
Little Rock: Enabling Energy Efficient Continuous Sensing
on Mobile Phones

Bodhi Priyantha, Dimitrios Lymberopoulos, and Jie Liu
Networked Embedded Computing Group

Microsoft Research
Redmond, WA

{bodhip, dlymper, liuj}@microsoft.com

ABSTRACT
Although mobile phones are ideal platforms for contin-
uous human centric sensing, the state of the art phone
architectures today have not been designed to support
continuous sensing applications. Currently, sampling
and processing sensor data on the phone requires the
main processor and associated components to be con-
tinuously on, creating a large energy overhead that can
severely impact the battery lifetime of the phone. In
this paper, we present the design and implementation
of Little Rock, a novel sensing architecture for mobile
phones, where sampling and, when possible, process-
ing of sensor data is offloaded to a dedicated low-power
processor. This approach enables the phone to perform
continuous sensing at a low power overhead. We high-
light and discuss in detail various design choices, trade-
offs and lessons learned. Using a pedometer application
as an example, and by integrating Little Rock into an
actual phone, we show that the proposed sensing archi-
tecture can be three orders of magnitude more energy
efficient compared to the normal approaches.

1. INTRODUCTION
The ubiquity, mobility, and connectivity of cell phones

make them an ideal platform for human-centered sens-
ing applications. Phones today follow their users to al-
most every single activity they engage during the course
of the day. In addition, current high-end smartphones
have already been transformed to complex sensing de-
vices since they have a rich set of built-in sensors (e.g.
accelerometer, light, compass, pressure sensors and more)

and a powerful processor for information processing.
This allows phones to continuously sense their users and
the environment they interact with, understand this en-
vironment and use this understanding to provide mean-
ingful services. Several recent research projects, such as
participatory sensing [6], sound sensing [12], and traf-
fic sensing [5], have already used cell phones as the key
sensing components in their systems.

However, continuous sensing, required by many phone-
based applications, is challenging under the current phone
architecture. Take an elderly assistance scenario as an
example. A phone carried by an elderly person can be
used as a pedometer to monitor her exercise and send
daily reports to her health database. In addition, it can
also detect when the person has fallen on the floor, and
call emergency assistance immediately. A smart phone
equipped with an accelerometer has the necessary ca-
pabilities to serve the purpose. But the challenge is on
battery life. Designed mainly for bursty user interaction,
current smart phones use the main processors to control
the sensors directly. Continuous sensing implies that the
main processor has to stay on all the time. These pro-
cessors typically consume hundreds of mW when they
are active (c.f. section 2) even when the screen and
radios are not on. As a result, continuous sensing ap-
plications drastically reduce battery lifetime into a few
hours, jeopardizing the usability of the phone.

One may think that dynamic voltage and frequency
scaling techniques (DVFS) on phone processors have al-
ready solved processor energy management problems.
However, due to the complexity of the processors used in
today’s mobile devices, static power consumption of the
processor remains high (approximately 200mW when-
ever the processor is not in the sleep mode). In addi-
tion, for the correct operation of the phone several other
components have to be operational, increasing phone’s
overall power consumption.

Another approach is to use an separate sensing mod-
ule that employs its own sensors, processor and a wire-
less radio for interfacing to the phone. For example,

[10, 14] uses a bluetooth radio to interface a powerful
sensor board to the phone. This approach is ideal when
the sensor has to be placed on a specific location due to
physical properties. For example, EKG sensors have to
be attached to human body. On the other hand, contin-
uous bluetooth communication can be energy consum-
ing, and the main processor still needs to wake up often
to exchange bluetooth packets. In addition, the user has
to manage, carry and charge multiple devices which can
be cumbersome.

In this paper, we explore the direction of building a
small, energy efficient co-processor into the phone, and
offloading continuous sensing tasks to the small proces-
sor. All the available sensors on the phone are con-
nected to the small processor enabling the phone to
transition to sleep mode while the co-processor is con-
tinuously acquiring and processing sensor data at a low
power overhead. Since the two processors are tightly
integrated, data between them can be exchanged fast
and on demand because the small processor can wake
up the main processor at any time and the main pro-
cessor can request access to sensor data acquired by the
small processor whenever it needs to.

Designing such an architecture is challenging in sev-
eral fronts. First, the low power operation of the archi-
tecture is critical. The additional hardware components
introduced to the phone (co-processor, sensors and sup-
porting circuitry) must have the minimum possible im-
pact on the power signature of the phone to ensure long
battery lifetime. Second, the design should have mini-
mum impact on other aspects of the phone design. Mod-
ern phones are built from OEM modules to take advan-
tage of mass production efficiency. It is desirable not to
break this design model. Third, the ability to configure
and reprogram the sensing architecture is vital. Its role
might change over time and therefore the phone should
be able to easily reconfigure or even reprogram the core
functionality of the sensing architecture.

Working towards addressing these challenges, we have
designed and implemented Little Rock, shown in Fig-
ure 1, a sensing platform that can be seamlessly inte-
grated into a smartphone. Little rock is built around
an MSP430F5438 processor and a number of sensors
including accelerometer, gyroscope, compass, pressure
and temperature sensors. Our sensing platform con-
sumes 12.9 mW when active, approximately 60 times
less energy compared to the main processor on a typical
smartphone. When the phone is in the sleep mode the
combined power consumption of the phone and the Lit-
tle Rock is only 7.87mW. By integrating Little Rock into
an actual smartphone (Figure 1(b)) and implementing
a sample continuous sensing application, we show that
the proposed architecture can be three orders of mag-
nitude more energy efficient compared to the current

(a) (b)

Figure 1: (a) The Little Rock sensing platform
(b) The Little Rock board attached to one of our
prototyping smartphones.

approaches while not significantly shortening phone’s
battery lifetime.

The rest of the paper is organized as follows. Sec-
tion 2 highlights the major bottlenecks of the current
phone sensing architectures and motivates the need for
offloading sensor sampling and processing from the main
processor of the phone. In Section 3 we introduce the
Little Rock architecture and describe in detail its design,
implementation and ability to be seamlessly integrated
into and configured by a typical phone. In Section 4
we evaluate the proposed architecture using a simple
continuous sensing application and compare the energy
efficiency of Little Rock to that of a high end smart
phone. Section 5 presents the related work and Sec-
tion 6 concludes the paper.

2. MOTIVATION
Battery lifetime is one of the most critical design pa-

rameters for a phone. Every new feature introduced,
either it is hardware or software, has to minimize its
impact on the lifetime of the phone. Consequently,
enabling continuous sensing on mobile phones requires
that both, the hardware sensors required and the neces-
sary software for collecting and processing sensor data,
have the minimum possible impact on the power sig-
nature of the phone. Table 1 shows the overhead in-
troduced by popular types of sensors in the power con-
sumption of a typical smartphone, the HTC Touch Pro
running Windows Mobile 6.1. The power overhead for
every sensor is expressed as a percentage of the power
consumed by the HTC phone in 3 representative power

Sensor HTC Touch Pro State
Active (1680mW) Idle (399mW) Sleep (7.56mW)

Accelerometer (0.56mW) 0.03% 0.14% 7.4%

Temperature (0.21mW) 0.0125% 0.053% 2.78%

Barometer (1.68mW) 0.1% 0.42% 22.2%

Compass (2.24mW) 0.13% 0.56% 29.63%

Total 0.2725% 1.173% 62.01%

Table 1: Overhead of different types of popular sensors on the overall power consumption of an HTC
Touch Pro phone in 3 representative power states.

(a) (b)

Figure 2: Current drawn from the HTC Touch Pro while (a) sampling the accelerometer at a rate of
50 samples per second and (b) performing a full sleep cycle.

states: Active, Idle, and Sleep. In the Active state, the
phone is exercising its CPU by running random com-
putations while simultaneously downloading data over
the 3G radio. In the Idle state the phone is turned on,
but there is no load imposed on the CPU beyond the
background services introduced by the operating sys-
tem. Also, no data is being sent or received over the
3G radio. In the Sleep state the phone is in sleep mode.
When all the sensors listed in Table 1 are powered up,
the overall power consumption of the phone at the Ac-
tive and Idle states increases by approximately 0.3%
and 1% respectively. In the case of the Sleep state the
combined power consumption of the phone and the sen-
sors is approximately 12mW, which is comparable to
the active power consumption of the processor in the
MicaZ low power sensor node architecture.

Even though the continuous operation of the hard-
ware sensors comes at a very small power overhead, the
process of accessing and processing sensor data on cur-
rent state-of-the-art phones might be extremely expen-
sive. The reason is that for every sensor sample acquired
by the phone, the main processor and associated com-
ponents have to be active, creating a large energy over-
head. To better demonstrate this, consider the power
consumption traces acquired using an HTC Touch Pro
phone when the phone is in Sleep, and Idle states as
well as when the phone is continuously sampling the

built-in accelerometer at a rate of 50 samples per second
(Figure 2). Note that when sampling the accelerometer
the overall power consumption of the phone jumps to
approximately 756mW compared to the 7.56mW and
399mW of power consumption of the phone in the Sleep
and Idle states respectively. This increase in power con-
sumption is due to the fact that the CPU of the phone
has to wake up in order to acquire and store every sin-
gle accelerometer sample. In practice, this means that
for every sensor sample the phone has to consume ap-
proximately 756mW, which is two orders of magnitude
higher than the power consumed by the phone in the
Sleep state.

Besides increasing the power consumption due to sam-
pling, continuous sensing introduces another major bot-
tleneck by essentially preventing the phone from moving
to its Sleep state. The reason can be clearly seen in Fig-
ure 2. The phone needs approximately 900ms to move
to and 270ms to exit from the Sleep state. As a result, a
full transition between the phone’s Sleep and Idle states
takes more than a full second. However, when contin-
uous sampling is required even at very low sampling
rates, such as 2 samples per second, the phone does
not have enough time to transition to and recover from
the Sleep state and still acquire the next sensor sam-
ple on time. As a result, in order to meet the timing
requirements for continuous sensing the phone must be

Glue +Reset
Logic

Phone
Interface

Main
Proc.

Processor Module

Slave
Proc.

SPI

Flash

GPIO

Digital Sensor Module

3-axis
Compass

Temp. Pressure
3-axis
Accel.

Analog Sensor Module

Z
Gyro

A/D
X-Y

Gyro
SPI

I2C

Little Rock

Phone’s
Battery

Power
Circuitry

Figure 3: Overview of the Little Rock architecture

constantly on consuming approximately 756mW. Given
a typical smartphone battery capacity of 1340mAh, an
HTC Touch Pro that continuously samples its accelerom-
eter would last for approximately 6.7 hours, without
taking into account any real usage of the phone (phone
calls, sms send/receive, 3G data traffic etc.). When con-
sidering the actual usage of the phone, the battery life-
time could be easily reduced to 3 hours or less depending
on the particular type of user.

To address these challenges, we introduce the Lit-
tle Rock architecture. Little Rock enables energy effi-
cient continuous sampling on phones by offloading sen-
sor sampling and processing on a low power processor.
By decoupling the main processor of the phone from the
sensors, we enable most parts of the phone to move to
a low power Sleep state, while the low power processor
is continuously sampling and processing sensing data at
a low power overhead. The next section describes in
detail the Little Rock architecture.

3. LITTLE ROCK
Figure 3 provides an overview of the Little Rock ar-

chitecture. A low power processor is directly interfaced
to a set of digital and analog sensors over the I2C and
SPI serial interfaces. The sensor data acquired by the
processor can be either stored immediately on the on-
board flash memory or first filtered and processed by
the main processor.

We highlight four features in this design:
Transparency: In the case where the phone needs

direct access to one of the sensors on Little Rock, the
main processor will act as a bridge between phone’s pro-
cessor and the actual sensor, enabling phone’s processor
to directly access any sensor through the SPI bus.

Power independence: Little Rock is powered di-
rectly from the battery and not from the internal power
electronics of the phone. Thus, the majority of the main
power circuitry can be turned off when the phone is in

the sleep mode, and Little Rock can continue to be func-
tioning, a key requirement for continuous sensing.

Interrupt: There might be cases where the sensing
data collected by Little Rock requires that a specific ser-
vice or action on the phone be triggered. For instance,
in the case of the elderly assistance application men-
tioned in Section 1, when the system detects that the
elder person has fallen, the phone might have to make
an emergency call or send an e-mail. In order to achieve
this functionality, Little Rock’s main processor is able
to interrupt and wake up the phone using a GPIO pin.
The phone is then able to recognize the source of the
interrupt and query Little Rock to identify the exact
reason of the wake up event.

Re-purposing: Little Rock has two processor, a main
and a slave.The secondary slave processor can be used
by the phone to re-program the Little Rock ’s main pro-
cessor. This functionality can be particularly useful
when the user installs a new sensing application on her
phone, that requires a very specific “device driver” or
types of processing on the sensor data. In this scenario,
the phone can leverage the secondary processor to repro-
gram the main processor on the Little Rock board and
enforce the new application’s processing requirements.

In the rest of this section, we describe the Little Rock
architecture and discuss the major design tradeoffs in
detail.

3.1 Building Components
The Little Rock platform consists of four functional

modules: the processor, digital sensor, analog sensor
and phone interface components.

3.1.1 Processor Module
The processor module consists of an MSP430F5438

processor with 16kB RAM and 256kB flash memory.
The current version of the processor can be clocked up
to 18MHz. This processor also supports larger number

Function Component number Operating current µ A Sleep current µ A Manufacturer

3-axis accelerometer BMA150 200 1 Bosch
Pressure sensor BMP085 600 0.1 Bosch
3-axis compass HMC5843 800 2.5 (dual supply) Honeywell

110 (single supply)
Temperature Sensor STTS75 75 1 ST Micro
X-Y axis Gyroscope IDG-500 7000 7000 Invensense
Z axis Gyroscope ISZ-500 4500 4500 Invensense

Table 3: Properties of various sensors on Little Rock

Name Desciption

SPI 4-wire SPI bus with the phone as the
bus master

GPIO A phone processor GPIO pin. Can be
configured as input or output.
Can be used to interrupt the phone

VIO 1.8V supply for the internal phone IO.
PowerSW A pin similar to phone’s power switch.

Conecting this pin to ground
simulates pressing the power button.

VBATT Phone’s battery voltage
Ground Ground connection

Table 2: Details of the phone expansion connec-
tor

of parallel and serial IO, enabling us to attach additional
sensors, other than those that are already built in to
Little Rock. This module also has a smaller MSP430
processor (MSP430F2013) for programming the main
processor through the attached mobile phone. The pro-
cessor module also contains an 8MB flash storage, and a
potential divider for measuring phone battery voltage.

3.1.2 Digital Sensor Module
The digital sensor module contains a temperature sen-

sor, a 3-axis accelerometer, a barometer, and a 3-axis
compass module connected to the main processor by an
I2C bus. These sensors are powered from a separate
voltage regulator to reduce the impact due to digital
switching noise from the processor. Table 3 lists the
main characteristics of the sensors on Little Rock.

3.1.3 Analog Sensor Module
The analog sensor module consists of sensors that

have analog outputs. In particular, this module contains
an X-Y axis gyroscope and a Z axis gyroscope that col-
lectively provide 3-axis gyroscopic data. To reduce the
impact due to processor generated digital noise, and to
provide better resolution than what is possible with the
built in A/D converter of the processor, we used 3 ex-
ternal 16 bit A/D converter to digitize the gyroscope
output. To enable simultaneous sampiing of all 3 Gyro-
scope channels and minimize the data acquisition delay
we used 3 separate A/D converts.

2.8V to 1.8V
logic conversion

Phone GPIO pin

RC delay network

RESET

Buffer with
Hysteresis

Figure 4: A single phone GPIO is used for inter-
rupting the phone and to reset the main MSP
processor

3.1.4 Reset and Wake Up Logic
Little Rock is able to interface to a phone through an

expansion connector that includes the necessary signals
for interfacing external circuitry to the phone. Table 2
shows the wired connections available on the expansion
connector of the prototyping phone we used to inter-
face to Little Rock. Note that besides the SPI bus and
the power and ground lines, there is only 1 GPIO pin
available in the interface between Little Rock and the
phone. However, we need at least two control mecha-
nisms between the two units. First, we need be able
to reset the MSP430 from the phone, and second, the
MSP430 should be able to interrupt the phone. We
used the circuit shown in Figure 4 to achieve both of
these functions with a single GPIO signal. Under nor-
mal operation, the phone configures the GPIO pin as
an interrupt input signal. When the processor wants to
interrupt the phone, it drives the GPIO pin signal low
for 5µs. The RC delay network prevents this short pulse
from driving the reset pin of the MSP430 low. When
the phone wants to reset the MSP430, it configures the
GPIO pin as an output and generates a 500ms logic low
signal. This duration is enough to create a logic 0 at
the output of the RC network, driving the RESET sig-
nal of the MSP430 processor low using an open collector
driver.

3.2 Phone Interface

Even though Little Rock can acquire, process and
store sensor data independently of the phone’s state,
in many cases the phone might require direct access to
the sensors or the MSP430 processor itself. Little Rock
has been designed so that the MSP430 processor can
be: (i) used as a bridge between the phone’s processor
and the sensors and (ii) reprogrammed by the phone;s
processor.

3.2.1 Directly Accessing Sensors
The MSP430 processor on Little Rock is interfaced

to the phone through the SPI bus, while the MSP430
connects to digital sensors through the I2C bus. When
the phone needs to access a sensor directly, reading the
accelerometer for example, the MSP430 acts as a bridge
between the phone and the sensor, converting messages
on the SPI bus to I2C messages and vise versa. However,
the necessary bridging of the SPI and I2C buses intro-
duces delays that could lead to erroneous data transfers
between the phone and the sensors. These delays are
introduced due to 2 main reasons. First, the I2C bus
operates at a maximum clock speed of 400kb/s, while
the SPI can operate up to 18Mhz (maximum processor
clock). Due to this speed mismatch, the MSP430 has
to buffer the messages received over the SPI as they are
being sent over the I2C; similarly the results received
over the I2C have to be buffered so that the received
bytes can be sent as a continuous byte stream message
on the SPI bus. This buffering results into delays inthe
communication between the phone’s processor and the
sensors. Second, unlike the SPI bus, devices with an
I2C interface have the option to delay the bus activ-
ity by holding the clock like low (clock stretching), if
they cannot respond immediately to a message. This
can result in a variable response time when accessing
a device over I2C which of course could affect the tim-
ing of the communication between the MSP430 and the
phone’s processor over the SPI bus. Since the SPI slave
does not have control over SPI bus transmissions, the
only way for MSP430 to address these delays is to insert
dummy bytes of value 0xFF while these delays are tak-
ing place. When the response is ready, MSP430 sends an
ACK byte (value 0x55) followed by the response. After
receiving the ACK, the master, in this case the phone’s
processor, reads the actual data byte or bytes returned
by the sensor.

3.2.2 Phone Software API
We developed a kernel driver with an IO control (ioctl)

interface for accessing Little Rock from user applications
on the phone. This interface provides methods to trans-
fer a byte array over the SPI bus, to set the GPIO pin
direction, to set and read the GPIO pin value, to con-
trol interrupts on the GPIO pin, and to register GPIO

Main MSP proc.

Secondary
MSP proc.

RESET

To phone glue logic

4-WIRE SPI

BSL SERIAL
TEST

3-WIRE SPI

Figure 5: Secondary and main MSP430 pro-
cessor connections for reprogramming the main
processor

interrupt event handlers.

3.2.3 Reprogramming Support
To reprogram Little Rock’s main processor, we use a

secondary MSP430 processor and the built in BSL rou-
tines of the main processor. Although we could have
developed our own reprogramming routine, which kicks
in each time the MSP430 processor is reset to receive re-
programming commands and data over the SPI bus, we
decided against this for two reasons. First, we decided to
use the well debugged built in routines rather than our
own routine because we want users with limited MSP430
experience to start using our platform. Requiring the
users to return the phones to us or expect them to repro-
gram the MSP430 using the JTAG interface, due to any
bugs that may be present in our debug routine, would
create a negative user experience. Second, we anticipate
that the secondary processor may be useful in the fu-
ture for housekeeping operations, such as acting as an
intelligent watch dog. Figure 5 shows how the main and
secondary processors are connected. The secondary pro-
cessor shares the SPI bus that connects the main MSP
processor and the phone. However, since SPI is a point-
to-point bus, the secondary processor makes sure that
its SPI interface is disabled whenever the main proces-
sor’s SPI interface is active. The phone initiates the
reprogramming of the main processor by asserting its
RESET pin and transmitting a special command mes-
sage over the SPI bus. This message is not received by
the main MSP430 SPI interface since the processor RE-
SET pin is asserted. The secondary processor detects
the assertion of the REST pin through a GPIO inter-
rupt, and starts decoding SPI data sent by the phone by
emulating the SPI protocol in software. The secondary
processor keeps its SPI output pin in high impendence
mode. If the RESET pin is released without receiving a
reprogramming message from the phone, the secondary

processor abandons the reprogramming and returns to
sleep.If the secondary processor receives a reprogram-
ming command on SPI bus while the RESET is asserted,
it waits until the RESET pin is de-asserted, activates its
SPI interface and invokes the main MSP’s BSL routine
by manipulating RESET and TEST pins. During repro-
gramming, the secondary processor acts as a bridge be-
tween the phone and the main MSP430 processor. The
secondary processor emulates RS232 protocol in soft-
ware to communicate with the main processor’s serial
BSL interface.

3.3 Enabling Low Power Operation
Since the Little Rock board is powered directly from

the phone battery , it is essential to make sure that is
impact on the power signature of the phone and there-
fore its impact on the phone’s lifetime is minimal.

3.3.1 Isolation at the Glue Logic
Providing proper isolation is critical for both elimi-

nating excessive current as well as preventing hardware
failures. Similar to using correct logic values at proces-
sor GPIOs, we have to provide proper isolation between
the phone and the MSP430 when the phone is turned
off. As an example, any logic input to the phone should
be disabled as soon as the phone GPIOs interfaces are
turned off; otherwise this can result in excessive current
going in to the turned off circuits on the phone, that
besides increasing power consumption, it could cause
hardware damage on the phone. Instead of using sep-
arate isolation logic, we achieved this isolation within
logic gates used for converting the 1.8V and 2.8V logic
levels between the phone and the MSP430. We used
logic gates with power off capability as logic level con-
verters. The power off capability states that when the
power to a logic gate is turned off, both the inputs and
the outputs of that logic gate act as open (tri-stated)
connection with very small leakage current, irrespective
of the logic level applied to that pin. Some of the level
converters we used were completely or partially powered
from the 1.8V GPIO supply of the phone. When this
supply is deactivated, due to phone going to sleep or the
phone being turned off, the appropriate logic signals on
the interface are tri-stated to prevent excessive current
or hardware damage.

3.3.2 Reducing Gyroscope sensor sleep currents
Most of the sensors used in Little Rock support low

power sleep modes (Table 3). Gyroscopes, however, do
not have a low power mode; together they consume
'11.5mA when idle. In addition, a reference voltage
buffer used with the Gyros consumes '2mA when idle.
To reduce this idle power we turn off the power supply
to the Gyros and the A/D converters at the gyro out-

puts. Although the A/D converters have a low power
mode that we could leverage, we connect them to the
same power supply as the Gyros to reduce noise. To
prevent excessive currents flowing in to powered off Gy-
roscopes subsystem, we configured the GPIO pins of the
MSP430 processor as inputs.

Even when the Gyro power is switched off, and the
GPIOs configured as inputs, we continued to observe
several hundreds of mV at multiple GPIO pins connect-
ing to the Gyro module. When the GPIO pins were
physically disconnected from the Gyros, we observed
that the sleep current of the processor module dropped
by a factor of 2. When the GPIO pins were connected,
we could not achieve the same low sleep current irrespec-
tive of how we configured the GPIO pins (activating pull
down resistors, for example). Finally, we decided to add
analog switches to isolate the GPIO pins. Since there
are low power analog switches that only consume '1µA
we managed to reduce the overall sleep current.

3.3.3 Reducing compass sensor sleep currents
The 3-axis compass IC we selected supports two dif-

ferent power supply options. In one option, the analog
section is supplied with 2.8V while the digital section of
the IC is supplied with 1.8V. In the other option, an ex-
ternal 2.8V is applied and an internal regulator supplies
the 1.8V digital power. Since Little Rock only has a
2.8V internal supply, we were tempted to use the single
supply option.

However, according to the datasheet, as well as our
own measurements, the single signal supply option has
much higher sleep current of '100µA (even higher than
the rest of the Little Rock board) compared to the dual
supply option, which consumes '2.5µA. Instead of us-
ing the inefficient internal regulator of the compass sen-
sor, we used a separate low power regulator to sup-
ply the required 1.8V supply at a much lower overhead
than with the built-in compass regulator. In this case
also, adding more components resulted into reducing the
overall system sleep current.

4. EVALUATION
In this section we evaluate the Little Rock architec-

ture in detail. First, we provide a detailed breakdown
of Little Rock’s power consumption at different operat-
ing modes. Next, we integrate Little Rock into an ac-
tual prototyping phone and use a pedometer application
that is continuously sampling the accelerometer sensor
to compare the performance and energy efficiency of the
proposed architecture to the current sensing approaches
on mobile phones.

4.1 Little Rock’s Sleep Power Profile
Since typical sensing applications involve heavy duty

RVs

Load

X 100

Amplifier
Vout

Ibias1

Ibias2IS

Figure 6: Setup for measuring sleep currents

cycling of the processing and sensing modules, the sleep
currents have a big impact on the average power con-
sumption. For instance, with a sampling rate of 10 sam-
ples per second, Little Rock will be in sleep mode most
of the time. Therefore, minimizing Little Rock’s sleep
power consumption is critical.

Since the sleep currents of the different components
on the Little Rock board are typically in the order of
µA, accurately measuring these currents immediately
became a challenge. As a result, we first describe our
power measurement setup that enabled us to accurately
measure small currents and then show how we used our
setup to power profile Little Rock.

4.1.1 Measuring small currents
Although Prabal et al. presents a solution for mea-

suring small static and dynamic currents, their solution
depends on the use of switching regulators [8]. However,
this approach cannot be used in the case of Little Rock
because it does not use switching regulators due to the
noise concerns.

The setup we used to measure small currents can be
seen in Figure 6. The variable resistor, R acts as the
current sensing resistor generating a voltage Vs propor-
tional to the current Is. Since R is interposed between
the voltage supply and the load, Vs should not be larger
than several mV (we limit Vs to 10mV). Because of the
small value of Vs and the various electromagnetic inter-
ference, accurately measuring Vs is a difficult task. To
address this challenge, we used a common setup that is
used for current sensing [3] and employs an amplifier to
amplify Vs.

However, we still face two challenges when measur-
ing small sleep currents. First, to generate several mV
from several mA, we need a large resistor R (in order of
kΩs). However, processors and sensors consume a much
larger current (several mA) at the startup, before they

Module Sleep current (µA)

Processor + glue logic 36
Digital sensors 29
Analog sensors 2

Total 67

Table 4: Current dissipation for the different
functional components of Little Rock in sleep
mode.

go into sleep mode. So, a large R could cause a voltage
drop of several volts at the startup, preventing these
components from starting due to low supply voltage.

We solve this by using a variable resistor. At the
start we set R to the lowest value (0 ohms). After the
load enters the sleeping state, we increase R until Vout
reaches ' 1V , corresponding to a 10mV drop across R.
Then we disconnect the jumpers and measure R using
a multi-meter. We obtain the Is by Is = Vout

100×R .
The second challenge is that the input current flow-

ing in to the amplifier input itself (Ibias1 and Ibias2)
has to be much smaller compared to Is to measure Is
accurately. We use an instrumentation amplifier with
switched capacitor inputs for the amplifier [11]. The in-
put currents of this amplifier are in the order of several
nA, making it suitable for accurately measuring cur-
rents of several µA.

4.1.2 Little Rock Sleep Currents
Having an accurate measurement setup allowed us to

profile in detail the sleep currents of various submod-
ules in Little Rock. We use three 2.8V linear regulators
to supply power to different Little Rock modules. One
regulator supplies power to the processor and glue logic
modules. To reduce power supply noise, we use another
regulator to power the sensors with digital interfaces, a
third regulator, which can be turned off by the proces-
sor, supplies power to the Gyroscope module. Table 4
shows the sleep mode currents at the input of these three
regulators. With a 1340mAH battery capacity, the Lit-
tle Rock can operate up to 830 days while in sleep mode.
Given the typical phone battery life is a couple of days
and the fact that a typical phone’s sleep current is in
the order of 2mA, the Little Rock, when in sleep mode,
has little impact on the overall battery lifetime.

Little Rock’s low sleep current dissipation was mainly
achieved by the design decisions described in Section 3.3.
To demonstrate this, we show how the sleep current of
the processor is affected by external voltages applied to
its input GPIO.

We use the setup in Figure 7 to evaluate the impact of
external voltages to input GPIO pins on the sleep cur-
rent of the processor. We use a MSP430F5438 evalua-
tion board. We power the processor using a 2.8V supply
and attach the current sensor described in the previous

2.8V
Current
Sensor

V_GPIO

PORT1.0

Figure 7: Setup to measure the impact of GPIO
voltage on the processor sleep current. The
MSP430F5438 GPIO pin PORT1.0 was config-
ured as an input, and a variable voltage was
applied to it. All the other GPIUO pins were
configured as outputs.

section to measure processor current. We configure all
the pins, except pin PORT1.0, of the MSP processor
as logic 0 outputs, and we put the MSP430 in to sleep
(low power mode 4). Next we apply a variable voltage
source, connected through a 10kΩ to the pin PORT1.0.

Figure 8 shows the processor’s sleep current as a func-
tion of the voltage at the PORT1.0 processor pin. When
the GPIO pin is at 0V and 2.8V, we observed the mini-
mum sleep current of 2.26µA. When the GPIO voltage
reaches 1.4V, the sleep current increases by more than
factor of 10 to 27.1µA. It is clear that extreme cau-
tion should be taken when voltages levels, other than
those close logic 1 or 0 are applied to processor pins that
are configured as inputs. There are multiple causes for
such voltages, such as, a processor D/A converter in-
put with an analog voltage is configured as a digital
input, electromagnetic noise-induced stray voltages on
unconnected processor pins, or , as in our case, voltages
induced on pins attached to a powered down submodule.

4.2 Pedometer Application: A Case Study
In this section, we evaluate the performance of run-

ning a continuous sensing-based application on Little
Rock, on a phone, and on a phone equipped with the
Little Rock board (shown in Figure 1(b)). We use the
step counting application shown in Listing 1 as our ex-
ample application. This application samples the 3-axis
accelerometer at a frequency of f samples/sec, and af-
ter every n samples, it executes the routine in Listing 1.
This routine will analyze the latest n samples to identify
how many steps were performed by the user carrying the

0

5

10

15

20

25

30

0 0.5 1 1.5 2 2.5 3

P
ro

ce
ss

o
r

Le
ak

ag
e

 C
u

rr
e

n
t

(
u

A
)

GPIO Pin Voltage (V)

Figure 8: Processor Sleep current vs. the GPIO
voltage on Port1.0 GPIO pin. Other GPIO pins
are configured as output and set to logic 0.

Platform Little Rock Phone

Latency per accelerometer 0.23 1.2
sample (ms)
Energy per accelerometer 0.008 0.91
sample (mJ)
Active Power (mW) 12.9 756
Sleep Power (mW) 0.27 7.6
Wakeup transition time (ms) 2.5µA 900
Wakeup transition energy (mJ) '0 624
Sleep transition time (ms) '0 270
Sleep transition energy (mJ) '0 187

Table 5: Latency and energy cost of Little Rock
and the phone for several primitive operations

phone.

4.2.1 Basic Platform Profiling
Table 5 shows the cost of basic operations such as

the cost of collecting individual accelerometer samples
and the cost of transitioning between the active and
sleep modes for both the Little Rock board and the
phone. Note that the energy required to acquire a sin-
gle accelerometer is approximately 2 orders of magni-
tude lower than the energy required by the phone. This
is due to two main reasons. First, Little Rock ’s power
consumption when sampling the accelerometer is much
lower than the power consumption of the phone (12.9mW
to 756mW). Second, even though the phone’s processor
is much faster than the processor on Little Rock, the
phone is 5 times slower than Little Rock in terms of ac-
quiring a single accelerometer sample. This is due to
the fact that the processor on the phone has to contin-
uously support a very complex software stack. At any
time, the operating system might be executing several
background tasks or services that might slow down the

(a) Little Rock (b) Phone

Figure 9: The overhead for acquiring and processing accelerometer data as a function of the number
of samples.

performance of the processor. In addition, in order for
an application to access the accelerometer, a number of
function calls have to be made throughout the whole
operating system software stack that might increase the
overall delay.

Table 5 also shows that the sleep mode and transition
energy overheads of Little Rock are much lower com-
pared to the phone. The sleep power of the phone is
approximately 28 times higher than that of Little Rock,
and Little Rock can almost instantly switch between ac-
tive and sleep modes.

1 void ProcessAccelerometerData () {
double lastMag = magLast;

3 double maxMag = magMax;
double currMag = 0;

5 for (int i = 0; i < n; i=i+3){
currMag = Math.Sqrt(

7 (acceldata [3*i]* acceldata [3*i]) +
(acceldata [(3*i)+1]* acceldata [(3*i)+1]) +

9 (acceldata [(3*i)+2]* acceldata [(3*i)+2]));
if (! seenBottomInflection) {

11 seenBottomInflection = currMag > lastMag;
}

13 lastMag = currMag;
if ((maxMag - currMag > accel_threshold) &&

15 seenBottomInflection){
numSteps += 1;

17 maxMag = currMag;
seenBottomInflection = false;

19 } else if (currMag > maxMag) {
maxMag = currMag;

21 }
}

23 magLast = currMag;
magMax = maxMag;

25 }

Listing 1: An accelerometer-based step counting
application.

Even though Little Rock consumes significantly lower
power compared to the phone, the phone has signifi-
cantly more processing power. Figure 9 shows the time
it takes for both Little Rock and the phone to contin-
uously acquire a number of accelerometer samples and
process them using the code shown in Listing 1 for dif-
ferent number of samples. It is apparent that the bot-
tleneck in the case of Little Rock is processing. The

time it takes to process the data is always higher than
the time to acquire the data and as the number of sam-
ples increases the difference also increases. On the other
hand, phone’s major bottleneck is the time to acquire
accelerometer samples, which can be orders of magni-
tude higher than the actual processing time.

4.2.2 Energy Efficient Pedometer
To provide a more realistic evaluation of the differ-

ent platform configurations we consider in this paper,
we implemented and profiled the pedometer application
(Listing 1) while running on the phone, on Little Rock as
well as on a hybrid architecture that includes the phone
with an embedded Little Rock board. We profiled the
pedometer application for all combinations of 2 differ-
ent sampling rates (10 and 50 samples per second) and
4 processing batch sizes1 (10, 50, 100, 500). At every
run, the pedometer application will execute until 500
samples have been collected and successfully processed.
In the case of the hybrid architecture, Little Rock is re-
sponsible for sampling the accelerometer but whenever
processing of the data is required, it will wake up the
processor, transfer the data and let the phone do the
processing.

Figure 10 shows the average power consumption for
all three different hardware configurations. Phone seems
to be the most energy inefficient configuration since it
consumes on average approximately 700mW. Note that
this number does not change for different sampling data
rates because in all cases the processor on the phone
has to be constantly on to timely acquire accelerometer
samples.

On the other hand, Little Rock consumes on average
0.7mW (50 samples per second) or 0.2mW (10samples
per second) depending on the sampling data rate used.

1A processing batch size is the number of sensor samples we
have to collect before we start processing the data.

0

100

200

300

400

500

600

700

800

0 100 200 300 400 500

P
o

w
e

r
(m

W
)

Processing Batch Size

Phone

Little Rock

Hybrid

0

100

200

300

400

500

600

700

800

0 100 200 300 400 500

P
o

w
er

 (
m

W
)

Processing Batch Size

Phone

Little Rock

Hybrid

(a) 10 samples per second (b) 50 samples per second

Figure 10: Average power required to acquire and process 500 samples for different sampling rates
and processing batch sizes.

This corresponds to more than 3 orders of magnitude
improvement in the power consumption of the phone.
Note that the power consumption in the case of Little
Rock changes with the sampling data rates used. Con-
versely to the phone, the MSP430 processor on Little
Rock can almost instantly move to sleep mode when
not sampling or processing data. Therefore, the lower
the sampling data rate used, the more time it spends
in sleep mode and therefore its power consumption is
lower.

Figure 10 also shows that the hybrid approach can
be very efficient if it is appropriately configured. For
small processing batch sizes the power consumption is
very similar to the one of the phone because the phone
has to wake up very often to perform the processing
of the sensor samples. However, when the processing
batch size increases, the power consumption of the hy-
brid approach can be up to 70 times lower than the
power consumption of the phone itself. The reason is
that when higher processing batch sizes are used, the
phone can spend more time in the sleep mode and thus,
drastically reduce its power consumption.

5. RELATED WORK
Participatory sensing applications that use cell phones

as a widely deployed sensors network have gained much
popularity [6, 16, 1, 9, 17]. Some of these participatory
sensing applications require continuous monitoring with
cell phones. The Nericell [13] uses smart phones with
built in sensors that continuously sense the environment
to detect various road conditions. The authors use multi
sensor-based triggers to reduce the energy consumption
due to continuous sensing. Soundsense [12]) continu-
ously monitors the audio signals using the phone’s mi-
crophone to classify and identify various location and

activity related events. We observe that these contin-
uous monitoring applications can have a severe impact
on the phone battery life, and we propose Little Rock
as a general sensing architecture for mobile phones that
enables energy efficient continuous sensing applications.

Another class of phone-centric sensing research uses
a physically separate sensing platform, connected to a
cell phone using a BlueTooth radio, for collecting hu-
man centric data. Lester et al. uses a body worn sensor
platform with multiple sensors and a processor for activ-
ity recognition [10]. The sensor platform collects various
sensory data and uploads the data to a cell phone using a
BlueTooth radio; the activity recognition algorithms ex-
ecute on the phone. The Health Gear project [14] uses a
blood oximeter, which is attached to a sensing platform
that communicates with a cell phone over BlueTooth
for detecting sleep apnea. This work further highlights
the need for continuous sensing for building rich, user
centric, application on mobile phones. However, unlike
these platforms which are point solutions for a particu-
lar application, we propose a novel sensing architecture
for cell phones that enables building richer applications
for cell phones.

Wireless sensor network platforms enable low power
environmental sensing using custom built platforms and
low power multi-hop wireless networks (refer the plat-
forms). To overcome the limitations of such low power
wireless networks, several research projects have used
the cell phone network for data dissemination [4, 7].
While we acknowledge that cell phones may not replace
low cost, low power wireless sensor nodes, our proposed
architecture enables low power environmental sensing
on cell phones.

Pering et al. developed the PSI board [15], a hardware
platform with an accelerometer, a low-power MSP430

processor, and an 802.15.4 radio that can be plugged in
to the SD card slot of a cell phone. Although the authors
mention the energy savings due the MSP430 processor,
this platform was meant as an expansion module that
forms a bridge between the phone and a 80.15.4 wire-
less network. In contrast, we propose a generic sensing
architecture for phones that off loads all background
sensing tasks to a low power processor; we do a detailed
comparison of energy consumptions when sensing is of-
floaded to an external processor vs. driving the sensors
directly from the phone’s application processor. Our
work is similar to Somniloquy that off loads network
packet processing to a low power processor [2].

6. CONCLUSION
Continuous sensing is a basic requirement for a class

of mobile phone applications. Through detailed mea-
surements we have shown that the current phone archi-
tecture, where all sensors are directly controlled by the
phone processor, cannot meet the battery lifetime re-
quirements of the phone. Through the design of Little
Rock, we introduce a new module into the phone archi-
tecture, which can offload the interactions with sensors
and give the phone’s main processor and associated cir-
cuitry more time to go to the sleep mode. This can
result in significant savings. For a pedometer applica-
tion, the energy savings by running with Little Rock is
three orders of magnitude compared to running on the
current phone architecture.

The Little Rock architecture gives programmers more
flexibility to choose where to allocate their applications,
but it also brings challenges on application development.
As future work, we will investigate how to provide tools
and programming models to simplify software develop-
ment.

7. REFERENCES
[1] T. Abdelzaher, Y. Anokwa, P. Boda, J. Burke,

D. Estrin, L. Guibas, A. Kansal, S. Madden, and
J. Reich. Mobiscopes for human spaces. IEEE
Pervasive COmputing, 6(2):20–29, 2007.

[2] Y. Agarwal, S. Hodges, R. Chandra, J. Scott,
P. Bahl, and R. Gupta. Somniloquy: augmenting
network interfaces to reduce pc energy usage. In
NSDI’09, pages 365–380.

[3] Linear technology : Current sense circuit
collection. http://cds.linear.com/docs/Application
Note/an105.pdf.

[4] P. M. Aoki1, R. J. Honicky, A. Mainwaring,
C. Myers, E. Paulos, S. Subramanian, , and
A. Woodruff. Common sense: Mobile
environmental sensing platforms to support
community action and citizen science. In UbiComp
2008, Seoul, South Korea, September 2008.

[5] B.Hoh, M. Gruteser, R. Herring, J. Ban, D. Work,
J.-C. Herrera, A. Bayen, M. Annavaram, and
Q. Jacobson. Virtual trip lines for distributed
privacy preserving traffic monitoring. In Proc. of
6th ACM Conference on Mobile Systems
(Mobisys’08), June 2008.

[6] J. Burke, D. Estrin, M. Hansen, A. Parker,
N. Ramanathan, S. Reddy, and M. B. Srivastava.
Participatory sensingn. In WSW ’06, Nov 2006.

[7] H. Dubois-Ferrière, R. Meier, L. Fabreand, and
P. Metrailler. Tinynode: a comprehensive
platform for wireless sensor network applications.
In IPSN ’06, pages 358–365, 2006.

[8] P. Dutta, M. Feldmeier, J. A. Paradiso, and D. E.
Culler. Energy metering for free: Augmenting
switching regulators for real-time monitoring. In
IPSN ’08, pages 283–294.

[9] B. Hull, V. Bychkovsky, K. Chen, M. Goraczko,
A. Miu, E. Shih, Y. Zhang, H. Balakrishnan, and
S. Madden. CarTel: A distributed mobile sensor
computing system. In ACM SenSys, 2006.

[10] J. Lester, T. Choudhury, and G. Borriello. A
practical approach to recognizing physical
activities. In In Proc. of Pervasive, pages 1–16,
2006.

[11] Linear technology : Ltc6800 datasheet.
http://cds.linear.com/docs/Datasheet/6800fas.pdf.

[12] H. Lu, W. Pan, N. D. Lane, T. Choudhury, and
A. T. Campbell. Soundsense: Scalable sound
sensing for people-centric sensing applications on
mobile phones. In Proc. of 7th ACM Conference
on Mobile Systems (Mobisys’09), June 2009.

[13] P. Mohan, V. Padmanabhan, and R. Ramjee.
Nericell: rich monitoring of road and traffic
conditions using mobile smartphones. In SenSys
’08, pages 323–336, 2008.

[14] N. Oliver and F. Mangas. HealthGear: A
Real-Time Wearable System for Monitoring and
Analyzing Physiological Signals. In BSN ’06,
April 2006.

[15] T. Pering, P. Zhang, R. Chaudhri, Y. Anokwa,
and R. Want. The PSI Board: realizing a
phone-centric body sensor network. In BSN ’07),
March 2007.

[16] O. Riva and C. Borcea. The urbanet revolution:
Sensor power to the people! IEEE Pervasive
Computing, 6(2):41–49, Apr-Jun 2007.

[17] A. Yu, D. L. A. Bamis, T. Teixeira, and
A. Savvides. Personalized awareness and safety
with mobile phones as sources and sinks. In
UrbanSense08, November 2008.

	Introduction
	Motivation
	Little Rock
	Building Components
	Processor Module
	Digital Sensor Module
	Analog Sensor Module
	Reset and Wake Up Logic

	Phone Interface
	Directly Accessing Sensors
	Phone Software API
	Reprogramming Support

	Enabling Low Power Operation
	Isolation at the Glue Logic
	Reducing Gyroscope sensor sleep currents
	Reducing compass sensor sleep currents

	Evaluation
	Little Rock's Sleep Power Profile
	Measuring small currents
	Little Rock Sleep Currents

	Pedometer Application: A Case Study
	Basic Platform Profiling
	Energy Efficient Pedometer

	Related Work
	Conclusion
	References

