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ABSTRACT
This work is at the intersection of two lines of research. One
line, initiated by Dinur and Nissim, investigates the price, in
accuracy, of protecting privacy in a statistical database. The
second, growing from an extensive literature on compressed
sensing (see in particular the work of Donoho and collab-
orators [14, 7, 13, 11]) and explicitly connected to error-
correcting codes by Candès and Tao ([4]; see also [5, 3]), is
in the use of linear programming for error correction.

Our principal result is the discovery of a sharp threshhold
ρ∗ ≈ 0.239, so that if ρ < ρ∗ and A is a random m × n en-
coding matrix of independently chosen standard Gaussians,
where m = O(n), then with overwhelming probability over
choice of A, for all x ∈ Rn, LP decoding corrects bρmc arbi-
trary errors in the encoding Ax, while decoding can be made
to fail if the error rate exceeds ρ∗. Our bound resolves an
open question of Candès, Rudelson, Tao, and Vershyin [3]
and (oddly, but explicably) refutes empirical conclusions of
Donoho [11] and Candès et al [3]. By scaling and rounding
we can easily transform these results to obtain polynomial-
time decodable random linear codes with polynomial-sized
alphabets tolerating any ρ < ρ∗ ≈ 0.239 fraction of arbitrary
errors.

In the context of privacy-preserving datamining our re-
sults say that any privacy mechanism, interactive or non-
interactive, providing reasonably accurate answers to a 0.761
fraction of randomly generated weighted subset sum queries,
and arbitrary answers on the remaining 0.239 fraction, is
blatantly non-private.

Categories and Subject Descriptors: E.4 Coding and
Information Theory: Error Control Codes; H.2.8 Database
Applications: Statistical Databases; G.3 Probability and
Statistics: Probabilistic Algorithms

General Terms: Algorithms, Theory

Keywords: Privacy, LP Decoding, Compressed Sensing,
Basis Pursuit

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’07,June 11–13, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-631-8/07/0006 ...$5.00.

1. INTRODUCTION
This work is at the intersection of two lines of research.

One line, initiated by Dinur and Nissim and providing our
original motivation, investigates the price, in accuracy, of
protecting privacy in a statistical database. The conflict
is between the curator, whose goal is to answer questions
while preserving the privacy of individuals, and the attacker,
whose goal is to compromise privacy. The second line, grow-
ing from an extensive literature on compressed sensing, is in
the use of linear programming for error correction. Here,
the conflict is between the adversary, who corrupts a signal,
and the decoder, who attempts to reconstruct the message.

Recall the classical problem of transmitting a message in
the presence of adversarially generated noise. Given a vec-
tor x ∈ Rn, one approach is to encode x using an m × n
encoding matrix A, and to transmit Ax ∈ Rm. We show the
existence of a sharp threshhold ρ∗ such that for ρ < ρ∗, there
is a fixed constant c such that if m ≥ cn and the entries of A
are chosen independently from a standard Gaussian distrib-
ution, then with overwhelming probability, for all x ∈ Rn, if
the number of errors in the received word Ax + e is at most
ρm, the vector x is exactly retrieved using linear program-
ming. Moreover, we show the bound ρ∗ to be tight: once
the fraction of errors exceeds ρ∗, (again with overwhelming
probability) LP decoding can always be made to fail in a
very strong sense. This resolves the “interesting challenge”
posed in [4, 3].

We draw on a line of work with very deep roots in statistics
that studies the use of `1 minimization via linear program-
ming for recovering sparse signals from linear measurements.
There is a rich literature in this field; the work of Donoho
and collaborators contains several pivotal advances [14, 7,
13, 11]), while recent work of Candès and Tao and collabora-
tors makes the existential more concrete [4, 3] by identifying
specific conditions on the m× n coding matrix A for which
LP decoding is guaranteed to yield the correct answer1.

We extend our error-correction result in several ways:

1. We handle “mixed” errors – in addition to the ρ frac-
tion of arbitrary errors, we tolerate any number of
small errors, in the sense that if the magnitude of
the small errors is bounded by α then reconstruction
yields an x′ of Euclidean distance at most O(α) from
x. We may think of the error vector as e + f , where e
has support ρm but its non-zero entries are arbitrary,
while f may have support m but its non-zero entries

1The complexity of testing satisfaction of the conditions is
not addressed.



are bounded by α. In this context the results in [3]
yield an answer x′ satisfying ||x−x′||2 ≤ O(||f ||1/

√
m)

(which is O(α
√

m) in our setting), while we achieve
||x− x′||2 ≤ ||f ||∞ (which is O(α)).

2. We obtain similar results for the case in which the cod-
ing matrix A has random, independently chosen, ±1
entries. In this case, the error threshold ρ∗±1 is smaller.
However, for any error rate up to ρ∗ ≈ 0.239 above,
we get near perfect reconstruction – when no small er-
rors are permitted, there may be a constant number
(not fraction!) of entries in which the reconstructed x′

differs from x

3. From both the results for Gaussians and for the ±1
case, we obtain random linear error-correcting codes
over finite fields, with polynomial-sized alphabets. See
Section 6 for details.

4. We prove that ρ∗ is optimal when the entries of A
are i.i.d. Gaussians. Experiments by Donoho [11] and
Candès et al [3] showed reconstruction in the presence
of error rates “nearly” 0.3 when m = 2n [11] and 35%
when m = 4n [3]. However, in the experiments the
noise was not chosen adaptively, as a function of the
query matrix A and the signal x, probably accounting
for the discrepancy with our results.

5. We obtain a reconstruction gap for compressed sensing
via linear programming – we explain the problem in
Section 5. For the reader already familiar with com-
pressed sensing, we note that our results show that
LP decoding solves the compressed sensising problem
for any density smaller than ρ∗, with the number of
questions being (1 − n

m
)m with n and m as above.

Moreover, for any f(m) = ω(1), LP-based compressed
sensing can be made to fail even with m− f(m) mea-

surements, even if, say, m = 22n

, if the sparseness of
the input exceeds ρ∗.

We now turn to privacy-preserving data analysis, which
was our original motivation for studying the results of [11,
3]. A statistic is a quantity computed from a sample. The
goal of a statistical database is to provide statistics about
a population while simultaneously protecting the privacy of
the individuals in the database. A recent and highly fruitful
direction is in a model of computation in which a trusted en-
tity, the curator, sits between the possibly adversarial user
of the database and the actual data. Queries are functions
mapping the database to a (vector of) real(s). The curator
computes the correct answer to the query and adds noise to
the response. This natural approach allows highly accurate
responses while maintaining strong privacy guarantees [18,
2, 17], but it suffers from a drawback: even for the sim-
ple case in which the database is a binary vector and the
queries are subset sums of selected elements of the vector,
the magnitude of noise added must increase with the total
number of questions asked. A line of research initiated by
Dinur and Nissim indicates that this increase is inherent [9].
They showed that if the database is a vector x of n bits
and the curator provides relatively accurate (within o(

√
n))

answers to n log2 n random subset sum queries, then by us-
ing linear programming the attacker can reconstruct a data-
base x′ agreeing with x in all but o(n) entries, ie, satisfying
support(x− x′) ∈ o(n). We call this blatant non-privacy.

The Dinur-Nissim setting, while at first blush simplistic,
is in fact sufficiently rich to capture many natural questions.
For example, the rows of the database may be quite com-
plex, but the attacker may know enough information about
an individual in the database to uniquely identify his row.
In this case the goal is to prevent any single additional bit of
information to be learned from the database. In fact, careful
use of hash functions can handle the “row-naming problem”
even if the attacker does not know enough to uniquely iden-
tify individuals. Thus we can imagine a scenario in which
an attacker reconstructs a close approximation to the data-
base, where each row is identified with a set of hash values,
and a “secret bit” is learned for many rows. At a later time
the attacker may learn enough about an individual in the
database to deduce the hash values for her record to identify
the row corresponding to the individual, and thus obtain her
“secret bit.” Details appear in [8]. So naming a set of rows
to specify a query is not just a theoretical possibility, and
the assumption of only a single sensitive attribute per user
still yields meaningful results.

Research statisticians like to “look at the data.” Indeed,
conversations with experts in this field frequently involve
pleas for a “noisy table” that will permit significantly ac-
curate answers to be derived for computations that are not
specified at the outset. For these people the implications
of the Dinur-Nissim results are particularly significant: no
“noisy table” can provide very accurate answers to too many
questions; otherwise the table could be used to simulate
the interactive mechanism, and a Dinur-Nissim style attack
could be mounted against the table. Even worse, while in the
interactive setting the noise can be adapted to the queries,
in the non-interactive setting the curator does not have this
freedom to aid in protecting privacy.

Our work extends the results of Dinur and Nissim to the
case in which a ρ < ρ∗ fraction of the query responses are
arbitrarily inaccurate and any number of the responses may
additionally suffer from error o(

√
n). In retrospect, the con-

fluence of error-correction and proving non-privacy of a sta-
tistical database is not surprising: the attacker’s goal is to
take several measurements and reconstruct the database,
or an approximation thereto. In this sense the results of
Donoho [11] and Candès et al. [3] were very timely, while
the context for our work sharpened our interest in tolerat-
ing small errors.

Finally, we obtain additional blatant non-privacy results
when the attacker is not restricted to run in time polynomial
in the size of the database.

Related Work.
There is extensive literature on compressed sensing and

on proving conditions under which `0/`1-equivalence holds
(see e.g. [3, 7, 11, 10, 12, 15] and the citations therein).
The work of Donoho [12] attempts to quantify the behavior
of the permissible error rate for LP decoding to succeed,

as a function of the redundancy of the code δ
def
= m−n

m
.

They look at the setting where the entries of A are i.i.d.
Gaussians and establish a lower bound ρN (δ) (misleadingly
referred to as a threshold by Donoho and Tanner [15]) on
the permissible error rate. In the limit of δ approaching one,
they prove that `0/`1 equivalence holds for any ρ ≤ 0.168.

Independent of our work, Candès and Randall [6] look at
a mixed-error model similar to ours. They use a different
linear program, or a second-order cone program, and bound



the error in recovery ‖x′ − x‖ in the mixed-error model in
terms of the recovery error in absence of the wild noise.

We remark that the use of linear programming for correct-
ing errors in linear encodings should not be confused with
the recent work of Feldman and collaborators [19, 20, 21,
22] on LP decoding of turbo-codes, low-density parity check
codes, and expander codes, all of which are binary codes.

2. NOTATION AND PRELIMINARIES
For a vector x, we shall denote by |x| the `1 norm of x,

and by ‖x‖, its `2 norm.
We call a vector z (ρ,α)-small if all but a ρ fraction of its

entries have magnitude no larger than α. In other words,
for some set T , |T | ≤ ρ · dim(z), it is the case that |zi| ≤ α
for all i 6∈ T .

2.1 LP Decoding
Let x ∈ Rn and let A be an m × n matrix. In the sim-

plest setting, A will be populated with random indepen-
dent N(0, 1) Gaussian entries. But we shall also look at
cases when the entries of A are chosen independently from
{−1, +1} or from {−1, 0, +1}. We consider the encoding
y = Ax of x.

Our error model would allow for an arbitrary corruption
of a ρ fraction of the entries of y, and a small error α in
every entry of y. The limits on ρ and α will be discussed at
a later point in the paper.

We look at the following decoding procedure: given the
corrupted message y′, we solve the following linear program
that optimizes a linear objective function over variables x
and y:

minimize |y − y′|
subject to: y = Ax

We remark that while this is not strictly speaking a linear
program as written, it can easily be converted to one. Let
(x′, y) be the optimal solution of the above linear program.
We shall show that x′ is “close” to x under suitable assump-
tions on ρ, α, and m (and in fact x = x′ when α = 0 and
m = m(ρ) is a suitably large multiple of n).

2.2 Lower bounds for Privacy
One of our main motivations for studying the above ques-

tion was to show that in order to prevent gross privacy vio-
lations, a curator must add a reasonably large amount (α)
of error to a large fraction (ρ) of the queries asked of it.

Consider the set of queries given by the matrix A, i.e. for
each row ai of A, we ask the query ai · x, where x is (say) a
binary database. Suppose that the answers returned by the
curator have the following property:

• A fraction (1− ρ) of the answers are correct to within
an error of α.

• A ρ fraction of the answers can be answered arbitrarily.

It is clear that one can use LP decoding in this setting;
we shall add an additional set of constraints 0 ≤ xj ≤ 1 to
the linear program. This gives us a vector x′ ∈ Rn that is
“close” to the true database x. We shall simply round each
entry of x′ to the nearer of {0, 1} and use the rounded value
x̂ as our guess for the database.

Recall that blatant non-privacy is the approximate recon-
struction of x, that is, the construction of and x′ of Hamming
distance at most o(n) from x.

In the next two sections, we shall prove general results
about the LP decoding procedure. We then apply those to
the privacy settings to derive lower bounds for noise addition
needed to prevent blatant non-privacy.

3. LP DECODING: GAUSSIAN ENSEMBLE
In this section, we shall prove that when the entries of A

are i.i.d. Gaussian, for any ρ < ρ∗ = 0.239... (where the
constant ρ∗ is defined in Lemma 2) and any α, the recon-
structed vector x′ is such that ‖x′ − x‖ ≤ O(α).

Theorem 1. Given any ρ < ρ∗, there exist absolute con-
stants c1, c2, c3 > 0 such that the following holds. When-
ever m ≥ c1n and n is large enough, with probability (1 −
exp(−c2n)), an m×n matrix A with independent N(0, 1) en-
tries has the following property: for every vector x and every
error vector e that is (ρ,α)-small, the vector x′ reconstructed
by the LP decoding procedure is such that ‖x′ − x‖ ≤ c3α.

We first define the constant ρ∗.

Lemma 2. Let X1, . . . , Xm be i.i.d. N(0, 1) random vari-
ables and let Y1, . . . , Ym be the sorted ordering (in decreasing
order) of |X1|, . . . , |Xm|. For a ρ > 0, let Sρ be the random
variable Y1 + Y2 + . . . + Ydρme. Let S denote E[S1]. Then
there exists a constant ρ∗ such that limm→∞ E[Sρ∗ ]/S = 1

2
.

Proof. Let X be distributed as N(0, 1) and let Y = |X|.
Let f(·) denote the p.d.f. of Y and F (·) be its c.d.f. Define
g(x) =

R∞
x

yf(y)dy. Clearly g is continuous and decreas-
ing in [0,∞] with g(0) = E[Y ] = S/m and limx→∞ g(x) =
0. Thus there exists x∗ such that g(x∗) = E[Y ]/2. Let
ρ∗ = (1 − F−1(x∗)). It is easy to check that this ρ∗ has
the desired property. Indeed let Tx =

P
i:Yi≥x Yi. Then

E[Tx∗ ] = m
R∞

x∗ yf(y)dy by linearity of expectation. More-
over, the expected value of |Tx∗−Sρ∗ | is bounded by O(

√
m),

so that E[Tx∗ ]/m approaches E[Sρ∗ ]/m. Since S grows lin-
early with m, the claim follows.

It is easy to numerically evaluate the constant ρ∗ ≈ 0.2392.
For ρ < ρ∗, Sρ/S is bounded away from 1

2
, with high proba-

bility. The following lemma, that we shall prove in the next
section, formalizes this.

Lemma 3. Let X1, . . . , Xm be i.i.d. N(0, 1) random vari-
ables and let Y1, . . . , Ym be the sorted ordering (in decreasing
order) of |X1|, . . . , |Xm|. Let Sρ and ρ∗ be as above. Then
for any ρ < ρ∗, there is a δ > 0 and a c > 0 such that

Pr[Sρ > S(
1

2
− δ)] ≤ exp (−cm)

To get some intuition on why this lemma is useful, we
sketch a proof of Theorem 1 for the zero small-error case
using it. Let x ∈ Rn and let A be an m× n matrix of i.i.d.
Gaussians. Let y′ = Ax+ e such that e has support at most
ρm for a constant ρ < ρ∗. Then we wish to show that x is
indeed the optimum solution to the linear program, i.e. for
any x′ ∈ Rn, x′ 6= x, |y′ −Ax′| > |y′ −Ax|.

y′−Ax is precisely the vector e, which has support at most
ρm. On the other hand, y′ − Ax′ = y′ − Ax− A(x′ − x) =

2Or to be slightly more precise, 0.239031891449516803895...



e−Az where z = x′ − x. Let T be the support of e and let
|w|S denote

P
i∈S |wi| for any vector w, any subset S ⊆ [m].

Suppose that LP decoding fails and that there is an x, x′, e
such that |y′ − Ax′| ≤ |y′ − Ax|. Rewriting, we get |e −
Az|T + |e− Az|T c ≤ |e|T . Using the triangle inequality, we
have |e|T ≤ |e− Az|T + |Az|T . Adding the two inequalities
and noting that e is zero on T c, we get |Az|T c ≤ |Az|T . Now
note that since z is non-zero, and each entry of A is an i.i.d.
Gaussian, each coordinate of the the vector (Az) is an i.i.d.
Gaussian. The inequality |Az|T c ≤ |Az|T says that the sum
of some ρm of m i.i.d. Gaussians is larger than the sum
of the remaining (1− ρ)m of them. The lemma above says
that for suitable ρ, this happens with probability no larger
than e−cm. Thus any one z is exponentially unlikely to be
a candidate for x′ − x. We shall show later that in fact the
probability that any z is a candidate is exponentially small.
The result would then follow.

In the next subsection, we prove Lemma 3. We then use
a net argument to show that with high probability, no large
z is a candidate for x′−x if the error vector e is (ρ,α)-small.
We put things together to prove Theorem 1 in section 3.3.

3.1 Concentration for a single point
In this section, we prove the following concentration result

for Sρ.

Lemma 4. Let X1, . . . , Xm, Y1, . . . , Ym, Sρ and S be as
above. Then for any ρ, and any δ > 0, there is a constant
c4 > 0 such that with probability (1 − exp(−c4m)), |Sρ −
ESρ| ≤ δS.

Proof. Let Mρ denote the median value of Sρ = Sρ( ~X).
Note that with respect to the `1 norm, the function Sρ is a
Lipschitz with Lipschitz constant 1. In other words, if X and
X ′ differ only in co-ordinate i, |Sρ(X)−Sρ(X

′)| ≤ |Xi−X ′
i|.

Thus with respect to `2 norm, Sρ is Lipschitz with Lipschitz
constant

√
m.

Now we use the isoperimetric inequality for the Gaussian
measure (see e.g. [24]). This says that for any set A with

measure at least a half, (At)
c has measure at most e−t2/2,

where At = {x ∈ Rm : d(x, A) ≤ t}, where d(x, A) is defined
naturally as infy∈A ‖x − y‖. Taking A to be the set {x ∈
Rm : Sρ(x) ≥ Mρ}, we get

Pr[d(x, A) ≤ t] ≥ 1− e−t2/2

By the Lipschitz condition, [d(x, A) ≤ t] implies that

[Sρ(x) ≥ Mρ − t
√

m]. Thus with probability 1 − e−t2/2,
Sρ(x) ≥ Mρ − t

√
m. Similarly, we get that with probability

at least 1− e−t2/2, Sρ(x) ≤ Mρ + t
√

m.
We now use this fact in two different ways. First we use

this to bound the difference between the mean and the me-
dian of Sρ:

|Mρ − E[Sρ]| ≤ E[|Mρ − Sρ|]

=

Z
y

Pr[|Mρ − Sρ| ≥ y]dy

≤
Z

y

2e−y2/2mdy

≤ c5/
√

m

for a constant c5.
Moreover, setting t to be δS/2

√
m, we get that with prob-

ability at least (1 − 2exp(−t2/2)), |Sρ(x) − Mρ| ≤ Sδ/2.

Noting that S = c6m for a constant c6, we get the failure
probability above to be exp(−c4m). The result follows.

Corollary 5. For any ρ < ρ∗, there is a δ > 0 and a
c7 > 0 such that with probability (1 − exp(−c7m)), Sρ ≤
( 1
2
− δ)S.

Proof. Note that there is a constant δ > 0 such that for
large enough m, E[Sρ]/S ≤ 1

2
−2δ. Indeed E[Sρ] = E[Sρ∗ ]−Pdρ∗me

i=dρme+1 E[Yi]. Each of the Yi’s in the summation has

expectation at least as large as EY . Thus E[Sρ]/S ≤ 1
2
−

(ρ∗−ρ)mE[Y ]
mE[Y ]

≤ 1
2
− 2δ for a suitable constant δ. The result

then follows from the lemma.

To facilitate the net argument in the next section, we also
note that

Corollary 6. For any ε > 0, there exists a constant
c8 > 0 such that with probability (1 − exp(−c8m)), it holds
that (1− ε)S ≤ S1 ≤ (1 + ε)S.

Proof. Follows immediately by taking ρ = 1.

3.2 The net argument
We now show how to extend the argument to all of Rn.

For a given γ > 0, let v1, . . . , vK be a set of points, ‖vi‖ = 1
such that for any z, ‖z‖ = 1, there is an i ∈ [K] such that

‖z − vi‖ ≤ γ. Such sets of points exist with K = ( 1
γ
)O(n);

this can be easily shown by taking a maximal set of points
in Sn−1 such that any two of them are at distance at least
γ.

For z ∈ Sn−1, if A is an m×n matrix with N(0, 1) entries,
each entry in Az is distributed as N(0, 1). From the two
lemmas in the last section, with probability 1− exp(−cm),
we have

• Sρ(Az) ≤ S( 1
2
− δ), and

• (1− ε)S ≤ S1(Az) ≤ (1 + ε)S.

Taking m = c9n for large enough c9, we can use a union
bound over the net points v1, . . . , vK to show that with prob-
ability at least (1− exp(−c10n)), each of the net points sat-
isfies the above two properties.

We now show that whenever this is true for a small enough
γ, a similar claim is true for all points z ∈ Rn.

Lemma 7. Given any ρ < ρ∗, there exist absolute con-
stants c11, c12, δ > 0 such that the following holds. When-
ever m ≥ c11n and n is large enough, with probability (1 −
exp(−c12n)), an m × n matrix A with independent N(0, 1)
entries has the following property: for every vector z and
every subset I ⊆ [m] with |I| ≤ ρm, |Az| − 2|Az|I ≥ δS‖z‖.

Proof. Let z ∈ Sn−1 be arbitrary. Since N is a γ-net,
there exists v0 ∈ N such that ‖z − v0‖ ≤ γ. Let z1 denote
z − v0 and let γ1 < γ denote ‖z1‖. Using the net property
again, we get a v1 ∈ N such that ‖z1 − γ1v1‖ ≤ γγ1. Again
we can denote by z2 the vector z1−γ1v1 and its norm by γ2;
clearly γ2 ≤ γ2. Repeating this argument, we get a sequence
of net points v0, v1, . . . and real numbers γ1, γ2, . . . so that

z =
X
i≥0

γivi

where γ0 = 1 and γi ≤ γi.



By scaling, we get that for any z ∈ Rn, we can write

z = ‖z‖
X
i≥0

γivi.

Next consider a particular index set I ⊂ [m] with |I| ≤
ρm. Thus we have that:

|Az|I ≤ ‖z‖
X
i≥0

γi|Avi|I

≤ ‖z‖
X
i≥0

γiS(
1

2
− δ)

≤ ‖z‖
X
i≥0

γiS(
1

2
− δ)

= S‖z‖
1
2
− δ

(1− γ)

Also,

|Az|1 ≥ ‖z‖(|Av0|1 −
X
i≥1

γi|Avi|1)

≥ (1− ε)S‖z‖ −
X
i≥i

γi(1 + ε)S‖z‖

≥ (1− ε− γ(1 + ε)

(1− γ)
)S‖z‖

Thus it follows that |Az|−2|Az|I ≥ S‖z‖(2δ−ε− γ(1+ε)
(1−γ)

).

For a given δ = δρ, we can pick ε and γ small enough so that
|Az| − 2|Az|I ≥ δS‖z‖.

3.3 Putting it together
Let A be the encoding matrix so that a vector x is encoded

as y = Ax. Let the vector of answers by y′ = y + e such
that e is (ρ,α)-small. Suppose that the `1-minimizer is a
vector x′. Let T be the set of indices where e is large, i.e.
T = {i : ei ≥ α}.

Since x′ is the `1-minimizer for y′ = y + e,

|Ax− y′| ≥ |Ax′ − y′|

Rewriting y′ = Ax + e and setting z = (x′ − x), we get

|e| ≥ |Az − e|

Now note that

|e| = |e|T + |e|T c

≤ |Az − e|T + |Az|T + α|T c|

and

|Az − e| = |Az − e|T + |Az − e|T c

≥ |Az − e|T + |Az|T c − |e|T c

≥ |Az − e|T + |Az|T c − α|T c|

Thus we conclude

|Az|T + α|T c| ≥ |Az|T c − α|T c| (1)

or

|Az| − 2|Az|T ≤ 2α|T c| (2)

Combining with lemma 7, we get that ‖z‖ ≤ 2α|T c|/δS =
c14α. Thus we have proved Theorem 1.

Theorem 1. Given any ρ < ρ∗, there exist absolute con-
stants c1, c2, c3 > 0 such that the following holds. When-
ever m ≥ c1n and n is large enough, with probability (1 −
exp(−c2n)), an m×n matrix A with independent N(0, 1) en-
tries has the following property: for every vector x and every
error vector e that is (ρ,α)-small, the vector x′ reconstructed
by the LP decoding procedure is such that ‖x′ − x‖ ≤ c3α.

We also record the α = 0 case of the above theorem, which
allows for perfect reconstruction.

Corollary 8. Given any ρ < ρ∗, there exist absolute
constants c1, c2, c3 > 0 such that the following holds. When-
ever m ≥ c1n and n is large enough, with probability (1 −
exp(−c2n)), an m × n matrix A with independent N(0, 1)
entries has the following property: for every vector x and
every error vector e with support at most ρm, the LP decod-
ing procedure reconstructs the vector x.

We note that the constant c1 grows approximately as
2π/(ρ∗ − ρ)3 in our proof.

3.4 Lower Bounds for Privacy
Note that if the rounded vector x̂ differs from x in bit i,

then (x′ − x)i is at least 1
2
, so that ‖x′ − x‖2 ≥ 1

4
|{i : xi 6=

x̂i}|. From Theorem 1, ‖x′ − x‖ ≤ c3α. Thus |{i : xi 6=
x̂i}| ≤ (2c3α)2. Thus we have shown that:

Theorem 9 (Blatant non-privacy: Gaussian queries).
Given any ρ < ρ∗, there exist absolute constants c1, c2, c3 >
0 such that the following holds. There exists an efficient at-
tacker that asks m ≤ c1n queries of the form

P
j aijxj, and

given answers that are within an error of α for all but a ρ
fraction of the questions, with probability (1 − exp(−c2n)),
reconstructs a database x̂ such that x̂ agrees with x on all
but (2c3α)2 of the entries.

3.5 Semi-oblivious noise: fixed support
Suppose that the support of the wild noise T is chosen

non-adversarially. In this case, we argue that |T | can be
as large as ( 1

2
− ε)m. Indeed, in the above proof, if T is

chosen without looking at A, then for a fixed z, the best
error vector has e|T = Az|T . From corollary 6, |Az| ≥ (1−
δ)S and |Az|T ≤ ( 1

2
− δ)S with probability (1− exp(−cm))

for suitable constants δ, c. The rest of the argument goes
through unchanged and we conclude that:

Theorem 10. Given any ρ < 1
2
, there exist absolute con-

stants c′1, c
′
2, c

′
3 > 0 such that for any T ⊆ [m] with |T | ≤

ρm, the following holds. Whenever m ≥ c′1n and n is large
enough, with probability (1 − exp(−c′2n)), an m × n matrix
A with independent N(0, 1) entries has the following prop-
erty: for every vector x and every error vector e such that
|ei| ≤ α for any i 6∈ T , the vector x′ reconstructed by the LP
decoding procedure is such that ‖x′ − x‖ ≤ c′3α.

3.6 Oblivious Symmetric noise
We next consider a non-adversarial noise model where

each entry of e|T is chosen from a symmetric zero-mean
probability distribution. In this setting, we shall show that
T as large as (1 − ε)m still allows for recovery of x. In



fact, we shall only use the fact that Pr[ei > 0] ≤ 1
2

and

Pr[ei < 0] ≤ 1
2
.

Given a candidate bad z and an error vector e, we con-
struct another error vector e′ such that if |Az−e| < |e| then
|Az − e′| < |e′|, and e′i ∈ {0, (Az)i} for i ∈ T . Indeed for
any i ∈ T , we set e′i to 0 if |ei| ≥ |ei − (Az)i|, and to (Az)i

otherwise. For i 6∈ T , e′i is set to ei. It is easy to verify that
e′ satisfies the desired condition and that Pr[e′i = 0] ≥ 1

2
,

where the probability is taken over the random choice of ei.
Each of the terms |e′i|− |(Az)i−e′i|, for i ∈ T has mean at

most zero and variance at most c for some constant c. Thus
the probability that

P
i∈T |e

′
i|− |(Az)i− e′i| exceeds δ|T | for

any δ > 0 is, by Chernoff bounds, at most exp(−δ2|T |2/2c|T |)
≤ exp(−c′|T |) for some constant c′. Moreover, for any
i 6∈ T , |e′i| − |(Az)i − e′i| ≤ 2α − |(Az)i|. Thus

P
i6∈T |e

′
i| −

|(Az)i − e′i| is at most 2α|T c| − c′′‖z‖|T c| with probability
(1 − exp(−c′′|T c|)) for constant c′′, c′′′. For LP-decoding
to fail,

P
i∈[m] |e

′
i| − |(Az)i − e′i| must exceed zero. For

|T | < (1 − ε)m and ‖z‖ ≥ c′′3α, this happens with prob-
ability exponentially small in m. The rest of the argument
is similar to the adversarial-error case. Thus we have proved
that

Theorem 11. Given any ρ < 1 and any T ⊆ [m] with
|T | ≤ ρm, there exist absolute constants c′′1 , c′′2 , c′′3 > 0 such
that the following holds. Whenever m ≥ c′′1n and n is large
enough, with probability (1−exp(−c′′2n)), an m×n matrix A
with independent N(0, 1) entries has the following property:
for every vector x and every error vector e such that |ei| ≤ α
for any i 6∈ T , and ei is drawn from a symmetric zero-mean
distribution for i ∈ T , the vector x′ reconstructed by the LP
decoding procedure is such that ‖x′ − x‖ ≤ c′′3α.

We note the proof above also establishes that if each entry
of the error vector e were drawn independently from a prob-
ability distribution Di such that (a) PrDi [E > α] ≤ 1

2
,(b)

PrDi [E < −α] ≤ 1
2
, and (c) PrDi [|E| ≥ α] ≤ 1− ε for some

fixed ε > 0. Then LP decoding reconstructs a vector x′ such
that ‖x′−x‖ ≤ O(α). Thus in the privacy setting, if the cu-
rator was adding independent near-symmetric noise to every
answer, the noise added to almost every answer should be
Ω(
√

n) to avoid blatant non-privacy.

3.7 LP decoding fails beyondρ∗

In this section, we show that for any error rate larger
than ρ∗, LP decoding can almost surely be made to fail
in a very strong sense when A comes from the Gaussian
ensemble. With overwhelming probability, the matrix A has
the following property: given an original vector x, and an
arbitrary vector x′ of the adversary’s choosing, the adversary
can choose a (ρ,0)-small error vector e such that LP decoding
would reconstruct x′ when given y′ = Ax + e.

The adversary sets z = x′ − x and computes the vector
Az. Note that each entry of Az is an independent N(0, ‖z‖2)
Gaussian random variable. From lemma 4, with high prob-
ability, the sum of the highest ρm of (Az)i’s is more than
S‖z‖/2, and hence the error vector e which agrees with
Az on these largest ρm entries, and is zero elsewhere has
a smaller `1 distance to z than to 0. In particular, this
means that in the case when a (1 − ρ) fraction of the an-
swers are given accurately, LP decoding does not recover
the true signal. Thus LP decoding can be made to fail,
with high probability, when the matrix A has independent
N(0, 1) entries, beyond any error rate larger than ρ∗.

In other words, the value ρ∗ captures exactly the permis-
sible error rate when an adversary is allowed to arbitrarily
change a small fraction of the entries.

4. LP DECODING: THE ±1’S CASE
In this section, we show that if each entry of A is chosen

from one of the following two probability distributions, the
results of the previous section continue to hold:

aij =

�
+1 with probability 1

2

−1 with probability 1
2

aij =
√

3×

8<
:

+1 with probability 1
6

0 with probability 2
3

−1 with probability 1
6

We first show the measure concentration result analogous
to Lemma 4.

4.1 Concentration for a single point
Let z ∈ Sn−1 be arbitrary and let Xi =

P
j aijzj . Since

z is fixed in this section, various quantities such as Mρ that
depend on z will be used without an explicit parametriza-
tion. Note that the Xi’s are independent and identically
distributed. We first show some properties of this distribu-
tion. The following lemma is due to Achlioptas [1]

Lemma 12 ([1]). Let Xi be as above. Then E[X2
i ] = 1.

Moreover, let Q =
Pk

j=1 X2
i . Then for any ε > 0,

Pr[Q > (1 + ε)k] < ((1 + ε)exp(−ε))
k
2

Pr[Q < (1− ε)k] < exp(−k

2
(
ε2

2
− ε3

3
))

Corollary 13. There is a universal constant τ such that
for any z and n, if Xi as above, E[|Xi|] ≥ τ .

Proof. For k = 1, we get that Pr[X2
i < 1

4
] is bounded

away from 1. Thus with constant probability, |Xi| > 1
2
.

As before, given ~X = (X1, . . . , Xm), let Y1, . . . , Ym be
sorted ordering of |Xi|’s and let Sρ be as before. We shall
use Talagrand’s inequality that we state next.

Let (Ω, µ) be a probability distribution and let ~X ∈ Ωm

be a sequence of independent samples from X. Let A ⊆ Ωm

be a set such that Pr(A) ≥ 1
2
. Talagrand’s inequality [25]

says that

Pr[d( ~X, A) > t] ≤ 2e−t2/4

where d( ~X, A) denotes the convex distance of the point ~X
from the set A. Here the convex distance is defined as fol-
lows: we say that d( ~X, A) ≤ t, if for every vector ~α =

(α1, . . . , αm), there exists an ~X ′ ∈ A such thatX
i:Xi 6=X′

i

αi ≤ t‖α‖

We now use this to show that Sρ is well concentrated
around its median.

Lemma 14. Let X, Y and Sρ be as above. Let Mρ be
the median value of Sρ. Then for any 0 < s < m, with
probability (1 − 5exp(−s2/8m)), |Sρ − Mρ| < s. Moreover,
for s ≥ m, Pr[|Sρ −Mρ| > s] ≤ 5exp(−s/24).



Proof. Let ~X denote X1, . . . , Xm. Let A = { ~X ∈ Ωm :

Sρ( ~X) ≤ Mρ}. Talagrand’s inequality says that

Pr[d( ~X, A) > t] ≤ 2e−t2/4

Let ~X be such that d( ~X, A) ≤ t and ‖ ~X‖ ≤
√

2m. Con-

sider the vector ~α = |X1|, . . . , |Xm|, i.e. αi = |Xi|. Let ~X ′

be the corresponding point in A guaranteed by the convex
distance definition. Then

Sρ( ~X)− Sρ( ~X ′) =
X

i:|Xi|6=|X′
i|

(|Xi| − |X ′
i|)

≤
X

i:|Xi|>|X′
i|

|Xi|

≤
X

i:Xi 6=X′
i

|Xi|

≤ t‖ ~X‖

Setting t = s/
√

2m, we get that with probability 1 −
2exp(−s2/8m), Sρ ≤ Mρ + s. Using a similar argument

with A′ = { ~X : Sρ( ~X) ≥ Mρ}, we can conclude that with
probability 1− 2exp(−s2/8m), Sρ > Mρ − s.

Note that we assumed that ‖ ~X‖ ≤
√

2m. However, by
lemma 12, this is true with probability (1 − exp(−m/8))
This implies the first part of the claim.

Next we prove the second part. First note that lemma 12
implies that Pr[‖ ~X‖ >

√
rm] ≤ (r/er−1)

m
2 ≤ exp(−mr/4)

for r ≥ 6. Moreover, assuming that ‖ ~X‖ ≤
√

rm, we can use
t = s/

√
rm in the above argument. Taking r = 6s

m
gives an

overall failure probability no larger than 5exp(−s/24).

Corollary 15. The mean and the median of Sρ con-
verge.

Proof. Observe that

|Mρ − E[Sρ]| ≤ E[|Mρ − Sρ(x)|]

=

Z
y

Pr[|Mρ − Sρ| ≥ y]dy

≤
Z m

0

5exp(−y2/8m)dy +

Z ∞

m

5exp(−y/24)dy

≤ c15/
√

m + c16exp(−m/24)

Hence the claim.

Corollary 16. For any ε > 0, there exists a c16 > 0
such that with probability (1− exp(−c16m)), (1− ε)E[S1] ≤
S1 ≤ (1 + ε)E[S1].

Proof. Follows immediately from lemma 14 and corol-
laries 13 and 15.

4.2 Lower bounds onρ∗±1

Given a z ∈ Sn−1, the distribution of Xi =
P

j aijzj is

well defined, and there is a value ρ∗(z) such that whenever
ρ < ρ∗(z), E[Sρ] < 1

2
E[S1] . In this section, we address

the question of how small ρ∗(z) can be. We shall give two

bounds: the first one holds for all z and shows that ρ∗±1
def
=

infz∈Rn ρ∗(z) is bounded below by a small positive constant
independent of z. The second bound gives much better lower
bounds assuming that ‖z‖3

3/‖z‖3
2 is small.

Theorem 17. There is a universal constant ρ̂ such that
the following holds. Let X be any random variable with
E[|X|2] = 1 that satisfies for any ε > 0:

Pr[X2 > (1 + ε)] < ((1 + ε)exp(−ε))
1
2 , and

Pr[X2 < (1− ε)] < (exp(−ε2

4
+

ε3

6
)).

Then for any x such that Pr[|X| ≥ x] ≤ ρ̂, it holds thatR∞
x

yf(y)dy ≤ 1
2
E[|X|], where f(·) denotes the p.d.f. of

|X|.

Proof. Recall that from corollary 13, under the assump-
tions of the theorem, E[|X|] is bounded below by a universal
constant τ . Let x be such that Pr[|X| ≥ x] ≤ ρ̂. Now ob-

serve that for any y > x, Pr[|X| > y] ≤ min(ρ̂, (ey/ey)
1
2 ).

Thus

Z ∞

x

yf(y)dy =

Z ∞

x

Pr[|X| > y]dy

≤
Z ∞

x

min(ρ̂, (ey/ey)
1
2 )dy

≤
Z x′

0

ρ̂dy +

Z ∞

x′
(ey/ey)

1
2 dy

for and x′ ≥ x. Note that the second integral goes to zero as
x′ approaches infinity. Let x′ be such that second integral
is at most τ

4
. Taking ρ < τ

4x′ then suffices.

For the second bound, we use a quantitative version of
the central limit theorem. Goldstein [23, Prop 3.2] shows
that for Xi as above (with ‖z‖ = 1), and G a gaussian with
variance one,

dEM (Xi, G) ≤ 3
X

j

|zj |3,

where dEM denotes the earthmover or Kantarovich distance
between two distributions. Recall that the Kantarovich dis-
tance between X and Y is inf E|X −Y |, where the infimum
is over all couplings of X and Y that have the correct mar-
ginals. This implies that there is a coupling function f : R →
R such that f(G) ∼ Xi, and Ex∼G[|x−f(x)|] = dEM (Xi, G).
Also note that both Xi and G are symmetric distributions
so one can assume that f is symmetric and sgn(f(x)) =
sgn(x). Thus

R∞
0
|x− f(x)|µG(x) ≤ 1

2
dEM (Xi, G).

Let a ≥ 0 be arbitrary and let us consider the integralR∞
a

f(x)µG(x)dx. Clearly |
R∞

a
f(x)µG(x)dx−

R∞
a

xµG(x)dx|
is at most

R∞
a
|x− f(x)|µG(x)dx ≤ 1

2
dEM (Xi, G).

Suppose that ρ is such that
R∞
Φ−1(1−ρ)

xµG(x)dx ≤ ( 1
2
−

δ)
R∞
0

xµG(x)dx (Φ here is the c.d.f. of a Gaussian with



mean zero and variance one). Then we have thatZ ∞

Φ−1(1−ρ)

f(x)µG(x)dx

≤
Z ∞

Φ−1(1−ρ)

xµG(x)dx +
1

2
dEM (Xi, G)

≤ (
1

2
− δ)

Z ∞

0

xµG(x)dx +
1

2
dEM (Xi, G)

≤ 1

2

Z ∞

0

xµG(x)dx− δ

r
1

2π
+

1

2
dEM (Xi, G)

≤ 1

2

Z ∞

0

f(x)µG(x)dx + dEM (Xi, G)− δ

r
1

2π

≤ 1

2

Z ∞

0

f(x)µG(x)dx + 3
X

j

|zj |3 − δ

r
1

2π

Thus whenever, 3
P

j |zj |3 ≤ δ
q

1
2π

, the value ρ is less than

ρ∗(z). We record this as

Lemma 18. There exists a constant c17 such that for any
z ∈ Sn−1, we have ρ∗(z) ≥ ρ∗ − c17

P
j |zj |3.

4.3 Net Argument
We note that the net argument of section 3.2 only used

corollaries 5 and 6. Since we proved their analogues for the
±1 case in the previous subsection, we can conclude that,
for a constant ρ∗±1, the following holds.

Lemma 19. Given any ρ < ρ∗±1, there exist absolute con-
stants c18, c19, δ

′ > 0 such that the following holds. When-
ever m ≥ c18n and n is large enough, with probability (1 −
exp(−c19n)), an m × n matrix A with independent entries
from one of the distributions above has the following prop-
erty: for every vector z and every subset I ⊆ [m] with
|I| ≤ ρm, |Az| − 2|Az|I ≥ δ′S‖z‖.

When we restrict ourselves to sets of the form {z : ‖z‖3
3/‖z‖3

2 <
ε1} for some ε1 > 0, the argument of the previous section
does not work any more; since when we write

z = ‖z‖
X
i≥0

γivi

where γ0 = 1 and γi ≤ γi, the net points {vi : i ≥ 1} do
not satisfy the upper bound on the three norm. However
for any index set I ⊂ [m], |Avi|I is still bounded above by
S(1 + ε), which suffices for the argument (with a slightly
worse constant). The rest of the argument goes through
unchanged. Thus it follows that

Lemma 20. Given any ρ < ρ∗, there exist absolute con-
stants c20, c21, c22, c23 > 0 such that the following holds.
Whenever m ≥ c20n and n is large enough, with probabil-
ity (1− exp(−c21n)), an m×n matrix A with entries drawn
from one of the distribution described above has the following
property: for every vector z and every subset I ⊆ [m] with
|I| ≤ ρm, either ‖z‖3

3 ≥ c22‖z‖3
2 or |Az|−2|Az|I ≥ c23S‖z‖.

4.4 Putting it together
Analogous to the Gaussian case, we have proved that

Theorem 21. Given any ρ < ρ∗±1, there exist absolute
constants c24, c25, c26 > 0 such that the following holds. When-
ever m ≥ c24n and n is large enough, with probability (1 −

exp(−c25n)), an m×n matrix A with entries drawn from one
of the distribution described above has the following prop-
erty: for every vector x and every error vector e that is
(ρ, α)− small, the vector x′ reconstructed by the LP decod-
ing procedure is such that ‖x′ − x‖ ≤ c26α.

Moreover, from lemma 20, it follows that

Theorem 22. Given any ρ < ρ∗, there exist absolute
constants c27, c28, c29, c30 > 0 such that the following holds.
Whenever m ≥ c27n and n is large enough, with probability
(1 − exp(−c28n)), an m × n matrix A with entries drawn
from one of the distribution described above has the follow-
ing property: for every vector x and every error vector e that
is (ρ, α) − small, the vector x′ reconstructed by the LP de-
coding procedure is such that either ‖x′−x‖3

3 ≥ c29‖x′−x‖3
2

or ‖x′ − x‖ ≤ c30α.

4.5 Privacy Implications
In the setting when we round the vector x′ to a binary

database x̂, we have that |x′j − xj | ≥ 1
2

whenever x̂j 6=
xj . Further, we can assume without loss of generality that
|x′j − xj | ≤ 1, since we can add the constraint 0 ≤ x′j ≤ 1 in
the linear program. Suppose that |{j : x̂j 6= xj}| ≥ B. Then
‖x′−x‖ ≥ B/4. Let z = (x′−x)/‖x′−x‖ so that zj ≤ 4/B
for all j. Thus ‖z‖3

3 ≤ 4
B
‖z‖ = 4/B. Thus, if B ≥ 4/c29,

then ‖x′ − x‖ ≤ c30α so that B ≤ (2c30α)2. Thus we have
shown that

Theorem 23 (Blatant non-privacy for ±1 queries).
Given any ρ < ρ∗, there exist absolute constants c31, c32, c33, c34 >
0 such that the following holds. There exists an efficient at-
tacker that asks m ≤ c31n queries of the form

P
j aijxj

where each aij is ±1, and given answers that are within an
error of α for all but a ρ fraction of the questions, with prob-
ability (1−exp(−c32n)), reconstructs a database x̂ such that
x̂ agree with x on all but max{c33, (c34α)2} of the entries.

5. COMPRESSED SENSING IMPLICATIONS
Donoho [16], provides the following motivation:

“As our modern technology-driven civilization ac-
quires and exploits ever-increasing amounts of
data, ’everyone’ now knows that most of the data
we acquire ’can be thrown away’ with almost
no perceptual loss – witness the broad success
of lossy compression formats for sounds, images,
and specialized technical data. The phenomenon
of ubiquitous compressibility aises very natural
questions: why go to so much effort to acquire
all the data when most of what we get will be
thrown away? Can’t we just directly measure
the part that won’t end up being thrown away?”

In compressed sensing there is a sparse signal of length
n and the goal is to reconstruct the signal using few linear
measurements. The signal corresponds to the error vector
in the error-correction paradigm. When the coding matrix
A is m×n, the (m−n)×m matrix A∗ annhilates the range
of A: A∗(Ax + e) = A∗e. Thus, the quantity of interest is
the number of measurements, which is m− n.

Previous results handle signals having support t with m−
n ∈ O(t logc n) measurements [11, 3], and support up to
m/3000 when m − n ≈ 3m/4. Our proof shows that LP



decoding based compressed sensing works for any density
smaller than ρ∗ ≈ 0.239, with the number of questions
m − n = (1 − ε)m, where ε = n/m in the proof above.
Thus any vector z whose support is smaller than ρ∗m can
be reconstructed using (1− ε)m Gaussian measurements.

Moreover, even with m−ω(1) questions, the LP decoding
procedure can be made to fail if the sparseness of the input
is allowed to be larger than ρ∗. In other words, for almost
every measurement matrix A with m−ω(1) rows and every
ρ > ρ∗, there is a vector with support size at most ρm
that will not be reconstructed Of course for m questions,
the sparseness can be as large as 1. Thus there is a phase
transition at ρ∗.

6. ERROR CORRECTING CODES
One consequence of the results above is that given a vec-

tor in x ∈ {0, 1}n, one can encode it by picking a random
±1 matrix A, and encoding x as Ax. We note that this
computation is over integers so that this is not a random
linear code in the sense usually used in coding theory. Each
symbol in a codeword would be O(log n) bits long, and given
a (1− ρ) fraction of codewords for any ρ < ρ∗±1, the decod-
ing procedure above would reconstruct the original vector x.
Moreover, if the error rate ρ < ρ∗, the reconstructed vector
is correct except possibly at a constant number of bits.

This can be fixed in two ways. An easy fix is to concate-
nate this code with any standard error-correcting code that
can handle a constant number of errors. Alternately, we can
take A to be a Gaussian matrix and use the results of Sec-
tion 3. Moreover, the coefficients can be made integral by
scaling up the Gaussians by a factor of c35n and rounding
to the nearest integer. It is easy to see that this gives an in-
teger matrix with O(log n)-bit coefficients. Each symbol in
a codeword is O(log n) bits long, and we get perfect recon-
struction up to an error rate ρ < ρ∗. For x ∈ {1, . . . , p}n,

we get an alphabet size of O(p2n
3
2 ). A similar result ap-

pears in [3]. While they use arithmetic operations over
arbitrary-precision reals during the encoding process, a finer
discretization of A would work in their setting as well.

7. INEFFICIENT ATTACKS

7.1 Unique Reconstruction
In this section, we show that using a linear number of

±1 questions, an attacker can reconstruct almost the whole
database if the curator is constrained to answer at least 1

2
+

ε of the questions within an absolute error of o(
√

n). We
however give up on computational efficiency.

Theorem 24. For any ε > 0 and any function α = α(n),
there is constant c and an attack using cn ±1 questions that
reconstructs a database that agrees with the real database in
all but at most ( 4α

ε
)2 entries, if the curator answers at least

1
2

+ ε of the questions within an absolute error of α.

The proof will rely on the following lemma.

Lemma 25. Let Y =
Pk

i=1 Xi where each Xi is a ±1
random variable with mean zero. Then for any y and any l,
Pr[Y ∈ [y, y + l]] ≤ l√

k
.

Proof. Note that Pr[Y = y] =
�

k
(k+y)/2

�
( 1
2
)k. This ex-

pression is at most
�

k
dk/2e

�
( 1
2
)k. Using Stirling’s approxima-

tion, this is bounded by
q

2
πk

. The claim follows.

Proof. (of Theorem 24) We shall show that picking the
questions at random works. More precisely, the attacker
picks the cn × n matrix A with ±1 entries uniformly at
random, and then outputs any database x′ such that |yi −
(Ax′)i| ≤ α for at least 1

2
+ ε of the questions.

Let the true database be x and let x′ be the reconstructed
database. We wish to argue that x′ agrees with x in all
but ( 4α

ε
)2 entries. Assume the contrary, so that the vector

z = x′−x has at least ( 4α
ε

)2 entries that have absolute value
1. By assumption, |(Az)i| ≤ 2α for at least 2ε fraction of
the questions, since any two sets of measure ( 1

2
+ ε) must

have an intersection of measure 2ε. We shall call such a z
bad. We wish to argue that with high probability, A is such
that no z is bad with respect to A.

Consider a z with at least ( 4α
ε

)2 ±1 entries. For any i, aiz

is the sum of at least ( 4α
ε

)2 ±1 r.v.’s. Thus the above lemma
implies that the probability that aiz lies in an interval of size
4α is at most ε. The expected number of questions for which
|aiz| ≤ 2α, is then at most εcn. Chernoff bounds therefore
imply that the probability that this number exceeds 2ε is
at most exp(− εcn

2
). Thus the probability of a particular z

being bad is at most exp(− εcn
2

).
Taking a union bound over the at most 3n possible z’s,

we get that with probability exp(−n( εc
2
− ln 3)), no bad z

exists. Taking c ≥ 2 ln 3/ε, this probability is exponentially
small.

7.2 List decoding
In this section, we argue that if the curator is constrained

to answer at least a δ fraction of the answers approximately
correctly, for any δ > 0, the attacker can construct a list
of at most k = d 1

δ
e candidate vectors x1, . . . , xk such that

one of them agrees with the true database on all but ( 8α
δ3 )2

entries.

Theorem 26. Let δ > 0 and α = α(n) be arbitrary. Sup-
pose that the curator is constrained to answer at least a δ
fraction of the questions to within an absolute error or α.
Then there is an attack consisting of cn ±1 questions that
constructs a list of k = d 1

δ
e candidate vectors x1, . . . , xk such

that at least one of them agrees with the true database x on
all but ( 8α

δ3 )2 entries.

Proof. We shall once again show that choosing random
questions followed by a greedy decoding procedure works
with high probability. More precisely, the attacker picks the
cn× n matrix A with ±1 entries uniformly at random, and
then greedily finds vectors x1, . . . so that each xi agrees with
the provided answers on at least a δ fraction of the answers,
and differs from the previous xj ’s on at least ( 8α

δ3 )2 entries.
We first establish the following claim. With high prob-

ability, the matrix A has the following property. If x and
x′ are two 0-1 vectors that differ in at least ( 8α

δ3 )2 entries,

then at most a δ3 fraction of the questions are such that
|aix − aix

′| ≤ 2α. Indeed, let z = x − x′ so that z has at
least ( 8α

δ3 )2 ±1’s. By lemma 25, the probability that for a

fixed z and i, |aiz| ≤ 2α is at most δ3

2
. Thus by Chernoff

bounds, the fraction of answers where |aiz| is small, is at
most δ3, with probability 1−exp(−δ3cn/2). Taking a union
bound over at most 3n possible z’s, we get the desired result,
provided that c > 2 ln 3/δ3.



Assume that A indeed has the above property. First note
that each xs agrees with at least δ fraction of the answers.
If we were to output k + 1 ≥ 1 + 1

δ
xs’s, the total fraction

of distinct answers covered by the xs’s will have to exceed
δ(1+ 1

δ
)−δ3

�
k+1
2

�
, which is more than 1. Thus the algorithm

outputs a list no longer than k.
Finally, note that if none of the outputs of the algorithm

agree with x on all but ( 8α
δ3 )2 entries, then the algorithm

would consider x as a candidate output.

We note that the δ3 above can be improved to δ2 if we
allow the list size to be 2/δ.

8. CONCLUSIONS
A natural question is to determine the true value of the

permissible error rate ρ∗±1 = infz ρ∗(z). It is easy to see
that for zn = ( 1√

n
, 1√

n
, . . . , 1√

n
), the distribution

P
j aijzj

approaches a Gaussian, and thus ρ∗±1 is bounded above by
ρ∗ ≈ 0.239. However, the value of ρ±1 is strictly below
0.239. In fact, taking z = (1.1, 1, 1, 1, 1, 1, 1), implies an
upper bound of 0.226 on ρ∗±1!

While we compute the threshold in the limit when m/n
is a large constant, the allowable error rate as a function of
the ratio m/n is worth investigating. As mentioned earlier,
lower bounds on this function are established in [12].

While we have proved high-probability bounds for random
Gaussian matrices, the problem of explicitly constructing
matrices A with allowable error threshold approaching, or
even exceeding ρ∗ remains open.

Comparing the results of section 7 with those of section 4,
we note that while near-perfect decoding is information-
theoretically possible for error rates up to a half, LP de-
coding fails at much lower error rates. It is thus natural to
look for other efficient decoding procedures for the case of
adversarial error.
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