
IP Route Lookups as String Matching

Austin Donnelly and Tim Deegan
University of Cambridge

Computer Laboratory
Cambridge, CB2 3QG, U.K.

E-mail: fAustin.Donnelly,Tim.Deegang@cl.cam.ac.uk
Tel: +44 1223 334600

Keywords: longest prefix matches, finite state automata

Abstract

An IP route lookup can be considered as a string match-
ing problem on the destination address. Finite State Au-
tomata (FSA) are a flexible and efficient way to match
strings. This paper describes how a routing table can be
encoded as an FSA and how, through a process of state
reduction, we can obtain an optimal representation. This
gives insights into the basic properties of the longest-prefix
match problem.

1. Introduction

Ever since the introduction of classless inter-domain
routing (CIDR), researchers have worked to optimise the
process of doing a longest prefix match on IP addresses to
discover the subnet to which they belong.

Many finely-honed schemes exist, the trend being to de-
sign data structures which fit entirely in a modern worksta-
tion’s caches [3], or algorithms which are easy to implement
in hardware [5].

Many of these schemes make use of tries, a construc-
tion similar to a tree but where the search key is encoded in
the path taken to reach a particular node, rather than in the
nodes themselves. The trie data structure seems intuitively
the correct representation to use, but no authors have actu-
ally proved that it is optimal. In this paper, we show how the
trie data structure arises naturally from the minimisation of
an FSA corresponding to a routing table. We do not offer a
faster route lookup scheme — instead we show that current
practice is the best possible one in a novel way.

This paper does not consider multi-dimensional range
matching or layer-4 routing. Some of these schemes use
tries as their basic building blocks [9], while others use
completely different techniques [10].

In Section 2, we outline the basic properties of the
longest prefix match problem; in Section 3.2 we show how
it can be re-stated in terms of an FSA string matching prob-
lem. Section 4 covers how the states in an FSA can be min-
imised, leading to the much-used basic trie structure with
route aggregation. Finally, Section 5 makes observations
about the problem in general, and suggests further optimi-
sations that may be possible.

2. Longest prefix matches

The basic IP route lookup problem can be stated as fol-
lows. We have a routing table R which maps each subnet
to a forwarding equivalence class (FEC). An FEC defines
how the router will handle a particular class of packets. It
may specify the outgoing queue / interface, link-layer next
hop details, etc. Given a packet with destination IP address
a we need to find the subnet in R the address is within, and
thus the FEC which dictates how the packet should be for-
warded (if at all). By saying an IP address is within a subnet,
we mean that the subnet is a prefix of the IP address. If R
includes multiple subnets which are all prefixes of a, we se-
lect the longest subnet in order to disambiguate the match.
This is why IP lookups are called longest prefix matches.

We can consider the subnets stored in a routing ta-
ble to be strings of binary digits. The network number
is the value of the string as a binary number, and the
length of the string gives the netmask length. For example,
the 16-bit subnet 128.232.0.0/161 would become the string
1000000011101000.

A trie can be used to store these subnet strings, allowing
common prefixes to be factored out as much as possible.
The edges of the trie are labelled with a member of the al-

1The number following the slash in the notationa.b.c.d/n gives the
number of contiguous 1’s in the netmask.

phabet the keys are over. As we use subnet strings as keys
this means each edge is labelled either with a 1 or a 0.

Nodes in a trie are marked if the labels on the path from
the root to that node form a valid key. Since we are storing
a routing table in the trie, we note the FEC the subnet is
mapped to in the node itself.

Figure 1 shows an example. Black nodes mark the end
of a valid path from the root. The trie in question stores the
prefixes 00, 010, 100, 1, and 111. Note that 1 is a prefix
of 100, so the address 101 would be matched by the shorter
prefix 1, while the address 100 would be matched by the
longer 100 prefix.

0 1
0 0

00

1

1

1

Figure 1. A trie storing 5 prefixes

If we are to distinguish between N subnets then there
must beN marked nodes in the trie, and the minimum depth
of the trie will be O(log(N)) nodes. We expect that in ac-
tual fact the trie will be deeper since few internal nodes will
be marked, and the trie will not be balanced.

To verify this assumption, a trie was built from data taken
from the route-views project2 on August 22 2000. It shows
that the trie is in fact quite unbalanced, mainly due to the
multicast address space (binary prefix 1110) being sparsely
populated. The minimum and maximum path lengths in the
trie were 8 and 32, corresponding to the shortest and longest
netmasks encountered in the routing table. There were 66
routes to individual machines (i.e. with a netmask length of
32).

The full path length distribution is given in Figure 2. The
path length is on the x-axis, and the number of occurrences
in the route database is plotted on a log scale on the y-axis.
From this, it can be seen that just over 65% of paths in the
trie are either 24 or 16 edges long. Clearly, this is not a flat
distribution of strings in the trie, so it should be possible
to take advantage of this skew in the distribution in order
to minimise the number of pairwise comparisons needed to
be made. The authors of [10] used this distribution to their
advantage by checking the hash tables for 16 and 24 first,
before progressing onwards.

As a somewhat unrelated aside, looking back at route-
views snapshots from a little over a year ago shows a gen-
eral increase in the number of small networks (/18 to /24

2http://www.antc.uoregon.edu/route-views/
We filtered out all routes from one ISP who was inadvertently advertis-

ing spurious prefixes. In particular, they claimed connectivity to 60 con-
tiguous class A (/8) networks. The addresses in question are reserved by
IANA, not owned by the ISP. Furthermore, they are unroutable at other
major exchanges. We have contacted the ISP to determine the cause.

in particular), and a slight decrease in the number of large
networks (e.g. /8), presumably due to large networks be-
ing split to re-use the addresses in smaller netblocks. 24-bit
networks are the fastest growing netmask length, with over
17000 new entries of that length appearing during the pe-
riod from May 1999 to August 2000 – almost a factor of
seven more than the next largest-growing size (/23).

1

10

100

1000

10000

100000

0 5 10 15 20 25 30 35
oc

cu
re

nc
es

 in
 8

86
60

 r
ou

te
s

netmask length

Netmask length distribution

Figure 2. Netmask length distribution

3. Mapping to an FSA

The IP route lookup problem is similar to a few other
problems. So far, it has been stated in terms of finding the
longest possible match. It can also be re-stated as follows:
subnets are intervals on the integers. IP addresses are inte-
gers. Doing a route lookup is finding the smallest interval
a particular integer is within. This is the approach taken
in [6], in which a lower bound of
(log log(N)) pointer
dereferences is proved. It should be noted that [6] deals
with a simplified problem, since they do not allow intervals
to enclose other intervals. The authors of [5] generalise this
technique to multiple dimensions with arbitrary overlaps.

Mapping a faulting virtual address to a page table entry
is also a similar problem, where the most specific matching
entry should be used.

Another way of stating the problem is to map it onto the
string matching problem. By creating an FSA from the rout-
ing table then minimising it, a comparison trie is built which
includes optimisations specific to the particular routing ta-
ble in question. The remainder of this paper shows how
such automata may be constructed, and how their minimi-
sations degenerate into binary tries.

3.1. Routing table representation

We introduce � = f0; 1g, the alphabet over which ad-
dresses and subnets are strings. F is the set of all FECs,

plus a special FEC ! used to denote the lack of routing in-
formation – packets “forwarded” according to policy ! are
simply dropped, since they are unroutable. Our routing ta-
bleR is defined as a set of 2-tuples of the form (�; f), where
� 2 �? is a subnet string, and f 2 F is the FEC associated
with the subnet �. R may contain a default route ("; fd),
where " is the empty string and fd is the default FEC.

There are n = jRj routing table entries, and for con-
venience we refer to the ith routing table entry as (�i; fi),
where 0 � i < n. We define �i[j] 2 � to be the jth
character in the ith routing table entry’s subnet string if
0 � i < n ^ 0 � j < length(�i), and ? otherwise. Note
that i and j count from 0, not 1.

3.2. FSA construction

A non-deterministic FSA can be represented as a 5-tuple
(S;�; I; A; T), where S is the finite set of states, � the fi-
nite alphabet, I � S the set of initial (or start) states, A � S

the set of accepting states, and T � S���S, the transition
relation. Our FSAs include an extra property, W 2 A � F ,
a total function which maps every accepting state to a FEC
in R.

The FSA is said to accept a string x if, starting in any
state i 2 I, it consumes successive symbols of x moving
from state to state according to the transition relation and is
left in a state a 2 A (i.e. an accepting state) with no further
symbols of x remaining. If at any stage there is no possible
transition for the input symbol, then the stringx is normally
considered rejected by the FSA.

For easy of reference, we name states sti;j where both i
and j are cardinals. Clearly it is possible to encode names
of this form as a single cardinal, for example sti;j = 2i�3j.
The non-deterministic FSA M corresponding to the routing
table R is then composed of:

� the alphabet � = f0; 1g,

� the set of accepting states A = fsti;j : (�i; fi) 2 R ^
j = length(�i)g,

� the set of states S = fsti;j : �i[j] 6=?g[A,

� the set of initial states I = fsti;0 : (�i; fi) 2 Rg,

� the forwarding mapping W = f(a; f) : a 2 A ^
(9i; j : a = sti;j) ^ (�i; fi) 2 R ^ fi = fg.

� and the transition relation T = f(qs; c; qd) : 9i; j :
qs = sti;j 2 S ^ c = �i[j] 6=? ^qd = sti;j+1 2 Sg.

As an example, consider the routing table in Figure 3.
This table contains five subnet prefixes and their associated
FECs. Each individual bit is addressable as �i[j], so for ex-
ample �0[0] has the value 0, while �2[0] is 1. Notice subnets

2, 3 and 4 are all forwarded according to the same policy:
FEC 1. Later, we show how these routes may be aggregated
into a single entry.

0 0
0 01

1 0 0
1 1 1

subnet 0

subnet 1

subnet 3

subnet 4

1subnet 2

(, fec 2)

, fec 0)

, fec 1)

, fec 1)

, fec 1)

(

(

(

(

Figure 3. An example routing table

Every bit in the routing table becomes a transition into
a fresh state in the FSA being constructed, as shown in
Figure 4. Accepting states are shown with an extra cir-
cle around them; initial states have a wedge to their left.
Note that this is a single non-deterministic FSA with multi-
ple start states – symbol matching occurs in parallel.

0

01

0,1 st0,2st

st1,1 st1,2 st1,3

00
st3,1 st3,2 st3,3

11
st4,1 st4,2 st4,3

st2,1

0

0

0,0st

st1,0

st2,0
1

st3,0
1

st4,0
1

Figure 4. Initial FSA, M

This non-deterministic finite state machine can be used
to do IP route lookups. The destination IP address of an
incoming packet is matched from MSB to LSB and if an
accepting state is reached, the packet has been successfully
classified. Since there is one accepting state per subnet, the
state can be mapped usingW to the forwarding equivalence
class the packet belongs to. Failed matches are rejected as
unroutable.

There are 4 problems with the automaton as constructed:

P1 It is non-deterministic, and therefore must be deter-
minised before it can be run.

P2 It matches the strings in the routing table exactly, how-
ever the strings are meant to be prefixes. We assume
that every symbol in the input string must be consumed
by the FSA in order to match.

P3 It does not “backtrack” on failure to find a potential
previous match. In our example, this means it would
reject the string 110, when it should accept it as being
part of subnet 2.

P4 Because minimisation only preserves the language
matched, accepting states may be merged together.
This is a problem since we rely on knowing which ac-
cepting state caused an address to be matched in order
to find the forwarding information from W .

The process of determinisation identifies states which are
indistinguishable and merges them into a single new state.
Two states q0 and q1 are indistinguishable if an input string
leading from an initial state to q0 could also lead from an
initial state to q1. In the example in Figure 4, states st0;1
and st1;1 could be merged, as could states st2;1, st3;1 and
st4;1. Since q0 and q1 may themselves be initial states, all
initial states are equivalent, and may be merged. The result
of determinising our example FSA is shown in Figure 5. A
more formal definition of determinisation is given in Ap-
pendix A.

0

0
0,1

st0,2
st
st1,1

st1,2 st1,3

00
st3,2 st3,3

11
st4,2 st4,3

0

1

10,0st
st1,0
st2,0
st3,0
st4,0

st2,1
st3,1
st4,1

Figure 5. FSA after determinisation

P2 and P3 are really aspects of the same problem: the
transition relation is not total. By ensuring that all states
have a transition defined for each symbol in � we make the
transition relation total, and there is no ambiguity concern-
ing matches.

P4 may be solved by protecting the accepting states from
being merged as described in Section 4.1. This can be done
at the same time as the transition relation is made total.

4. Minimisation

In a determinised FSA each non-accepting state corre-
sponds to a bit-compare operation, so in order to minimise
the number of pairwise comparisons needed to classify a
packet, the number of states in the FSA for a routing table
should be minimised.

Minimisation of an FSA is a topic already covered amply
in the literature [4], with [11] providing an especially clear
categorisation of the different algorithms available.

There are two main ways of minimising an FSA: Brzo-
zowski’s algorithm [2] and those based on subset construc-
tion techniques, effectively calculating an equivalence re-
lation between the original states and the minimised FSA’s
states such that states that are members of the same equiva-
lence class are indistinguishable.

Any means of minimisation is acceptable, indeed, the
entire reason for encoding IP route lookups as an FSA is
specifically to reduce the IP route lookup problem to a pre-
viously solved one.

4.1. Protecting accepting states

Since minimisation preserves only the language ac-
cepted, we must encode the forwarding information present
in W in the language itself. We do this by extending the
alphabet to include extra symbols we call labelling letters.
Each member f of F has an associated labelling letter l,
which we write as l = L(f). We also add some extra states:
�, which will eventually become the only accepting state in
the automata; and a state for each f 2 F which “eats” extra
0 or 1 symbols, written E(f). These eat-states are needed
to correctly match entries in the routing table as prefixes.

We will transform each accepting state into two states
connected by the labelling letter appropriate to the old ac-
cepting state. The first state is the eat-state for the FEC in
question, the second is always �. In effect, we are changing
the language we want to accept from IP addresses to IP ad-
dresses each appended with the labelling letter appropriate
to its FEC. By tagging the old accepting states with labelling
letters, we only allow the merging of two paths through the
FSA if they both lead to the same FEC (i.e. they are indis-
tinguishable from a routing point of view).

More precisely, the eat-states are defined by extending
the determinised M to produce M 0 as follows:

� �0 = � [fL(W (a)) : a 2 Ag,

� S0 = S [f�g [fE(f) : f 2 Fg

� I0 = I,

� A0 = A,

� W 0 = W ,

� T 0 = T [Tloop [Tlabel.

where Tloop = f(E(W (a)); c; E(W (a))) : a 2 A ^ c 2
f0; 1gg and
Tlabel = f(E(W (a));L(W (a)); �) : a 2 Ag:

Tloop addresses problem P2 (match as prefixes) by
adding transitions from all the eat-states looping back to

themselves on symbols 0 and 1. Tlabel adds a transition
from each eat-state on its associated labelling letter to the
� state, in order to ensure that the final symbol in every ac-
cepted string is a labelling letter.

To solve problem P3 (longest prefix match), we apply
a depth-first walk of M 0 to generate a new FSA M 00 with
additional transitions which fully specify the behaviour of
the automaton on failure to match. This depth-first walk is
defined by the recursive algorithm given in Figure 6.

1: totalise(f, q):
2: if q 2 A then
3: f = W (q)
4: endif

5: add (q;L(f); �) to T

6: for c in f0; 1g do
7: if 9(q; c; qd) 2 T then
8: totalise(f, qd)
9: else
10: add (q; c; E(f)) to T

11: done

Figure 6. Algorithm to extend transition rela-
tion

The totalise algorithm keeps the current best-
matching FEC f which is used to fill in missing transitions.
It also keeps track of q, the current state it is processing. The
algorithm is started with q set to the start state of the FSA
and f set to the special FEC ! used to denote an unroutable
packet.

As the totalise algorithm walks the FSA graph, f is
updated each time an accepting state is traversed, and be-
cause the walk is depth-first f is always the longest match-
ing FEC. It is used in line 10 to add missing transitions
out of the current state into the appropriate eat-state for
the longest matching FEC, where extra 0s and 1s may be
safely consumed before finally matching on the labelling
letter. Line 5 ensures the match may terminate early.

After being processed by totalise, the FSA is
changed so the only accepting state is �.

To summarise: the routing table R is encoded as an
FSA by building the naı̈ve non-deterministic FSA M as de-
scribed in Section 3.2. M is then determinised, and the new
states � and the eat-states added as specified above, giving
M 0. Finally, the totalise algorithm is run on the au-
tomaton, and � made the sole accepting state to produce
M 00. Figure 7 shows how our example looks at this stage.
This (ugly-looking) FSA is now safe to minimise.

st

st

0

0
0,1

st0,2
st
st1,1

st1,2 1,3

00
st3,2

11
st4,2 st4,3

0

1

1

0,0st
st1,0
st2,0
st3,0
st4,0

st2,1
st3,1
st4,1

αL()ω

L()ω

E()

0

1

fec1

1 0
1

0

0
1

3,3

1
L()ω

L()ω

E()

0

1

fec0

E(ω)

0

1

0
1

E()

0

1

fec2

0
1

L()fec1

L()fec2

L()fec2

L()fec0

L()fec0

L()fec1
L()fec1

L()fec1

L()fec1

L()fec1

Figure 7. FSA after protection, M00

4.2. Minimisation details

The FSA M 00 resulting from the procedures given in
Section 4.1 is deterministic but not total (remember the al-
phabet has been grown). Any minimisation algorithm may
be used, but for concreteness, we use Brzozowski’s algo-
rithm [2]: determinise, reverse, determinise again, and fi-
nally reverse again, arriving at M 000.

Figure 8 shows the result of minimising our example.
The state names have been mostly removed since their rela-
tion to the original names present in Figure 4 is tenuous.

1

α

0

1

0

L()fec0

0

1
L()fec1

L()ω L()ω

0

1

L()fec2

L()ω

0

0

1L()ω

1
0

1

Figure 8. FSA after minimisation, M 000

4.3. Removal of protection

Finally, now that M 00 has been minimised, the labelling
letters can be removed to yield a deterministic automaton

M 0000 with the original alphabet, and a correct W 0000 set map-
ping accepting state to FEC.

This is done as follows:

� �0000 = f0; 1g,

� S0000 = S000 � f�g

� I0000 = I000,

� A0000 = fq : (q;L(f); �) 2 T 000 ^ f 2 F 6= !g,

� W 0000 = f(q; f) : (q;L(f); �) 2 T 000 ^ f 2 F 6= !g,

� T 0000 = T 000 � f(qs; c; qd) : qd = �g.

That is, a state is accepting if there was a labelling letter
transition out of it (and it wasn’t L(!)). For each accepting
state, the W 0000 relation gives the FEC associated with that
state by using the labelling letter to find out which it was.

This produces the final, optimal, FSA M 000. For our ex-
ample, the result is shown in Figure 9.

1

0

1

0

0

1

0

1

0

0

1

1
0

1

Figure 9. Final optimal FSA, M 0000

M 0000 is optimal because the minimisation algorithm pro-
duces an FSA with provably minimal number of states
(see e.g. [11] for a proof). Since in our framework, each
state corresponds to a bit-compare, we have shown the min-
imal sequence of bit compares needed to classify an IP ad-
dress. Notice the strong similarity to a trie data structure. In
fact, minimisation of an FSA as described here seems to be
equivalent to a trie with route aggregation performed: the
entries in Figure 3 for subnets 2, 3, and 4 have been merged
since they share a common prefix and all route to the same
FEC.

5. Observations

We have considered the case where only a single bit may
be compared at a time. Major speedups are possible by
comparing multiple bits in parallel, as done for example in

the LC-tries proposed in [7] and in the controlled prefix ex-
pansion scheme [8]. This would correspond to expanding
the alphabet to include symbols composed of multiple bits,
e.g. � = f00; 01; 10; 11g. Being able to change the al-
phabet on a per-node basis would give the ability to capture
the semantics of an LC-trie, where the branching factor is
potentially different at each level in the trie.

If all transitions out of a state lead to the same destination
state, this indicates that the bit being tested at this position
in the IP address is not significant in determining the FEC.
This information may be useful when generating hash func-
tions from IP address to FEC, since including such bits in
the hash does not help in discriminating between FECs. In
Patricia-style trie representations [1], these bits are ignored
by the “skip” property.

We note that the constructed matcher is tailored to a par-
ticular routing table. The concept of taking advantage of the
structure inherent in a particular routing table is a powerful
one.

Another technique inspired by the comparison tree re-
sulting from the minimised FSA might be a hardware im-
plementation. By building the comparison tree in a field
programmable gate array (FPGA), data can be switched at
high speed. Each node in the FSA is implemented as a one-
bit decoder, and the routing table is expressed in the inter-
connections between these decoders. As each state in the
FSA is a test of a particular bit in the destination IP address,
the appropriate bit is applied to the decoders at each level
in the tree, thus selecting a path through the tree to the out-
put. There is a per-packet setup delay while the destination
address is presented to the comparison tree and the gates
settle to enable the appropriate path through the tree to the
output, but after this the remainder of the packet data can be
sent at a rate limited only by the propagation delay through
the tree. When the routing table changes the FPGA needs to
be re-programmed with the new tree. Sadly, current FPGA
technology is unsuitable for this sort of design due to limi-
tations on their internal interconnection networks; this does
not preclude a custom FPGA designed with this use in mind.

Further work includes investigating other interesting
transforms on the routing table while it is encoded as an
FSA.

6. Conclusion

We have shown how the process of doing an IP route
lookup may be re-phrased as a string-matching problem.
We have applied well-known results from the field of fi-
nite state automata to show how the optimal string matcher
specialised for a routing table may be constructed. We note
the similarity to binary tries currently in use. This gives us
confidence that binary tries are in fact the best way of doing
IP route lookups if restricted to single bit compares.

We do not consider using FSAs themselves for route
lookups to be a practical technique – the minimisation pro-
cess tends to be exceedingly expensive, O(2jSj). For a re-
cent backbone routing table with around 68000 entries, jSj
is approximately 205000 after determinisation, leading to
prohibitively expensive runtime costs. The value of the idea
lies in the insights observable from this novel perspective
on the inherent nature of the longest prefix match problem.

A. Appendix: Determinisation

Given a non-deterministic FSAM = (S;�; I; A; T), the
deterministic FSA M 0 = (S0;�0; I0; A0; T 0) which accepts
the same language as M is defined as follows:

� S0 = fQ : Q � Sg. The new set of states is the
powerset of the original set of states.

� �0 = �. The alphabet is unchanged.

� I0 = fIg. The new start state is the set containing the
set of start states.

� A0 = fQ 2 S0 : 9q 2 Q ^ q 2 Ag. A new state is
accepting if any of its constituent states was accepting.

� T 0 = f(Q0
s; c; Q

0
d) : Q0

d = fqd : 9qs 2 Q0
s ^

(qs; c; qd) 2 Tgg. There is a transition from Q0
s to Q0

d

in the new FSA if there is a transition in M from any
constituent state of Q0

s on the same symbol, in which
case Q0

d is composed of all the states reachable from
Q0

s on consuming input symbol c.

This is called subset construction, since the states in the
new FSA M 0 are subsets of the states inM . This means that
determinisation usually results in M 0 having many more
states than M .

References

[1] J. C. Bays. The Complete PATRICIA. PhD thesis, University
of Oklahoma, 1974.

[2] J. A. Brzozowski. Canonical regular expressions and mini-
mal state graphs for definite events. In Mathematical theory
of Automata, volume 12, pages 529–561. Polytechnic Insti-
tute of Brooklyn, Polytechnic Press, N.Y., 1962.

[3] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink. Small
Forwarding Tables for Fast Routing Lookups. Computer
Communication Review (ACM SIGCOMM’97), 27(4):3–14,
Oct. 1997.

[4] J. E. Hopcroft and J. D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley,
1979.

[5] T. V. Lakhsman and D. Stiliadis. High-Speed Policy-
based Packet Forwarding Using Efficient Multi-dimensional
Range Matching. Computer Communication Review (ACM
SIGCOMM’98), 28(4):203–214, Oct. 1998.

[6] K. Mehlhorn, S. Näher, and H. Alt. A lower bound on the
complexity of the union-split-find problem. SIAM J. Com-
put., 17:1093–1102, 1988.

[7] S. Nilsson and G. Karlsson. Fast address lookup for internet
routers. In International Conference of Broadband Commu-
nications, 1998.

[8] V. Srinivasan and G. Varghese. Fast address lookups using
controlled prefix expansion. ACM Transactions on Com-
puter Systems (TOCS), 17(1):1–40, Feb. 1999.

[9] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel. Fast
and Scalable Layer Four Switching. Computer Communi-
cation Review (ACM SIGCOMM’98), 28(4):191–202, Oct.
1998.

[10] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner. Scal-
able High Speed IP Routing Lookups. Computer Commu-
nication Review (ACM SIGCOMM’97), 27(4):25–36, Oct.
1997.

[11] B. W. Watson. A taxonomy of finite automata minimization
algorithms. Technical Report 93-44, Faculty of Mathemat-
ics and Computer Science, Eindhoven University of Tech-
nology, 1993. ISSN 0926-4515.

