
Fast Dynamic Voronoi Treemaps

Avneesh Sud
eXtreme Computing Group

Microsoft Research
avneesh.sud@microsoft.com

Danyel Fisher
Microsoft Research

danyelf@microsoft.com

Huai-Ping Lee
Dept. of Computer Science

University of North Carolina at Chapel Hill
lhp@cs.unc.edu

Abstract—The Voronoi Treemap is a space-filling treemap
technique that relaxes the constraints of rectangular nodes. Its
organic shapes maintain a one-to-one aspect ratio, are flexible
with their placement, allowing stable zooming and dynamic
data values. In this paper, we present algorithms for efficient
computation and dynamic update of Voronoi Treemaps. Our
GPGPU-based technique allows for rapid computation of
centroidal Voronoi Diagrams, providing almost two orders
of magnitude speedup over previous work. In addition, we
present a hierarchical algorithm for stable updates. Finally,
we demonstrate the application of Voronoi treemaps to real-
world dynamic datasets, including interactive navigation.

Keywords-Voronoi Diagram; Treemap; GPU; Dynamic

I. INTRODUCTION

Treemaps are a popular tool for visualizing large amounts of
data. They are one of the most successful sophisticated visu-
alizations of weighted hierarchical data available : each node
is represented by a 2D shape with an area proportional to
its relative weight. Familiar examples include treemaps that
visualize disk management systems [1], online discussion
groups [2] and stock prices [3]. Increasingly, however, online
data has gained a temporal component: we are interested
in viewing streaming data, and tracking how it changes.
Treemaps are well-posed to handle these new sources of
data if they can be adapted to portray changing values.

Most space-filling treemap algorithms today depend on
greedy algorithms that fill the space with rectangular shapes:
easy to compute and quick to render, rectangles are a
convenient shape for visualizations. Yet greedy algorithms,
and rectangles, force a choice between stability in the face of
dynamic data and a good aspect ratio. While several treemap
algorithms have attempted to accommodate dynamic data
[4], none have managed to maintain stability as well as a
balanced aspect ratio in the face of changes to data.

Voronoi treemaps, presented originally by Balzer et al. [5],
[6], are a promising alternative approach. By relaxing the
constraint of rectangular shapes, they use an optimization
algorithm to produce compact Voronoi shapes, which may
be dynamically modified in a smooth manner. Voronoi
treemaps are, however, computationally-expensive to pro-
duce: the original work uses an random-sampling algorithm
to compute weighted Centroidal Voronoi Diagrams (CVDs)

Figure 1: A Voronoi treemap representing an orga-
nization hierarchy of 180,000 employees. Every node
represents a manager, and is sized proportionate to the
number of reports. In this image, we have rendered only
the top four levels.

to compute and render Voronoi treemaps. Past literature [5]
has suggested that it may be possible to dynamically modify
treemaps as data changes, but does not confirm it.

In this paper, we present two main contributions. Firstly, we
present a GPU-based iterative algorithm for fast computation
of additive weighted-CVDs, exploiting the coherence across
consecutive iterations. Using the GPU-based algorithm we
can render and animate a Voronoi treemap at interactive
rates. Secondly, we present a hierarchical algorithm for
computing stable updates of Voronoi treemaps with dynamic
data.

In the first section, we discuss related literature, including
other approaches to dynamic treemaps. We then discuss
the optimizations we have made to computation, rendering,
and animation techniques. They use a combination of data
interpolation and visual interpolation in order to smoothly

animate treemap nodes. We finish with performance results
showing the effects of our optimization.

II. RELATED WORK

In this section, we first review past approaches to treemaps
and their tradeoffs with regards to dynamic data. We then
discuss prior work on computation of Centroidal Voronoi
Diagrams and GPU-based acceleration.

A. Treemap Tradeoffs

The desired properties of the shapes in a dynamic treemap
are (a) partition the space without holes (b) low (near 1:1)
aspect ratios, (c) stable zoom and (d) stable updates with
dynamic data. Optimally, a treemap algorithm minimizes the
vacant (uncovered) space, maintains a small aspect ratio, and
allows stable updates and zooming without distortion [4],
[5].

The classic “slice and dice” algorithm [7] partitions a space
in a series of parallel strips. These slices that the algorithm
produces can have a very lopsided aspect ratio. This aspect
ratio is a critical factor with treemaps: it is very difficult to
estimate the relative size of highly imbalanced shapes [8]. As
a result, a treemap algorithm that does not guarantee good
aspect ratios can be very hard to interpret. Further, zooming
in on regions with high aspect ratios requires distortion [9],
letter-boxing, or re-generating the image. Other visualization
techniques, such as the squarified layout [10] and the ordered
treemap [1], produce rectangles with a superior aspect ratio,
making it easier to read nodes. However, in order to fill the
screen space, these algorithms re-generate the layouts on
zooming making them unstable for dynamic navigation.

Appropriately animating data can help users understand how
values change by facilitating object constancy [11], and
Heer and Roberston [12] have demonstrated that smooth
animations can help users track changes in data. While
animation is valuable if smooth, it can also be disruptive
or confusing, for e.g. if objects all pass through the center,
for instance, users can lose track of them [12], [13].

However, treemaps are very difficult to animate in a smooth
manner as their components change - with trade-offs be-
tween low-aspect ratios and stability. Simple resizing of
nodes by widening/narroing along 1 axis preserves stabil-
ity, but results in large distortions and high aspect ratios.
Recomputing the layouts at each time step maintains low-
aspect ratios, however causes many nodes to rearrange, ad-
versely affecting stability. Other treemap algorithms attempt
to reduce the impact of changing data: strip treemaps [1] and
spiral treemaps [4] impose ordering constraints on the nodes.
While the algorithms continue to minimize aspect ratio, they
maintain the fixed order; this prevents nodes from moving

Table I: Trade-offs of treemap algorithms. Optimally,
algorithms maintain a small aspect ratio and allow stable
updates and zooming without distortion

Avg Aspect
Ratio [4]

Stable
updates

Stable zoom

Slice&Dice [7] 100+ X X
Squarified [10] 1.3 X X
Ordered [1] 2.8 X X
Strip [1] 2.5 X X
Spiral [4] 2.5 X X
Voronoi 1.3* X X

* Based on the aspect ratio of the bounding boxes of the Voronoi
regions.

too far. When aspect ratio becomes extreme, the boxes jump
to other parts of the space. A treemap rearranging can cause
precisely this problem. Table I compares the tradeoffs of
popular treemap algorithms.

By relaxing the requirement to use rectangular regions,
treemap algorithms gain freedom to arrange themselves
with smaller aspect ratios, and to move around the screen
more smoothly. Both Voronoi treemaps [5], [6] and Circular
Partition treemaps [14] maintain low aspect ratios, which
allows smooth zooming. Voronoi treemaps are generated
with an iterative algorithm, which lends itself to enforcing
constraints on positions. These constraints, we will show, can
be used to animate treemaps as data changes dynamically.
To our knowledge, Circular Partition treemaps have not been
constrained to allow animation over dynamic data.

B. Centroidal Voronoi Diagrams and GPU Computation

The Voronoi diagram is a fundamental geometric data
structure. A weighted Centroidal Voronoi Diagram (CVD)
provides a structure that is space-filling, provides a good 1:1
aspect ratio for each region, and provides intuitive control
of each region. The additive weighted Voronoi diagram can
be computed in optimal time in continuous 2D domain [15],
and efficiently in discrete domains using a GPU [16]. Lloyd
[17] presents a practical approach for computing cent (non-
weighted) Voronoi diagrams using iterative updates. Mioc
et al.present a spatio-temporal Voronoi data structure and
formal grammar for dynamic updates of Voronoi maps [18]
and application to additive weighted Voronoi diagrams [19].

For Voronoi treemap computation, the area of each weighted
VOronoi region must also be computed. In the original work
on Voronoi treemaps [5], the authors use a parallel, Monte
Carlo sampling based approach for computing weighted
CVDs. This approach is very computationally expensive –
generating the treemap of 4000 nodes takes over 7 minutes
using 8 CPUs. In later work [6] they suggest using the GPU
based approach of [16] to accelerate the computation.

CVD computation can also be performed as an optimiza-
tion task, minimizing the total inertia moment of Voronoi
regions. This has been demonstrated for non-weighted CVD

computation [20]. Recently, Balzer et al. [21] have pre-
sented Capacity-Constrained Voronoi Diagrams (CCVDs)
for computing power (multiplicative-weighted) CVDs, and
performance improvements are presented in [22]. However,
we are not aware of any work on extending above techniques
for computation of additive weighted CVD, and application
to dynamic datasets.

Recent work has taken advantage of the increasing pro-
grammability, and the parallelism, of GPUs to compute
discrete approximations of various Voronoi diagrams effi-
ciently. A survey of algorithms for computing ordinary and
weighted discrete Voronoi diagrams in 2D using GPUs is
presented in [23]. Performance optimizations for 2D error-
bounded discrete non-weighted Voronoi digrams on the GPU
are presented in [24]–[26]. A GPU-based implementation of
CVDs is described in [27].

In the last year, a variety of projects have begun to examine
the uses of GPU computation for information visualization.
McDonnel and Elmqvist [28] suggest using GPU techniques
to rapidly render nodes for graphs and charts, and provide
a graphics pipeline; similarly, Bailey [29] offers a brief
tutorial on using GPU shaders to generate scatterplots and
isocontours. In this paper, we use the GPU not merely for
rendering large numbers of objects rapidly, but also for
accelerating a computation process.

III. OVERVIEW

In this section we introduce the notation used in the paper,
give a background on Voronoi treemaps, and present an
overview of our approach.

A. Notation

Let X ⊂ R2 represent a compact domain, and BB(X)
denote an axis-aligned bounding box of X . Let P =
{p1, . . . ,pn} be a set of n distinct points in a compact
domain S ⊂ R2 with coordinates (x1, y1), . . . , (xn, yn). We
call these points sites. Given a distance function d(p,q)
between two points p,q ∈ R2, the Voronoi region of a site
pi is the set of points closer to pi than to any other site:

V (pi,P) = {q ∈ R2 | d(q,pi) ≤ d(q,pj) ∀ pj ∈ P, j 6= i}

The Voronoi Diagram (VD) is a partition of the domain S
into (at most) n Voronoi regions:

VD(P,S) =
⋃

pi∈P
V (pi,P) ∩ S

Weighted Voronoi Diagrams: Typically, the distance func-
tion d(p,q) is the Euclidean distance function. Using other
distance functions for computing Voronoi regions results in
generalized Voronoi diagrams [30]. Given a set of weights
W , a unique weight wi ∈ W is assigned to each site

pi. Using weighted distance functions, a Weighted Voronoi
Diagram VD(P,S,W) is generated. An additive weighted
(AW) Voronoi Diagram VDaw(P,S,W) is generated by
adding a weight to the distance function,

daw(q,pi, wi) = ‖q− pi‖ − wi

This is similar to generating a regular Voronoi diagram
where the ith generator is a circle centered at (xi, yi)
and radius wi, although the weights may be negative. The
boundary of an additive weighted Voronoi region consists of
hyperbolic curve segments. For simplicity, we refer to Pw

as the weighted site set: that is, P and W combined.

Centroidal Voronoi Diagrams: A centroidal Voronoi di-
agram (CVD) is a special Voronoi diagram where each
site coincides with the center of mass of its corresponding
Voronoi region,

pi = ci =

∫
V (pi)

xdσ∫
V (pi)

dσ

where dσ is the area differential. The CVD minimizes
the inertia momentum (and increases the compactness) of
each Voronoi region [20], resulting in regular sized Voronoi
regions with a bounding box aspect ratio close to 1 : 1. A
CVD can be generalized to a weighted CVD using a set of
weights and non-Euclidean distance functions.

Discrete Voronoi Diagrams: For purpose of visualization,
an approximate Voronoi diagram accurate upto pixel pre-
cision is sufficient. Hence, a discrete Voronoi diagram is
computed by sampling the domain S at a finite set of
points S̃, and computing the membership of each sample
in S̃ to a Voronoi region. This computation may be done
with random samples [31] or with uniform samples using
graphics hardware [32].

B. Voronoi Treemaps

We briefly summarize our approach for generating Voronoi
treemaps, which is built upon the work of Balzer et al.
[5], [6]. The input to the process is, like for other treemap
algorithms, a data structure representing a tree of goal
areas G. We refer to this input tree as a ‘data tree’: Let
Ndenote a node in a data tree, and the functions Par(N),
Children(N), CGoals(N) denote functions that respec-
tively return the parent node of N , a list of child nodes
of N , and a list of the goal areas of the child nodes of N .

The treemap is constructed as a hierarchy of weighted
CVDs. Each CVD represents a single node of the treemap
and its immediate children; the relative weights of the sites
must be balanced so that the areas of the Voronoi regions are
proportionate to the goal areas. Balzer et al.extend the well-
known Lloyds algorithm [17] for computing CVDs. This is
an iterative algorithm, in each iteration a weighted Voronoi

diagram is computed. The position of each site is updated
to the centroid of its corresponding Voronoi region, and the
associated weights are updated using relative errors in area
of Voronoi regions. Recursively, each regions is subdivided
into sub-regions, using the parent region’s boundaries as a
container.

In this paper, the tree of these CVDs is referred to as the
‘generated tree;’ in addition to the information in the ‘data
tree’, let CWtPos(N) be a list of the position and weights
of the child nodes of a node N in the generated tree.

C. Our Approach

Balzer et al. [5] investigate both additive and power weight-
ing functions on CVDs; in our implementation, we choose
the additive weighting function, both for its faster conver-
gence and its appealing organic appearance.

We accelerate the CVD computation by computing a discrete
CVD using the GPU, as described in section IV. We extend
the GPU-based algorithm of Sud et al. [24], to compute
additive weighted Voronoi diagrams on the GPU. In addition
we exploit the coherence between iterations to further speed
up CVD computation. The cost of computation can be
greatly reduced by tight bounds on Voronoi regions; we
present a predictor-corrector scheme to compute bounds
on the change in the Voronoi regions and so reduce the
number of distance computations required. We also provide
a revised rule for updating the weights across iterations. We
present a heuristic to identify the cases where the gradient
approximation presented in [5] causes convergence of CVD
iterations to fail. Under such cases we bound the step size
to provide better convergence of the weighted centroidal
Voronoi regions. These improvements to computation of
static Voronoi treemaps are presented in Section IV.

In section V, we present our approach for stable update of
the Voronoi treemap as the underlying data changes. This
results in an updated Voronoi treemap in which the relative
placement of nodes is similar to the prior treemap. We then
linearly interpolate the positions of the nodes in order to
accomplish smooth transitions.

IV. VORONOI TREEMAP COMPUTATION AND
RENDERING

Our approach for fast computation and rendering of Voronoi
treemaps depends on speeding the computation of weighted
centroidal Voronoi diagrams, by far the slowest step of
Voronoi Treemap computation. We optimize this in fol-
lowing ways: by moving operations in VD computation
to the GPU, by utilizing coherence across iterations to
restrict computation to as small a region as possible, and by
accelerating convergence. In contrast, rendering a generated

tree can be performed at interactive rates: it uses only one
iteration of GPU-accelerated Voronoi diagram compute per
node.

A. GPU-Based Weighted CVD Computation

We use an iterative algorithm for weighted CVD computa-
tion, similar to Balzer et al. [5]. CVD computation involves
computing a weighted discrete Voronoi diagram on the GPU.
We scan the framebuffer to compute centroids and tally the
relative areas, and update the positions and weights. We then
pass these updated positions and weights back to the GPU,
repeating until convergence. This algorithm is presented

Algorithm 1: ComputeCVD(S, G, ε, Pw): This algorithm
computes the weighted CVD constrained to a domain S that
matches a set of desired areas G to within error threshold ε,
initialized from an original weighted site set
Input: domain S , set of initial site positions Pw

in, set of
normalized goal areas G, error threshold ε

Output: set of final site positions Pw
out, s.t. Area(V (pi))

∝ gi in VD(Pw)

Initialize Pw ← Pw
in1

Initialize each element in B as BB(S)2

repeat3

buffer← GPUComputeWtVD(Pw, B, S)4

(A, C,B′)← ScanBuffer(buffer)5

T ← VerifyBounds(buffer)6

(stable,Pw′
,B)← UpdateState(Pw,7

B′,A, C, T , ε,S)
Pw ← FixOverlap(Pw′

)8

until stable=true9

Pw
out ← Pw10

in Algorithm 1. Function GPUComputeWtVD computes an
additive weighted discrete Voronoi diagrams on the GPU.
Conservative bounding boxes of each Voronoi region are pre-
dicted and the distance values to each site are computed for
each pixel within the bounding boxes using a pixel shader.
Further details are provided in Section IV-A1. Function
ScanBuffer scans the framebuffer to compute a discrete
approximation to the area A and centroid C of each Voronoi
region. In addition the bounding boxes B′ of each Voronoi
region are also computed. In our current implementation this
is performed by reading back the framebuffer to the CPU.

Function VerifyBounds performs the correction on the
Voronoi region bounds. The bounds predicted in previous
iteration are verified by scanning the framebuffer, marking
invalid bounds to be subsequently updated, as presented in
section IV-A2. Function UpdateState updates the position,
weights and estimated Voronoi region bounds for each site.
The position is updated similar to the Lloyd’s algorithm [17].

Figure 2: Optimizing CVD computation bounding boxes
based on previous iterations. (left) The bounding boxes
of nodes a and b. (right) Based on relative error, region
(b) was smaller than desired by 20%, so we expand its
bounding box by a constant multiple of 20%. Distance
computations to b are restricted to pixels inside its
bounding box.

We extend Algorithm 2 in Balzer et al. [5] to compute
the new weights, but add new heuristics to provide stables
convergence in certain cases when there is large disparity of
goal areas. Finally, the function also predicts new Voronoi
region bounds (Fig. 2). Function FixOverlap corrects for
overlap between the circles corresponding to the Voronoi
sites and is described in lines 4− 15 of Algorithm 4 in [5].

1) Weighted Voronoi Diagram Computation on GPUs:
We build upon the work of Sud et al. [24] for computing
weighted Voronoi diagrams using the GPU. Instead of range-
based culling, we compute bounds on the Voronoi regions
using coherence across consecutive iterations as shown in
section IV-A2. Therefore for each site, exactly 1 tile bound-
ing the Voronoi region is rasterized. The distance vectors to
the vertices are computed and passed as texture coordinates.
A pixel shader computes the distance value at each pixel,
and uses the depth test for storing the minimum distance.
The domain S is scaled to be a subset of [0,

√
2
4]× [0,

√
2
4].

The color buffer is used to store the id of the closest site.

Our approach for computing AW-Voronoi Diagram using the
GPU follows similarly. A quad covering the AW-Voronoi
region is rasterized, and the distance vectors to the vertices
are passed as texture coordinates. The weight is passed
as a uniform parameter. The weighted distance values are
computed by a pixel shader and the minimum is computed
via the depth buffer. However, current GPUs have a 24-
bit fixed precision depth buffer, and the depth values are
clamped to the range [0, 1]. The weight term in AW distance
function is unbounded and can even be negative. This can
cause the distance function to be outside [0, 1] range. This
results in errors during GPU computation of AW-Voronoi
diagrams. To address this issue, we introduce an affine
transform on the distance function. Let wmin and wmax be
the minimum and maximum weights among all sites, and
Dmax be the maximum Euclidean distance among all pairs

of sites (Dmax ≤ 0.5 from the domain definition). We now
define the affine transforms on distance function between a
point q and site pi, and weight wi,

d′aw(q,pi) = ‖q− pi‖+ w′i

w′i =
wmax − wi

2(wmax − wmin)

It can be shown that 0 ≤ w′i ≤ 0.5 and 0 ≤ d′aw(q,pi) ≤ 1.
This affine transform is semantically equivalent to translating
the distance cones along Z axis. Therefore the projection of
the distance cones to XY plane, and the discrete Voronoi
diagram does not change, even though the relative weight
ratios are not preserved. Since the range of distance d′aw is
[0, 1] the AW Voronoi diagram can now be computed using
the depth buffer on the GPU.

2) Voronoi Region Bounds: As the CVD converges, the
change in the bounds of each Voronoi region across con-
secutive iterations diminishes (see figure 2). We exploit this
coherence to compute an approximate bounding box for the
next iteration using the current bounding box and the error
in area of each Voronoi region (lines 10-19 of Algorithm 4).
This predicted bound may be invalid if it is too small to
contain the Voronoi region that should be computed. We
present a simple test for validity of each predicted bound
using the continuity of the distance field.

Suppose two adjacent pixels q1 and q2 are on the boundary
of ith and jth Voronoi regions, namely q1 ∈ V (pi,P) and
q2 ∈ V (pj ,P), and the size of a pixel is ‖q2 − q1‖ = δ.
Then both regions are valid if

|daw(q1,pi, wi)− daw(q2,pj , wj)| < δ,

Conversely, the bounding box for the ith site is invalid if
daw(q2,pj , wj) − daw(q1,pi, wi) > δ, and the bound-
ing box for the jth site is invalid if daw(q1,pi, wi) −
daw(q2,pj , wj) > δ. If the predicted bound is invalid,
then the bounding box reset to the entire domain, and an
additional CVD iteration is performed.

We use an iterative update rule similar to modified Lloyd’s
algorithm. The update rule for the weights presented in [5]
approximates the gradient of the cost function by the error in
areas of each site. This involves two drastic simplifications
- the cost function is linear over the entire domain, and
the Jacobian is an identity matrix (i.e. change in weight of
site pj does not affect the area of another site pi). Due
to these assumptions, the prior approach fails to converge
stably when there is large disparity between the maximum
and minimum goal areas. Such scenarios were common in
our real-world datasets.

In our algorithm, we present a new heuristic for the site
weights to provide a more stable convergence of CVD iter-
ations. Although this approach does not provide theoretical

bounds on convergence, in our experiments it converged
with small error for most datasets. The detailed algorithm is
presented in Algorithm 4 (Appendix).

Figure 3: Hierarchical computation and rendering of
2-level Voronoi Treemap: (left) the first level AW VD.
(center) VD of yellow child is rendered inside its Voronoi
region. (right) the completed render of all children

Algorithm 2: ComputeTreemap(N , S, ε): This algorithm
recursively computes the positions and radii of nodes in the
Voronoi Treemap corresponding to subtree of N , given a
bounding domain S, and error threshold ε
Input: DataNode Ni, domain S, error threshold ε
Output: Generated tree rooted at No with final site

positions and radii

SN ← GPUComputeMask(Ni) ∩S1

Initialize G ← CGoals(Ni)2

Initialize Pw to random points in SN and unit weight3

Pw ← ComputeCVD(SN ,G,Pw, ε)4

CWtPos(No)← Pw5

foreach Child Ci of Ni; Child Co of No do6

Co ← ComputeTreemap(Ci,S, ε)7

end8

B. Treemap Computation

The complete Voronoi treemap is computed by recursively
traversing the tree top-down and computing the weighted
CVD, highlighted in Algorithm 2. For a given node Ni

at depth d in the tree, the positions of the child nodes
CPos(Ni) are treated as the set of sites P , and the domain
of computation SNi

is the Voronoi region of node Ni in
the AW CVD of this parent. Note that each AW-CVD is
computed independently at full grid resolution, therefore the
mask SNi must be computed for each node at full resolution.
We can recursively compute the mask for the tree at any level
by noting that the mask at one level is the set intersection
of its parents. The function GPUComputeMask implements
this: it computes a high-resolution mask corresponding to
SNi

. The function performs recursive set intersections on
2D domains corresponding to Voronoi regions using the
stencil buffer. The stencil values are incremented at each
level. The output of GPUComputeMask is the stencil buffer
where all pixels in SNi

have a stencil value=d. The function

performs d calls to GPUComputeWtVD, but only draws sites
that have bounding boxes that overlap the bounding box
of Ni. No buffer readbacks need to be performed. With
this observation, we note that a Generated Treemap can
be represented merely as a tree of Pw (and their bounding
boxes), and so can be serialized easily, allowing for offline
and remote computation.

C. Interactive Rendering

In this section, we present our approach for rendering the
Generated Treemaps at high-resolutions at interactive rates
using the GPU. Using a compact tree representation of
Pw, an image corresponding to the Voronoi Treemap is
computed. The rendering algorithm traverses the Generated
Tree, and fills the space by rendering the weighted CVD of
each node into its Voronoi region. The rendering algorithm is
similar to ComputeTreemap in Algorithm 2, with the follow-
ing changes. The site positions and weights are initialized
from the computed node positions and weights in the Gener-
ated Tree. Therefore only one iteration of ComputeWtWD is
performed, instead of ComputeCVD. Since all the Voronoi
diagrams are combined into a single image, the Voronoi
diagram of each child is rendered inside the Voronoi of
the parent, as shown in Fig. 3. Therefore the function
GPUComputeMask computes the domain of computation SNi

by marking the pixels belonging to Voronoi region of Ni.
This computation can be performed in constant time using a
single render pass to the stencil buffer. Finally, the recursive
traversal of Generated Tree can be pruned at nodes for which
the projected CVD is less than 1 pixel.

V. SMOOTH UPDATES FOR DYNAMIC DATA

The Voronoi treemap algorithm is amenable to dynamic
data updates. In particular, the goals G can be dynamically
altered. We extend algorithm 2 to enable data updates.
While sites did not have initial positions in the previous
algorithm, the treemap is now initialized with the previous
layout; we wish to modify that layout by the smallest degree
that will accommodate the new areas. For each CVD, we
initialize the sites with the previous centroids and weights,
but with the new goal areas. Once we have computed the new
CVD, however, the children’s centroids may no longer be
located within the parents’ bounds; thus, we then re-center
the children based on the new computed location (Fig. 4).
The output of algorithm 3 is the set of new centers for the
treemap’s nodes. Fig.5 shows the animation in action.

Note that the algorithm itself does not have a notion of
removing or adding nodes to the tree, and so does not allow
the tree to be restructured. We are able to work around this
by deleting nodes by shrinking them to nothing; we can add
nodes by growing them from zero size. To do this, we seed

Figure 4: Re-seeding children for dynamic updates. The node’s centroid and five children are initially located higher
up (left). When the centroid is re-computed (center, dark line), the children are re-seeded (center). The finished state
(right).

Algorithm 3: ComputeTreemapUpdate(N , S , ε): This algo-
rithm extends Algorithm 2 given a new tree of goal areas
Input: Previous generated tree N rooted at Ni, domain S,

error threshold ε
Output: Generated tree rooted at No with final site

positions and radii

SNo
← GPUComputeMask(Par(No)) ∩S1

Initialize G ← CGoals(Ni)2

Initialize Pw ← CWtPos(Ni)3

CWtPos(N ′o)← ComputeCVD(SNo ,Pw, ε)4

offset← pos(CWtPos(N ′o))− pos(CWtPos(No))5

foreach Child Ci of Ni, Child Co of No do6

pos(CWtPos(Ci))← pos(CWtPos(Ci)) + offset7

Co ← ComputeTreemapUpdate(Ci,S, ε)8

end9

a node with a minimal desired size at the time step before
the node must appear; it grows through the time step. (This
is a simplification of past work [18], which maintains a full
history of changes to the Voronoi diagram as it evolves.)

A. Linear Interpolation to Smooth Transitions

The technique above is amenable to interpolation: we can
interpolate goal weights to generate intermediate keyframe
trees in between stages in our data. However, it does not
make sense to interpolate for every frame of an animation:
when ComputeCVD converges on a local minimum, the
individual frames may oscillate.

It is possible to use a visual interpolation in the VD space:
we can linearly interpolate the centroids and weights of
corresponding trees. This causes Voronoi regions to slide
through and past each other: each node moves smoothly on
the interpolated frames, while keyframes maintain accuracy
at fixed intervals. However, in some circumstances, a CVD
may converge at visibly different local minima: nodes might
be interchanged or moved. The linear interpolation between
these may generate intermediate frames with undesirable
artifacts, such as nodes sliding through each other.

Figure 5: Three snapshots of a stable animation.
CodeRed stays at the top of the screen, and Producer
stays at the bottom right, even as the yellow bottom-left
subtree undergoes dramatic growth. See the accompa-
nying video for the full animation sequence.

It is necessary to balance these two forms of interpolation:
data-based interpolation is expensive and potentially jerky,
but generates keyframes that are accurate centroidal Voronoi
diagrams; visual interpolation is smooth, but can lead to
artifacts if the distance between data frames is too great.

VI. IMPLEMENTATION AND RESULTS

We have implemented our algorithm on a PC running
Windows 7 with a 2.4Ghz Intel Core2 CPU, 4GB memory
and an NVIDIA GTX260 GPU. We used DirectX9 graphics
API, and HLSL for implementing the shaders. The discrete
centroidal Voronoi diagram is computed to an offscreen
surface with 32-bit floating point precision. The resolution
of the compute buffer was chosen between 32 × 32 and
256× 256, and the error threshold for convergence of CVD
computation ε ≈ 1

M , where M ×M is the compute buffer
resolution (note AW-CVD for each node is computed at
M×M resolution, independent of depth in tree). In addition
to the error threshold, a maximum number of iterations
(100−200) was enforced on the CVD loop in the event that
the CVD is stuck in a local minimum. As an optimization
in ComputeCVD, as the CVD begins to converge (after first
few iterations), the function VerifyBounds is called every
kth iteration as the conservative bounds remain accurate.
For Voronoi treemap computation and rendering, the set of
nodes for CVD compute is maintained in a priority queue
sorted by bounding box area. This results in the nodes with
largest area being computed first. The computed Voronoi

treemaps, were rendered at resolutions between 512 × 512
and 1024× 1024.

A. Results

In this section, we illustrate the output with several visualiza-
tions, and analyze the performance of our algorithm. Fig. 1
shows the management structure of a large corporation.
As the video shows, users can interactively navigate the
hierarchy. Fig. 5 shows three snapshots from an animation
based on real data. Additional results can be found in the
accompanying video.

The performance of our CVD computation algorithm is
presented in 6. In the top half, we show the total time
to compute a CVD, averaged per iteration and separated
by steps in Algorithm 1); in the bottom of the figure, we
show total time for our optimizations: the ComputeCVD and
VerifyBounds functions. By virtue of our optimizations,
growth is sub-linear with the number of sites. The bottle-
necks, instead, are in scan and update: scan is constrained by
a costly readback, while update is quadratic in the number
of sites. Most treemaps we have observed have used the
middle grid sizes and between 5 and 50 children per node,
so neither of these is the major constraint.

Figure 6: CVD computation timing across grid res-
olutions and site counts. (top) GPU and CPU com-
putation combined. Scan includes buffer readback to
CPU; Update includes FixOverlap. (bottom) Benefits
of our coherence-based optimizations: growth of GPU
operations are sublinear with sites.

For performance analysis of Voronoi treemap computation
and rendering, we used randomly generated trees with
branching factor of 2 − 10 children per nodes per level

Table II: Times to compute and render various random
treemaps. N/Lvl= No nodes per level (branching factor),
Lvl = Num levels, N = total num nodes, Compute = time
to compute treemap (in seconds) at 64×64 and 128×128
resolutions, Display = time to render the treemap (in ms)
at 512× 512 and 1024× 1024.

N/Lvl Lvl N Compute(s) Display(ms)
64 128 512 1024

2 10 2047 7.1 18.9 75.3 102.4
8 4 4681 10.2 28.5 46.8 78.5

10 3 1111 2.4 6.3 23.3 52.1
10 4 11111 23.7 71.8 75.1 105.3
10 5 111111 257.1 777.2 679.2 689.7

and a random weight in the range [1, 20]. Our timings are
presented in Table II.

B. Analysis and Discussion

The main bottleneck in Voronoi Treemap computation is
the AW CVD compute for each node. For a grid size
M ×M , with N sites, cost of 1 call to GPUComputeWtVD

is O(N +
∑N

i=1 area(Bi)), where area(Bi) is num pixels
contained in the estimated bounding box of i Voronoi region.
Now

∑N
i=1 area(Bi) ≤

∑N
i=1 βiarea(V (pi)) ≤ βM2,

where βi ≥ 1 is a measure of tightness of the computed
Voronoi region bounds and β = maxN (βi). As the CVD
computation converges, error→ ε, then β → 1. Therefore
cost of GPUComputeWtVD = O(βM2 + N), 1 ≤ β ≤ N ,
where β ≈ N for first iteration and β → 1 after first
few iterations. Cost of ScanBuffer and VerifyBounds

= O(M2), of UpdateState = O(N), and FixOverlap =
O(N2). Therefore cost per CVD iteration in Algorithm 1 =
O(βM2 + N2). In Algorithm 2, cost of GPUComputeMask
for node i = O(diM

2 + diN), where di is depth of node i
(β ≈ 1 for all parent nodes).

We can now perform a comparative analysis with some prior
work on weighted CVD computation. Using approach of
Hoff et al. [16] would make cost per iteration O(NM2 +
N2). Jump flooding variants [26] have cost per iteration
O(M2 logM +N2), in addition there are no error bounds
on the computed AW-CVD. The approach of Sud et al.
[24] has better asymptotic cost for a single iteration, how-
ever has large constants due to bottleneck of reading back
visibility query results from GPU. We can further improve
performance of our algorithm by using our coherence based
bounds in conjunction with other GPU-based weighted VD
computation algorithms. CCVTs [21] have per iteration cost
O(N2 +NM2 log M

N), although convergence is better than
our approach.

For comparison of full Voronoi Treemap computation,
Balzer et al. [5] reported that a 4K node treemap with 10
levels takes approximately 57 CPU-minutes (7:13 min using
eight 2.4Ghz CPUs) to compute. Although exact compar-
isons are impossible without access to identical datasets,

our work represents approximately two orders of magnitude
improvement for similar treemaps (see Table II).

C. Limitations

While our algorithm allows interactive rendering, navigation
and animations of Voronoi treemaps, the tree cannot yet be
computed at rendered rates. CVD computation is greatly
affected by slow readbacks from GPU. Thus, animations
must be computed in advance (or with a delay). Even during
the animation, however, users can interactively zoom into the
treemap and explore regions that may not be immediately
visible. In addition, choice of compute resolution and error
threshold is based on heuristics, which affects convergence
and accuracy of the output.

Because the computation process does not guarantee conver-
gence, in some extreme cases the algorithm terminates at a
local minimum. During animation, the treemap may oscillate
between local minima, causing nodes to move around on
screen. The visual interpolation method helps reduce the
effects of this movement.

VII. CONCLUSIONS AND FUTURE WORK

The Voronoi treemap is a promising visualization technique
that can allow for dynamic updates. In this paper, we have
reviewed the trade-offs between dynamic data and aspect
ratio. We have discussed our modifications to Balzer et
al.’s original work, which include improved convergence,
optimizations for GPUs, and smooth animations for dynamic
data. We have presented results that show that we are able
to navigate and render the visualization interactively.

In future work, we hope to continue to improve all aspects
of the application. New paradigms for putting more compu-
tation on the GPU, using DirectX11 or CUDA will speed up
the system. They will allow us to port much of Algorithm 1
to the faster GPU; this will allow us to move more of the
computation to the GPU and avoid expensive GPU/CPU
communication overhead. We have begun to experiment
with implementing the algorithm over an optimization-based
framework that will improve convergence, and incorporate
the dynamic Voronoi diagram data structure for animation
of Voronoi treemaps [18]. Last, we would like to test
the efficacy of animated Voronoi Treemaps against other
visualization techniques through user tests.

As streaming data becomes more prevalent from a variety
of sources, ranging from social media to online govern-
ment, visualization tools that can accommodate large-scale
hierarchical data with dynamic and stable updates will be
increasingly valuable. The animated Voronoi treemap will
prove to be a useful tool.

VIII. ACKNOWLEDGEMENTS

We thank Naga Govindaraju, Kori Inkpen Quinn, Mary
Czerwinski, John Lambert, and Chinmay Kulkarni for their
valuable insights and support. We thank the anonymous
reviewers for several useful additions.

REFERENCES

[1] B. B. Bederson, B. Shneiderman, and M. Wattenberg, “Or-
dered and quantum treemaps: Making effective use of 2d
space to display hierarchies,” ACM Trans. Graph., vol. 21,
no. 4, pp. 833–854, 2002.

[2] M. A. Smith and A. T. Fiore, “Visualization components for
persistent conversations,” in CHI, 2001, pp. 136–143.

[3] M. Wattenberg, “Visualizing the stock market,” in CHI ’99:
CHI ’99 extended abstracts on Human factors in computing
systems. New York, NY, USA: ACM, 1999, pp. 188–189.

[4] Y. Tu and H.-W. Shen, “Visualizing changes of hierarchical
data using treemaps,” IEEE Transactions on Visualization and
Computer Graphics, vol. 13, no. 6, pp. 1286–1293, 2007.

[5] M. Balzer and O. Deussen, “Voronoi treemaps,” in IEEE
InfoVis. Los Alamitos, CA, USA: IEEE Computer Society,
2005.

[6] M. Balzer, O. Deussen, and C. Lewerentz, “Voronoi treemaps
for the visualization of software metrics,” in ACM SoftVis ’05.
New York, NY, USA: ACM, 2005, pp. 165–172.

[7] B. Shneiderman, “Tree visualization with tree-maps: 2-d
space-filling approach,” ACM Trans. Graph., vol. 11, no. 1,
pp. 92–99, 1992.

[8] V. Di Maio, “Threshold effect in visual perception of geo-
metrical figures,” Perceptual and Motor Skills, vol. 87, pp.
340–342, 1998.

[9] R. Blanch and E. Lecolinet, “Browsing zoomable treemaps:
Structure-aware multi-scale navigation techniques,” IEEE
Transactions on Visualization and Computer Graphics,
vol. 13, no. 6, pp. 1248–1253, November 2007.

[10] M. Bruls, K. Huizing, and J. van Wijk, “Squarified treemaps,”
in Proc. of Joint Eurographics and IEEE TCVG Symp. on
Visualization (TCVG 2000). IEEE Press, 2000, pp. 33–
42. [Online]. Available: citeseer.ist.psu.edu/bruls99squarified.
html

[11] G. G. Robertson, S. K. Card, and J. D. Mackinlay, “Informa-
tion visualization using 3d interactive animation,” Commun.
ACM, vol. 36, no. 4, pp. 57–71, 1993.

[12] J. Heer and G. G. Robertson, “Animated transitions in statisti-
cal data graphics,” IEEE Trans. Vis. Comput. Graph., vol. 13,
no. 6, pp. 1240–1247, 2007.

[13] K.-P. Yee, D. Fisher, R. Dhamija, and M. A. Hearst, “Ani-
mated exploration of dynamic graphs with radial layout,” in
INFOVIS, 2001, pp. 43–50.

[14] K. Onak and A. Sidiropoulos, “Circular partitions with ap-
plications to visualization and embeddings,” in SCG ’08:
Proceedings of the twenty-fourth annual symposium on Com-
putational geometry. New York, NY, USA: ACM, 2008, pp.
28–37.

[15] F. Aurenhammer, “Power diagrams: Properties, algorithms,
and applications,” SIAM Journal of Computing, vol. 16, no. 1,
pp. 78–96, 1987.

[16] K. E. Hoff, III, T. Culver, J. Keyser, M. Lin, and D. Manocha,
“Fast computation of generalized Voronoi diagrams using
graphics hardware,” in Computer Graphics Annual Confer-
ence Series (SIGGRAPH ’99), 1999, pp. 277–286.

[17] S. P. Lloyd, “Least squares quantization in PCM’S,” Bell
Telephone Labs Memo, 1957.

[18] D. Mioc, F. Anton, C. M. Gold, and B. Moulin, “Map
updates in a dynamic voronoi data structure,” in ISVD ’06:
Proceedings of the 3rd International Symposium on Voronoi
Diagrams in Science and Engineering. Washington, DC,
USA: IEEE Computer Society, 2006, pp. 264–269.

[19] D. Mioc, F. Anton, and C. M. Gold, “An algorithm for the
dynamic construction and maintenance of additively weighted
Voronoi diagrams,” in Abstracts 14th European Workshop
Comput. Geom. Universitat Polytènica de Catalunya,
Barcelona, 1998, pp. 117–119.

[20] Y. Liu, W. Wang, B. Lvy, F. Sun, D. M. Yan, L. Lu, and
C. Yang, “On centroidal voronoi tessellation - energy smooth-
ness and fast compu tation,” Hong-Kong University and
INRIA - ALICE Project Team, Tech. Rep., 2008, accepted
pending revisions.

[21] M. Balzer and D. Heck, “Capacity-constrained Voronoi di-
agrams in finite spaces,” in Proceedings of the 5th Annual
International Symposium on Voronoi Diagrams in Science
and Engineering, ser. Voronoı̈’s Impact on Modern Science,
K. Sugihara and D.-S. Kim, Eds., no. 4(2), Kiev, Ukraine,
September 2008, pp. 44–56.

[22] H. Li, D. Nehab, L.-Y. Wei, P. Sander, and C.-W. Fu,
“Fast capacity constrained voronoi tessellation,” Microsoft
Research, Tech. Rep. MSR-TR-2009-174, 2009.

[23] F. Nielsen, “An interactive tour of voronoi diagrams on the
gpu,” in ShaderX6: Advanced Rendering Techniques. Charles
River Media (http://www.charlesriver.com/), 2008.

[24] A. Sud, N. Govindaraju, and D. Manocha, “Interactive com-
putation of discrete generalized voronoi diagrams using range
culling,” in Proc. International Symposium on Voronoi Dia-
grams in Science and Engineering, October 2005.

[25] J. Schneider, M. Kraus, and R. Westermann, “Gpu-based real-
time discrete euclidean distance transforms with precise error
bounds,” in VISSAPP (1), A. Ranchordas and H. Araújo, Eds.
INSTICC Press, 2009, pp. 435–442.

[26] G. Rong and T.-S. Tan, “Variants of jump flooding algorithm
for computing discrete voronoi diagrams,” in ISVD ’07:
Proceedings of the 4th International Symposium on Voronoi
Diagrams in Science and Engineering. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 176–181.

[27] C. N. Vasconcelos, A. M. Sá, P. C. P. Carvalho, and M. Gat-
tass, “Lloyd’s algorithm on gpu,” in ISVC (1), ser. Lecture
Notes in Computer Science, G. B. et al., Ed., vol. 5358.
Springer, 2008, pp. 953–964.

[28] B. McDonnel and N. Elmqvist, “Towards utilizing gpus in
information visualization: A model and implementation of
image-space operations,” IEEE Transactions on Visualization
and Computer Graphics (Proc. InfoVis 2009), vol. 15, pp.
1105–1112, 2009.

[29] M. Bailey, “Using gpu shaders for visualization,” IEEE Com-
puter Graphics and Applications, vol. 29, no. 5, pp. 96–100,
2009.

[30] F. Aurenhammer, “Voronoi diagrams: a survey,” Tech. Univ.
Graz, Graz, Austria, Tech. Rep., 1988.

[31] L. Ju, Q. Du, and M. Gunzburger, “Probabilistic methods for
centroidal voronoi tessellations and their parallel implemen-
tations,” Parallel Computing, vol. 28, no. 10, pp. 1477–1500,
2002.

[32] K. E. Hoff III, T. Culver, J. Keyser, M. Lin, and D. Manocha,
“Fast computation of generalized Voronoi diagrams using
graphics hardware,” in ACM Symposium on Computational
Geometry, 2000, pp. 375–376.

APPENDIX

Algorithm 4: UpdateState(Pw, B, G, A, C, T , ε, S):
This algorithm tests for convergence and updates the state
vector during 1 iteration of ComputeCVD. Constant α is a
conservative bias.
Input: set of current weighted site positions Pw,

bounding boxes B of Voronoi regions, goal weights
G, Voronoi region areas A, Voronoi region
centroids C, validity of Voronoi region bounding
boxes T , error threshold ε, domain S

Output: boolean flag of convergence stable, and updated
set of site positions and weights, and bounding
boxes Pw,B′

0 < δ � 1;α > 11

Atot ←
∑

ai∈A ai2

stable← true3

for i = 1 to |Pw| do4

p′i ← ci5

w′i ← wi6

error← gi − ai/Atot7

if |wi| < δ then w′i ← sign(wi) · δ8

w′i ← w′i + |w′i| · error
wi

9

if w′i · wi < 0 then10

if |wi| > δ then w′i ← sign(wi) · δ11

else w′i ← sign(w′i) · δ12

if ti = true then13

d← ‖Bi.max−Bi.min ‖
214

maxB′i ← maxBi.(α+ d · error
gi

)15

minB′i ← minBi.(α− d · error
gi

)16

else17

B′i ← BB(S)18

stable← false19

if |error| > ε then stable← false20

end21

