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Abstract. Virtualization can deliver significant benefits for cloud com-
puting by enabling VM migration to improve utilization, balance load
and alleviate hotspots. While several mechanisms exist to migrate VMs,
few efforts have focused on optimizing migration policies in a multi-
rooted tree datacenter network. The general problem has multiple facets,
two of which map to generalizations of well-studied problems: (1) Mi-
gration of VMs in a bandwidth-oversubscribed tree network generalizes
the maximum multicommodity flow problem in a tree, and (2) Migra-
tions must meet load constraints at the servers, mapping to variants of
the matching problem – generalized assignment and demand matching.
While these problems have been individually studied, a new fundamen-
tal challenge is to simultaneously handle the packing constraints of server
load and tree edge capacities. We give approximation algorithms for sev-
eral versions of this problem, where the objective is to alleviate a maxi-
mal number of hot servers. Finally, we develop a system, called WAVE,
to empirically demonstrate the effectiveness of these algorithms through
large scale simulations on real data. We use workload traces from a real
(not necessarily tree) datacenter topology.

1 Introduction

Virtual machine (VM) technology has emerged as a key building
block for cloud computing. The idea is to provide a layer of abstrac-
tion over resources of a physical server and multiplex them among
its hosted VMs. Virtualization provides several benefits such as per-
formance isolation, security, ease-of-management, and flexibility of
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running applications in a user-customized environment. A typical
datacenter comprises tens of thousands of servers hosting VMs or-
ganized in racks, clusters or containers e.g., 40-80 servers per rack.
These racks are inter-connected in a network organized as a span-
ning tree topology with a high bandwidth oversubscription [6]. As
a result, the cost to move data between servers is lowest within the
same rack, relatively higher within neighboring racks, and signifi-
cantly higher when they are further apart [6].

In a cloud computing setup, the VM load may significantly fluc-
tuate due to time-of-day effects, flash crowds, incremental applica-
tion growth, and varying resource demand of co-located VMs [20].
This risks the creation of hotspots that can degrade the quality of
service (QoS) of hosted applications, e.g., long response delays or
low throughput. Therefore, to mitigate hotspots at runtime, cloud
platforms provide live migration which transparently moves an en-
tire VM (with its memory/disk state, processor registers, OS, and
applications) from an overloaded server to an underloaded one with
near-zero downtime, an important feature when live services are be-
ing hosted. This VM migration framework represents both a new
opportunity and challenge to enable agile and dynamic resource man-
agement in data centers [3, 12, 17,20,22,23].

While severalmechanisms exist for live VMmigration (e.g., VMware
VMotion, Windows Hyper-V, and Xen XenMotion), there remains
a need for optimized, computationally-efficient migration policies.
In particular, two key questions need to be answered in any chosen
policy:
Q1. Which VMs to migrate from overloaded servers? First,
we need to identify which VMs to move from a hotspot so as to reduce
server load below a specified threshold. There are various strategies,
such as selecting VMs until the load falls below the threshold, either
in descending order of load and size, or at random. While the former
may minimize the number of migrated VMs, the latter may move
relatively more VMs while avoiding high migration cost scenarios.
Q2. Which servers to migrate the VMs to? Second, we need
to select target servers so as to optimize the placement of selected
VMs. In particular, the reconfiguration cost (e.g., bandwidth and la-
tency) to migrate a VM from a hotspot to a target server depends on
the network topology between servers. Specifically, in a bandwidth
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oversubscribed datacenter network, data movement to far nodes risks
a long reconfiguration time window, typically proportional to both
the network distance and the migrated data volume. Further, VM
migrations may interfere with foreground network traffic, risking per-
formance degradation of running applications.

Unfortunately, prior efforts have given little attention to address
these challenges. Many cloud systems perform initial provisioning of
VMs, but the user needs to detect the hotspot and re-provision VMs
to a (likely) different server. Note that determining a new mapping
of VMs over physical servers is NP-hard4. Several greedy heuristics
have been proposed such as first-fit placement of overloaded VMs,
applying a sequence of move and swap operations [20], and hottest-
to-coldest in which the largest load VM is moved to the coldest
server [23]. However, these techniques do not consider the network
topology connecting the servers (thereby risking high migration costs
in Q2). Others have advocated using stable matching techniques [22]
applied to a system of cloud providers and consumers, each aiming
to maximize their own benefit. However, the authors assume that
VMs are already assigned for migration (thereby skipping Q1) and
ignores edge capacity constraints or migration costs in the network
connecting the servers. There is a need to further develop automated
techniques to optimize VM migration costs in bandwidth oversub-
scribed datacenter networks. As these networks may be large (10’s
of thousands of nodes), runtime efficiency becomes a nontrivial chal-
lenge. This paper presents models and develops several algorithmic
approaches to meet these needs.
The Constrained Migration Model. We assume servers in a
data center to be inter-connected in an undirected spanning tree
network topology with servers as leaf nodes, and switches and routers
as internal nodes [6]. (See Section 7 for discussion of a much more
general setting.) Each edge in the tree has a capacity measured as
bits per time unit.

VMs or jobs (we use these terms interchangeably) are allocated
to physical servers with each server typically hosting multiple VMs.
Each VM is characterized by three parameters: (i) transfer size (typ-

4 In fact, with general loads, even a single edge network captures the NP-hard knap-
sack problem, and even unit load versions on trees capture hard instances of edge-
disjoint paths [17].
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ically 1-30 GB); we assume here that these are uniform (e.g., pre-
compiled VM images and bounds on allocated RAM) and hence are
all normalized to size 1, (ii) computational load (e.g., in CPU units);
the server load is defined as the sum aggregate of the loads of the
VMs hosted on it, and (iii) value of migration to prioritize migration
of mission-critical VMs. Note that transfer size, load, and value are
independent parameters.

The set of servers is logically partitioned into hot and cold servers.
For simplicity, we refer to each cold server as a single core having free
capacity. Exceeding this capacity risks performance degradation of
its VMs and hosted applications therein. Each hot server has an ex-
cess load, quantifying the load reduction needed to meet application
QoS.

Our core problem is the constrained migration problem (CoMP),
formally defined in Section 2. Here we wish to compute a maximal
set of hot servers that can be relieved by migrating a subset of their
hosted VMs. In our context, in addition to load constraints imposed
by server CPU capacity, migration patterns must also obey edge
capacities inherent to the topology’s bandwidth constraints.

Handling load and size constraints is a nontrivial task. To under-
stand this challenge, we put CoMP in a wider context in Section 2.1.
In particular, we see that several well-studied problems occur as spe-
cial cases.
Algorithmic Contributions. We now give an overview of our re-
sults on CoMP. While we are unable to give theoretical bounds for
CoMP in its full generality, we obtain approximation algorithms in
the following three cases.

1) Single hot server (Section 3): We compute a set of VMs at a
given hot server for migration to cold servers. Our algorithm either
determines that no such set exists (so relieving the hotspot server is
not possible) or computes a set of hosted VMs to migrate, that may
incur a small additive violation in the load capacities at some of the
destination cold servers.

2) Multiple hot servers – directed tree approach (Section 4): Our
results for the single hot server generalize very nicely to the version
of the problem on a directed tree in which the goal is to relieve
a maximum number of hot servers. In particular, we provide a bi-
criteria guarantee for this case. While the approximate solution for
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this case does not directly solve CoMP, we use it as a building block
for our system, called WAVE, briefly described below and in detail
in Section 6.

3) Maximum throughput – undirected tree approach (Section 5):
We consider a maximum throughput relaxation of the problem, in
which we aim to maximize the number of VMs that are migrated
from hot servers. This version can closely approximate CoMP in
scenarios where the set of jobs that are allowed to migrate in each hot
server is very small. We extend the integer decomposition approach
used in [2] to achieve an 8-approximation for this problem.

Techniques. The CoMP optimization problem is a packing integer
program. Our solution for the multiple hot server problem is based
on a two-phase algorithm. In Phase 1, we first solve a (standard) LP
relaxation which fractionally routes the VMs from the hot servers
to the cold servers. The key question is how to round this fractional
solution without incurring too much loss. Here we devise a new ap-
proach - in Phase 2 we reduce (“round” in some sense) this fractional
solution to a second LP which is well-structured. In particular, it is
defined by a system of totally unimodular constraints, and hence its
basic solutions are guaranteed to be integral [15]. Further, we show
that its solutions s imultaneously relieve the hot servers and satisfy
tree edge capacities, at the expense of exceeding the load at each
cold server by only a small additive constant.

Tractability and Real Instance Sizes.

Our approaches are based on combinatorial rounding techniques
for associated linear programming relaxations of CoMP. The scale
for real datacenters leads to problem instances with millions of vari-
ables and tens to hundreds of thousands of constraints. Since the
constraints in our instances are relatively sparse (10-15 nonzeros per
column), one would expect that the linear programming (LP) re-
laxations are solvable by off-the-shelf tools. However, the scale and
structure of our Phase 1 integer program does not allow it to be
fed directly to a black box solver (as verified by testing with a well-
known commercial package). A further challenge arises due to dif-
ferent scale of numerical units in the constraint system: load units
for servers (e.g., CPU 0-100%) and VM image size units (e.g., bytes)
for flow constraints. Balancing these two types of constraints (in
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different units) poses the main challenge in devising combinatorial
algorithms.

WAVE - system implementation and evaluation. Based on
our directed tree algorithms, we design and evaluate a system called
WAVE (Workload Aware VM placEment) for mitigation of hotspots
in data centers (not necessarily with a tree topology). WAVE uses
a heuristic which iteratively examines hot servers on a rack by rack
basis. Specifically, the heuristic invokes our directed tree approxima-
tion algorithm by migrating jobs away from hot servers in a single
rack (see Figure 1). We iteratively process each rack separately and
update the (residual) edge and load capacities when we finish its
migrations after each rack iteration.

Node

HOTCOLD

Rack

Fig. 1. Tree network topology. Edge orientation is away from hot servers in the specified
rack.

To evaluate WAVE, we conduct a detailed simulation study based
on modeling data center workloads. Our results show that WAVE
can efficiently and quickly alleviate single server hotspots and more
complex multi-server hotspots via short migration paths, while still
scaling to large data centers. The reader is referred to Section 6.

We believe that the problems addressed in this paper open up a
new set of challenging theoretical algorithmic questions. These are
described as a general optimization framework in Section 7.



7

1.1 Related Systems and Works on VM Migration

The idea of migrating processes or jobs across the network from
servers with high loads to servers with lower loads has been an
active research area for over 25 years (see, e.g., [8] and references
therein). The deployment of large datacenters that support virtu-
alization brings new challenges for live migration of VMs, and has
attracted significant attention in both industry and academia. Clark
et al. [3] propose the pre-copy approach, which iteratively copies the
memory of a VM from the source to destination host before releasing
the VM at the source and resuming it at the destination. Hines et
al. [9] describe the post-copy migration that defers the transfer of
a VMs memory until its processor state has been sent to the tar-
get host. Voorsluys et al. [18] study live migration costs on Web 2.0
workloads and conclude that migration overhead is acceptable but
cannot be disregarded, especially for quality-of-service sensitive ap-
plications. Snowflock enables rapid cloning of stateful VMs but does
not consider VM migration [12].

Wide-area VM migration projects [14, 19] have used lazy copy-
on reference for moving VM disk state to reduce migration costs
over low-bandwidth and high-latency links. Elmroth et al. [4] focus
on defining interfaces for initiating and managing VM migration in
federated clouds. Wu et al. [21] propose performance models for live
migration to predict a VMs migration time given its application
behavior and the resources available for migration.

Korupolu et al. [11] investigate the coupled placement of appli-
cation computation and data amongst available resources, but they
only take limited network metrics into account. Sandpiper [20] pro-
vides automated black-box, gray-box, and hybrid strategies for VM
migration in datacenters. Commercial offerings, such as VMware Dis-
tributed Resource Scheduler, use live migration to balance load in
response to CPU and memory pressure. However, the scheduler is
proprietary and can only be applied to VMs running on VMware
hypervisor. All these efforts focus on implementation issues and op-
timization techniques of migration, but they do not rigorously con-
sider network topology-aware selection of target nodes in datacenter
networks.
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2 The Constrained Migration Problem (CoMP)

We now define the optimization problem of VM migration in a band-
width oversubscribed data center network. We restrict our focus to
tree topologies, although a much broader migration optimization
problem is introduced in Section 7.

Servers in our data center are organized in a tree structure de-
noted by T = (V, E) where V denotes the nodes and edges (or links)
are denoted by e ∈ E . We focus on the case where links are undi-
rected (bidirectional), and state cases where we refer to the directed
tree version. Each link has a capacity denoted by ce measured as
bits per time unit. (These are introduce to model a maximum time
- time budget - to achieve the migrations.)

The set of servers is denoted by K ⊆ V . This set is logically
partitioned into hot and cold servers: K = Khot∪Kcold. For simplicity,
each cold server k denotes a single core having free capacity denoted
by Lk. Each hot server h has an excess demand denoted by Lh. This
quantifies the reduction in load required to meet application QoS.

The set of VMs or jobs are (possibly pre-selected as subject-to-
migration (STM)) numbered j = 1, . . . , N . Each such job j is char-
acterized by the following parameters: (1) Transfer size sj, which is
normalized to 1 for all VMs. (2) Computational load ℓj (e.g., in CPU
units) for each job j. (3) The current (hot) server sv(j) hosting VM
j, and a subset Dest(j), called the destination set, of possible (cold)
destinations to which j is allowed to migrate. (4) A value (or cost)
of migration vj.
Feasible Solutions. A feasible solution to CoMP specifies a collec-
tion J of migrating jobs, and for each such job j there is a target
server k(j) ∈ Kcold for its migration. Obviously j is a job located
on some hot server sv(j) and k(j) ∈ Dest(j). For general networks,
we would also specify a migration path for such a pair (j, k(j)), but
this is uniquely determined in a tree topology. Obviously, the total
migration of jobs from J should not exceed the capacity of any edge
in T . In addition, if Sh is the set of jobs located at some hot server
h, then

∑
(ℓj : j ∈ J ∩ Sh) ≥ Lh. Similarly, for each cold server k,∑

(ℓj : j ∈ J ∩ Sk) ≤ Lk.
Objective Functions. The most natural objective function is sim-
ply maximizing the number of hot servers to decongest. We call this



9

the all-or-nothing decongestion version. Also of interest is the partial
decongestion model, where the objective is to migrate a maximum
weight/number of migrating jobs; we call this the maximum through-
put version (i.e., one achieves some benefit by partially decongesting
servers).
Notation. In the sequel we can always scale link capacities and CPU
units so that smin, ℓmin = 1. We now clarify some notation related
to a given undirected graph H = (V,E) with node set V , and edge
set E. For any S ⊆ V (H) we denote by δH(S) the set of edges with
exactly one endpoint in S. Sometimes we work with a tree T whose
node set is also V . For an edge e ∈ E(T ), deleting it from T gives an
obvious partition of V into two sets V1 and V2. The fundamental cut
(in H induced by e) consists of δH(V1). When there is no confusion,
we use the notation Fund(e) to denote the edges in this cut.

2.1 Related Problems as Special Cases.

The combinatorial optimization problem CoMP above generalizes
several problems in the algorithms literature. For instance, maxi-
mum integer multiflow (MEDP) in trees can be viewed as a special
case. This is seen by having a single job pre-selected at each hot
server h and the destination set for this job is to a unique cold
server k. In addition, we can set Lk = ∞, Lh = ϵ (for a tiny ϵ > 0)
for any cold/hot servers k/h. Hence the point-to-point demands for
the MEDP instance correspond to our jobs, and routing one such
demand corresponds to decongesting the hot server at one of its end-
points. This special case of MEDP is known to be APX-hard even
when the tree capacities are 1, 2 [5]. Conversely, a 2-approximation
is known (for general tree capacities) in the cardinality case [5] and
a 4-approximation is known in the weighted case [2] (i.e., where each
job - hence hot server - has an associated profit or priority vj for
being routed). This latter work is extended in Section 5.

CoMPhas several extra layers of complexity beyond MEDP. First,
our jobs are not point-to-point, they may be routed to any of several
destinations if Dest(j) has more than one element. More significantly,
we have “decongestion constraints” at the hot servers, and “packing
constraints” at the cold servers. Since these constraints are in dif-
ferent units (loads instead of sizes) we cannot model this by simply
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adding leaves. Hence on top of our tree-routing capacity constraints,
we have these knapsack-type constraints. Moreover, the most natural
objective for CoMP is also more complicated. In MEDP, one accrues
profit whenever a demand is routed. In CoMPin the all-or-nothing
decongestion model, “profit” is obtained at some server only when
we succeed to route (migrate) some subset of its jobs which is large
enough to decongest it.

Another special case of our problem is when all routing con-
straints are ignored (i.e., set all tree capacities to ∞); then we only
have server load constraints. Again, even in the case where each
server has selected a single job to migrate, this reduces to a general-
ized assignment problem [16]. Each job j is on one side of a bipartite
graph and can be “assigned” to at most one node i on the other side.
A profit of pij is obtained for such an assignment, and the total load
of jobs assigned to node i is at most its capacity. The problem also
generalizes the multiple knapsack problem.

3 Relieving a Single Hot Spot (Single Source
CoMP in Trees)

In this section we consider the single hot server CoMP. That is, how
to compute a set of jobs at a given single hot server h which can be
migrated to cold servers, thus relieving the hot server. In particular,
we describe an approximation algorithm which finds a decongesting
set of jobs if one exists, but it may have a small additive violation
in some destination cold server load capacities.

Our starting point is an LP formulation of CoMP. The optimum
of the linear program is a fractional solution having the property
that its value opt is an upper bound on the total load of jobs that
can be feasibly migrated from h. We then show how to “round” this
LP solution to migrate some of these jobs integrally. Our rounding
process may incur a violation of the total load constraints at some
destination cold servers, to the tune of an additive term of ℓmax

(ℓmax = maxi ℓi). Throughout, we assume that all jobs have the
same size, i.e., ∀j, sj = 1.

Our overall method proceeds as follows. We first solve an LP
relaxation. If it does not succeed in reducing overload of hot server
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h, then we quit. Otherwise, we use the LP solution to produce a
second LP with a nice structure, namely total unimodularity. This
means that all basic solutions for the second LP are integral. We
can further prove that the feasible solutions for the second LP still
relieve the server h, satisfy tree capacities, and exceed the load at
each cold server by at most an additive term of ℓmax.

3.1 Converting a Fractional Migration from a Single Hot
Server

We think of our tree T as rooted at node h, i.e., think of the edges
being directed “away” from h. This is similar to the orientations in
Figure 1, except here we direct away from only one hot server (as
opposed to multiple servers within a rack). We can assume all other
leaves of T are cold servers (otherwise just delete them).

We first solve the following natural LP relaxation for CoMP. The
maximization objective function guarantees that if there is feasible
solution which decongests h, then the LP optimal value will be at
least Lh. I.e., it ensures that we fractionally remove enough jobs (at
least Lh worth) if it is possible within the constraints. (We tinker
with this objective function in our empirical evaluations - see Sec-
tion 6 - to incorporate penalties for long migration paths.)

Variables:
• C is the set of cold servers.
• J is the set of jobs on the hot server.
• Dest(j) is the set of possible cold servers, for each j ∈ J .
• x(jk) indicates the fractional amount of migration

of job j ∈ J to server k ∈ C.
• zj =

∑
k∈Dest(j) x(jk) indicates the total fractional migration

(in [0, 1]) of job j ∈ J .

The LP objective:
OPTLP1 = max

∑
j∈J ℓjzj

Migration Constraints:
for each job j:

∑
k∈Dest(j) x(jk) ≤ 1
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Flow constraints:
for each edge e ∈ T :

∑
jk∈Fund(e)

x(jk) ≤ ce

Load Constraints:
for each k ∈ C:

∑
j:k∈Dest(j) x(jk)ℓj ≤ Lk

Non-Negativity:
x(jk), zj ≥ 0

Thus, the LP generates a fractional migration vector (x∗, z∗) which
relieves the hot server. The components of the solution are: (1) x∗(jk)
which represents how much of job j is migrated to server k (the flow
from j to k), and (2) z∗j =

∑
k x

∗(jk) ≤ 1 which represents the total
amount of job j which is migrated. The fact that the hot server is
relieved corresponds to having

∑
j ℓjz

∗
j ≥ L = Lh. We assume x∗, z∗

are given by any LP algorithm (or solver).

Multiflows on a Directed Tree: We next recast the fractional
migration problem as a directed multiflow problem on a tree. This
yields another LP - the Phase 2 LP - which we show has integral
optimal solutions (every basic solution is integral).

We create the Phase 2 LP from a new directed tree T ∗ with
some extra leaves. For each job j, we create a new job node j and
add a new leaf edge (j, h) from j to the server node h. These edges
have capacity 1. We denote by VJ the set of new job nodes in this
construction.

We also add new leaves at each cold server. In order to intro-
duce these, it is convenient to define a job-edge graph H = (VJ ∪
Kcold, Ejob). For each cold server k ∈ Dest(j), we add a job edge
(j, k) if job j is partially migrated to k in the fractional solution x∗.
In this case, if f = (j, k) is such an edge, then we also use ℓf to
denote the load ℓj of j. Let Ejob be the resulting set of job edges.
These yield the bipartite demand graph H.

Note that a feasible (integral) migration of h’s jobs corresponds
to choosing M ⊆ Ejob such that:

(i) at most one job edge is chosen incident to each j ∈ VJ (i.e., we
do not try to migrate a job twice),
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(ii) for each edge e ∈ T , the number of job edges “crossing” e (i.e.,
its fundamental cut Fund(e) in the job-edge graph H) is at most
ce (in other words, the total flow of jobs through e is at most ce)

(iii) for each k ∈ Kcold,
∑

f∈M∩δH(k) ℓf ≤ Lk (i.e., the total load of

jobs migrated to k is at most Lk).

The first two constraints are modeled purely as routing constraints
within the tree, i.e., if we choose job edges which have a feasible
routing in T ∗, then (i) and (ii) hold. The last constraint is different
from the first two, since routing a fraction x∗

jk of job j to server k
induces a load of ℓjx

∗
jk, and not just x∗

jk which is the induced flow
on tree edges since all sizes sk = 1. (This is where different units
for size and load make things interesting). Instead, we show how to
approximately model constraint (iii) as a flow constraint, if we allow
some additive server overload. To do this, we enlarge T ∗ with some
cold server leaves.

For each cold server k, define its “fractional degree”, f(k), to be
the total flow (not load) of jobs being migrated to k. We next create
new leaf edges at k: (k, 1), (k, 2), . . . , (k, ⌈f(k)⌉), each with capacity
one. We call these bucket leaves at k. We now redirect the job edges
of Ejob terminating at k to bucket leaf nodes as follows. First, let
f1, f2, . . . , fp be the job edges currently terminating at k, where fi =
(ji, k). Without loss of generality, assume ℓ1 ≥ ℓ2 ≥ . . . ≥ ℓp, and
consider the fractional amounts x∗(jik) that the LP routed from
job ji to server k. We greedily group the fi’s into ⌈f(k)⌉ buckets
as follows. Let s be the smallest value such that

∑s
i=1 x

∗(jik) ≥ 1.
Then, we remove f1, f2, . . . , fs from Ejob, and add instead edges from
each ji to bucket leaf node 1. If the latter sum is strictly larger than
1, then we make two copies of fs, and the second copy is redirected to
leaf node 2. We then proceed to make our buckets B1, B2, . . . , B⌈f(k)⌉
of job edges in the obvious inductive fashion. Note that the total
fractional weight of job edges into each k-leaf node can be viewed as
exactly 1, except for the last bin whose total weight is f(k)−⌊f(k)⌋.
Figure 2 gives a pictorial example of this operation.

This completes the description of T ∗. The multiflow routing prob-
lem on T ∗ is our Phase 2 LP.
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Fig. 2. Construction of buckets at cold server.

Note that by construction of the multiflow problem, the fractional
solution (x∗, z∗) immediately yields a feasible flow in T ∗, fractionally
migrating the same amount for each job.

Lemma 1. There is a feasible multiflow in T ∗ which routes x∗(jk)
of each job j to each server k.

The Phase 2 LP has the following useful property.

Lemma 2. Any integral solution to the multiflow problem on the
expanded directed tree T ∗ corresponds to a migration which satisfies
the above (i), (ii) and

(iii′)
∑

f∈M∩δH(k)

ℓf ≤ Lk + ℓmax.

Proof: It is only the final claim that we must still argue. To see this,
let M denote the set of jobs migrated in a feasible integral flow on
T ∗. Note that M can choose at most one job edge (i.e., job) from
any bucket Bi to migrate to k. Moreover, for i > 1, the size of any
job in Bi is at most the size of any job in Bi−1. Thus, if we choose
such a job edge, its load on server k is at most the fractional load
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that was induced by job edges in Bi−1. This happens since the total
fractional load induced by edges in Bi−1 is

∑
f∈Bi−1

x∗(f)ℓf , and this
sum is at least the smallest load of a job in Bi−1, which is as large
as any job in Bi. Thus, the collective load of jobs chosen from bins
B2, B3, . . . , B⌈f(k)⌉ is upper bounded by the fractional load of (x∗, z∗)
on k, which is at most Lk. Adding in one more job from B1 can thus
exceed Lk by an at most ℓmax.

Total unimodularity (TUM) of the routing constraints in
T ∗: Let A be the {0, 1} matrix whose rows are indexed by directed
edges of T ∗, and whose columns are indexed by directed paths asso-
ciated with our job edges Ejob (where the paths are extended from
job nodes to bucket leaves). For a job edge f = (j, kr) (where kr
denotes some leaf bucket node of cold server k), we put a 1 in row e
and column f precisely if e is a directed arc on the path in T ∗ from
j to kr. It turns out (see [15]) that the resulting matrix A is a net-
work matrix, and hence is totally unimodular, i.e., the determinant
of every square submatrix is in {−1, 0, 1}. It follows (cf. [15]) that
if maxwTy : Ay ≤ b, 1 ≥ y ≥ 0 has a fractional solution, for some
integral capacities b : E(T ∗) → Z+, then it has an integral basic op-
timal solution. Since our original solution (x∗, z∗) induces a feasible
fractional solution for the multiflow problem on T ∗, by taking w = l,
we must have an integral solution whose objective value is at least∑

j ℓjz
∗
j . That is, we have an almost-feasible (up to (iii’) in Lemma

1) integral migration that relieves the hot server.

We now combine the pieces to obtain the following.

Theorem 1. There is a polytime algorithm for single-source CoMP
in trees with the following guarantee. If there is a feasible solution
which decongests the single server h, then it finds a decongesting
set of jobs which is feasible with respect to tree edge capacities, and
violates the load at any cold server by at most an additive amount
ℓmax.
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4 All-or-Nothing with Multiple Sources in
Directed Trees

The algorithm for resolving a single hot spot works partly due to the
fact that the all-or-nothing objective function is equivalent to the
maximum throughput objective function. Namely, by maximizing
the number of migrating jobs we either succeed to hit the threshold
Lh or not. In this section we consider the all-or-nothing objective
function, and hence the complicating knapsack constraints re-enter
the picture.

A second important feature leveraged in the single source case
is that migration paths have a consistent orientation away from the
hot server. We thus focus on the case where the underlying migration
tree has no orientation conflicts. In other words, each edge of the tree
has a direction, and we only allow job migrations jk for pairs where
the path from j to k traverses the edge in the right direction. This
generalizes the single hot server case, since in that setting all paths
are directed away from the hot server h.

The situation is much more complex in the multiserver case,
partly due to the difficulty in modelling the choice of which hot
servers to decongest. To address this, we must introduce a new mul-
tiserver LP which models hotspot relief of multiple hot servers. In
particular, its value OPT is an upper bound on the number of hot
servers we can relieve. Our goal is to ultimately use the LP to find a
large (e.g., constant factor of opt) number of servers which can be
relieved.

4.1 The Multiserver LP

We introduce an LP relaxation for multiple hot server migration.
It has the variables x(jk) and zj as before, but we also incorporate
a variable mh ∈ [0, 1] for each hot server h ∈ Khot. This variables
measures the (fractional) extent to which we reduce the overload of
Lh at this server. This is modelled by including a constraint∑

j∈Loc(h)

zjℓj ≥ mhLh (1)

and 0 ≤ mh ≤ 1. (Here Loc(h) is the set of jobs on server h available
for migration.) We then solve this expanded LP with a new objective
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of
∑

h∈Khot
mh. Note that if opt is the optimal value, then this is an

upper bound on the total number of hot servers we could relieve in
one round.

Ideally, we would convert a solution to the LP into a valid inte-
gral solution which relieves a constant factor Ω(opt) of servers, with
some minimal violation of load constraints at cold servers. Since we
consider migration paths in a directed tree, we still inherit a total
unimodular structure but there are new difficulties. First, the objec-
tive function now uses variables mh, and these no longer correspond
to variables associated with the TUM matrix columns (i.e., the zj or
x(jk) variables). To address this issue we use a technique that only
guarantees to reduce a congestion by some percentage (we call this
β-decongestion).

More troubling, from the theoretical perspective are difficulties
arising from our the all-or-nothing objective function. The multi-
server LP may return solutions in which a large number of mh’s
have a very small value, whereas we need to find an all-or-nothing
subset where the mh’s are all equal to 1. Currently, our techniques
essentially only apply to fractional solutions where we have Ω(opt)
variables mh = 1 (or close to 1 say). We refer to this as an all-or-
nothing set in an LP solution. In the next section, we show how to
convert a fractional migration with such a set into an integral mi-
gration. Ending on a positive note, our empirical evaluations show
that our Phase 1 LP’s often produce non-integral solutions which do
posses such large (fractional) all-or-nothing sets - see Section 6.1.

4.2 From All-or-Nothing Sets to Valid Migrations

In this section we assume that we have a solution m∗
h, z

∗
j , x

∗(jk) for
the multiserver LP on a directed tree T . We assume that this forms
an all-or-nothing set. That is, the m∗

h variables belong to {0, 1},
but the migration variables x∗(jk) themselves may be fractional. (In
fact, in the theorem below this is relaxed slightly to only require
that the size of the support of mh is at most α

∑
hmh; if α = 1, this

corresponds to an all-or-nothing set.) Thus, let H be a set of hot
servers which have been fractionally relieved by the multiserver LP,
and let opt =| H |. We say that a server h is β-relieved if we relieve
a total load of at least βLh. We show the following.
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Theorem 2. Suppose that a fractional migration of value opt is
given such that the support of the vector (mh) has size at most α·opt.
Then, we can convert in polynomial-time the solution into an integral
migration which β-relieves at least 1−2αβ

4
opt servers. In particular,

we can convert an all-or-nothing migration of opt servers into an
integral migration which β-relieves at least 1−2β

4
opt servers.

Proof: Once again we convert our problem to a TUM path packing
problem on a directed tree. However, in the Phase 2 LP we cannot
use variables mh, since they do not correspond to subpaths (or sums
of them) within the tree. Instead we use the following proxy for mh:

proxy(h) =
∑

j∈Loc(h) zj
ℓj
Lh
. It is easy to see that without loss of

generality, in the multiserver LP, the above sum satisfies:

proxy(h) ≤ 1 +
ℓmax

Lh

. (2)

The above just corresponds to not migrating a total load of more
than Lh + ℓmax from h. In the Phase 2 TUM problem we now maxi-
mize

∑
h proxy(h) =

∑
h

∑
j zj

ℓj
Lh
.

In addition, we perform leaf splitting at every cold server as we
did in the maximum throughput case. We now also perform bucket-
ing at each hot server h; this is to ensure

∑
j zj

ℓj
Lh

≤ 2 in the final

solution. This is a device to ensure lots of servers get (partly) de-
congested. We can view this as bucketing with job sizes ℓ′j = ℓj/Lh,
or as bucketing the ℓj’s so we guarantee that the total load of mi-
grated jobs is at most Lh+ℓmax. Either way, this will guarantee that
proxy(h) ≤ 1 + 2ℓmax

Lh
, where we have used (2). A caveat is that a

few of the jobs may get assigned to two buckets and allowing both
would destroy our tree structure. To resolve this, we assign it only
to the bucket where most of its flow (in terms of x∗(jk) values) was
assigned. This could reduce its flow, and hence the mh values up to
1/2. Hence, we transfer a solution of value opt/2 to the Phase 2 LP.

After solving for a basic solution to the Phase 2 LP, by total
unimodularity, we have an integral solution whose (proxy) objective
is at least opt/2. So how many servers did it manage to β-relieve?
Let X be this number, and Y be the number that are not β-relieved.
Since X+Y ≤ αopt, we have Y ≤ αopt. Each server in X contributes
at most 2 to the proxy objective due to hot server splitting. And the
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others obviously contribute at most β. Hence 2X + βY ≥ OPT/2.
Hence X ≥ (OPT/2 − βY )/2 and since Y ≤ αopt, this is at least
1−2αβ

4
OPT . If we originally had an all-or-nothing solution then α =

1. This completes the proof. �
We employ the algorithmic approach described above within an

iterative heuristic for mitigating hotspots across the whole datacen-
ter. See Section 6 for details and comprehensive evaluation of the
heuristic.

5 Maximum Throughput and b-Matched
Multiflows

Given the complications inherent to the multiserver LP, we tackle
the maximum throughput objective as a (sometimes suitable) alter-
native. We first note that in the directed tree setting, the techniques
from the single source algorithm apply directly in the absence of the
multiserver LP complications. This is because our technique for bin-
ning jobs at the cold servers is oblivious to which hot server the job
edge was migrating from. Hence, analogous to Theorem 1, we can
migrate LP-opt-worth of jobs without violating tree capacities, and
violating cold server capacities by at most ℓmax.

These techniques do not apply in the undirected setting; we ad-
dress this now. We formulate maximum throughput CoMP in a
slightly more general setting, to emphasize its connection to max-
imum multiflows in trees (MEDP). In MEDP, we have an edge-
capacitated undirected tree T = (V,E), c : e → Z+, together with
a collection of point-to-point demands f = uv (each demand may
also have a profit pf ). The maximum multiflow problem (MEDP)
asks for a maximum weight (profit) subset of demands that can
be simultaneously routed in T without violating edge capacities. A
2-approximation is known for the unweighted version of this prob-
lem [5] and 4-approximation for the weighted case [2].

We consider an extension of the above problem where each de-
mand also comes with a load ℓf . In addition, each v ∈ T also comes
with a capacity (possibly infinite) b(v). A b-matched multiflow is a
subset of demands F that can be routed in T while satisfying its ca-
pacity constraints, and such that for each v:

∑
(ℓf : f ∈ δ(v)∩F ) ≤
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b(v). The problem of finding a maximum b-matched multiflow obvi-
ously generalizes MEDP on trees. It slightly generalizes CoMP on
trees is that we no longer have a partition of nodes into hot (supply)
and cold (capacitated) servers.

We first establish an 8-approximation for maximum b-matched
multiflow, with some additive error in the resource constraints b(v).
In fact, we show something stronger, a decomposition result using
a technique from [2]. In that work, the authors call a set J of de-
mand edges k-routable if when routing all these demands in T , the
total flow through any edge is at most kce. They prove that any
k-routable set J can be partitioned (“coloured”) into 4k sets, each
of which is routable (this is the key step to obtaining a polytime 4-
approximation for weighted MEDP in trees). With additional work,
one can employ their result to obtain a similar decomposition for
b-matched multiflows.

Theorem 3. There is an 8-approximation for maximum weighted
b-matched mutliflows (and hence maximum throughput CoMP) in
undirected trees, if we allow an additive violation of ℓmax at the knap-
sack constraints for nodes.

Proof: Once again there is a natural LP formulation which we
solve to get a fractional optimal solution x∗

f . In particular, let H
be the demand graph, i.e., the edges of H correspond to the demand
edges f . Then for each edge e ∈ T , the fundamental cut satisfies:∑

f∈Fund(e) x
∗
f ≤ ce. Also,

∑
f∈δH(v) ℓfx

∗
f ≤ b(v). We now blow up x∗

by some integer k to obtain an integer vector kx∗ (this is possible if
x∗ is a basic solution, e.g., by Cramer’s Rule). We can think of kx∗

as identifying a multiset J of demand edges: edge f occurs (kx∗)e
times in J . Hence each fundamental cut satisfies |J∩Fund(e)| ≤ kce.

We adapt an argument from [2] for MEDP on trees; we defer some
details to a full version of the paper (in particular, how to cope with
non-polynomial size k above). They also create “bins”, but they do
not have the complication of knapsack constraints at the endpoints
of demand edges f . For each node v, let Jv = J∩δH(v), and qv = |Jv|.
We order (and informally number) the edges of J incident to v, say
ℓ1 ≥ ℓ2 ≥ . . . ℓqv ; one should think of each such edge as contributing
1/k to the original vector x∗. We create bins at v as follows. Bin
1, B1 = {ℓ1, ℓ2, . . . , ℓ2k}, B2 = {ℓ2k+1, ℓ2k+2, . . . , ℓ4k} and so on. We
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now try to colour the edges of J so that each colour class consists of
a set of demands which can feasibly route in the tree capacities. In
addition, we force an extra bin constraint that each colour class is
allowed to include at most one demand edge from any colour class
(for any node v). Call this a strong colour class.

Claim. Any strong colour class C does not violate any knapsack
constraint by more than +ℓmax.

Let v be some node, and set S = C∩(Jv−B1) where B1 is v’s bin
containing the largest load demand edges from Jv. Since an element
of C ∩ Bi, i ∈ {2, 3, . . . , qv}, has load at most that of every element
in Bi−1, we have that ℓ(C ∩Bi) ≤ ℓ(Bi−1)/2k. Thus

ℓ(S) =

qv∑
i=2

ℓ(C ∩Bi) ≤
qv−1∑
i=1

ℓ(Bi)

2k
≤ ℓ(Jv)

2k
≤ kb(v)

2k
= b(v)/2. (3)

So ℓ(C∩Jv) ≤ ℓ(S)+ℓ1 < (b(v))/2+ℓmax, establishing the claim.
Now to complete the proof we use the colouring/decomposition

result of [2] mentioned before the proof. We add a unit capacity leaf
for each bin Bi at each node. Note that our multiset J is now a 2k-
routable set. Clearly it imposes a load of at most kce on old edges
of T , and the new bin leafs carry a load of at most 2k. Hence we
can decompose J into 4(2k) colour classes for the extended instance.
Since the total profit of the edges in J is k times the profit of x∗, at
least one of the 8k sets in the colouring achieves a profit of at least
1
8
of the LP. �
One can also avoid the additive violation of ℓmax with further

degradation to the approximation ratio.

Theorem 4. There is a polynomial time O(1)-approximation for
maximum weighted b-matched multiflow problem (and hence maxi-
mum throughput CoMP) in undirected trees.

Proof: We follow the decomposition proof above, and note that
(3) implies that the colour class C is actually feasible at v, unless
C ∩ Jv contains precisely one demand whose load > b(v)/2. We call
such a demand v-fat. We can now categorize demands according to
whether it is fat (for one of its endpoints) or not. Obviously the LP
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yields a constant factor of its profit either on fat demands, or non-fat
demands. If it is on demands which are not fat, we can apply the
decomposition on the LP restricted to those demands. Each colour
class is then actually feasible as required.

Otherwise, we restrict attention to the fat demands. First suppose
that a constant fraction of the profit is on demands uv which are fat
at both ends. In this case, we extend our initial tree to include unit
capacity edges at each leaf. Note that the “doubly-fat” edges from
J now induce a 2k-routable set on this tree. Hence we can apply the
decomposition method again, and each colour class will be feasible
since it contains at most one demand from any leaf.

Finally, we focus on the case where most profit is from “singly-
fat” demands. This yields a derived digraph where if uv is a demand
edge which is v-fat, we include the arc from u to v. Now with a
further loss of factor 4, one may find a “max cut” in this graph.
This determines a set X so that we can focus on those demands
that are fat w.r.t. to the nodes in X, and not fat w.r.t. nodes in
V −X. Obviously at nodes in X we can select at most one demand,
and this can now be modeled by adding a leaf of capacity 1 as in
the doubly-fat case. We now apply the decomposition techniques to
the resulting set of demands which is 2k-routable w.r.t the extended
tree. One can think of nodes in X as having a single bin, and there
are no large demands for nodes in V −X. Hence the decomposition
method is again guaranteed to produce feasible colour classes. �

5.1 Non-unit Transfer Sizes: Unsplittable Flow and
Extensions

In [2] the authors also consider the extension of MEDP where de-
mands have integer sizes (not just unit sizes sj). This becomes an
unsplittable flow problem (UFP) on a tree. They give a first constant
factor approximation for the resulting maximum UFP on trees when
smax ≤ cmin (the prevalent no-bottleneck assumption (NBA)). At this
point, we have been unable to push our techniques to give constant
approximation results in the b-matched unsplittable flow setting.

Such problems fall into the class of so-called column-restricted
packing integer programs introduced by Kolliopoulos and Stein [10].
These are maximization problems with packing constraints Ax ≤ b,
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where each column j is bi-valued, i.e., all entries are either 0 or
some value vj. In addition, it is the NBA which has been widely
studied, where vj ≤ bi for all columns j and rows i. Viewed in this
generality, each column of the CoMP constraint matrix is tri-valued
(each entry in a column j is either 0, sj or ℓj). It would be interesting
to understand the integrality gaps for such problems (with NBA),
although as mentioned we do not yet know a result in the special
case of UFP on trees.

6 Empirical Evaluation

6.1 An Iterative Online Heuristic

We employ the algorithmic approach described above within an iter-
ative heuristic for mitigating hotspots across the whole datacenter.
We proceed by addressing hotspot overloads in racks, one by one.
While the approach from Section 4.2 requires that migrations on
each tree edge are consistent (i.e., all in the same direction), this
is automatically satisfied for migrations from a rack. To see this,
note that each server which is a child of some rack node is either
hot or cold (or neither). Hence, direction of migration along such a
leaf edge is determined (upwards from a hot server, or downwards
to a cold server) - see Figure 1. Moreover, any migrations beyond
this rack are obviously all oriented away from the rack node. Thus
the migration problem for each rack, has the necessary structure to
apply our methods.

We first apply the Phase 1 LP. If it does not fractionally relieve
all hot servers on the rack, we use a binary-search-like routine to
try to relieve some smaller set (e.g., half of them). Once we succeed
to find an all-or-nothing fractional migration (see comments in next
paragraph), we apply the tools from Section 4 to create the Phase
2 LP. The second optimization yields feasible integral migrations,
which are added to a batch scheduling of jobs to be migrated. We
then update the tree-capacities and server CPU load capacities used
by this migration, and select a new rack. We repeat this process as
long as the batch of scheduled jobs can be migrated within some
target delay (e.g., we used 1 hour).

In our simulations, the mh values from the Phase 1 LP were not
always 1, but fairly large fractions. Hence we worked with these as
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a reasonable facsimile for an all-or-nothing solution. We also noted
that the proxy objective (2) for the Phase 2 LP had the added ad-
vantage that it would tend to drive partial relief at servers, e.g., we
see 85% relieved servers in our solutions, whereas in the mh model,
these would contribute nothing to the objective.

In what follows, we describe our simulation results based on dat-
acenter workload traces from a cloud computing cluster running a
broad range of interactive and MapReduce/DryadLINQ batch ap-
plications. The trace comprises the CPU load over time of each ap-
plication process running in a VM setup. We begin in Section 6.2 by
highlighting some heuristic enhancements which we used in the mi-
gration algorithm. We then present the simulation setup in Section
6.3. Section 6.4 focuses on our simulation results, including compar-
isons to two other algorithms.

6.2 Handling Practical Constraints

The datacenter network topology that we examine is that of a multi-
rooted spanning tree [7]. Consequently, there are possibly multiple
paths from a given hot server to a cold one. While our core algorithm
is designed for tree topologies, we exploit the path redundancy as
follows: We choose the actual paths by executing a shortest path
subroutine (specifically, breadth first search (BFS)) from each hot
server to all cold servers. This guarantees that the resulting topology
is a tree. Furthermore, if some edges become fully utilized by pre-
vious rack migrations, they are eliminated from the graph, thereby
allowing the shortest path subroutine to find alternative paths.

Another detail regarding the algorithm implementation is that it
does not incorporate “hot-buckets” (we do implement “cold buck-
ets”) described in Section ??. Intuitively, the incorporation of cold
buckets guides the integral solution to “follow” the Phase 1 LP.
While hot buckets are necessary for obtaining the additive +ℓmax

performance bounds at destination servers, the system still per-
formed well without this optimization. Occasionally, we observed
that some hot servers “over-migrated” without the hot buckets, but
this did not appear to be at the expense of other hot servers (see
numeric illustration in Section 6.4).
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An important heuristic enhancement is to incentivize short mi-
grations paths within the optimization formulation. As we show in
Section 6.4, this would lead to both increasing the number of relieved
servers as well as decreasing the migration delays. The precise details
for this improvement are deferred to Section 6.4.

6.3 Simulation Setup

Racks and servers. We examine our algorithm on a datacenter
comprising 8K servers. The servers are organized in racks, where
each rack has 40 servers.

Edge capacities. As mentioned above, the network topology is a
multi-rooted spanning tree with five levels. Foreground application
traffic has high network utilization, so that only about 10% of the link
capacity can be used for background migration traffic. The available
edge capacities which are given in Mbps, are multiplied by a factor
γ that specifies the worst case migration delay that we are willing
to tolerate for each edge. We have set γ to 300, so that each edge
delay is upper bounded by five minutes, and consequently the overall
migration should be bounded by one hour (given the 5-level tree
topology).

Servers loads. While average DC Utilization is typically around
30% [1], we set the average utilization to be significantly higher,
around 50%, to stress test the system as the number of hot servers
becomes higher. Accordingly, we proportionally increase the average
server load, while using the typical server load distribution and the
job-load distribution within each server (roughly, power low distri-
bution for the former, and pareto-distribution for the latter), based
on our conversations with datacenter operators.

Hot and cold servers. We assume that a server is hot if its current
utilization is higher than a parameter HOT-THRESH%. A server is
considered cold if its utilization is lower than COLD-THRESH%.
Since migrations should not turn cold servers to hot ones, we leave
some margins by limiting the utilization at the cold servers after
the migration to MAX-LOAD-COLD%. In our experiments, we use
HOT-THRESH=80, COLD-THRESH=10, MAX-LOAD-COLD=50,
which makes the algorithmic challenge more evident, as the ratio of
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hot servers is typically around 20 percent, while only around 12 per-
cent are considered cold servers.
Algorithm execution. We order the racks arbitrarily and execute
our rack-by-rack algorithm, along with the practical enhancements
described above.

6.4 Results

As a benchmark, we evaluate our algorithm against the fractional
Phase 1 solution which is obtained for each rack. This algorithm is re-
ferred to as Fractional-P1. We note that this benchmark is of course
not a feasible solution, as jobs are allowed to fractionally migrate to
different servers. Returning to our WAVE algorithm, we point out
that the proxy objective in the Phase 2 LP has a practical advantage
– This LP will try to partially relieve some servers as well, whereas
under the mh model (recall mh = 1 precisely if we reduce h’s load
below HOT-THRESH%) we get no credit for .99-relief. To exploit
this advantage, we consider a hot server to be successfully relieved if
RELIEF-THRESH percent of the load beyond HOT-THRESH has
been migrated. In our experiments, we set RELIEF-THRESH to
85, which means that in the worst case scenario, the target load is
violated by only by 3% (in other words, we count the number of
successful migrations, assuming that HOT-THRESH is 3% higher).

Before we describe our full results, we present a small illustration
of the numbers we obtain for mh. In a particular run, we obtained
the following m vectors for the rack migration:

m1 = [1, 1, 0.5672, 1, 1, 1, 1, 1]

and

m2 = [1.052, 1.721, 0, 1.692, 1.152, 0.984, 0.875, 1.0093, 0.564].

Under the RELIEF-THRESH threshold, the (fractional) benchmark
relieved 8/9 of the hot servers, while WAVE relieved 7/9.

We compare our solution to another plausible algorithm which
outputs feasible migration. This algorithm simply takes only the
integral migrations of the Phase 1 LP, and disregards fractional mi-
grations. We refer to this algorithm as Integral-P1, which we a-priori
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The algorithm % Relieved STD

Fractional-P1 99.8% 0.2 %

WAVE 66.5% 1.2%

Integral-P1 8.2% 0.4%
Table 1. Performance Summary. The average and standard-deviation of the ratio
between the number of servers relieved by each one of the algorithms, and the total
number of hot servers. Results are averaged over 15 runs, where each run handles a
different load realization across the datacenter.

thought would yield good results by the nature of the Simplex algo-
rithm. Figure 3 compares the cumulative number of servers relieved
for a single run, as a function of the number of racks that have been
handled. The WAVE algorithm relieves around 67% of the number
of servers predicted by the (infeasible) Fractional-P1, while Integral-
P1 is significantly behind with less than 10%. Table 1 summarizes
the average ratio of hot servers that are relieved by each one of the
three algorithms, which is obtained by dividing the total numbers of
servers relieved by the total number of hot servers.

Our simulations indicate that our algorithm significantly outper-
forms Integral-P1, highlighting the benefit of the TUM approach for
obtaining integral solutions which “mimic” the fractional solution
benchmark.

Encouraging Shorter Paths: WAVE-SP We next report a fur-
ther and substantial improvement to our basic WAVE algorithm,
which adds incentives to the optimization process to favor short mi-
gration paths. Accordingly, the enhanced WAVE algorithm will be
referred to as WAVE-SP (i.e., WAVE with shorter paths). WAVE-SP
proceeds exactly as WAVE, with the exception that the (maximiza-
tion) objective function of WAVE-SP includes an additional additive
term, namely ∑

h

mh + α
∑
j∈J

∑
k∈Dest(j)

x(jk)

f(dist(j, k))
,

where dist(j, k) is the distance between the job (hot server) and
cold server k, f(·) is a monotone increasing function, and α is a
positive constant. We choose f(x) = x3 so that “long” migration are
essentially not encouraged. Furthermore, we set α to be small enough
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Fig. 3. Results of the three algorithms in a typical run. The x-Axis is the iteration
number (i.e., the number of racks that have been handled); The y-Axis presents the
cumulative sum of the hot servers that have been relieved.
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The algorithm % Relieved STD Hop count STD

WAVE 66.5% 1.2% 4.33 0.07

WAVE-SP 86.0% 1.3% 2.52 0.05

Table 2. Comparison between WAVE and WAVE-SP, in terms of (i) the average ratio
between the number of servers relieved by each one of the algorithms, and the total
number of hot servers; (ii) the average number of hops for the migration. Results are
averaged over 15 runs, where each run handles a different load realization across the
datacenter.

(specifically, we use α = 5e−4), so that α∥J ∥∥K∥maxj,k dist(j, k) ≈
1; that way, the optimization still primarily focuses on relieving hot
servers.

This change in the objective function leads to a significant im-
provement of the original objective of relieving hot servers. Specif-
ically, WAVE-SP relieves on average 86.0% of the hot servers. The
intuition behind this improvement is that shorter migration paths do
not congest the high level edges of the network whose bandwidth is
scarce. These edges can be used only when there are really no other
alternatives for the migration. We also measure the average migra-
tion path length of both WAVE and WAVE-SP (see summary of re-
sults in Table 2). As expected, the average path length of WAVE-SP
(2.52 hops) is substantially smaller than that of WAVE (4.33 hops).
These results indicate that WAVE-SP indeed favors intra-rack mi-
grations, as can be observed from the histogram of the migration hop
count for a sample run (Figure 4). This is of course an important
improvement on its own, as the migration times decrease propor-
tionally.

7 A General Migration Optimization
Framework

Jobs (VMs) in data centers may sometimes have non-uniform profiles
in terms of their resource usage. The vector bin packing model has
thus been proposed to capture this fact [13]. Suppose that we now
have d resource types and each job j has a profile vector pj; here
pj(i) denotes how much of resource i job j consumes. Previously, the
profile vector for job j was simply (ℓj, sj) - load and transfer size. In
addition, each server x has an available capacity Lx(i). If Lx(i) > 0,
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Fig. 4. Histogram of the migration path lengths for WAVE and WAVE-SP in a sample
run. The x-axis is the hop count (or path length), and the y-axis is the percentage of
paths for a given hop count.
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then server x has available capacity of resource i. If Lx(i) < 0, then
it is congested in terms of resource i and would like to remove jobs
consuming that capacity. In general, the servers are located in some
network G = (V,E), e.g., some capacitated undirected graph. (Also
more generally, the jobs may have demands but as before, we focus
on the unit size/demand case sj = 1).

A migration vector now consists of a mapping of some subset of
the jobs j to paths P (j) ∈ Pj, where Pj are “feasible” paths in G,
whose endpoints correspond to the end servers associated with job
j. Let P denote the set of paths selected by such a mapping. Then P
is feasible if

∑
P (j)∈P:e∈P 1 ≤ ce (i.e., it is a feasible integer multiflow

in G). In addition, we require for each server x, and each resource i:∑
P (j)∈Loc(x)∩P

pj(i) ≤ Lx(i)

if x has available capacity of resource i; otherwise this is a ≥ con-
straint. (Loc(x) is the set of paths which terminate at x.) A natural
Migration Optimization Problem asks for solutions which result in all
congestion being alleviated from the network. Exploring this mixed
packing and covering problem is an avenue for future work.
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A Pseudo Code

In the following we use the notation Fund(e) to represent the “fun-
damental” cut induced by the edge e in T . In other words, this set
consists of all pairs jk such that j, k are vertices of T , and the unique
jk path in T uses e.

Algorithm 1 Phase 1 LP
Input : Tree Topology T , C the set of cold servers

J the set of jobs on the hot server
For each j ∈ J , Dest(j) is the set of possible cold servers

Output: For each j ∈ J, k ∈ C migration variable x(jk)
total-migration variable zj =

∑
k∈Dest(j) x(jk)

zj is for ease; expresses the amount of job j migrated in the LP

LP Objective: OPTLP1 = max
∑

j∈J ljzj

for each job j, migration constraint do∑
k∈Dest(j) x(jk) ≤ 1

end
for each edge e ∈ T , capacity constraint do∑

jk∈Fund(e)
x(jk) ≤ ce

end
for each edge e ∈ T , capacity constraint do∑

j:k∈Dest(j) x(jk)lj ≤ Lk

end
for each job j, its total migration variable do

zj =
∑

k∈Dest(j) x(jk)

end
x(jk), zj ≥ 0

Let x∗(jk), z∗j be an optimal solution. If
∑

j z
∗
j lj < L, then it is

not possible to relieve the hot server. QUIT. Otherwise we proceed
to the Phase 2 problem, which we formulate as an alternate LP in
the next section.

In the multiserver case the Phase 1 LP must be adapted slightly.
We must naturally incorporate jobs from many servers for the edge
capacity constraints on T . Namely, if e = (u, v) is an oriented edge
of the tree, let Tu denote the subtree containing u after we delete
e. Similarly, define Tv. For each job j at some hot server in Tu, and
cold server k ∈ Tv, we may include a migration variable x(jk). If
we denote by Fund(e) the set of all such pairs, then the capacity
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constraint can again be written as:

∑
jk∈Fund(e)

x(jk) ≤ ce.

The multiserver LP also has a new objective function

max
∑
h

mh

where for each hot server h: 0 ≤ mh ≤ 1 and we add a constraint

mh −
∑

j∈Loc(h),k

x(jk)
lj
Lh

≤ 0.

We have written this as though all x(jk) migration variables are
possible. But using destination sets Dest(j) we may force some of
these to 0, for instance if jk migrates the wrong way on an edge.
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A.1 Pseudo Code for Phase 2 LP

Algorithm 2 Phase 2 Totally Unimodular LP
Input : Phase 1 solution x∗(jk) for each job j, cold server k ∈ Dest(j)
Output: For each j ∈ J, k ∈ C with x∗(jk) > 0, an integer migration variable x(jk)

total-migration variable zj =
∑

k x(jk)

LP Objective: OPTLP1 = max
∑

j∈J ljzj
Subject to
for each job k ∈ C, add simulated load constraints as follows do

Order jobs j with x∗(jk) > 0 in decreasing load size:
l1 ≥ l2 ≥ . . . ≥ lp
fk ←

∑
j∈J x∗(jk) (“fractional degree” of server k)

f+
k ← ⌈fk⌉ (rounded up degree)
for i = 1, 2 . . . , f+

k − 1 do
oi ← min{s :

∑s
j=1 x

∗(jk) ≥ i} (first point where sum of job flows reach i)

end
o
f+
k
← p, o0 ← 1

for i = 1, 2, . . . , f+
k do

Bi ← {j : j = oi−1, oi−1 + 1, . . . , oi} (define Bucket i)∑
j∈Bi

x(jk) ≤ 1 bucket constraint to simulate load at k

end

end
Add capacity and migration constraints as in Phase 1 LP
x(jk), zj ≥ 0

Solve the new LP. If a simplex (or any basic solution) solver is used,
the result will be integral. I.e., x(jk) should be 0 − 1 valued, and
tells us which jobs to migrate to relieve the hot server.

For the multiserver LP, we can no longer use the mh variables in
a totally unimodular formulation. Instead we drop them altogether
and optimize the following proxy objective function.

max
∑
h

∑
j∈Loc(h),k

x(jk)
lj
Lh

.

We also add buckets at the hot servers for the technical reason that
we do not want to “over-relieve” a hot server (see Theorem 2). Buck-
eting at h is done the same as for a cold server, except that we must
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disallow a job to go to more than one bucket. We order the loads
l1 ≥ l2 . . . of jobs which were partially migrated in Phase 1. We then
iteratively collect them into buckets of total flow 1 as before. If a job
is assigned to two buckets, only assign it to the one where more of
its flow was sent.


