
Page 1 of 12

Mining Program Workflow from Interleaved Logs
Jian-Guang LOU Qiang FU Shengqi YANG Jiang LI

Microsoft Research Asia

(Technical Report Version 0.1)

ABSTRACT

Successful software maintenance is becoming increasingly critical

due to the increasing dependence of our society and economy on

software systems. One key problem of software maintenance is

the difficulty in understanding the evolving software systems.

Program workflows can help system operators and administrators

to understand system behaviors and verify system executions so

as to greatly facilitate system maintenance. In this paper, we pro-

pose an algorithm to automatically discover program workflows

from event traces that record system events during system execu-

tion. Different from existing workflow mining algorithms, our

approach can construct concurrent workflows from traces of inter-

leaved events. Our workflow mining approach is a three-step

coarse-to-fine algorithm. At first, we mine temporal dependencies

for each pair of events. Then, based on the mined pair-wise tem-

poral dependencies, we construct a basic workflow model by a

breadth-first path pruning algorithm. After that, we refine the

workflow by verifying it with all training event traces. The re-

finement algorithm tries to find out a workflow that can interpret

all event traces with minimal state transitions and threads. The

results of both simulation data and real program data show that

our algorithm is highly effective.

Keywords
Workflow mining, graphical behavior models, temporal properties

1 INTRODUCTION
With the increasing dependence on software at all levels of our

society and economy, successful software maintenance is becom-

ing increasingly critical. Software maintenance mainly tries to

ensure that a software product performs correctly in a changed or

changing environment, and try to maximize the performance. A

key technical issue of software maintenance is the difficulty in

understanding what happens to systems (and software) over time

[18], e.g. about 50% of the maintenance cost is due to compre-

hending or understanding the code base. Program workflow can

help operators and administrators to understand system behaviors,

to verify the system execution, and to validate the running results.

It can also be used in software verification [6] to diagnose system

problems. Unfortunately, the knowledge of program workflow is

not always available to hand. This is because software documents

and specifications are often not complete, accurate and updated

due to bad development management and tight schedule (e.g. hard

product shipping deadlines and “short-time-to-market”). However,

most software systems generate event traces (also referred as

event logs) for problem diagnosis and performance analysis.

These trace messages usually record events or states of interest

and capture the underlying execution flow of the system compo-

nents. The above facts motivate building automatic tools for min-

ing program workflow from program event traces.

There are a set of previous research efforts [1, 2, 4, 5, 6, 8, 10] on

mining program workflow models from event traces. Most of

them are variants of the classical k-Tails algorithm [2]. They learn

a finite state automaton (FSA) from event traces. However, these

k-Tails based algorithms cannot perform well in a complex sys-

tem, in which multiple independent threads/processes generate

traces of interleaved events. Because the events can be interleaved

in many different ways, and a k-Tails based algorithm tries to

interpret a huge number of event sequencing patterns, the result-

ing FSA model often becomes very complex. In fact, all these k-

Tails based algorithms have the same assumption that the traces

are sequential traces [6]. For traces produced by a multi-thread

program, these algorithms assume that the traces contain thread

IDs and can be analyzed thread by thread using the thread IDs to

distinguish traces generated by different threads [6]. Although

most software programs produce traces with thread IDs, there are

still some existing systems that do not record thread IDs in their

logs or traces by default. More important, most advanced software

programs are designed and implemented based on event driven

architecture, in which the flow of the program is determined by

events [11]. In most event driven systems, a task’s workflow is

divided into several stages or subtasks, and each subtask is related

to an event which is handled by an event handler. In these systems,

a thread usually handles many different events from multiple con-

current tasks, and these events often interleave with each other.

Therefore, even given the thread IDs, we still cannot learn a task

workflow from the event traces of such an event driven system by

a k-Tails based algorithm.

In this paper, we present an algorithm to discover a program

workflow model from traces of interleaved events by a three-step

coarse-to-fine algorithm. At first, we mine temporal dependencies

for each event pair from event traces. The dependencies that we

mined are always valid under any event interleaving patterns.

Rather than directly constructing the workflow from the input

event traces, we construct a basic workflow model from the mined

dependencies. Then, based on the different properties between a

loop/shortcut structure and a thread spawn/sync structure, we

design an algorithm to refine the basic workflow. The refinement

algorithm can find the simplest workflow with a minimal number

of thread types to interpret all event traces. Our approach works

quite well on traces of interleaved events. To the best of our

knowledge, the paper is the first work to learn workflows from

traces of interleaved events produced by concurrent programs.

The rest of the paper is organized as follows. In section 2, we

briefly introduce the previous work that is closely related to ours.

Section 3 provides the basic ideas and concepts of our approach

including event traces, temporal dependencies and the definition

of the workflow model. In section 4, we describe an algorithm to

mine temporal dependencies from event traces. The detailed algo-

rithm on constructing a workflow model based on mined temporal

dependences is presented in section 5. In section 7, we validate

the approach with some experimental results on both simulation

and real event traces. Finally, we conclude the paper in section 8.

Page 2 of 12

2 RELATED WORK
There are a set of existing research efforts [1, 2, 4, 5, 6, 8, 10] on

learning program workflow models from execution traces for

software testing and debugging. In these algorithms, Finite State

Automatons (FSA) are used as workflow models. These algo-

rithms are mostly extended from the popular k-Tails algorithm

proposed by Biermann and Feldman [9], which can automatically

learns an FSA from sample symbol sequences. At first, the algo-

rithm constructs an initial FSA from input traces, and then it pro-

gressively refines the FSA by merging equivalent states until no

further merge operation is possible. Different algorithms [6, 10]

use different equivalent criteria to derive different FSA depending

on different desired degree of generalization. For example, in the

k-strings algorithm [10], if two states 𝑠𝑎 and 𝑠𝑏 generate the same

k-strings (i.e. symbol sequences of length up to k that can be gen-

erated from the state), they are merged. The learner modifies the

k-Tails algorithm by comparing how likely two states are to gen-

erate the same k-strings. L. Mariani et al [6] also proposed an

incremental FSA learner, namely k-Learner, by modifying the k-

Tails with a new merge operation. The algorithm identifies subse-

quences of a new trace in the current FSA, and augments the FSA

to include the new trace. Besides the state equivalence conditions,

some recent algorithms also introduce other pre-conditions for the

merge operation. In [2], two equivalent states 𝑠𝑎 and 𝑠𝑏 can only

be merged when the merged FSA does not break a set of temporal

patterns that are automatically mined from the training traces. A

similar steering idea is also proposed by Walkinshaw et al [8], in

which user defined Linear Temporal Logic (LTL) rules are used

to determine whether two equivalent states can be merged. All

these k-Tails based algorithms assume that the event traces are

sequential traces [6]. However, many workflows exhibit concur-

rent behavior, where a single event trace comprises a set of events

produced by more than one thread of control. The sequential state

machine model cannot capture the concurrent behavior of a sys-

tem, and the k-Tails based algorithms will create a very complex

model as they try to interpret all event sequencing patterns gener-

ated by the interleaved events. Unlike these, our algorithm learns

workflow models from traces of interleaved events.

Another set of research efforts [3, 7, 12, 13, 14, 15, 16, 17] from

the area of Business Intelligence [12] are also related to our work.

Rather than software system traces, they try to mine business

processes (or workflows) from business activity logs. In business

workflow mining algorithms, different from FSA models, a

process is often represented by a graph in which nodes correspond

to the activities to be performed, and arcs describe the precedence

or dependent relationships among the activities. For example, the

authors of [14] use a directed acyclic graph (DAG) to model a

workflow process. In [3] and [7], a constrained DAG, namely an

AND/OR workflow graph (AO graph), is proposed to model a

workflow process. Aalst et al [15] use a special class of Petri-net

model, namely workflow nets (WF-net), to model a workflow

process. Among these models, the WF-net is the most powerful

model that can be simplified to other models by adding some

constraints. Although the business process mining and software

workflow mining algorithms have different application back-

grounds and models, they share the same basic idea, i.e. construct-

ing constrained graphic activity models from traces [13], and they

can leverage each other [17]. For example, we can construct a

DFA to mimic the behaviors of a DAG based model. Almost all

business workflow mining algorithms consider the parallel prop-

erty of different tasks by introducing AND split/join nodes [3, 7,

13, 14], fork/join places [12, 15, 17], or Parallel operators [16]. In

order to handle the concurrent task problem, similar to our ap-

proach, these algorithms reconstruct the workflow graph by utiliz-

ing the dependent or causal relationships mined from workflow

activity logs. For example, in [15], Aalst et al only use the order-

ing relation “>w ” that describes whether one is directly followed

by the other in a trace, to discover a WF-net. Cook et al [17] use

more information, such as event type counts, event entropy, and

event periodicity, and combine the information into a ranking

score to discover the concurrent behavior in event streams. How-

ever, all of these approaches assume that an input log sequence is

produced by a single case in isolation [15, 17], and they cannot

handle an interleaved log sequence generated by multiple concur-

rent executions of the same workflow (e.g. an event trace is pro-

duced by a WF-net workflow if there are two or more tokens in

the start place of a WF-net). In addition, their models also do not

allow that multiple concurrent threads run the same sub-workflow

[15, 17]. However, in a paralleled program, a job may often be

divided into several concurrent sub-tasks, with each sub-task hav-

ing the same workflow. For example, a MapReduce job is often

split into many Map tasks, and each Map task follows the same

execution logic. Our algorithm handles these problems by a

coarse-to-fine approach, in which we first construct a basic

workflow model from temporal dependencies that are mined from

the event traces, and then refine it through verification.

3 PRELIMINARY
This section introduces the basic concepts and techniques used in

our algorithm including our view of events, our workflow model,

different types of dependency relationships involved in our algo-

rithm, and the assumptions of our mining algorithm.

3.1 EVENT TRACE
Similar to other methods, we view the event logs in a log file as a

trace of events being produced by a black-box system. We assume

that the temporal orders of event logs faithfully reflect the tem-

poral orders of the corresponding events. Here, events are used to

characterize the dynamic behavior of a software program, for

instance, a method call. In software systems, events are often

recorded with attributes, such as timestamp, related resources and

data, and any other information that can identify the specific oc-

currence of that type of event. The activities of a system recorded

in a log file are represented by an event sequence, namely an

event trace. As mentioned above, a system may have simultane-

ous executing threads of control, with each of them producing

events that form a resulting event trace. Thus, an event trace con-

tains interleaved event sequences from all the concurrent control

threads. Note here that although the term “thread” means a se-

quential execution control path within the workflow. It may not

directly map to a process/thread in the operating system in an

event-driven system. Although in some systems, event attributes

can help to distinguish the events from different control threads of

the workflow, in this paper, we present a general approach that

only utilizes the ordering of events.

In this paper, all event traces are generated by complete execu-

tions of the program on some use cases. They may contain some

noise that is usually caused by some execution anomalies in a

program comprehension scenario. For event traces that may con-

tain noise, we can use the noise filtering method [19] or anomaly

detection method [20] to filter out the noise before we use the

algorithm proposed in this paper to learn workflow models. In

addition, we assume that the temporal ordering patterns of differ-

Page 3 of 12

ent events can be as diverse as possible. This is reasonable for

event logs produced by independent concurrency. Some concur-

rent systems that may not display much randomness are not the

targets of our method. As with most data driven approaches, we

also assume that we have enough event logs to make our analysis

meaningful. Because our method is based on the temporal orders

of events in event traces, enough log data means that we can find

enough instances of any possible ordering relationship of every

event pair to make the mined dependencies statistically meaning-

ful.

Formally, let 𝛴 be a set of distinct events that appear in all event

traces. An event trace is an ordered sequence of events, denoted

as < 𝑒1 , 𝑒2, … , 𝑒𝑚 >, where 𝑒𝑖 is an event, i.e. 𝑒𝑖 ∈ 𝛴 for 1 ≤ 𝑖 ≤
𝑚. For brevity, we can also write it as 𝑒1, 𝑒2 , … , 𝑒𝑚 . Given an

event trace 𝑙 = 𝑒1 , 𝑒2, … , 𝑒𝑚 , for an event 𝑒𝑖 , 1 ≤ 𝑖 ≤ 𝑚, we call

the subsequence 𝑒𝑖+1 , 𝑒𝑖+2, … , 𝑒𝑚 as the postfix of 𝑒𝑖 in 𝑙, denoted

as 𝑝𝑜𝑠𝑡(𝑒𝑖), and subsequence 𝑒1, 𝑒2 , … , 𝑒𝑖−1 as the prefix of 𝑒𝑖 in 𝑙,
denoted as 𝑝𝑟𝑒(𝑒𝑖) . If 𝑖 = 1 , then 𝑝𝑟𝑒 𝑒𝑖 is a null sequence,

denoted as ∅. Similarly, when 𝑖 = 𝑚, we also have 𝑝𝑜𝑠𝑡 𝑒𝑖 = ∅.

3.2 WORKFLOW MODEL
In this paper, our algorithm outputs a transition-labeled finite state

machine to represent a workflow. In order to model the concurrent

properties of workflows, we introduce a vector of active states

instead of just a single active state so that the state machine can

have multiple, concurrent threads. To create and destroy these

threads, we define four new types of states to mimic the concur-

rent behavior of a Petri net: split/merge states and fork/join states.

Similar to the AND split/merge nodes in papers [3, 7], a split state

has multiple out transitions (i.e. transitions leaving from the state),

and all these transitions are taken concurrently. A merge state has

multiple entering transitions, and it can transit to another state

only if all its entering transitions have occurred. Informally, split

states represent the points where the system will spawn one thread

for each leaving transition. As a counterpart, merge states are used

to represent points of synchronization. That is, before the merge

state can transit to another state, it has to wait for the completion

of threads from all its entering transitions. Unlike a split state, a

fork state only has one leaving transition. At a fork state, the sys-

tem will fork several threads to execute a sub-workflow starting

from the state. Similar to a merge state, a join state is also a point

of synchronization, and it is specially designed to absorb all

threads created by a fork state. In general, a fork state and a join

state will exist in pairs. To facilitate the description, we call the

ordinary states in a state machine as a switch state. Fig. 1 shows

some sample workflows, where a square box “□” is used to

represent a split/merge state node, a diamond box “◊” is used to

represent a fork/join state node, and a circle “○” is used to

represent a switch state node. By introducing the split/merge and

fork/join nodes, we can model the concurrent properties in a

workflow. For example, a single run of the workflow of Fig.1(a)

can generate event traces of “ABCD” or “ACBD” because B and

C are two concurrent events. Furthermore, two concurrent runs of

the workflow can generate many kinds of traces of interleaved

evens, such as “ABACDCBD”, “AACCBBDD”, and so on. The

fork node in Fig.1(c) can also generate concurrent events, because

the sub-workflow between the fork node to the join node will be

run with multiple threads.

Formally, a workflow model is defined as:

Definition 3.1 A workflow model is a tuple W = 𝛴, 𝑆, 𝑆𝑎 , 𝑠0 , 𝛿,

𝑓 , where:

 𝛴 is the set of event types.

 𝑆 is a finite and non-empty set of states including switch

states, split/merge states and fork/join states.

 𝑠0 is an initial state.

 𝑆𝑎 is a vector of active states.

 𝛿 is the state-transition function that represents the tran-

sition from one state to other states, 𝛿: 𝑆 × 𝑆 → 𝛴. Each

transition is labeled by an event type, which means the

transition can generate an event of that type, and a tran-

sition can be uniquely determined by its event label. In

this paper, we use these two terms interchangeably.

 𝑓 is the end state.

 We also define a special symbol 𝜖 ∈ 𝛴, which means an

empty event. Also 𝛿 𝑞1, 𝑞2 = 𝜖 means that the transi-

tion from state 𝑞1 to state 𝑞2 does not generate any

event. We call such a transition a shortcut.

Definition 3.2 Given a transition 𝛿 𝑞1, 𝑞2 , we call 𝑞1 and 𝑞2 as

the starting state and the ending state of the transition respectively.

If one transition’s ending state is the starting state of another tran-

sition, we call the two transitions as neighboring transitions. Giv-

en a state 𝑞, we define all transitions that start from 𝑞 as 𝑞’s out

transitions (denoted as 𝑂𝑢𝑡𝑆𝑒𝑡(𝑞)), and the transitions that end-

ing at 𝑞 as 𝑞’s in transitions (denoted as 𝐼𝑛𝑆𝑒𝑡(𝑞)).

For a realistic workflow, all states should be reachable from the

initial state. It means that, for every state 𝑠, there is at least one

transition path from the initial state to 𝑠. At the same time, each

state also has a path to the end state. In this paper, a transition path

from the initial state to the end state is defined as a route. A

workflow often has several routes.

There are two reasons that we do not select Petri net, a more po-

werful model. At first, we focus on creating descriptive models to

help operators to understand software behavior. Most software

workflow mining algorithms use FSA as their workflow models

because a state based representation is convenient to map to pro-

gramming logic. We use a state based model to be consistent with

representations of these related algorithms. On the other hand, a

state based model is simpler than a Petri net model, which can

simplify the operations and descriptions of our algorithm.

A

B

C

A

B

A B

ε

C

Dsplit merge

forkA B Cjoin

D

C

A B C

(a)

(c)

(e)

(b)

(d)

A B

C

D

(f)

Figure 1. Some simple workflows.

3.3 EVENT DEPENDENCIES
In the context of workflow traces, the occurrence of an event may

be dependent on the occurrence of another event in the trace. Our

workflow model reconstruction depends on mining the temporal

dependencies among events. Dependence means that the occur-

Page 4 of 12

rence of one event type depends on the occurrence of another

event type. In this paper, we define four types of temporal depen-

dencies. Forward dependency (FD) describes that “Whenever an

event A occurs, another event B must eventually occurs after A’s

occurrence”. Forward dependency is denoted as 𝐴 →𝑓 𝐵 . Back-

ward dependency (BD) describes that “Whenever an event B oc-

curs, another event A must have occurred before B’s occurrence”.

Backward dependency is denoted as 𝐴 →𝑏 𝐵. The third dependen-

cy we defined is strict forward dependency (SFD), which means

“For each occurrence of event A, there must be at least one occur-

rence of event B after A’s occurrence.” We denote it as 𝐴 →𝑠𝑓 𝐵.

Different from 𝐴 →𝑓 𝐵, which means one or more occurrences of

event A will eventually cause the occurrence of event B, 𝐴 →𝑠𝑓 𝐵

means that each occurrence of event A will cause at least one oc-

currence of event B. Similarly, we also define strict backward

dependency (SBD) with “For each occurrence of event B, there

must be at least one occurrence of event A before B’s occurrence.”,

which is denoted as 𝐴 →𝑠𝑏 𝐵. Unlike the dependencies defined in

[15, 17], our dependencies do not require that one event is directly

followed by another event in an event trace, which are not influ-

enced by various interleaving patterns.

Among these four types of dependencies, FD and BD focus on the

global temporal relationship between two event types, and SFD

and SBD not only look at the temporal relationship but also take

the event count information into account. It is obvious that:

𝐴 →𝑠𝑓 𝐵 ⇒ 𝐴 →𝑓 𝐵 , and 𝐴 →𝑠𝑏 𝐵 ⇒ 𝐴 →𝑏 𝐵 . Thus, in this

paper, for simplicity, if two events have a strict dependency rela-

tionship, we will not list the corresponding non-strict dependency

relationship. In addition, we use 𝐴 ∥ 𝐵 to denote that two events A

and B do not have any defined temporal dependencies.

For each pair of events, we can determine whether there is a tem-

poral dependency between the two events by verifying the rela-

tionship within all event traces. For example, for event A and B in

Fig.1(a), we have 𝐴 →𝑠𝑓 𝐵 and 𝐴 →𝑠𝑏 𝐵 because these two de-

pendencies are always true in the traces with any potential event

interleaving pattern. For the workflow in Fig.1(e), we always have

𝐴 →𝑠𝑓 𝐵 and 𝐴 →𝑏 𝐵. For all simple workflows in Fig.1, we list

all the dependencies between event type A and B in Table 1. Such

dependencies are always true no matter how event logs interleave

together. From the examples, we can see that different local logi-

cal structures in a workflow often have different types of depen-

dencies.

Table 1. Temporal dependencies of workflows in Fig.1

Workflow Valid Temporal Dependencies between A and B

Fig. 1(a) 𝐴 →𝑠𝑓 𝐵, 𝐴 →𝑠𝑏 𝐵

Fig. 1(b) 𝐴 →𝑠𝑏 𝐵

Fig. 1(c) 𝐴 →𝑠𝑓 𝐵, 𝐴 →𝑏 𝐵

Fig. 1(d) 𝐴 →𝑠𝑓 𝐵, 𝐴 →𝑠𝑏 𝐵

Fig. 1(e) 𝐴 →𝑠𝑓 𝐵, 𝐴 →𝑏 𝐵

Fig. 1(f) 𝐴 →𝑠𝑓 𝐵, 𝐴 →𝑏 𝐵

Pair-wise temporal dependencies describe the causal relationships

of each event pair. They can provide information for workflow

reconstruction. Our basic workflow model constructing algorithm

is based on the properties of the mined temporal dependencies.

Obviously, the dependencies have the following property:

Property 3.1 Let W = 𝛴, 𝑆, 𝑆𝑎 , 𝑠0 , 𝛿, 𝑓 be a workflow. For any

𝐴, 𝐵 ∈ 𝛴:

 If 𝐴 →𝑓 𝐵, there must be a transition path from A to B (de-

noted as 𝐴 → 𝐵) in the workflow, and the routes that pass

through A must latterly pass through B.

 If 𝐴 →𝑏 𝐵, then 𝐴 → 𝐵, and the routes that pass through B

must first pass through A.

4 MINE TEMPORAL DEPENDENCY
In this section, we provide the details about the method of mining

temporal dependencies. As with most classical algorithms of se-

quence pattern mining, we measure the significance of a temporal

dependency between two events by computing the statistical me-

trics of support and confidence. For event types A and B, when we

mine the relationships of 𝐴 →𝑠𝑓 𝐵, the support is defined as the

number of times that event A appears in the traces. In contrast to

the support of 𝐴 →𝑠𝑓 𝐵, the support of 𝐴 →𝑓 𝐵 is computed as the

number of traces that contain event A. As a counterpart, the sup-

port of 𝐴 →𝑠𝑏 𝐵 is counted as the number of times that event B

appears in the traces, and the support of 𝐴 →𝑏 𝐵 is the number of

traces that contain event B. The confidence values of the depen-

dencies are defined by the corresponding conditional probabilities.

For example, the confidence of 𝐴 →𝑓 𝐵 is calculated by

conf 𝐴 →𝑓 𝐵 =
No. of traces that have 𝐵 after the last 𝐴

No. of traces that contain 𝐴

Similarly, the confidence of 𝐴 →𝑏 𝐵 can be calculated by

conf 𝐴 →𝑏 𝐵 =
No. of traces that have 𝐴 before the first 𝐵

No. of traces that contain 𝐵

The computing of 𝐴 →𝑠𝑓 𝐵 and 𝐴 →𝑠𝑏 𝐵’s confidence values is a

little bit complex. We take 𝐴 →𝑠𝑓 𝐵 as an example to describe the

computing procedure. For each event trace 𝑙, we find all occur-

rences of event 𝑒𝑖 that satisfy 𝑒𝑖 = 𝐴 and |{𝑒|𝑒 = 𝐴, 𝑒 ∈
𝑝𝑜𝑠𝑡(𝑒𝑖)}| < |{𝑒|𝑒 = 𝐵, 𝑒 ∈ 𝑝𝑜𝑠𝑡 𝑒𝑖 }| (i.e. the number of B is

larger than the number of A in 𝑝𝑜𝑠𝑡 𝑒𝑖). Denoting the total num-

ber of such events 𝑒𝑖 in all traces as | 𝑒 𝑒 ∈ (𝐴 →𝑠𝑓 𝐵) |, we can

calculate the confidence by

conf 𝐴 →𝑠𝑓 𝐵 =
| 𝑒 𝑒 ∈ (𝐴 →𝑠𝑓 𝐵) |

No. of 𝐴 𝑖𝑛 𝑎𝑙𝑙 𝑡𝑟𝑎𝑐𝑒𝑠

As a counterpart, the dependency of 𝐴 →𝑠𝑏 𝐵 is

conf 𝐴 →𝑠𝑏 𝐵 =
| 𝑒 𝑒 ∈ (𝐴 →𝑠𝑏 𝐵) |

No. of 𝐴 𝑖𝑛 𝑎𝑙𝑙 𝑡𝑟𝑎𝑐𝑒𝑠

where | 𝑒 𝑒 ∈ (𝐴 →𝑠𝑏 𝐵) | is the number of events that satisfy

𝑒𝑖 = 𝐵 and |{𝑒|𝑒 = 𝐵, 𝑒 ∈ 𝑝𝑟𝑒(𝑒𝑖)}| < |{𝑒|𝑒 = 𝐴, 𝑒 ∈ 𝑝𝑟𝑒 𝑒𝑖 }|
(i.e. the number of B is larger than the number of A in 𝑝𝑟𝑒 𝑒𝑖).

Algorithm 1. Pseudo Code of Mining Forward Dependencies

Inputs:

𝐿: the set of all event traces

𝑠𝑝 : support threshold

𝑐𝑓 : confidence threshold

Output:

𝐹𝐷𝑠: a set of mined forward dependency

𝑆𝐹𝐷𝑠: a set of mined strict forward dependency

1. Set 𝑑 = 𝛴 ;
2. Let 𝑐𝑜𝑛𝑓𝒇[𝑑][𝑑], 𝑠𝑢𝑝𝑓[𝑑], 𝑐𝑜𝑛𝑓𝒔𝒇[𝑑][𝑑], and 𝑠𝑢𝑝𝑠𝑓[𝑑] to

zero for all 𝑑;

Page 5 of 12

3. for each event trace 𝑙 in 𝐿

4. Let 𝑇 𝑑 = 0 for all 𝑑;

5. for each event 𝑒 in 𝑙 from the end to the beginning

6. for each event 𝑒′ in 𝛴\𝑒

7. if 𝑇 𝑒’ > 𝑇[𝑒],
8. 𝑐𝑜𝑛𝑓𝒔𝒇 𝑒 𝑒′ + +;

9. endif

10. endfor

11. if 𝑇[𝑒] == 0

12. 𝑠𝑢𝑝𝑓 𝑒 + +;

13. for each event 𝑒′ in 𝛴\𝑒

14. if 𝑇 𝑒’ > 𝑇[𝑒],
15. 𝑐𝑜𝑛𝑓𝒇 𝑒 𝑒′ + +;

16. endif

17. endfor

18. endif

19. 𝑠𝑢𝑝𝑠𝑓[𝑒] + +, 𝑇[𝑒] + +;

20. endfor

21. endfor

22. Normalize 𝑐𝑜𝑛𝑓𝒇[𝑑][𝑑] and 𝑐𝑜𝑛𝑓𝒔𝒇[𝑑][𝑑]by 𝑠𝑢𝑝𝑓[𝑑] and

𝑠𝑢𝑝𝑠𝑓[𝑑] respectively.

23. for each 𝑒, 𝑒’ in 𝛴

24. if 𝑠𝑢𝑝𝑓 𝑒 > 𝑠𝑝 and 𝑐𝑜𝑛𝑓𝒇 𝑒 𝑒′ > 𝑐𝑓

25. Add 𝑒 →𝑓 𝑒’ to 𝐹𝐷𝑠.

26. endif

27. if 𝑠𝑢𝑝𝑠𝑓 𝑒 > 𝑠𝑝 and 𝑐𝑜𝑛𝑓𝒔𝒇 𝑒 𝑒′ > 𝑐𝑓

28. Add 𝑒 →𝑠𝑓 𝑒’ to 𝑆𝐹𝐷𝑠.

29. endif

30. endfor
31. return FDs, SFDs.

Algorithm 1 describes the procedure of mining forward depen-

dency and strict forward dependency, where 𝑑 is the number of

distinct events in all traces. 𝑐𝑜𝑛𝑓𝒇[𝑑][𝑑], 𝑠𝑢𝑝𝑓[𝑑], 𝑐𝑜𝑛𝑓𝒔𝒇[𝑑][𝑑],

and 𝑠𝑢𝑝𝑠𝑓[𝑑] are vectors used to record the support numbers and

confidence values. The time complexity of the algorithm is

𝑂(𝑁𝑑), where 𝑁 is the cumulative length of all event traces. Gen-

erally, 𝑑 = |𝛴| (i.e. the number of distinct event types) is constant

for a program, and is always significantly smaller than 𝑁. Thus,

the algorithm possesses linear complexity with respect to N.

Unlike the scenarios of traditional sequence (or frequent item set)

mining, where some meaningless patterns can happen by chance,

in our context any occurrence of an event ordering in event traces

is meaningful and reflects an aspect of the execution behavior of

the software system. In this paper, we set the support threshold as

5 (It means the number of observations should be at least five to

make our analysis results statistically meaningful [21]), and all

our events in our experiments can meet this requirement. In addi-

tion, a dependency relationship is valid only if it has a perfect

confidence (𝑐𝑜𝑛𝑓=100%).

5 WORKFLOW RECONSTRUCTION
In this section, we provide our main algorithm of constructing

workflow from mined temporal dependencies. We first construct

an initial workflow by recovering all connections (defined in sec-

tion 5.1) based on the mined temporal dependencies. During the

basic workflow construction, our approach does not consider

shortcut transitions and loop structures, thus, the learned basic

workflow does not contain such workflow structures. In order to

recover the missing structures, we refine the workflow by verify-

ing with event traces. The aim of refinement is to find the simplest

workflow with a minimum number of threads to interpret all train-

ing event traces.

5.1 CONSTRUCT A BASIC MODEL
From section 3, we can see that, given dependencies 𝐴 →𝑓 𝐵 or

𝐴 →𝑏 𝐵, we can conclude that there is a path from event A to

event B (denoted as 𝐴 → 𝐵). In addition, for two neighboring

events A and B, if 𝐴 → 𝐵, we can determine a connection between

A and B in the original workflow, i.e. the ending state of A is the

starting state of B. In this paper, we call the dependency between

two neighboring events as a direct dependency. Furthermore,

supposing that we have a pair-wise dependency for each pair of

neighboring events, we can recover all connection relationships.

Although a mined temporal dependency from event traces shows

that there is a path between two events, we cannot directly estab-

lish a connection between them because many dependencies are

not direct dependencies (i.e. they are indirect dependencies). An

indirect dependence does not correspond to a connection between

two events. For example, in Fig.1 (d), we have a temporal depen-

dency of 𝐴 →𝑓 𝐶. However, there is no direct connection between

A and C. Here, the path from A to C is composed by a path from A

to B and a path from B to C. In order to handle such problems, we

try to construct a compact basic workflow in which there is at

most one transition path between every two events. We use a

pruning strategy to remove indirect dependencies during the basic

workflow construction. For each event pair (𝛼, 𝛽) that satisfies

𝛼 →𝑓 𝛽 or 𝛼 →𝑏 𝛽, we denote 𝛽 as 𝛼’s successor, and 𝛼 as 𝛽’s

predecessor. For the simplicity of implementation, we first use a

graph data structure to store the obtained paths, in which each

event has a predecessor list and a successor list. The algorithm

starts from the events that do not have any preceding event. Then,

we add events into the graph and construct preceding/succeeding

relations according the mined dependencies. For any pair of

events A and C where A is a predecessor of C, if a successor event

of A (e.g. B) is also a predecessor of C, we remove C from A’s

successor list. In the resulting graph, all indirect dependencies are

removed. By converting the remaining preceding/succeeding rela-

tions to event connections, we can construct a transition-labeled

workflow, namely basic workflow. The algorithm is shown in

Algorithm 2. In the algorithm, the function 𝐹𝑖𝑛𝑑_𝑅𝑜𝑜𝑡(𝑁𝑉) re-

turns a set of events in which each event does not have any prede-

cessor in the set 𝑁𝑉.

Algorithm 2. Pseudo Code of Basic Workflow Construction

Inputs:

𝐿: the set of all event traces

𝐷: the set of dependencies

Output:

𝑇: learned basic workflow

1. 𝑁 = 𝑁𝑉 = the set of all log keys;

2. 𝑄 = an empty FIFO queue;

3. while 𝑁𝑉 is not empty

4. 𝑆 = 𝐹𝑖𝑛𝑑_𝑅𝑜𝑜𝑡(𝑁𝑉);

5. Add 𝑆 into 𝑇;

6. 𝑃𝑢𝑠ℎ_𝑏𝑎𝑐𝑘(𝑄, 𝑆);

7. while 𝑄 is not empty:

8. 𝑖 = 𝑃𝑜𝑝_𝑓𝑟𝑜𝑛𝑡(𝑄);

9. if 𝑖 is not in 𝑁𝑉

Page 6 of 12

10. continue;

11. endif

12. for each 𝑗 in 𝑁 that satisfies 𝑖 →𝑓 𝑗 or 𝑖 →𝑏 𝑗

13. if 𝑗 has predecessor in 𝑇

14. flag = false;

15. for each 𝑘 in 𝑗’s predecessors:

16. if (𝑖 ∥ 𝑘)

17. add 𝑗 to 𝑖’s successor list;

18. else if 𝑘 →𝑓 𝑖 or 𝑘 →𝑏 𝑖

19. remove 𝑗 from the successor list of 𝑘

20. add 𝑗 to 𝑖’s successor list;

21. else
22. flag = true;

23. endif
24. endfor

25. if (flag)

26. remove 𝑗 from the successor list of 𝑖
27. endif

28. else
29. add 𝑗 to 𝑖’s successor list;

30. endif
31. if 𝑗 is in 𝑁𝑉

32. 𝑃𝑢𝑠ℎ_𝑏𝑎𝑐𝑘(𝑄, 𝑗);

33. endif

34. endfor
35. remove 𝑖 from 𝑁𝑉;

36. endwhile

37. endwhile
38. Covert T to a transition-labeled workflow;

39. return 𝑇

The following theorem shows that the remaining transitional paths

obtained by the above algorithm must exist in the original

workflow. In other words, our algorithm can obtain a basic

workflow skeleton.

Theorem 5.1. Let W = 𝛴, 𝑆, 𝑆𝑎 , 𝑠0 , 𝛿, 𝑓 be a workflow, with at

least one temporal dependence between every two neighboring

events. For any 𝐴, 𝐵 ∈ 𝛴 that 𝐴 →𝑓 𝐵 or 𝐴 →𝑏 𝐵 , if

 C 𝐴 → 𝐶 ∧ 𝐶 → 𝐵 = ∅, there must be a connection from A to B

in the original workflow.

Proof: Obviously, there is a path from A to B (i.e. 𝐴 → 𝐵). In

addition, because C 𝐴 → 𝐶 ∧ 𝐶 → 𝐵 = ∅, then A and B are a

pair of neighboring events. Therefore, there must be a connection

from A to B in the original workflow.□

The above algorithm does not consider a special case where two

events have dependencies with different directions. For example,

from the event traces generated by the workflow in Fig.1(f), we

can learn both dependencies of 𝐵 →𝑏 𝐶 and 𝐶 →𝑓 𝐵 at the same

time. We call it a bidirectional dependence, denoted as 𝐶 ↔ 𝐵. If

we directly run the basic workflow construction algorithm on such

dependencies, the algorithm will run into an endless loop. In order

to overcome this problem, we first check whether there are bidi-

rectional dependencies in the mined dependencies. If there is a

bidirectional dependence, e.g. 𝐶 ↔ 𝐵 , we create a new virtual

event type 𝐵’ to replace the events of type B in all forward depen-

dencies. Then, we run our basic construction algorithm to recon-

struct the basic workflow. After that, we merge the virtual events

(e.g. 𝐵’) with their corresponding events (e.g. B) in the basic

workflow.

Adding initial&end state: Each workflow contains an initial state

and an end state. Thus, we need to add an initial state and an end

state into the basic workflow. Obviously, the first event and the

last event of an event trace are potentially an initial event and an

end event respectively. In this paper, we first find out all events

that have appeared as the first event in event traces. If the support

number of an event appearing as the first event in event traces is

larger than a certain level (we use 5% in experiments because we

assume the noise level is less than 5%), we add a shortcut transi-

tion from the initial state of the workflow to the starting state of

the event. Similarly, if the support number of an event appearing

as the last event in event traces is larger than a certain level, we

add a shortcut from the ending state of the event to the end state of

the workflow.

Determining state types: According to the definition of the

workflow model in section 3.2, there are five types of states. In

the above basic workflow construction algorithm, we do not iden-

tify the type of each state. Given an event type that has several

event types following it, we have to make a decision on whether

the program behavior at this point is a sequential selection (i.e. a

switch state) or a concurrent splitting (i.e. a split/fork state) . In

this subsection, we determine the state types by utilizing the in-

formation of event type counts. As studied in our previous work

[20], the linear relationships between the occurrence times of

different event types can also provide cues for the workflow struc-

ture. For example, for a switch state 𝑞, it is always true in every

event trace that:

 𝑂𝑐𝑐𝑢𝑟 𝐴 𝐴∈𝐼𝑛𝑆𝑒𝑡 (𝑞) = 𝑂𝑐𝑐𝑢𝑟(𝐵)𝐵∈𝑂𝑢𝑡𝑆𝑒𝑡 (𝑞) (1)

On the other hand, if 𝑞 is a split state, then for any 𝐴 ∈
𝑂𝑢𝑡𝑆𝑒𝑡(𝑞) and 𝐵 ∈ 𝑂𝑢𝑡𝑆𝑒𝑡(𝑞),

𝑂𝑐𝑐𝑢𝑟 𝐴 = 𝑂𝑐𝑐𝑢𝑟(𝐵) (2)

Similarly, a merge state also has a property that 𝑂𝑐𝑐𝑢𝑟 𝐴 =
𝑂𝑐𝑐𝑢𝑟(𝐵) for any 𝐴 ∈ 𝐼𝑛𝑆𝑒𝑡(𝑞) and 𝐵 ∈ 𝐼𝑛𝑆𝑒𝑡(𝑞) . However,

fork and join states do not have such regular properties on the

counts of event types. If a state satisfies equation (1), it must be a

switch state. In this subsection, we first find out the split/merge

states by verifying whether a state satisfies equation (2), and then

find out the switch states that can be identified by equation (1).

Because our model allows shortcut transitions, some switch states

cannot be easily identified by equation (1). For all remaining

states with their state types undetermined, we will determine their

state types through a workflow refinement process based on event

traces (refer to section 5.2). The default state type is switch.

5.2 REFINE THE WORKFLOW MODEL
The basic workflow obtained by Algorithm 2 does not contain any

shortcut transitions or loop structures, because we only keep one

transition path between every two dependent events. However, in

a real workflow, there may be some shortcut transitions and loop

structures. In addition, the above algorithm cannot identify the

fork/join state types, thus, the types of some states in the basic

workflow are not determined. In this subsection, we identify

fork/join states and recover loop structures and shortcut transitions

to refine the workflow by verifying with event traces.

We recover loop structures or shortcut transitions based on the

statistical properties of these structures. Here, we use a simple

example to describe the basic idea behind our algorithm. Fig.2(a)

presents a simple program workflow containing a loop structure.

Page 7 of 12

Fig. 2(b) shows two event traces. Both of them are generated by a

two-thread program with different interleaving patterns in which

each thread runs along the workflow in Fig.2(a). Our basic

workflow construction algorithm can only construct a basic

workflow without a loop (see Fig.2(c)). When we use the basic

workflow in Fig.2(c) to interpret the first event trace in Fig. 2(b),

we find that the first five events of the event sequence are gener-

ated by two threads (denoted as 𝑇1 and 𝑇2) running along the basic

workflow. When the 6th event of the trace (i.e. B) is being veri-

fied, the active states of 𝑇1 and 𝑇2 are 𝑠3 and 𝑠2 respectively, and

both threads cannot produce event B from their active states (i.e.

this event B is an un-interpretable event by the basic workflow.).

The reason why some events cannot be interpreted is that some

transitions are missing in the basic workflow. Specifically, event

B is a part of the recurrence of the loop in Fig.2(a). However, we

do not have knowledge about the loop structure and the original

workflow. In order to interpret the first event trace, we now have

two possible solutions: the event is either generated by 𝑇1 or gen-

erated by 𝑇2. If it is generated by 𝑇1, then there is a loop from 𝑠3

to 𝑠1 in the workflow, which is the workflow in Fig.2(a). If the

event is generated by 𝑇2, then there is a loop from 𝑠2 to 𝑠1 in the

workflow, which is the workflow in Fig.2(d). Similarly, when we

try to interpret the 8th event of the second event trace in Fig.2(b),

the active states of the threads are 𝑠3 and 𝑠4. One can interpret the

second event trace either by the workflow in Fig.2(a) or by that in

Fig.2(e). Here, we observe that, for both event traces, when we try

to interpret an event B that is a part of the recurrence of the loop,

there is a thread at state 𝑠3. In general, for any training event se-

quence with a different interleaving pattern, when we verify an

un-interpretable event of type B, which is a part of the recurrence

of the loop, there is at least one thread whose active state is 𝑠3. On

the contrary, there is a thread with active states of 𝑠2 or 𝑠4 only by

chance. Therefore, if we vote for threads’ active states over all

event traces once we encounter an un-interpretable event, we will

find that 𝑠3 has the highest vote value. Although the example in

Fig.2 is a simple case, this statistical property is widely valid for

workflows with loop or shortcut structures. This property can help

us to detect the loop structures. Similarly, we can also recover the

missing shortcuts.

s1s0 s2 s4s3
CBA D

ε

(a). A simple workflow with a loop.

<A,B,A,C,B,B,C,C,D,D> <A,B,A,B,C,D,C,B,C,D>

(b). Sample event traces of a two-thread program (a)

s1s0 s2 s4s3
CBA D

(c). The result workflow of Algorithm 2.

s1s0 s2 s4s3
CBA D

ε
(d). A possible workflow of the first trace in (b).

s1s0 s2 s4s3
CBA D

ε

(e). A possible workflow of the second trace in (b).

s0 s2 s4
CBA D

fork join

(f). A possible solution with fork/join states.

Figure 2. An example for the depiction of our refinement idea.

Unlike loop and shortcut structures, fork/join states do not expose

any unique statistical property. We cannot use the above statistical

method to identify a fork/join structure. If we perform the above

method forcibly on the event traces generated by a fork/join struc-

ture, then the resulting workflow is often very complex, which is

caused by various event interleaving patterns. On the other hand,

all event traces generated by a loop structure can always be inter-

preted by a fork/join structure. For example, all event traces pro-

duced by the workflow in Fig.2(a) can always be interpreted by

the workflow in Fig.2(f). Formally, the observation is described as:

Property 5.1 Event traces that can be interpreted by a workflow

𝑊1 with loop structures can also be interpreted by a workflow 𝑊2

which is created based on 𝑊1 by replacing the loop structures with

fork/join structures, and 𝑐𝑝 𝑊2 ≤ 𝑐𝑝 𝑊1 , but not vice versa.

Here, 𝑐𝑝 𝑊 is the complexity of a workflow 𝑊 , which is de-

fined as the sum of transition number and the number of thread

types (note: a thread type means a pair of thread starting and end-

ing points.). Based on this property, we introduce a loop favorite

rule in our algorithm. If event traces can be interpreted by either a

workflow with a loop structure or a workflow with a fork/join

structure, and both of them have the same complexity, we prefer

the former. In our algorithm, we try to use the simplest workflow

with a minimal number of threads to interpret all event sequences.

In other words, for two workflows that can interpret the same

event traces, we prefer the workflow with less complexity. If two

workflows have the same complexity, we prefer the workflow that

interprets all event traces with a minimal thread number.

Because we have no information about when a new thread starts,

an un-interpretable event can be interpreted as an event log pro-

duced by either a missing workflow structure component (i.e.

shortcut or loop) or a newly started thread (i.e. fork state). In the

algorithm, we have to make a decision to select one structure be-

tween them (i.e. loop decision or fork decision) whenever a new

un-interpretable event is encountered. A workflow has a Markov

property that states that the current state is what determines the

next step in its behavior. Thus, an early decision will influence the

later decisions, but the converse is not true. At each decision point,

we first create two temporary workflows. One (denoted as 𝑾𝟏 in

algorithm) is constructed by a procedure in which we make a loop

decision at the current decision point and make fork decision at all

following decision points. The other (i.e. 𝑾𝟐) is constructed

through a procedure with all fork decisions. Then, we select a

decision at the current decision point based on the loop favorite

rule. Similarly, we also make the next decision with the same

procedure. Note: here, the temporary workflows are only con-

structed for decision making, and they are not output as the results

of the algorithm. The detailed algorithm is presented in APPEN-

DIX A. In the algorithm, we do not count the active states with

their neighboring events having strict forward dependencies, be-

cause such a state neither has an out-shortcut transition nor is a

join state. For example, we do not have 𝐵 →𝑠𝑓 𝐶 in Fig. 1(c) and

(f). The following theorem shows that the workflow learned by

our refinement algorithm is optimal in the sense of complexity

defined above.

Page 8 of 12

Theorem 5.2. The refinement algorithm finds out the workflow

with a minimal complexity to interpret all event traces.

Proof: According to property 5.1, a workflow created by a fork

decision always has a value of complexity not larger than that of a

workflow created by a loop decision at the same decision point.

Therefore, the workflow constructed by making fork decision at

all decision points has the minimal value of complexity among all

workflows that can interpret all event traces. In the algorithm, we

only make a loop decision when the decision does not increase the

workflow’s complexity, thus, the resulting workflow will have the

minimal complexity. □

6 EMPIRICAL EVALUATION
To validate and evaluate our proposed workflow algorithm, we

performed a set of experiments on simulated event traces and case

studies on real event traces generated by some open source pro-

grams (Hadoop and JBoss). We use open source programs be-

cause they are publicly available for download. The results on

Hadoop and JBoss are easy to be verified and reproduced by third

parties. The results demonstrate the usefulness of our workflow

mining technique in recovering the underlying procedure that the

system carries out, thus aid program comprehension. The simula-

tor and the code of our algorithm will be available soon at

http://research.microsoft.com/apps/pubs/default.aspx?id=118640

(currently under the code post review of LCA.).

6.1 SIMULATION
To construct a controlled experimental environment, we designed

a simulator that can generate synthetic program event traces ac-

cording to a software workflow model. The design of the simula-

tor follows the principles proposed in QUARK [22] including the

guarantee of “code and branch coverage” and locality of reference,

and so on. Unlike QUARK, our simulator can generate traces of

interleaved events based on a concurrent workflow model. In this

experiment, we measure the performance of our workflow miner

by discovering workflows from the synthetic program event traces.

Simulation Models: In our simulation experiments, several real

application models are used to generate the event traces, which

include (1) the IBM® WebSphere® Business Integration processes

from WebSphere® Commerce provided in [24], (2) a workflow

process of reviewing a conference paper similar to that provided

in [17]. The models are shown in Fig.3 and Fig.4, and are referred

to as WS(a), WS(b), and Rev respectively. In [24], Zou et al. pre-

sented two workflows in the form of automata: the release of ex-

pired allocations (Fig. 3(a)) and the processing of backorders (Fig.

3(b)). In [17], the authors use a paper reviewing process (Fig.4) to

demonstrate their workflow mining algorithm. By using these

models, users can evaluate and compare our algorithm with other

algorithms in [17] [24]. On the other hand, these typical real ap-

plication workflows are complex enough to demonstrate the capa-

bility of our algorithm: the models in Fig. 3 contain several loops

and many shortcut transitions, and the model in Fig. 4 has a loop

embraced by a fork/join structure. We run these models with sev-

eral threads (we randomly start 1-3 threads) in our simulator to

generate traces of interleaved events.

Evaluation Metric: In order to carry out a quantitative evaluation

of the workflow miner, we adopt two metrics to measure the simi-

larity from the mined workflow X and the simulator model Y in

terms of their generated traces. The first metric is known as recall,

the percentage of event traces generated by workflow Y that can

be interpreted by workflow X. The second metric is precision, the

percentage of event traces produced by workflow X that can be

interpreted by workflow Y.

Table 2. Empirical Results: Precision and Recall

 Simulation Models

WS(a) WS(b) Rev

Precs. Recall Precs. Recall Precs. Recall

k-Learner

(k=1)
0.511 1.000 0.069 1.000 0.000 1.000

k-Learner

(k=2)
0.255 1.000 0.080 1.000 0.001 1.000

Our

Algorithm
1.000 1.000 1.000 1.000 1.000 1.000

Results: From these generated traces (2000 event traces for each

case), we learn workflow models through the algorithm provided

in the above sections. We compare the effectiveness of a k-

Learner algorithm [6] and our algorithm by measuring the preci-

sion and recall of the resulting state machines. We repeat each

experiment 10 times with 10 different set of traces, and computing

the average that shown in Table 2. Here, we round the results to

keep three numbers after the decimal point. For these three

workflows, our algorithm can exactly rediscover the original

workflow model, thus, both the recall and precision are 100%. On

the other hand, the precisions of the models produced with k-

Learner are very poor (2 models have a precision less than 0.1).

This indicates that k-Learner cannot perform well when events are

interleaved.

Computational cost: Our algorithm is efficient, which only uses

9.9, 22.3 and 72.0 seconds (with a CPU of 2.33GHz, the code is

not fully optimized) to learn the models of WS(a), WS(b), and Rev

from event traces (2000 event traces for each) respectively.

A1 A2s1s0 s2

s4

s3A3

A4

s5

A
5

A1: Find State Order Items; A2: Verify State Order Items;

A3: Is Using ATP; A4: Deallocate Existing Inventory Cmd;

A5: Deallocate Expected Inventory Cmd.

End

ε

ε

ε

ε

(a) The release of expired allocations.

B1: Find Locked Orders with StatusB; B2: Verify Locked Orders with StatusB;

B3: Find Invalid Orders Items by Orders id; B4: Find by Order;

B5: Allocate Inventory Cmd; B6: Reprepare Order Cmd;

B7: Process Order Cmd

B1 B2s1s0 s2 s4s3B3 B4

s7

s5B5 s6B6

s8 B7End ε

ε
ε

ε

ε

ε

(b) The processing of backorders.

Figure 3. WebSphere® Commerce Processes.

Page 9 of 12

C1C2 s1 s0s2

s4

C3

C4 s5C5

C12

s7s6C6 C7 C8

s10
s11

C11

C1: Edit info C2: Upload paper C3: Assign reviewers

C4: Check assignment C5: Download paper C6: Submit review

C7: Read review C8: Review finish C9: Read all reviews

C10: Accept C11: Reject C12: Add comments

fork s9C9

s12

C10

Join

End

ε

ε

Figure 4. A workflow of reviewing a conference paper.

6.2 CASE STUDY: HADOOP
Hadoop [23] (our version: 0.19) is a well-known open-source

implementation of Google’s Map-Reduce computing framework

and distributed file system (HDFS). It enables distributed compu-

ting of large scale, data-intensive and stage-based parallel applica-

tions. JobTracker acts as a task scheduler that decomposes a job

into smaller tasks and assigns the tasks to different TaskTrackers.

The logs produced by Hadoop are not sequential log message

sequences. Even in the log messages of the same Map task, some

messages (e.g. messages about data shuffling) are also interleav-

ing.

We run different Hadoop jobs of some sample applications, such

as WordCount and Sort, and collect log data after each job is fi-

nished (Note: we enable the logging tool at the info level). At first,

we use the log preprocessing method presented in [20, 25] to

parse event log messages and to group log messages according to

log parameters. For example, all log messages that contain a pa-

rameter called MapTask ID are grouped into an event sequence.

Because several MapTasks are running simultaneously, these

events are highly interleaved with each other. Then, we use the

error detection algorithm in [20] to filter out event traces that

contain errors. After that, we learn workflow from event traces

with our proposed algorithm. Fig. 5 is an example of the resulting

workflow that is learned from the event traces related to the para-

meter MapTask ID. By carefully checking with Hadoop source

code and documents, we find that the workflow can reflect the

real process of MapTask with very high precision. A task is

launched and then it processes the input data read from HDFS.

After the task is done, it sends the resulting data to many Reduc-

ers concurrently (This is represented by a fork/join structure in the

workflow), and finally cleans up the resources by removing tem-

porary files. During the running, the task may be killed by the

scheduler. Some killed tasks can also report their status due to

thread race conditions, therefore, events of H14, H15 and H13 are

triggered.

s0

s1 s2 s3 s4 s6 s7

s8

s10

s12s13

s14

H1

H2 H3 H4 H5 H6

fork

H
8

Join H9H10

H11H12

H15

H1: LaunchTaskAction H2: Trying to launch H3: Report free slot number

H4: JVM given task H5: Report progress H6: Task is done

H7: Recv. KillTask cmd H8: Reported output size H9: Send Data to reduce
H10: Data sent H11: Purge task H12: Remove tmp files

H13: Ignore unkown finished task H14: Map ID not found

H15: Progress from unknown child task

ε

s8

s8
H7

ε

ε

ε

H13

H14

End ε

ε

Figure 5. Learned workflow of Hadoop MapTask

6.3 CASE STUDY: JBOSS APP. SERVER
Another case study is performed on an application called JBoss

Application Server (JBoss AS) [26]. JBoss AS is a commonly

used open source J2EE application server. This case study demon-

strates the usefulness of our workflow mining on discovering

behavior of a transaction procedure of JBoss AS. We develop a

prototype of online book store, through which people can buy

books by submitting an order over a website. We use jBoss jBPM

to design a business procedure to handle these orders. jBoss jBPM

is a flexible, extensible process design framework for SMB and

large enterprise applications. The workflow repeatedly checks

whether there exists an unhandled order in a FIFO queue. For

each order in the queue, we will spawn a new order handling

process to handle it. The order handling process will wait till the

pay of the order has been received. Then it progresses to check if

there are enough books in the storehouse. If there aren’t, we must

get a supply from the publishing house as soon as possible. After

the checking procedure, the books are delivered to corresponding

client. When the deliver is completed, the order handling process

goes to the end.

We run the program and invite the visiting students and our col-

leagues to test the system. At the same time, we record the event

logs to form event traces. We collect 200 event traces for our

experiment. The mined workflow is shown in Fig. 6, which can

correctly reflect the process flow of our program. Note the end

state is also a join state in this workflow.

s1

s0

s2 s4s3

E9

End

E
1

fork s5

s6

s9

s8

E2

E5 E6 E7

E8

E
4

E
3

Figure 6. Learned workflow of a JBoss application

6.4 DISCUSSION
As with the results of all other workflow mining algorithms

[2][17][22], some resulting workflow models of our algorithm are

over-generalized (i.e. having more possible routes than the real

workflow). For example, in the case in section 6.3, there is a path

from 𝑠10 to 𝑠14 , which does not exist in the real program. There

are two main reasons for the over-generalization problem. At first,

we only consider the first-order of event dependencies in our cur-

rent algorithm, i.e. the dependencies of neighboring events. In

some real programs, there are some high-order dependencies, e.g.

the occurrences of H14, H15 and H13 depend on the occurrence of

H7 in Fig. 5. Second, our approach assumes that there is at most

one transition referring to the same event type in a workflow

model. For a workflow in which there are several transitions la-

beled as the same event type, our current algorithm will over-

generalize the resulting workflow. For example, from the event

traces generated by the workflow in Fig.7(a) (This is the

workflow of X11 [19]), we learned a workflow in Fig.7(b) which

more general than the original one. The workflow in Fig.7(b) can

generate event traces such as <B,E,…,E> and <A,D,E,…,E> that

cannot be generated by the original workflow Fig.7(a). We will

leave it for future work to deal with these problems.

Page 10 of 12

s1

s0

s2

s4

s3

s5

D

End

G

A

B C H
FE

E

D
E s1

s0

s2

s4

s3

End

G

A

B C H
F

E

D
fork

 (a) Original workflow (b) Mined workflow

Figure 7. An example of the over-generalization problem

7 CONCLUSION
Most existing techniques for mining program workflow models

can only learn models from sequential event traces. They cannot

be applied to interleaved logs which are prevalent in distributed or

parallel programs (or some event driven programs). In this paper,

we proposed an approach to automatically discover program ex-

ecution workflows from traces of interleaved events. We extend

the traditional state machine to support concurrency by introduc-

ing split/merge states and fork/join states. Our mining approach is

based on the statistical inference of temporal dependency relations

from traces of interleaved events. We then use such dependency

relations to construct a basic workflow by building the connec-

tions among neighboring events. After that, we further refine the

workflow by validating it with event traces. During the validation

procedure, we add the shortcut transitions, loop structure, and

fork/join states into the workflow model to make sure that all

event traces can be interpreted by the workflow model. To the

best of our knowledge, the paper is the first work that learns the

workflow from interleaved logs produced by concurrent programs.

The experimental results on both simulated event traces and real

program traces demonstrate that our approach can learn the

workflow with a high precision.

Although our work is motivated by the purpose of software com-

prehension, workflow mining is a basic research topic that has a

wide range of application fields other than software engineering.

We believe our approach can be widely applied in many applica-

tions, such as business intelligence. Future research directions

include integrating high order temporal dependencies, incorporat-

ing domain or existing knowledge about a program, allowing for a

workflow model having an event type at multiple points.

8 ACKNOWLEDGMENTS
We thank David Lo from Singapore Management University for

providing the executable file of his QUAK simulation tool.

9 REFERENCES
[1]. G. Ammons, R. Bodik, J. R. Larus, “Mining Specifications”,

in proceedings of the 29th Symposium on Principles of Pro-

gramming Languages, Jan. 16, 2002, Portland, USA.

[2]. David Lo, L. Mariani and M. Pezzè, “Automatic Steering of

Behavioral Model Inference”, in proceedings of the 7th joint

meeting of the European Software Engineering Conference

(ESEC) and the ACM SIGSOFT Symposium on the Founda-

tions of Software Engineering (FSE), August 24-28 2009,

Amsterdam, The Netherlands.

[3]. R. Silva, J. Zhang, J. G. Shanahan, “Probabilistic Workflow

Mining”, in proceedings of the 11th ACM SIGKDD Confe-

rence on Knowledge Discovery and Data Mining, August

21–24, 2005, Chicago, Illinois, USA.

[4]. D. Cotroneo, R. Pietrantuono, L. Mariani, and F. Pastore.

“Investigation of Failure causes in work-load driven reliabili-

ty testing”, In proceedings of the fourth international work-

shop on SOftware Quality Assurance, Sep. 2007.

[5]. D. Lorenzoli, L. Mariani, and M. Pezzè. “Automatic Genera-

tion of Software Behavioral Models”, In proceedings of the

International Conference on Software Engineering, 2008.

[6]. L. Mariani and M. Pezzè. “Dynamic detection of COTS

components incompatibility”, IEEE Software, 24(5):76–85,

September/October 2007.

[7]. G. Greco, A. Guzzo, L. Pontieri, and D. Sacca. “Mining ex-

pressive process models by clustering workflow traces”, in

proceedings of the 8th Pacific-Asia Conference on Know-

ledge Discovery and Data Mining, 2004.

[8]. N. Walkinshaw and K. Bogdanov, “Inferring finite-state

models with temporal constraints”, In proceedings of the

23rd IEEE/ACM International Conference on Automated

Software Engineering, 2008.

[9]. A. Biermann and J. Feldman, “On the synthesis of finite-state

machines from samples of their behavior”, IEEE Transac-

tions on Computers, 21:591–597, 1972.

[10]. Anand V. Raman and Jon D. Patrick, “The sk-strings me-

thod for inferring PFSA”, In Proceedings of the workshop on

automata induction, grammatical inference and language ac-

quisition at the 14th international conference on machine

learning (ICML97), 1997.

[11]. S. Ferg, “Event-Driven Programming: Introduction, Tutorial,

History”, http://eventdrivenpgm.sourceforge. net/, Jan. 2006.

[12]. W. van der Aalst and A. Wejters, “Process mining: a re-

search agenda”, Computers and Industry, vol. 53, pp.231–

244, 2004.

[13]. G. Greco, A. Guzzo, G. Manco, L. Pontieri, and D.

Saccà,”Mining Constrained Graphs: The Case of Workflow

Systems”, Jean-François Boulicaut, Luc De Raedt, Heikki

Mannila (Eds.): European Workshop on Inductive Database

and Constraint Based Mining 2004, Revised Selected Papers,

Lecture Notes in Computer Science 3848, Springer 2005,

ISBN 3-540-31331-1.

[14]. R. Agrawal, D. Gunopulos, and F. Leymann, “Mining

Process Models from Workflow Logs”, in proceedings of the

6th International Conference on Extending Database Tech-

nology, pp. 469–483, 1998.

[15]. W. van der Aalst, A. J. M. M. Weijters and L. Maruster,

“Workflow Mining: Discovering Process Models from Event

Logs”, IEEE Transactions on Knowledge and Data Engineer-

ing, vol. 16, 2004.

[16]. G. Schimm, “Mining exact models of concurrent

workflows”, Computers and Industry, vol. 53, pp.265–281,

2004.

[17]. J. E. Cook, Z. Du, C. Liu, A. L. Wolf, “Discovering models

of behavior for concurrent workflows”, Computers and In-

dustry, vol. 53, pp.297–319, 2004.

[18]. P. Grubb, A. Takang, “Software Maintenance”, World

Scientific Publishing, 2003, ISBN 9789812384256.

[19]. D. Lo, and S. C. Khoo, “SMArTIC: Towards Building an

Accurate, Robust and Scalable Specification Miner”, in pro-

ceedings of the 14th ACM SIGSOFT Symposium on the

Foundations of Software Engineering (FSE), Nov. 2006.

[20]. J.-G. Lou, Q. Fu, S. Yang, Y. Xu, and J. Li, “Mining Inva-

riants from Console Logs for System Problem Detection”,

submitted to USENIX Annual Technology Conference.

[21]. J. L. Devore, “Probability and Stattistics for Engineering and

Page 11 of 12

the Sciences”, 7th ed., Duxbury Press, 2007, ISBN

9780495382171.

[22]. D. Lo, S. C. Khoo, “QUARK: Empirical Assessment of Au-

tomaton-based Specification Miners”, In Proceedings of the

13th Working Conference on Reverse Engineering

(WCRE'06), 2006.

[23]. Hadoop. http://hadoop.apache.org/core. 2009.

[24]. Y. Zhou, T. Lau, K. Kontogiannis, T. Tong, and R. McKeg-

ney, “Model-driven business processes recovery”, in Pro-

cessdings of Working Conference on Reverse Engineering,

2004.

[25]. Q. Fu, J.-G. Lou, Y. Wang, and J. LI, Execution Anomaly

Detection in Distributed Systems through Unstructured Log

Analysis, In Proc. of ICDM, Florida, Dec. 2009.

[26]. Red Hat Middleware, LLC. JBoss.com - JBoss application

server, http://www.jboss.org/products/jbossas, 2009.

10 APPENDIX A
In this appendix, we present the detail of our refinement algorithm.

Supposing that there are a set of threads Ϛ running in the program

and each thread 𝜉𝑖 runs along an instance 𝑊𝑖 of the program’s

workflow, we denote the current state of 𝑊𝑖 as 𝑞𝑖 . For every event

type 𝑎, and state 𝑞, we define two integer values 𝑁[𝑎] and 𝐶[𝑎, 𝑞].
Here, 𝑁[𝑎] denotes the number of times that event type 𝑎 in the

training event traces cannot be inferred by the workflow instances

in Ϛ during refinement. 𝐶[𝑎, 𝑞] records the number of workflow

instances whose current state is 𝑞 when the input event 𝑎 cannot

be inferred by the workflow instances. In addition, we denote the

current input event as 𝑙 and the input sequence of events as 𝐿. 𝑓1

and 𝑓2 are two flags used to indicate whether current workflow

model 𝑾 should be refined by a loop decision or a fork decision.

Their initial values are both false. 𝑾𝟏 and 𝑾𝟐 are two workflow

models created by a procedure that we make a loop decision and a

fork decision at the current decision point respectively, and all

following decisions are fork decisions. The whole refinement

process contains the following steps.

Step 0. Let 𝐶 𝑎, 𝑞 = 0, 𝐾 𝑞 = 𝑎𝑛 𝑒𝑚𝑝𝑡𝑦 𝑠𝑒𝑡, and 𝑁 𝑎 = 0 for

any 𝑎 ∈ (𝛴\ѳ) and 𝑞 ∈ 𝑆 ; Set Ϛ = 𝑎𝑛 𝑒𝑚𝑝𝑡𝑦 𝑠𝑒𝑡 , and 𝑝ass =
true;

Step 1. For an input training event trace 𝐿, we use the method

presented in Appendix B to interpret the trace. Once there is an

event 𝑙 in L that cannot interpreted, we increase 𝑁[𝑙] by 1, and set

𝑝ass = false. At the same time, for each workflow instance 𝑊𝑘 in

Ϛ, we increase 𝐶[𝑙, 𝑞𝑘] by 1 where 𝑞𝑘 is the current state of 𝑊𝑘 .

Step 2. For each event trace in the training set, we carry out the

process of Step 1.

Step 3. For each event 𝑎 with a non-zero value of 𝑁[𝑎], we find

out a state 𝑞𝑡 that satisfies 𝐶 𝑎, 𝑞𝑡 = 𝑚𝑎𝑥𝑞𝑖∈𝑆(𝐶 𝑎, 𝑞𝑖), and add

𝑎 to 𝐾[𝑞𝑡].

Step 4. If 𝑝ass = false , we find an arbitrary element 𝑞 ∈
𝐹𝑖𝑛𝑑_𝑅𝑜𝑜𝑡(𝑝 𝑝 ∈ 𝑆 ∩ 𝐾[𝑝] ≠ ∅}) (refer to section 5.1), and

find event 𝑎 that does not have any predecessor in 𝐾 𝑞 , then goto

Step 5. Otherwise, goto Step 6.

Step 5. We denote 𝑞′ as the preceding state of 𝑎 in the current

workflow model 𝑾. If 𝑓1 = false, we set 𝑾’= 𝑾, 𝑓1 = true, and

update 𝑾 by adding a shortcut transition from 𝑞 to 𝑞′ , else update

𝑾 by setting 𝑞′ as a fork state. After that, back to Step 0.

Step 6. If 𝑝ass = True and 𝑓1 = false, we mark all join states and

terminate the execution of the algorithm. Otherwise, if 𝑓2 = false,

we set 𝑾𝟏= 𝑾 and goto Step 7; else 𝑾𝟐=𝑾 and go to Step 8.

Step 7. Set 𝑾= 𝑾’, 𝑓2 = true, and then back to Step 0.

Step 8. Set 𝑓1 = 𝑓2 = false and 𝑾= 𝑾’. If 𝑐𝑝 𝑾𝟏 ≤ 𝑐𝑝 𝑾𝟐 ,

we update 𝑾 by adding a shortcut transition from 𝑞 to 𝑞′ ; else

update 𝑾 by setting 𝑞′ as a fork state. After that, back to Step 0.

11 APPENDIX B
In the refinement procedure, we use the current workflow model

to interpret the event traces. Here, interpretation means that, given

a workflow model and an event trace, we try to explain how the

events in the trace are generated one by one through running a set

of threads of the workflow. More specifically, each thread has an

active state at any point of time. We need to update the threads’

active states according to the workflow so as to interpret the event

trace. This is a non-trivial problem when there are multiple con-

current threads. The complexity arises from that there may be

several different choices to update the active states of the threads

when we try to generate the same event. Furthermore, due to the

Markov property of a workflow (refer to section 5.2), the current

choice will influence the interpretations of following events in the

same trace. In the paper, we adopt a dynamic programming based

algorithm to find the optimal interpretation choice which can in-

terpret the events in the event trace as long as possible. In details,

we define an active state vector to represent the active states of all

the threads, and maintain a valid state set in which each element is

an active state vectors. The valid state set is initialized as empty,

and is updated as we interpret the events in the trace one by one.

For a new input event, we remove the active state vectors from the

valid state set, which can’t generate the new event. Then, we up-

date the active state vectors in the valid state set according to the

workflow model so as to generate the event. Especially, when an

active state vector can generate the event by different ways, we

replace the vector by adding multiple state vectors according to

different choices respectively. Sometime, there may be some up-

dated vectors are equivalent, i.e. for each state 𝑞, there are the

same number of threads with active state 𝑞. For multiple equiva-

lent active state vectors, we only keep one in the valid state set.

The pseudo code of the algorithm is presented in Algorithm 3.

In Algorithm 3, the total number of state in the workflow is de-

noted as SN, and the ith state is denoted as Si; 1 ≤ 𝑖 ≤ 𝑆𝑁. We

denote an active state vector as SV, which is an SN dimension

vector. The ith element in SV, i.e. SV[i], represents the number of

threads with active state of Si. The valid state set is denoted as SS.

Algorithm 3. Pseudo Code of Event Trace Interpretation

Inputs:

𝑙: an event trace

𝑇: the workflow model

Output:

𝑒 : the first event that can’t be interpreted

𝑆𝑆 : the set of active state vectors that can interpret until 𝑒

1. Set 𝑆𝑉 = [0, … ,0]; 𝑆𝑆 = 𝑆𝑉; 𝑆𝑆′ = 𝑆𝑆;

2. for each event 𝑒 in 𝑙

3. 𝑆𝑆′ = 𝑆𝑆;

4. for each active state vector 𝑆𝑉 in 𝑆𝑆

5. 𝑆𝑆′ = 𝑆𝑆′ − 𝑆𝑉;

6. for 𝑖 = 1 to 𝑆𝑁

7. if 𝑆𝑉 i > 0

Page 12 of 12

8. for 𝑗 = 1 to 𝑆𝑁

9. for each path 𝑝 from 𝑆𝑖 to 𝑆𝑗

10. if 𝑝 generates 𝑒

11. 𝑆𝑉′ = 𝑆𝑉;

12. 𝑆𝑉′ 𝑗 = 𝑆𝑉′ 𝑗 + 1;

13. if 𝑝 is NOT forked or spitted

14. 𝑆𝑉′ 𝑖 = 𝑆𝑉′ 𝑖 − 1;

15. endif
16. 𝑆𝑆′ = 𝑆𝑆′ ∪ 𝑆𝑉′ ;

17. endif

18. endfor

19. endfor

20. endif

21. endfor

22. endfor

23. if 𝑆𝑆′ = ∅

24. 𝑒 = 𝑒;

25. 𝑆𝑆 = 𝑆𝑆;

26. break;

27. endif
28. 𝑆𝑆 = 𝑆𝑆′ ;

29. endfor

30. if 𝑆𝑆′ ! = ∅

31. 𝑒 = 𝑛𝑢𝑙𝑙;
32. 𝑆𝑆 = 𝑆𝑆′ ;

33. endif

34. return 𝑒 , 𝑆𝑆 ;

