void CheckHandler(

 object inst, object result,

 MethodInfo info,

 params object[] pars) {

 if (isControllable) {

 let implResult =

 Trigger(inst,info,pars);

 if (!implResult.Equals(result))

 throw new ConformanceFailure();

 } else {

 let timeout =

 Await(inst,info,pars,result);

 if (timeout)

 throw new ConformanceTryNext();

 }

}

The flag isControllable determines whether
currently an observable or controllable scenario is
checked. The methods Trigger and Await do the
obvious thing, i.e. calling the according method in the
implementation, or waiting for a call to happen with
exactly the given parameters and result. Since
SpecExplorer already supports instrumenting of
implementations with callbacks, Await can be easily
realized.

The scenario checking engine combines exploration
and checking "on-the-fly". From a frontier of admissible
model states, it determines the enabled scenarios, and
partitions them into observable and controllable. It first
tries to execute the observable scenarios; if any of those
throws ConformanceTryNext, it is skipped. It then
tries the controllable scenarios; if any of those fails, or if
there is no scenario overall to apply, the conformance
check fails.

Note that this technique supports only external choice
in the implementation. Once a controllable scenario
succeeds, there will be no point of return, i.e.
backtracking to another choice if checking fails.
Techniques are possible which also support internal
choice; those are based on re-execution of the
implementation. However, in our experience with
applications of the SpecExplorer technology and its
predecessor, these are rarely needed in praxis.

There are various heuristic extensions of this basic
model which have been investigated in the realm of on-

the-fly testing (e.g. [8]) and which are addressing smart
selection of the next action to execute when several are
enabled in a given state; we expect these techniques to
be applicable to the scenario checker.

9 Discussion and Conclusion
In this paper we showed by employing a non-trivial
example the application of Spec# and SpecExplorer for
use-case/scenario oriented modeling. We demonstrated
how we are able to explore a scenario model by
execution, visualize its coherent behavior, and
instrument it for conformance checking of an
implementation. Since scenarios are represented
programmatically, our approach is very powerful,
because it gives us all the features of a general modeling
and programming language like Spec#, which allows as
describing the state of the system, the interfaces of the
actors, and the scenarios in dependency to that.
Consistency comes for free in our approach, since we do
not introduce redundancy. We conclude with a
discussion of related work and restrictions of our
approach as well as future work implied by this.

9.1 Related Work
We have presented earlier work on use-cases and
scenarios in [1] and [6]. This paper presents a much
straightened approach compared to [1], and fills the gap
we left in [6] regarding conformance checking. Also,
whereas in [6] actions of system components needed to
be represented as data values, here we can represent
them more natural by directly using the methods
provided by actor types, using the newly introduced
expect-statement.

There are no other approaches we are aware of which
closely integrate scenarios in a general purpose
modeling language, and which are also directly
connected to the world of implementation. A large
collection of works exist which explores the formal
semantics of scenarios, and their most common
representation, message sequence charts (e.g. [10] or
[11]). Our focus is not so much on formalizing the
semantics, which by now is well-understood, but on
instrumenting scenarios in model-driven development
environment. Naturally, our approach is more tool-
oriented then others.

Various authors presented work on synthesizing state
machines from scenarios, e.g. [12] (by means of
synthesizing Statecharts) or [9] (by means of
synthesizing Markov chains). From the state machine
representation, test suites can be derived, using the
known techniques based on testing of finite state
machines, which are also build into SpecExplorer [4].
Our approach for scenarios does not actually intends to
use the FSM as a device for testing, but just as an

intermediate result of the modeling process where it
serves to visualize and validate the design of a use case.
Instead, we propose to use on-the-fly testing [13] for
scenario-based conformance testing, which is better
capable to deal with the huge amounts of interleavings
and behaviors which can be generated from a typically
very loose scenario model.

The basic state exploration and FSM extraction
algorithm that is implemented in the SpecExplorer tool
is described in [2], and the predecessor of SpecExplorer,
the AsmL test tool, in [5]. To our knowledge, there are
no other model-driven development environments which
provide a close integration of all the aspects of
authoring, execution, exploration and conformance
testing. Some tools implements parts of this
functionality, for example TGV, TorX, or UniTesK.
None of those tools, however, provides support for
scenario-oriented modeling.

9.2 Future Work
Currently, there is a growing user base for Spec# and
SpecExplorer at Microsoft, and those users are asking
for scenario-oriented modeling features. However, one
advantage of the approach presented in this paper is also
one of its drawbacks for those users: by employing a
full-fledged modeling language like Spec# for scenario-
oriented modeling, the ease of access of scenario-
oriented modeling by non-expert users may get lost. We
regard it hence as essential to add diagram notations to
our approach, possibly based on MSCs or LSCs, which
recover some of the accessibility. However, our
ambition is to provide diagram notations as a view on (a
subset of) the programmatic representation of scenarios,
so that a user can switch between those views, and has
the programmatic description available for those cases
where MSCs or LSCs are not sufficient powerful
enough. Whether this approach works in practice has to
be explored.

Our current approach to scenario-modeling has (at
least) one severe restriction which needs to be addressed
in the future: all execution and exploration of scenarios
is done on ground data. This is actually a restriction of
SpecExplorer's exploration framework itself, which does
not support "unknowns" as values. In scenario-oriented
modeling, this restriction is particularly hindering, since
unknowns can be very handy here to avoid over-
specification. Also, the restriction to ground data
induces an efficiency problem for exploration, since
variable bindings need to be unnecessarily varied over
ground data, even if their value is never accessed.

Our approach does not currently incorporate concepts
for composing scenarios, like defined in High-Level
MSCs. Future work needs to look at this subject, which
we expect to be a smooth extension to our approach.

References

[1] Wolfgang Grieskamp, Markus Lepper, Wolfram Schulte,
and Nikolai Tillmann: Testable Use Cases in the Abstract
State Machine Language, in Proceedings of Asia-Pacific
Conference on Quality Software (APAQS'01). December
2001.

[2] W. Grieskamp, Y. Gurevich, W. Schulte and M. Veanes,
Generating Finite State Machines from Abstract State
Machines, ISSTA 02, Software Engineering Notes 27(4)
112-122, ACM, 2002.

[3] CTAS case study, http://www.doc.ic.ac.uk/~su2/
SCESM/CS/.

[4] L. Nachmanson, M. Veanes, W. Schulte, N. Tillmann and
W. Grieskamp. Optimal Strategies for Testing
Nondeterministic Systems. Submitted to ISSTA'04.

[5] M. Barnett, W. Grieskamp, L. Nachmanson, W. Schulte,
N. Tillmann, and M. Veanes. Towards a tool environment
for model-based testing with AsmL. In Petrenko and
Ulrich, editors, Formal Approaches to Software Testing,
FATES 2003, volume 2931 of LNCS, pages 264--280.
Springer, 2004.

[6] Mike Barnett, Wolfgang Grieskamp, Wolfram Schulte,
Nikolai Tillmann, Margus Veanes. Validating Use-Cases
with the AsmL Test Tool. In Proceedings of Third
Internationl Conference On Quality Software (QSIC'03),
IEEE, 2003.

[7] Jacobson, I., Christerson, M., Jonsson, P., Overgaard, G.
Object-Oriented Software Engineering – A Use Case
Driven Approach. Reading, Mass. Addison-Wesley, 1992.

[8] Loe M.G. Feijs, Nicolae Goga, Sjouke Mauw, Jan
Tretmans. Test Selection, Trace Distance, and Heuristics.
In Proceedings of IFIP 14th International Conference on
Testing Communicating Systems - TestCom 2002. Kluwer,
2002.

[9] Winfried Dulz, Fenhua Zhen. MaTeLo -- Statistical Usage
Testing by Annotated Sequence Diagrams, Markov Chains,
and TTCN-3. In Proceedings of Third Internationl
Conference On Quality Software (QSIC'03), IEEE, 2003.

[10] Martin Glinz. An Integrated Formal Method of Scenarios
Based on Statecharts. In Software Engineering -- ESEC'95.
Proceedings of the 5th European Software Engineering
Conference. Springer, Berlin, 1995.

[11] Manfred Broy and Ingolf Krueger. Interaction Interfaces -
Towards a scientific foundation of a methodological usage
of Message Sequence Charts. In Formal Engineering
Methods (ICFEM'98). IEEE, 1998.

[12] Ingolf Krueger, Radu Grosu, Peter Scholz and Manfred
Broy. From MSCs to statecharts. In Distributed and
Parallel Embedded Systems. Kluwer, 1999.

[13] R. G. d. Vries and J. Tretmans, On-the-fly conformance
testing using Spin, Software Tools for Technology Transfer,
vol. 2, pp. 382–393, 2000.

