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ABSTRACT 

Successful software maintenance is becoming increasingly critical 

due to the increasing dependence of our society and economy on 

software systems. One key problem of software maintenance is 

the difficulty in understanding the evolving software systems. 

Program workflows can help system operators and administrators 

to understand system behaviors and verify system executions so 

as to greatly facilitate system maintenance. In this paper, we pro-

pose an algorithm to automatically discover program workflows 

from event traces that record system events during system execu-

tion. Different from existing workflow mining algorithms, our 

approach can construct concurrent workflows from traces of inter-

leaved events. Our workflow mining approach is a three-step 

coarse-to-fine algorithm. At first, we mine temporal dependencies 

for each pair of events. Then, based on the mined pair-wise tem-

poral dependencies, we construct a basic workflow model by a 

breadth-first path pruning algorithm. After that, we refine the 

workflow by verifying it with all training event traces. The re-

finement algorithm tries to find out a workflow that can interpret 

all event traces with minimal state transitions and threads. The 

results of both simulation data and real program data show that 

our algorithm is highly effective. 
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1 INTRODUCTION  
With the increasing dependence on software at all levels of our 

society and economy, successful software maintenance is becom-

ing increasingly critical. Software maintenance mainly tries to 

ensure that a software product performs correctly in a changed or 

changing environment, and try to maximize the performance. A 

key technical issue of software maintenance is the difficulty in 

understanding what happens to systems (and software) over time 

[18], e.g. about 50% of the maintenance cost is due to compre-

hending or understanding the code base. Program workflow can 

help operators and administrators to understand system behaviors, 

to verify the system execution, and to validate the running results. 

It can also be used in software verification [6] to diagnose system 

problems. Unfortunately, the knowledge of program workflow is 

not always available to hand. This is because software documents 

and specifications are often not complete, accurate and updated 

due to bad development management and tight schedule (e.g. hard 

product shipping deadlines and “short-time-to-market”). However, 

most software systems generate event traces (also referred as 

event logs) for problem diagnosis and performance analysis. 

These trace messages usually record events or states of interest 

and capture the underlying execution flow of the system compo-

nents. The above facts motivate building automatic tools for min-

ing program workflow from program event traces. 

There are a set of previous research efforts [1, 2, 4, 5, 6, 8, 10] on 

mining program workflow models from event traces. Most of 

them are variants of the classical k-Tails algorithm [2]. They learn 

a finite state automaton (FSA) from event traces. However, these 

k-Tails based algorithms cannot perform well in a complex sys-

tem, in which multiple independent threads/processes generate 

traces of interleaved events. Because the events can be interleaved 

in many different ways, and a k-Tails based algorithm tries to 

interpret a huge number of event sequencing patterns, the result-

ing FSA model often becomes very complex. In fact, all these k-

Tails based algorithms have the same assumption that the traces 

are sequential traces [6]. For traces produced by a multi-thread 

program, these algorithms assume that the traces contain thread 

IDs and can be analyzed thread by thread using the thread IDs to 

distinguish traces generated by different threads [6]. Although 

most software programs produce traces with thread IDs, there are 

still some existing systems that do not record thread IDs in their 

logs or traces by default. More important, most advanced software 

programs are designed and implemented based on event driven 

architecture, in which the flow of the program is determined by 

events [11]. In most event driven systems, a task’s workflow is 

divided into several stages or subtasks, and each subtask is related 

to an event which is handled by an event handler. In these systems, 

a thread usually handles many different events from multiple con-

current tasks, and these events often interleave with each other. 

Therefore, even given the thread IDs, we still cannot learn a task 

workflow from the event traces of such an event driven system by 

a k-Tails based algorithm. 

In this paper, we present an algorithm to discover a program 

workflow model from traces of interleaved events by a three-step 

coarse-to-fine algorithm. At first, we mine temporal dependencies 

for each event pair from event traces. The dependencies that we 

mined are always valid under any event interleaving patterns. 

Rather than directly constructing the workflow from the input 

event traces, we construct a basic workflow model from the mined 

dependencies. Then, based on the different properties between a 

loop/shortcut structure and a thread spawn/sync structure, we 

design an algorithm to refine the basic workflow. The refinement 

algorithm can find the simplest workflow with a minimal number 

of thread types to interpret all event traces. Our approach works 

quite well on traces of interleaved events. To the best of our 

knowledge, the paper is the first work to learn workflows from 

traces of interleaved events produced by concurrent programs. 

The rest of the paper is organized as follows. In section 2, we 

briefly introduce the previous work that is closely related to ours. 

Section 3 provides the basic ideas and concepts of our approach 

including event traces, temporal dependencies and the definition 

of the workflow model. In section 4, we describe an algorithm to 

mine temporal dependencies from event traces. The detailed algo-

rithm on constructing a workflow model based on mined temporal 

dependences is presented in section 5. In section 7, we validate 

the approach with some experimental results on both simulation 

and real event traces. Finally, we conclude the paper in section 8. 
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2 RELATED WORK 
There are a set of existing research efforts [1, 2, 4, 5, 6, 8, 10] on 

learning program workflow models from execution traces for 

software testing and debugging. In these algorithms, Finite State 

Automatons (FSA) are used as workflow models. These algo-

rithms are mostly extended from the popular k-Tails algorithm 

proposed by Biermann and Feldman [9], which can automatically 

learns an FSA from sample symbol sequences. At first, the algo-

rithm constructs an initial FSA from input traces, and then it pro-

gressively refines the FSA by merging equivalent states until no 

further merge operation is possible. Different algorithms [6, 10] 

use different equivalent criteria to derive different FSA depending 

on different desired degree of generalization. For example, in the 

k-strings algorithm [10], if two states 𝑠𝑎  and 𝑠𝑏  generate the same 

k-strings (i.e. symbol sequences of length up to k that can be gen-

erated from the state), they are merged. The learner modifies the 

k-Tails algorithm by comparing how likely two states are to gen-

erate the same k-strings. L. Mariani et al [6] also proposed an 

incremental FSA learner, namely k-Learner, by modifying the k-

Tails with a new merge operation. The algorithm identifies subse-

quences of a new trace in the current FSA, and augments the FSA 

to include the new trace. Besides the state equivalence conditions, 

some recent algorithms also introduce other pre-conditions for the 

merge operation. In [2], two equivalent states 𝑠𝑎  and 𝑠𝑏  can only 

be merged when the merged FSA does not break a set of temporal 

patterns that are automatically mined from the training traces. A 

similar steering idea is also proposed by Walkinshaw et al [8], in 

which user defined Linear Temporal Logic (LTL) rules are used 

to determine whether two equivalent states can be merged. All 

these k-Tails based algorithms assume that the event traces are 

sequential traces [6]. However, many workflows exhibit concur-

rent behavior, where a single event trace comprises a set of events 

produced by more than one thread of control. The sequential state 

machine model cannot capture the concurrent behavior of a sys-

tem, and the k-Tails based algorithms will create a very complex 

model as they try to interpret all event sequencing patterns gener-

ated by the interleaved events. Unlike these, our algorithm learns 

workflow models from traces of interleaved events. 

Another set of research efforts [3, 7, 12, 13, 14, 15, 16, 17] from 

the area of Business Intelligence [12] are also related to our work. 

Rather than software system traces, they try to mine business 

processes (or workflows) from business activity logs. In business 

workflow mining algorithms, different from FSA models, a 

process is often represented by a graph in which nodes correspond 

to the activities to be performed, and arcs describe the precedence 

or dependent relationships among the activities. For example, the 

authors of [14] use a directed acyclic graph (DAG) to model a 

workflow process. In [3] and [7], a constrained DAG, namely an 

AND/OR workflow graph (AO graph), is proposed to model a 

workflow process. Aalst et al [15] use a special class of Petri-net 

model, namely workflow nets (WF-net), to model a workflow 

process. Among these models, the WF-net is the most powerful 

model that can be simplified to other models by adding some 

constraints. Although the business process mining and software 

workflow mining algorithms have different application back-

grounds and models, they share the same basic idea, i.e. construct-

ing constrained graphic activity models from traces [13], and they 

can leverage each other [17]. For example, we can construct a 

DFA to mimic the behaviors of a DAG based model. Almost all 

business workflow mining algorithms consider the parallel prop-

erty of different tasks by introducing AND split/join nodes [3, 7, 

13, 14], fork/join places [12, 15, 17], or Parallel operators [16]. In 

order to handle the concurrent task problem, similar to our ap-

proach, these algorithms reconstruct the workflow graph by utiliz-

ing the dependent or causal relationships mined from workflow 

activity logs. For example, in [15], Aalst et al only use the order-

ing relation “>w ” that describes whether one is directly followed 

by the other in a trace, to discover a WF-net. Cook et al [17] use 

more information, such as event type counts, event entropy, and 

event periodicity, and combine the information into a ranking 

score to discover the concurrent behavior in event streams. How-

ever, all of these approaches assume that an input log sequence is 

produced by a single case in isolation [15, 17], and they cannot 

handle an interleaved log sequence generated by multiple concur-

rent executions of the same workflow (e.g. an event trace is pro-

duced by a WF-net workflow if there are two or more tokens in 

the start place of a WF-net). In addition, their models also do not 

allow that multiple concurrent threads run the same sub-workflow 

[15, 17]. However, in a paralleled program, a job may often be 

divided into several concurrent sub-tasks, with each sub-task hav-

ing the same workflow. For example, a MapReduce job is often 

split into many Map tasks, and each Map task follows the same 

execution logic. Our algorithm handles these problems by a 

coarse-to-fine approach, in which we first construct a basic 

workflow model from temporal dependencies that are mined from 

the event traces, and then refine it through verification. 

3 PRELIMINARY 
This section introduces the basic concepts and techniques used in 

our algorithm including our view of events, our workflow model, 

different types of dependency relationships involved in our algo-

rithm, and the assumptions of our mining algorithm. 

3.1 EVENT TRACE 
Similar to other methods, we view the event logs in a log file as a 

trace of events being produced by a black-box system. We assume 

that the temporal orders of event logs faithfully reflect the tem-

poral orders of the corresponding events. Here, events are used to 

characterize the dynamic behavior of a software program, for 

instance, a method call. In software systems, events are often 

recorded with attributes, such as timestamp, related resources and 

data, and any other information that can identify the specific oc-

currence of that type of event. The activities of a system recorded 

in a log file are represented by an event sequence, namely an 

event trace. As mentioned above, a system may have simultane-

ous executing threads of control, with each of them producing 

events that form a resulting event trace. Thus, an event trace con-

tains interleaved event sequences from all the concurrent control 

threads. Note here that although the term “thread” means a se-

quential execution control path within the workflow. It may not 

directly map to a process/thread in the operating system in an 

event-driven system. Although in some systems, event attributes 

can help to distinguish the events from different control threads of 

the workflow, in this paper, we present a general approach that 

only utilizes the ordering of events. 

In this paper, all event traces are generated by complete execu-

tions of the program on some use cases. They may contain some 

noise that is usually caused by some execution anomalies in a 

program comprehension scenario. For event traces that may con-

tain noise, we can use the noise filtering method [19] or anomaly 

detection method [20] to filter out the noise before we use the 

algorithm proposed in this paper to learn workflow models. In 

addition, we assume that the temporal ordering patterns of differ-
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ent events can be as diverse as possible. This is reasonable for 

event logs produced by independent concurrency. Some concur-

rent systems that may not display much randomness are not the 

targets of our method. As with most data driven approaches, we 

also assume that we have enough event logs to make our analysis 

meaningful. Because our method is based on the temporal orders 

of events in event traces, enough log data means that we can find 

enough instances of any possible ordering relationship of every 

event pair to make the mined dependencies statistically meaning-

ful. 

Formally, let 𝛴 be a set of distinct events that appear in all event 

traces. An event trace is an ordered sequence of events, denoted 

as < 𝑒1 , 𝑒2, … , 𝑒𝑚 >, where 𝑒𝑖  is an event, i.e. 𝑒𝑖 ∈ 𝛴 for 1 ≤ 𝑖 ≤
𝑚. For brevity, we can also write it as 𝑒1, 𝑒2 , … , 𝑒𝑚 . Given an 

event trace 𝑙 = 𝑒1 , 𝑒2, … , 𝑒𝑚 , for an event 𝑒𝑖 , 1 ≤ 𝑖 ≤ 𝑚, we call 

the subsequence 𝑒𝑖+1 , 𝑒𝑖+2, … , 𝑒𝑚  as the postfix of 𝑒𝑖  in 𝑙, denoted 

as 𝑝𝑜𝑠𝑡(𝑒𝑖), and subsequence 𝑒1, 𝑒2 , … , 𝑒𝑖−1 as the prefix of 𝑒𝑖  in 𝑙, 
denoted as 𝑝𝑟𝑒(𝑒𝑖) . If 𝑖 = 1 , then 𝑝𝑟𝑒 𝑒𝑖  is a null sequence, 

denoted as ∅. Similarly, when 𝑖 = 𝑚, we also have 𝑝𝑜𝑠𝑡 𝑒𝑖 = ∅. 

3.2 WORKFLOW MODEL 
In this paper, our algorithm outputs a transition-labeled finite state 

machine to represent a workflow. In order to model the concurrent 

properties of workflows, we introduce a vector of active states 

instead of just a single active state so that the state machine can 

have multiple, concurrent threads. To create and destroy these 

threads, we define four new types of states to mimic the concur-

rent behavior of a Petri net: split/merge states and fork/join states. 

Similar to the AND split/merge nodes in papers [3, 7], a split state 

has multiple out transitions (i.e. transitions leaving from the state), 

and all these transitions are taken concurrently. A merge state has 

multiple entering transitions, and it can transit to another state 

only if all its entering transitions have occurred. Informally, split 

states represent the points where the system will spawn one thread 

for each leaving transition. As a counterpart, merge states are used 

to represent points of synchronization. That is, before the merge 

state can transit to another state, it has to wait for the completion 

of threads from all its entering transitions. Unlike a split state, a 

fork state only has one leaving transition. At a fork state, the sys-

tem will fork several threads to execute a sub-workflow starting 

from the state. Similar to a merge state, a join state is also a point 

of synchronization, and it is specially designed to absorb all 

threads created by a fork state. In general, a fork state and a join 

state will exist in pairs. To facilitate the description, we call the 

ordinary states in a state machine as a switch state. Fig. 1 shows 

some sample workflows, where a square box “□” is used to 

represent a split/merge state node, a diamond box “◊” is used to 

represent a fork/join state node, and a circle “○” is used to 

represent a switch state node. By introducing the split/merge and 

fork/join nodes, we can model the concurrent properties in a 

workflow. For example, a single run of the workflow of Fig.1(a) 

can generate event traces of “ABCD” or “ACBD” because B and 

C are two concurrent events. Furthermore, two concurrent runs of 

the workflow can generate many kinds of traces of interleaved 

evens, such as “ABACDCBD”, “AACCBBDD”, and so on. The 

fork node in Fig.1(c) can also generate concurrent events, because 

the sub-workflow between the fork node to the join node will be 

run with multiple threads. 

Formally, a workflow model is defined as: 

Definition 3.1 A workflow model is a tuple W =  𝛴, 𝑆, 𝑆𝑎 , 𝑠0 , 𝛿,

𝑓 , where: 

 𝛴 is the set of event types. 

 𝑆 is a finite and non-empty set of states including switch 

states, split/merge states and fork/join states. 

 𝑠0 is an initial state. 

 𝑆𝑎  is a vector of active states. 

 𝛿 is the state-transition function that represents the tran-

sition from one state to other states, 𝛿: 𝑆 × 𝑆 → 𝛴. Each 

transition is labeled by an event type, which means the 

transition can generate an event of that type, and a tran-

sition can be uniquely determined by its event label. In 

this paper, we use these two terms interchangeably. 

 𝑓 is the end state. 

 We also define a special symbol 𝜖 ∈ 𝛴, which means an 

empty event. Also 𝛿 𝑞1, 𝑞2 = 𝜖 means that the transi-

tion from state 𝑞1  to state 𝑞2  does not generate any 

event. We call such a transition a shortcut. 

Definition 3.2 Given a transition 𝛿 𝑞1, 𝑞2 , we call 𝑞1 and 𝑞2 as 

the starting state and the ending state of the transition respectively. 

If one transition’s ending state is the starting state of another tran-

sition, we call the two transitions as neighboring transitions. Giv-

en a state 𝑞, we define all transitions that start from 𝑞 as 𝑞’s out 

transitions (denoted as 𝑂𝑢𝑡𝑆𝑒𝑡(𝑞)), and the transitions that end-

ing at 𝑞 as 𝑞’s in transitions (denoted as 𝐼𝑛𝑆𝑒𝑡(𝑞)). 

For a realistic workflow, all states should be reachable from the 

initial state. It means that, for every state 𝑠, there is at least one 

transition path from the initial state to 𝑠. At the same time, each 

state also has a path to the end state. In this paper, a transition path 

from the initial state to the end state is defined as a route. A 

workflow often has several routes. 

There are two reasons that we do not select Petri net, a more po-

werful model. At first, we focus on creating descriptive models to 

help operators to understand software behavior. Most software 

workflow mining algorithms use FSA as their workflow models 

because a state based representation is convenient to map to pro-

gramming logic. We use a state based model to be consistent with 

representations of these related algorithms. On the other hand, a 

state based model is simpler than a Petri net model, which can 

simplify the operations and descriptions of our algorithm. 
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Figure 1. Some simple workflows. 

3.3 EVENT DEPENDENCIES 
In the context of workflow traces, the occurrence of an event may 

be dependent on the occurrence of another event in the trace. Our 

workflow model reconstruction depends on mining the temporal 

dependencies among events. Dependence means that the occur-
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rence of one event type depends on the occurrence of another 

event type. In this paper, we define four types of temporal depen-

dencies. Forward dependency (FD) describes that “Whenever an 

event A occurs, another event B must eventually occurs after A’s 

occurrence”. Forward dependency is denoted as 𝐴 →𝑓 𝐵 . Back-

ward dependency (BD) describes that “Whenever an event B oc-

curs, another event A must have occurred before B’s occurrence”. 

Backward dependency is denoted as 𝐴 →𝑏 𝐵. The third dependen-

cy we defined is strict forward dependency (SFD), which means 

“For each occurrence of event A, there must be at least one occur-

rence of event B after A’s occurrence.” We denote it as 𝐴 →𝑠𝑓 𝐵. 

Different from 𝐴 →𝑓 𝐵, which means one or more occurrences of 

event A will eventually cause the occurrence of event B, 𝐴 →𝑠𝑓 𝐵 

means that each occurrence of event A will cause at least one oc-

currence of event B. Similarly, we also define strict backward 

dependency (SBD) with “For each occurrence of event B, there 

must be at least one occurrence of event A before B’s occurrence.”, 

which is denoted as 𝐴 →𝑠𝑏 𝐵. Unlike the dependencies defined in 

[15, 17], our dependencies do not require that one event is directly 

followed by another event in an event trace, which are not influ-

enced by various interleaving patterns. 

Among these four types of dependencies, FD and BD focus on the 

global temporal relationship between two event types, and SFD 

and SBD not only look at the temporal relationship but also take 

the event count information into account. It is obvious that: 

𝐴 →𝑠𝑓 𝐵 ⇒  𝐴 →𝑓 𝐵 , and 𝐴 →𝑠𝑏 𝐵 ⇒  𝐴 →𝑏 𝐵 . Thus, in this 

paper, for simplicity, if two events have a strict dependency rela-

tionship, we will not list the corresponding non-strict dependency 

relationship. In addition, we use 𝐴 ∥ 𝐵 to denote that two events A 

and B do not have any defined temporal dependencies. 

For each pair of events, we can determine whether there is a tem-

poral dependency between the two events by verifying the rela-

tionship within all event traces. For example, for event A and B in 

Fig.1(a), we have 𝐴 →𝑠𝑓 𝐵  and 𝐴 →𝑠𝑏 𝐵  because these two de-

pendencies are always true in the traces with any potential event 

interleaving pattern. For the workflow in Fig.1(e), we always have 

𝐴 →𝑠𝑓 𝐵 and 𝐴 →𝑏 𝐵. For all simple workflows in Fig.1, we list 

all the dependencies between event type A and B in Table 1. Such 

dependencies are always true no matter how event logs interleave 

together. From the examples, we can see that different local logi-

cal structures in a workflow often have different types of depen-

dencies.  

Table 1. Temporal dependencies of workflows in Fig.1 

Workflow Valid Temporal Dependencies between A and B 

Fig. 1(a) 𝐴 →𝑠𝑓 𝐵, 𝐴 →𝑠𝑏 𝐵 

Fig. 1(b) 𝐴 →𝑠𝑏 𝐵 

Fig. 1(c) 𝐴 →𝑠𝑓 𝐵, 𝐴 →𝑏 𝐵 

Fig. 1(d) 𝐴 →𝑠𝑓 𝐵, 𝐴 →𝑠𝑏 𝐵 

Fig. 1(e) 𝐴 →𝑠𝑓 𝐵, 𝐴 →𝑏 𝐵 

Fig. 1(f) 𝐴 →𝑠𝑓 𝐵, 𝐴 →𝑏 𝐵 

 

Pair-wise temporal dependencies describe the causal relationships 

of each event pair. They can provide information for workflow 

reconstruction. Our basic workflow model constructing algorithm 

is based on the properties of the mined temporal dependencies. 

Obviously, the dependencies have the following property: 

Property 3.1 Let W =  𝛴, 𝑆, 𝑆𝑎 , 𝑠0 , 𝛿, 𝑓  be a workflow. For any 

𝐴, 𝐵 ∈ 𝛴: 

 If 𝐴 →𝑓 𝐵, there must be a transition path from A to B (de-

noted as 𝐴 → 𝐵) in the workflow, and the routes that pass 

through A must latterly pass through B. 

 If 𝐴 →𝑏 𝐵, then 𝐴 → 𝐵, and the routes that pass through B 

must first pass through A. 

4 MINE TEMPORAL DEPENDENCY 
In this section, we provide the details about the method of mining 

temporal dependencies. As with most classical algorithms of se-

quence pattern mining, we measure the significance of a temporal 

dependency between two events by computing the statistical me-

trics of support and confidence. For event types A and B, when we 

mine the relationships of 𝐴 →𝑠𝑓 𝐵, the support is defined as the 

number of times that event A appears in the traces. In contrast to 

the support of 𝐴 →𝑠𝑓 𝐵, the support of 𝐴 →𝑓 𝐵 is computed as the 

number of traces that contain event A. As a counterpart, the sup-

port of 𝐴 →𝑠𝑏 𝐵 is counted as the number of times that event B 

appears in the traces, and the support of 𝐴 →𝑏 𝐵 is the number of 

traces that contain event B. The confidence values of the depen-

dencies are defined by the corresponding conditional probabilities. 

For example, the confidence of 𝐴 →𝑓 𝐵 is calculated by 

conf 𝐴 →𝑓 𝐵 =
No. of traces that have 𝐵 after the last 𝐴

No. of traces that contain 𝐴
 

Similarly, the confidence of 𝐴 →𝑏 𝐵 can be calculated by 

conf 𝐴 →𝑏 𝐵 =
No. of traces that have 𝐴 before the first 𝐵

No. of traces that contain 𝐵
 

The computing of 𝐴 →𝑠𝑓 𝐵 and 𝐴 →𝑠𝑏 𝐵’s confidence values is a 

little bit complex. We take 𝐴 →𝑠𝑓 𝐵 as an example to describe the 

computing procedure. For each event trace 𝑙, we find all occur-

rences of event 𝑒𝑖  that satisfy 𝑒𝑖 = 𝐴  and |{𝑒|𝑒 = 𝐴, 𝑒 ∈
𝑝𝑜𝑠𝑡(𝑒𝑖)}| < |{𝑒|𝑒 = 𝐵, 𝑒 ∈ 𝑝𝑜𝑠𝑡 𝑒𝑖 }|  (i.e. the number of B is 

larger than the number of A in 𝑝𝑜𝑠𝑡 𝑒𝑖 ). Denoting the total num-

ber of such events 𝑒𝑖  in all traces as | 𝑒 𝑒 ∈ (𝐴 →𝑠𝑓 𝐵) |, we can 

calculate the confidence by  

conf 𝐴 →𝑠𝑓 𝐵 =
| 𝑒 𝑒 ∈ (𝐴 →𝑠𝑓 𝐵) |

No. of 𝐴 𝑖𝑛 𝑎𝑙𝑙 𝑡𝑟𝑎𝑐𝑒𝑠
 

As a counterpart, the dependency of 𝐴 →𝑠𝑏 𝐵 is 

conf 𝐴 →𝑠𝑏 𝐵 =
| 𝑒 𝑒 ∈ (𝐴 →𝑠𝑏 𝐵) |

No. of 𝐴 𝑖𝑛 𝑎𝑙𝑙 𝑡𝑟𝑎𝑐𝑒𝑠
 

where | 𝑒 𝑒 ∈ (𝐴 →𝑠𝑏 𝐵) | is the number of events that satisfy  

𝑒𝑖 = 𝐵  and |{𝑒|𝑒 = 𝐵, 𝑒 ∈ 𝑝𝑟𝑒(𝑒𝑖)}| < |{𝑒|𝑒 = 𝐴, 𝑒 ∈ 𝑝𝑟𝑒 𝑒𝑖 }| 
(i.e. the number of B is larger than the number of A in 𝑝𝑟𝑒 𝑒𝑖 ). 

Algorithm 1. Pseudo Code of Mining Forward Dependencies 

Inputs:  

𝐿: the set of all event traces 

𝑠𝑝 : support threshold 

𝑐𝑓 : confidence threshold 

Output: 

𝐹𝐷𝑠: a set of mined forward dependency 

𝑆𝐹𝐷𝑠: a set of mined strict forward dependency   

1. Set 𝑑 =  𝛴 ; 
2. Let 𝑐𝑜𝑛𝑓𝒇[𝑑][𝑑], 𝑠𝑢𝑝𝑓[𝑑], 𝑐𝑜𝑛𝑓𝒔𝒇[𝑑][𝑑], and 𝑠𝑢𝑝𝑠𝑓[𝑑] to 

zero for all 𝑑; 
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3. for each event trace 𝑙 in 𝐿 

4.  Let 𝑇 𝑑 = 0 for all 𝑑; 

5.  for each  event 𝑒 in 𝑙 from the end to the beginning 

6.   for each event 𝑒′  in 𝛴\𝑒 

7.    if 𝑇 𝑒’ > 𝑇[𝑒],  
8.     𝑐𝑜𝑛𝑓𝒔𝒇 𝑒  𝑒′ + +; 

9.    endif 

10.   endfor 

11.   if 𝑇[𝑒]  ==  0 

12.    𝑠𝑢𝑝𝑓 𝑒 + +; 

13.    for each event 𝑒′  in 𝛴\𝑒 

14.     if 𝑇 𝑒’ > 𝑇[𝑒],  
15.      𝑐𝑜𝑛𝑓𝒇 𝑒  𝑒′ + +; 

16.     endif 

17.    endfor 

18.   endif 

19.   𝑠𝑢𝑝𝑠𝑓[𝑒] + +, 𝑇[𝑒] + +; 

20.  endfor 

21. endfor 

22. Normalize 𝑐𝑜𝑛𝑓𝒇[𝑑][𝑑] and 𝑐𝑜𝑛𝑓𝒔𝒇[𝑑][𝑑]by 𝑠𝑢𝑝𝑓[𝑑] and 

𝑠𝑢𝑝𝑠𝑓[𝑑] respectively. 

23. for each 𝑒, 𝑒’ in 𝛴 

24.  if 𝑠𝑢𝑝𝑓 𝑒 > 𝑠𝑝  and 𝑐𝑜𝑛𝑓𝒇 𝑒  𝑒′ > 𝑐𝑓  

25.   Add 𝑒 →𝑓 𝑒’ to 𝐹𝐷𝑠. 

26.  endif 

27.  if 𝑠𝑢𝑝𝑠𝑓 𝑒 > 𝑠𝑝  and 𝑐𝑜𝑛𝑓𝒔𝒇 𝑒  𝑒′ > 𝑐𝑓  

28.   Add 𝑒 →𝑠𝑓 𝑒’ to 𝑆𝐹𝐷𝑠. 

29.  endif 

30. endfor 
31. return FDs, SFDs. 

 

Algorithm 1 describes the procedure of mining forward depen-

dency and strict forward dependency, where 𝑑 is the number of 

distinct events in all traces. 𝑐𝑜𝑛𝑓𝒇[𝑑][𝑑], 𝑠𝑢𝑝𝑓[𝑑], 𝑐𝑜𝑛𝑓𝒔𝒇[𝑑][𝑑], 

and 𝑠𝑢𝑝𝑠𝑓[𝑑] are vectors used to record the support numbers and 

confidence values. The time complexity of the algorithm is 

𝑂(𝑁𝑑), where 𝑁 is the cumulative length of all event traces. Gen-

erally, 𝑑 = |𝛴| (i.e. the number of distinct event types) is constant 

for a program, and is always significantly smaller than 𝑁. Thus, 

the algorithm possesses linear complexity with respect to N. 

Unlike the scenarios of traditional sequence (or frequent item set) 

mining, where some meaningless patterns can happen by chance, 

in our context any occurrence of an event ordering in event traces 

is meaningful and reflects an aspect of the execution behavior of 

the software system. In this paper, we set the support threshold as 

5 (It means the number of observations should be at least five to 

make our analysis results statistically meaningful [21]), and all 

our events in our experiments can meet this requirement. In addi-

tion, a dependency relationship is valid only if it has a perfect 

confidence (𝑐𝑜𝑛𝑓=100%). 

5 WORKFLOW RECONSTRUCTION 
In this section, we provide our main algorithm of constructing 

workflow from mined temporal dependencies. We first construct 

an initial workflow by recovering all connections (defined in sec-

tion 5.1) based on the mined temporal dependencies. During the 

basic workflow construction, our approach does not consider 

shortcut transitions and loop structures, thus, the learned basic 

workflow does not contain such workflow structures. In order to 

recover the missing structures, we refine the workflow by verify-

ing with event traces. The aim of refinement is to find the simplest 

workflow with a minimum number of threads to interpret all train-

ing event traces. 

5.1 CONSTRUCT A BASIC MODEL 
From section 3, we can see that, given dependencies 𝐴 →𝑓 𝐵 or 

𝐴 →𝑏 𝐵, we can conclude that there is a path from event A to 

event B (denoted as 𝐴 → 𝐵 ). In addition, for two neighboring 

events A and B, if 𝐴 → 𝐵, we can determine a connection between 

A and B in the original workflow, i.e. the ending state of A is the 

starting state of B. In this paper, we call the dependency between 

two neighboring events as a direct dependency. Furthermore, 

supposing that we have a pair-wise dependency for each pair of 

neighboring events, we can recover all connection relationships. 

Although a mined temporal dependency from event traces shows 

that there is a path between two events, we cannot directly estab-

lish a connection between them because many dependencies are 

not direct dependencies (i.e. they are indirect dependencies). An 

indirect dependence does not correspond to a connection between 

two events. For example, in Fig.1 (d), we have a temporal depen-

dency of 𝐴 →𝑓 𝐶. However, there is no direct connection between 

A and C. Here, the path from A to C is composed by a path from A 

to B and a path from B to C. In order to handle such problems, we 

try to construct a compact basic workflow in which there is at 

most one transition path between every two events. We use a 

pruning strategy to remove indirect dependencies during the basic 

workflow construction. For each event pair (𝛼, 𝛽) that satisfies 

𝛼 →𝑓 𝛽 or 𝛼 →𝑏 𝛽, we denote 𝛽  as 𝛼’s successor, and 𝛼  as 𝛽’s 

predecessor. For the simplicity of implementation, we first use a 

graph data structure to store the obtained paths, in which each 

event has a predecessor list and a successor list. The algorithm 

starts from the events that do not have any preceding event. Then, 

we add events into the graph and construct preceding/succeeding 

relations according the mined dependencies. For any pair of 

events A and C where A is a predecessor of C, if a successor event 

of A (e.g. B) is also a predecessor of C, we remove C from A’s 

successor list. In the resulting graph, all indirect dependencies are 

removed. By converting the remaining preceding/succeeding rela-

tions to event connections, we can construct a transition-labeled 

workflow, namely basic workflow. The algorithm is shown in 

Algorithm 2. In the algorithm, the function 𝐹𝑖𝑛𝑑_𝑅𝑜𝑜𝑡(𝑁𝑉) re-

turns a set of events in which each event does not have any prede-

cessor in the set 𝑁𝑉. 

Algorithm 2. Pseudo Code of Basic Workflow Construction 

Inputs: 

𝐿: the set of all event traces 

𝐷: the set of dependencies 

Output:  

𝑇: learned basic workflow 
 

1. 𝑁 = 𝑁𝑉 = the set of all log keys;  

2. 𝑄 =  an empty FIFO queue; 

3. while 𝑁𝑉 is not empty 

4.  𝑆  =  𝐹𝑖𝑛𝑑_𝑅𝑜𝑜𝑡(𝑁𝑉);  

5.  Add 𝑆 into 𝑇; 

6.  𝑃𝑢𝑠ℎ_𝑏𝑎𝑐𝑘(𝑄, 𝑆); 

7.  while 𝑄 is not empty: 

8.   𝑖 =  𝑃𝑜𝑝_𝑓𝑟𝑜𝑛𝑡(𝑄); 

9.   if 𝑖 is not in 𝑁𝑉 
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10.    continue; 

11.   endif  

12.   for each 𝑗 in 𝑁 that satisfies 𝑖 →𝑓 𝑗 or 𝑖 →𝑏 𝑗  

13.    if 𝑗 has predecessor in 𝑇 

14.     flag = false; 

15.     for each 𝑘 in 𝑗’s predecessors: 

16.      if  (𝑖 ∥ 𝑘) 

17.       add 𝑗 to 𝑖’s successor list; 

18.      else if 𝑘 →𝑓 𝑖 or 𝑘 →𝑏 𝑖 

19.       remove 𝑗 from the successor list of 𝑘 

20.       add 𝑗 to 𝑖’s successor list; 

21.      else 
22.       flag = true; 

23.      endif 
24.     endfor 

25.     if (flag) 

26.      remove 𝑗 from the successor list of 𝑖 
27.     endif 

28.    else 
29.     add 𝑗 to 𝑖’s successor list; 

30.    endif 
31.    if 𝑗 is in 𝑁𝑉 

32.     𝑃𝑢𝑠ℎ_𝑏𝑎𝑐𝑘(𝑄, 𝑗); 

33.    endif 

34.   endfor 
35.   remove 𝑖 from 𝑁𝑉; 

36.  endwhile 

37. endwhile 
38. Covert T to a transition-labeled workflow; 

39. return 𝑇 

 

The following theorem shows that the remaining transitional paths 

obtained by the above algorithm must exist in the original 

workflow. In other words, our algorithm can obtain a basic 

workflow skeleton. 

Theorem 5.1. Let W =  𝛴, 𝑆, 𝑆𝑎 , 𝑠0 , 𝛿, 𝑓  be a workflow, with at 

least one temporal dependence between every two neighboring 

events. For any 𝐴, 𝐵 ∈ 𝛴 that 𝐴 →𝑓 𝐵 or 𝐴 →𝑏 𝐵 , if 

 C 𝐴 → 𝐶 ∧ 𝐶 → 𝐵 = ∅, there must be a connection from A to B 

in the original workflow. 

Proof: Obviously, there is a path from A to B (i.e. 𝐴 → 𝐵). In 

addition, because  C 𝐴 → 𝐶 ∧ 𝐶 → 𝐵 = ∅, then A and B are a 

pair of neighboring events. Therefore, there must be a connection 

from A to B in the original workflow.□ 

The above algorithm does not consider a special case where two 

events have dependencies with different directions. For example, 

from the event traces generated by the workflow in Fig.1(f), we 

can learn both dependencies of 𝐵 →𝑏 𝐶 and 𝐶 →𝑓 𝐵 at the same 

time. We call it a bidirectional dependence, denoted as 𝐶 ↔ 𝐵. If 

we directly run the basic workflow construction algorithm on such 

dependencies, the algorithm will run into an endless loop. In order 

to overcome this problem, we first check whether there are bidi-

rectional dependencies in the mined dependencies. If there is a 

bidirectional dependence, e.g. 𝐶 ↔ 𝐵 , we create a new virtual 

event type 𝐵’ to replace the events of type B in all forward depen-

dencies. Then, we run our basic construction algorithm to recon-

struct the basic workflow. After that, we merge the virtual events 

(e.g. 𝐵’)  with their corresponding events (e.g. B) in the basic 

workflow. 

Adding initial&end state: Each workflow contains an initial state 

and an end state. Thus, we need to add an initial state and an end 

state into the basic workflow. Obviously, the first event and the 

last event of an event trace are potentially an initial event and an 

end event respectively. In this paper, we first find out all events 

that have appeared as the first event in event traces. If the support 

number of an event appearing as the first event in event traces is 

larger than a certain level (we use 5% in experiments because we 

assume the noise level is less than 5%), we add a shortcut transi-

tion from the initial state of the workflow to the starting state of 

the event. Similarly, if the support number of an event appearing 

as the last event in event traces is larger than a certain level, we 

add a shortcut from the ending state of the event to the end state of 

the workflow. 

Determining state types: According to the definition of the 

workflow model in section 3.2, there are five types of states. In 

the above basic workflow construction algorithm, we do not iden-

tify the type of each state. Given an event type that has several 

event types following it, we have to make a decision on whether 

the program behavior at this point is a sequential selection (i.e. a 

switch state) or a concurrent splitting (i.e. a split/fork state) . In 

this subsection, we determine the state types by utilizing the in-

formation of event type counts. As studied in our previous work 

[20], the linear relationships between the occurrence times of 

different event types can also provide cues for the workflow struc-

ture. For example, for a switch state 𝑞, it is always true in every 

event trace that: 

 𝑂𝑐𝑐𝑢𝑟 𝐴 𝐴∈𝐼𝑛𝑆𝑒𝑡 (𝑞) =  𝑂𝑐𝑐𝑢𝑟(𝐵)𝐵∈𝑂𝑢𝑡𝑆𝑒𝑡 (𝑞)  (1) 

On the other hand, if 𝑞  is a split state, then for any 𝐴 ∈
𝑂𝑢𝑡𝑆𝑒𝑡(𝑞) and 𝐵 ∈ 𝑂𝑢𝑡𝑆𝑒𝑡(𝑞), 

𝑂𝑐𝑐𝑢𝑟 𝐴 = 𝑂𝑐𝑐𝑢𝑟(𝐵)    (2) 

Similarly, a merge state also has a property that 𝑂𝑐𝑐𝑢𝑟 𝐴 =
𝑂𝑐𝑐𝑢𝑟(𝐵)  for any 𝐴 ∈ 𝐼𝑛𝑆𝑒𝑡(𝑞)  and 𝐵 ∈ 𝐼𝑛𝑆𝑒𝑡(𝑞) . However, 

fork and join states do not have such regular properties on the 

counts of event types. If a state satisfies equation (1), it must be a 

switch state. In this subsection, we first find out the split/merge 

states by verifying whether a state satisfies equation (2), and then 

find out the switch states that can be identified by equation (1). 

Because our model allows shortcut transitions, some switch states 

cannot be easily identified by equation (1). For all remaining 

states with their state types undetermined, we will determine their 

state types through a workflow refinement process based on event 

traces (refer to section 5.2). The default state type is switch. 

5.2 REFINE THE WORKFLOW MODEL 
The basic workflow obtained by Algorithm 2 does not contain any 

shortcut transitions or loop structures, because we only keep one 

transition path between every two dependent events. However, in 

a real workflow, there may be some shortcut transitions and loop 

structures. In addition, the above algorithm cannot identify the 

fork/join state types, thus, the types of some states in the basic 

workflow are not determined. In this subsection, we identify 

fork/join states and recover loop structures and shortcut transitions 

to refine the workflow by verifying with event traces. 

We recover loop structures or shortcut transitions based on the 

statistical properties of these structures. Here, we use a simple 

example to describe the basic idea behind our algorithm. Fig.2(a) 

presents a simple program workflow containing a loop structure. 



Page 7 of 12 

 

Fig. 2(b) shows two event traces. Both of them are generated by a 

two-thread program with different interleaving patterns in which 

each thread runs along the workflow in Fig.2(a). Our basic 

workflow construction algorithm can only construct a basic 

workflow without a loop (see Fig.2(c)). When we use the basic 

workflow in Fig.2(c) to interpret the first event trace in Fig. 2(b), 

we find that the first five events of the event sequence are gener-

ated by two threads (denoted as 𝑇1 and 𝑇2) running along the basic 

workflow. When the 6th event of the trace (i.e. B) is being veri-

fied, the active states of  𝑇1 and 𝑇2 are 𝑠3 and 𝑠2 respectively, and 

both threads cannot produce event B from their active states (i.e. 

this event B is an un-interpretable event by the basic workflow.). 

The reason why some events cannot be interpreted is that some 

transitions are missing in the basic workflow. Specifically, event 

B is a part of the recurrence of the loop in Fig.2(a). However, we 

do not have knowledge about the loop structure and the original 

workflow. In order to interpret the first event trace, we now have 

two possible solutions: the event is either generated by 𝑇1 or gen-

erated by 𝑇2. If it is generated by 𝑇1, then there is a loop from 𝑠3 

to 𝑠1 in the workflow, which is the workflow in Fig.2(a). If the 

event is generated by 𝑇2, then there is a loop from 𝑠2 to 𝑠1 in the 

workflow, which is the workflow in Fig.2(d). Similarly, when we 

try to interpret the 8th event of the second event trace in Fig.2(b), 

the active states of the threads are 𝑠3 and 𝑠4. One can interpret the 

second event trace either by the workflow in Fig.2(a) or by that in 

Fig.2(e). Here, we observe that, for both event traces, when we try 

to interpret an event B that is a part of the recurrence of the loop, 

there is a thread at state 𝑠3. In general, for any training event se-

quence with a different interleaving pattern, when we verify an 

un-interpretable event of type B, which is a part of the recurrence 

of the loop, there is at least one thread whose active state is 𝑠3. On 

the contrary, there is a thread with active states of 𝑠2 or 𝑠4 only by 

chance. Therefore, if we vote for threads’ active states over all 

event traces once we encounter an un-interpretable event, we will 

find that 𝑠3 has the highest vote value. Although the example in 

Fig.2 is a simple case, this statistical property is widely valid for 

workflows with loop or shortcut structures. This property can help 

us to detect the loop structures. Similarly, we can also recover the 

missing shortcuts. 
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(a). A simple workflow with a loop. 
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(b). Sample event traces of a two-thread program (a) 
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(c). The result workflow of Algorithm 2. 
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(e). A possible workflow of the second trace in (b). 
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(f). A possible solution with fork/join states. 

Figure 2. An example for the depiction of our refinement idea. 

Unlike loop and shortcut structures, fork/join states do not expose 

any unique statistical property. We cannot use the above statistical 

method to identify a fork/join structure. If we perform the above 

method forcibly on the event traces generated by a fork/join struc-

ture, then the resulting workflow is often very complex, which is 

caused by various event interleaving patterns. On the other hand, 

all event traces generated by a loop structure can always be inter-

preted by a fork/join structure. For example, all event traces pro-

duced by the workflow in Fig.2(a) can always be interpreted by 

the workflow in Fig.2(f). Formally, the observation is described as:  

Property 5.1 Event traces that can be interpreted by a workflow 

𝑊1 with loop structures can also be interpreted by a workflow 𝑊2 

which is created based on 𝑊1 by replacing the loop structures with 

fork/join structures, and 𝑐𝑝 𝑊2 ≤ 𝑐𝑝 𝑊1 , but not vice versa. 

Here, 𝑐𝑝 𝑊  is the complexity of a workflow 𝑊 , which is de-

fined as the sum of transition number and the number of thread 

types (note: a thread type means a pair of thread starting and end-

ing points.). Based on this property, we introduce a loop favorite 

rule in our algorithm. If event traces can be interpreted by either a 

workflow with a loop structure or a workflow with a fork/join 

structure, and both of them have the same complexity, we prefer 

the former. In our algorithm, we try to use the simplest workflow 

with a minimal number of threads to interpret all event sequences. 

In other words, for two workflows that can interpret the same 

event traces, we prefer the workflow with less complexity. If two 

workflows have the same complexity, we prefer the workflow that 

interprets all event traces with a minimal thread number. 

Because we have no information about when a new thread starts, 

an un-interpretable event can be interpreted as an event log pro-

duced by either a missing workflow structure component (i.e. 

shortcut or loop) or a newly started thread (i.e. fork state). In the 

algorithm, we have to make a decision to select one structure be-

tween them (i.e. loop decision or fork decision) whenever a new 

un-interpretable event is encountered. A workflow has a Markov 

property that states that the current state is what determines the 

next step in its behavior. Thus, an early decision will influence the 

later decisions, but the converse is not true. At each decision point, 

we first create two temporary workflows. One (denoted as 𝑾𝟏 in 

algorithm) is constructed by a procedure in which we make a loop 

decision at the current decision point and make fork decision at all 

following decision points. The other (i.e. 𝑾𝟐 ) is constructed 

through a procedure with all fork decisions. Then, we select a 

decision at the current decision point based on the loop favorite 

rule. Similarly, we also make the next decision with the same 

procedure. Note: here, the temporary workflows are only con-

structed for decision making, and they are not output as the results 

of the algorithm. The detailed algorithm is presented in APPEN-

DIX A. In the algorithm, we do not count the active states with 

their neighboring events having strict forward dependencies, be-

cause such a state neither has an out-shortcut transition nor is a 

join state. For example, we do not have 𝐵 →𝑠𝑓 𝐶 in Fig. 1(c) and 

(f). The following theorem shows that the workflow learned by 

our refinement algorithm is optimal in the sense of complexity 

defined above. 
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Theorem 5.2. The refinement algorithm finds out the workflow 

with a minimal complexity to interpret all event traces. 

Proof: According to property 5.1, a workflow created by a fork 

decision always has a value of complexity not larger than that of a 

workflow created by a loop decision at the same decision point. 

Therefore, the workflow constructed by making fork decision at 

all decision points has the minimal value of complexity among all 

workflows that can interpret all event traces. In the algorithm, we 

only make a loop decision when the decision does not increase the 

workflow’s complexity, thus, the resulting workflow will have the 

minimal complexity. □ 

6 EMPIRICAL EVALUATION 
To validate and evaluate our proposed workflow algorithm, we 

performed a set of experiments on simulated event traces and case 

studies on real event traces generated by some open source pro-

grams (Hadoop and JBoss). We use open source programs be-

cause they are publicly available for download. The results on 

Hadoop and JBoss are easy to be verified and reproduced by third 

parties. The results demonstrate the usefulness of our workflow 

mining technique in recovering the underlying procedure that the 

system carries out, thus aid program comprehension. The simula-

tor and the code of our algorithm will be available soon at 

http://research.microsoft.com/apps/pubs/default.aspx?id=118640 

(currently under the code post review of LCA.). 

6.1 SIMULATION 
To construct a controlled experimental environment, we designed 

a simulator that can generate synthetic program event traces ac-

cording to a software workflow model. The design of the simula-

tor follows the principles proposed in QUARK [22] including the 

guarantee of “code and branch coverage” and locality of reference, 

and so on. Unlike QUARK, our simulator can generate traces of 

interleaved events based on a concurrent workflow model. In this 

experiment, we measure the performance of our workflow miner 

by discovering workflows from the synthetic program event traces. 

Simulation Models: In our simulation experiments, several real 

application models are used to generate the event traces, which 

include (1) the IBM® WebSphere® Business Integration processes 

from WebSphere® Commerce provided in [24], (2) a workflow 

process of reviewing a conference paper similar to that provided 

in [17]. The models are shown in Fig.3 and Fig.4, and are referred 

to as WS(a), WS(b), and Rev respectively. In [24], Zou et al. pre-

sented two workflows in the form of automata: the release of ex-

pired allocations (Fig. 3(a)) and the processing of backorders (Fig. 

3(b)). In [17], the authors use a paper reviewing process (Fig.4) to 

demonstrate their workflow mining algorithm. By using these 

models, users can evaluate and compare our algorithm with other 

algorithms in [17] [24]. On the other hand, these typical real ap-

plication workflows are complex enough to demonstrate the capa-

bility of our algorithm: the models in Fig. 3 contain several loops 

and many shortcut transitions, and the model in Fig. 4 has a loop 

embraced by a fork/join structure. We run these models with sev-

eral threads (we randomly start 1-3 threads) in our simulator to 

generate traces of interleaved events. 

Evaluation Metric: In order to carry out a quantitative evaluation 

of the workflow miner, we adopt two metrics to measure the simi-

larity from the mined workflow X and the simulator model Y in 

terms of their generated traces. The first metric is known as recall, 

the percentage of event traces generated by workflow Y that can 

be interpreted by workflow X. The second metric is precision, the 

percentage of event traces produced by workflow X that can be 

interpreted by workflow Y. 

Table 2. Empirical Results: Precision and Recall 

 Simulation Models 

WS(a) WS(b) Rev 

Precs. Recall Precs. Recall Precs. Recall 

k-Learner 

(k=1) 
0.511 1.000 0.069 1.000 0.000 1.000 

k-Learner 

(k=2) 
0.255 1.000 0.080 1.000 0.001 1.000 

Our 

Algorithm 
1.000 1.000 1.000 1.000 1.000 1.000 

 

Results: From these generated traces (2000 event traces for each 

case), we learn workflow models through the algorithm provided 

in the above sections. We compare the effectiveness of a k-

Learner algorithm [6] and our algorithm by measuring the preci-

sion and recall of the resulting state machines. We repeat each 

experiment 10 times with 10 different set of traces, and computing 

the average that shown in Table 2. Here, we round the results to 

keep three numbers after the decimal point. For these three 

workflows, our algorithm can exactly rediscover the original 

workflow model, thus, both the recall and precision are 100%. On 

the other hand, the precisions of the models produced with k-

Learner are very poor (2 models have a precision less than 0.1). 

This indicates that k-Learner cannot perform well when events are 

interleaved. 

Computational cost: Our algorithm is efficient, which only uses 

9.9, 22.3 and 72.0 seconds (with a CPU of 2.33GHz, the code is 

not fully optimized) to learn the models of WS(a), WS(b), and Rev 

from event traces (2000 event traces for each) respectively. 

A1 A2s1s0 s2

s4

s3A3

A4

s5

A
5

A1: Find State Order Items;  A2: Verify State Order Items;

A3: Is Using ATP; A4: Deallocate Existing Inventory Cmd;

A5: Deallocate Expected Inventory Cmd.

End

ε

ε

ε

ε

 
(a) The release of expired allocations. 

B1: Find Locked Orders with StatusB;            B2: Verify Locked Orders with StatusB;

B3: Find Invalid Orders Items by Orders id;    B4: Find by Order;

B5: Allocate Inventory Cmd;                            B6: Reprepare Order Cmd;

B7: Process Order Cmd

B1 B2s1s0 s2 s4s3B3 B4

s7

s5B5 s6B6

s8 B7End ε

ε
ε

ε

ε

ε

 
(b) The processing of backorders. 

Figure 3. WebSphere® Commerce Processes. 
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C1C2 s1 s0s2

s4

C3

C4 s5C5

C12

s7s6C6 C7 C8

s10
s11

C11

C1: Edit info                      C2: Upload paper          C3: Assign reviewers      

C4: Check assignment     C5: Download paper      C6: Submit review

C7: Read review               C8: Review finish           C9: Read all reviews

C10: Accept                      C11: Reject                      C12: Add comments

fork s9C9

s12

C10

Join

End

ε

ε

 
Figure 4. A workflow of reviewing a conference paper. 

6.2 CASE STUDY: HADOOP 
Hadoop [23] (our version: 0.19) is a well-known open-source 

implementation of Google’s Map-Reduce computing framework 

and distributed file system (HDFS). It enables distributed compu-

ting of large scale, data-intensive and stage-based parallel applica-

tions. JobTracker acts as a task scheduler that decomposes a job 

into smaller tasks and assigns the tasks to different TaskTrackers. 

The logs produced by Hadoop are not sequential log message 

sequences. Even in the log messages of the same Map task, some 

messages (e.g. messages about data shuffling) are also interleav-

ing. 

We run different Hadoop jobs of some sample applications, such 

as WordCount and Sort, and collect log data after each job is fi-

nished (Note: we enable the logging tool at the info level). At first, 

we use the log preprocessing method presented in [20, 25] to 

parse event log messages and to group log messages according to 

log parameters. For example, all log messages that contain a pa-

rameter called MapTask ID are grouped into an event sequence. 

Because several MapTasks are running simultaneously, these 

events are highly interleaved with each other. Then, we use the 

error detection algorithm in [20] to filter out event traces that 

contain errors. After that, we learn workflow from event traces 

with our proposed algorithm. Fig. 5 is an example of the resulting 

workflow that is learned from the event traces related to the para-

meter MapTask ID. By carefully checking with Hadoop source 

code and documents, we find that the workflow can reflect the 

real process of MapTask with very high precision. A task is 

launched and then it processes the input data read from HDFS. 

After the task is done, it sends the resulting data to many Reduc-

ers concurrently (This is represented by a fork/join structure in the 

workflow), and finally cleans up the resources by removing tem-

porary files. During the running, the task may be killed by the 

scheduler. Some killed tasks can also report their status due to 

thread race conditions, therefore, events of H14, H15 and H13 are 

triggered. 

s0

s1 s2 s3 s4 s6 s7

s8

s10

s12s13

s14

H1

H2 H3 H4 H5 H6

fork

H
8

Join H9H10

H11H12

H15

H1: LaunchTaskAction        H2: Trying to launch          H3: Report free slot number  

H4: JVM given task          H5: Report progress        H6: Task is done              

H7: Recv. KillTask cmd   H8: Reported output size    H9: Send Data to reduce     
H10: Data sent                 H11: Purge task                H12: Remove tmp files

H13: Ignore unkown finished task       H14: Map ID not found

H15: Progress from unknown child task

ε

s8

s8
H7

ε

ε

ε

H13

H14

End ε

ε

 
Figure 5. Learned workflow of Hadoop MapTask 

6.3 CASE STUDY: JBOSS APP. SERVER 
Another case study is performed on an application called JBoss 

Application Server (JBoss AS) [26]. JBoss AS is a commonly 

used open source J2EE application server. This case study demon-

strates the usefulness of our workflow mining on discovering 

behavior of a transaction procedure of JBoss AS. We develop a 

prototype of online book store, through which people can buy 

books by submitting an order over a website. We use jBoss jBPM 

to design a business procedure to handle these orders. jBoss jBPM 

is a flexible, extensible process design framework for SMB and 

large enterprise applications. The workflow repeatedly checks 

whether there exists an unhandled order in a FIFO queue. For 

each order in the queue, we will spawn a new order handling 

process to handle it. The order handling process will wait till the 

pay of the order has been received. Then it progresses to check if 

there are enough books in the storehouse. If there aren’t, we must 

get a supply from the publishing house as soon as possible. After 

the checking procedure, the books are delivered to corresponding 

client. When the deliver is completed, the order handling process 

goes to the end.  

We run the program and invite the visiting students and our col-

leagues to test the system. At the same time, we record the event 

logs to form event traces. We collect 200 event traces for our 

experiment. The mined workflow is shown in Fig. 6, which can 

correctly reflect the process flow of our program. Note the end 

state is also a join state in this workflow. 

s1

s0

s2 s4s3

E9

End

E
1

fork s5

s6

s9

s8

E2

E5 E6 E7

E8

E
4

E
3

 

Figure 6. Learned workflow of a JBoss application 

6.4 DISCUSSION 
As with the results of all other workflow mining algorithms 

[2][17][22], some resulting workflow models of our algorithm are 

over-generalized (i.e. having more possible routes than the real 

workflow). For example, in the case in section 6.3, there is a path 

from 𝑠10  to 𝑠14 , which does not exist in the real program. There 

are two main reasons for the over-generalization problem. At first, 

we only consider the first-order of event dependencies in our cur-

rent algorithm, i.e. the dependencies of neighboring events. In 

some real programs, there are some high-order dependencies, e.g. 

the occurrences of H14, H15 and H13 depend on the occurrence of 

H7 in Fig. 5. Second, our approach assumes that there is at most 

one transition referring to the same event type in a workflow 

model. For a workflow in which there are several transitions la-

beled as the same event type, our current algorithm will over-

generalize the resulting workflow. For example, from the event 

traces generated by the workflow in Fig.7(a) (This is the 

workflow of X11 [19]), we learned a workflow in Fig.7(b) which 

more general than the original one. The workflow in Fig.7(b) can 

generate event traces such as <B,E,…,E> and <A,D,E,…,E> that 

cannot be generated by the original workflow Fig.7(a). We will 

leave it for future work to deal with these problems. 
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 (a) Original workflow (b) Mined workflow 

Figure 7. An example of the over-generalization problem 

7 CONCLUSION 
Most existing techniques for mining program workflow models 

can only learn models from sequential event traces. They cannot 

be applied to interleaved logs which are prevalent in distributed or 

parallel programs (or some event driven programs). In this paper, 

we proposed an approach to automatically discover program ex-

ecution workflows from traces of interleaved events. We extend 

the traditional state machine to support concurrency by introduc-

ing split/merge states and fork/join states. Our mining approach is 

based on the statistical inference of temporal dependency relations 

from traces of interleaved events. We then use such dependency 

relations to construct a basic workflow by building the connec-

tions among neighboring events. After that, we further refine the 

workflow by validating it with event traces. During the validation 

procedure, we add the shortcut transitions, loop structure, and 

fork/join states into the workflow model to make sure that all 

event traces can be interpreted by the workflow model. To the 

best of our knowledge, the paper is the first work that learns the 

workflow from interleaved logs produced by concurrent programs. 

The experimental results on both simulated event traces and real 

program traces demonstrate that our approach can learn the 

workflow with a high precision. 

Although our work is motivated by the purpose of software com-

prehension, workflow mining is a basic research topic that has a 

wide range of application fields other than software engineering. 

We believe our approach can be widely applied in many applica-

tions, such as business intelligence. Future research directions 

include integrating high order temporal dependencies, incorporat-

ing domain or existing knowledge about a program, allowing for a 

workflow model having an event type at multiple points. 
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10 APPENDIX A 
In this appendix, we present the detail of our refinement algorithm. 

Supposing that there are a set of threads Ϛ running in the program 

and each thread 𝜉𝑖  runs along an instance 𝑊𝑖  of the program’s 

workflow, we denote the current state of 𝑊𝑖  as 𝑞𝑖 . For every event 

type 𝑎, and state 𝑞, we define two integer values 𝑁[𝑎] and 𝐶[𝑎, 𝑞]. 
Here, 𝑁[𝑎] denotes the number of times that event type 𝑎 in the 

training event traces cannot be inferred by the workflow instances 

in Ϛ during refinement. 𝐶[𝑎, 𝑞] records the number of workflow 

instances whose current state is 𝑞 when the input event 𝑎 cannot 

be inferred by the workflow instances. In addition, we denote the 

current input event as 𝑙 and the input sequence of events as 𝐿. 𝑓1 

and 𝑓2  are two flags used to indicate whether current workflow 

model 𝑾 should be refined by a loop decision or a fork decision. 

Their initial values are both false. 𝑾𝟏 and 𝑾𝟐 are two workflow 

models created by a procedure that we make a loop decision and a 

fork decision at the current decision point respectively, and all 

following decisions are fork decisions. The whole refinement 

process contains the following steps. 

Step 0. Let 𝐶 𝑎, 𝑞 = 0, 𝐾 𝑞 = 𝑎𝑛 𝑒𝑚𝑝𝑡𝑦 𝑠𝑒𝑡, and 𝑁 𝑎 = 0 for 

any 𝑎 ∈ (𝛴\ѳ)  and 𝑞 ∈ 𝑆 ; Set Ϛ = 𝑎𝑛 𝑒𝑚𝑝𝑡𝑦 𝑠𝑒𝑡 , and 𝑝ass =
true; 

Step 1. For an input training event trace 𝐿, we use the method 

presented in Appendix B to interpret the trace. Once there is an 

event 𝑙 in L that cannot interpreted, we increase 𝑁[𝑙] by 1, and set 

𝑝ass = false. At the same time, for each workflow instance 𝑊𝑘  in 

Ϛ,  we increase 𝐶[𝑙, 𝑞𝑘 ] by 1 where 𝑞𝑘  is the current state of 𝑊𝑘 .  

Step 2. For each event trace in the training set, we carry out the 

process of Step 1. 

Step 3. For each event 𝑎 with a non-zero value of 𝑁[𝑎], we find 

out a state 𝑞𝑡  that satisfies 𝐶 𝑎, 𝑞𝑡 = 𝑚𝑎𝑥𝑞𝑖∈𝑆(𝐶 𝑎, 𝑞𝑖 ), and add 

𝑎 to 𝐾[𝑞𝑡]. 

Step 4. If 𝑝ass = false , we find an arbitrary element 𝑞 ∈
𝐹𝑖𝑛𝑑_𝑅𝑜𝑜𝑡( 𝑝  𝑝 ∈ 𝑆 ∩ 𝐾[𝑝] ≠ ∅})  (refer to section 5.1), and 

find event 𝑎 that does not have any predecessor in 𝐾 𝑞 , then goto 

Step 5. Otherwise, goto Step 6.  

Step 5. We denote 𝑞′  as the preceding state of 𝑎 in the current 

workflow model 𝑾. If 𝑓1 = false, we set 𝑾’= 𝑾, 𝑓1 = true, and 

update 𝑾 by adding a shortcut transition from 𝑞 to 𝑞′ , else update 

𝑾 by setting 𝑞′  as a fork state. After that, back to Step 0. 

Step 6. If 𝑝ass = True and 𝑓1 = false, we mark all join states and 

terminate the execution of the algorithm. Otherwise, if 𝑓2 = false, 

we set 𝑾𝟏= 𝑾 and goto Step 7; else 𝑾𝟐=𝑾 and go to Step 8. 

Step 7. Set 𝑾= 𝑾’, 𝑓2 = true, and then back to Step 0. 

Step 8. Set 𝑓1 = 𝑓2 = false and 𝑾=  𝑾’. If 𝑐𝑝 𝑾𝟏 ≤ 𝑐𝑝 𝑾𝟐 , 

we update 𝑾 by adding a shortcut transition from 𝑞  to 𝑞′ ; else 

update 𝑾 by setting 𝑞′  as a fork state. After that, back to Step 0. 

11 APPENDIX B 
In the refinement procedure, we use the current workflow model 

to interpret the event traces. Here, interpretation means that, given 

a workflow model and an event trace, we try to explain how the 

events in the trace are generated one by one through running a set 

of threads of the workflow. More specifically, each thread has an 

active state at any point of time. We need to update the threads’ 

active states according to the workflow so as to interpret the event 

trace. This is a non-trivial problem when there are multiple con-

current threads. The complexity arises from that there may be 

several different choices to update the active states of the threads 

when we try to generate the same event. Furthermore, due to the 

Markov property of a workflow (refer to section 5.2), the current 

choice will influence the interpretations of following events in the 

same trace. In the paper, we adopt a dynamic programming based 

algorithm to find the optimal interpretation choice which can in-

terpret the events in the event trace as long as possible. In details, 

we define an active state vector to represent the active states of all 

the threads, and maintain a valid state set in which each element is 

an active state vectors. The valid state set is initialized as empty, 

and is updated as we interpret the events in the trace one by one. 

For a new input event, we remove the active state vectors from the 

valid state set, which can’t generate the new event. Then, we up-

date the active state vectors in the valid state set according to the 

workflow model so as to generate the event. Especially, when an 

active state vector can generate the event by different ways, we 

replace the vector by adding multiple state vectors according to 

different choices respectively. Sometime, there may be some up-

dated vectors are equivalent, i.e. for each state 𝑞, there are the 

same number of threads with active state 𝑞. For multiple equiva-

lent active state vectors, we only keep one in the valid state set. 

The pseudo code of the algorithm is presented in Algorithm 3.  

In Algorithm 3, the total number of state in the workflow is de-

noted as SN, and the ith state is denoted as Si; 1 ≤ 𝑖 ≤ 𝑆𝑁. We 

denote an active state vector as SV, which is an SN dimension 

vector. The ith element in SV, i.e. SV[i], represents the number of 

threads with active state of Si. The valid state set is denoted as SS. 

Algorithm 3. Pseudo Code of Event Trace Interpretation 

Inputs:  

𝑙: an event trace 

𝑇: the workflow model 

Output: 

𝑒 : the first event that can’t be interpreted 

𝑆𝑆 : the set of active state vectors that can interpret until 𝑒    

1. Set 𝑆𝑉 = [0, … ,0]; 𝑆𝑆 = 𝑆𝑉; 𝑆𝑆′ = 𝑆𝑆; 

2. for each event 𝑒 in 𝑙  

3.        𝑆𝑆′ = 𝑆𝑆; 

4.  for each  active state vector 𝑆𝑉 in 𝑆𝑆 

5.               𝑆𝑆′ = 𝑆𝑆′ − 𝑆𝑉; 

6.               for 𝑖 = 1 to 𝑆𝑁 

7.                      if 𝑆𝑉 i > 0 
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8.                             for 𝑗 = 1 to 𝑆𝑁 

9.                                    for each path 𝑝 from 𝑆𝑖  to 𝑆𝑗  

10.                                           if 𝑝 generates 𝑒 

11.                                                  𝑆𝑉′ = 𝑆𝑉; 

12.                                                  𝑆𝑉′  𝑗 = 𝑆𝑉′  𝑗 + 1; 

13.                                                  if 𝑝 is NOT forked or spitted  

14.                                                         𝑆𝑉′  𝑖 = 𝑆𝑉′  𝑖 − 1; 

15.                                                  endif  
16.                                                  𝑆𝑆′ = 𝑆𝑆′ ∪ 𝑆𝑉′ ;  

17.                                           endif 

18.                                    endfor 

19.                             endfor                             

20.                      endif  

21.               endfor               

22.        endfor  

23.        if 𝑆𝑆′ = ∅ 

24.               𝑒 = 𝑒; 

25.               𝑆𝑆 = 𝑆𝑆; 

26.               break; 

27.        endif       
28.        𝑆𝑆 = 𝑆𝑆′ ; 

29. endfor 

30. if 𝑆𝑆′ ! = ∅ 

31.        𝑒 = 𝑛𝑢𝑙𝑙; 
32.        𝑆𝑆 = 𝑆𝑆′ ; 

33. endif 

34. return 𝑒 , 𝑆𝑆 ; 

 

 

 


