
CTL+FO Verification as Constraint Solving

Tewodros A. Beyene
Technische Universität

München, Germany

Marc Brockschmidt
Microsoft Research

Cambridge, UK

Andrey Rybalchenko
Microsoft Research

Cambridge, UK

ABSTRACT

Expressing program correctness often requires relating pro-
gram data throughout (different branches of) an execution.
Such properties can be represented using CTL+FO, a logic
that allows mixing temporal and first-order quantification.
Verifying that a program satisfies a CTL+FO property is a
challenging problem that requires both temporal and data rea-
soning. Temporal quantifiers require discovery of invariants
and ranking functions, while first-order quantifiers demand in-
stantiation techniques. In this paper, we present a constraint-
based method for proving CTL+FO properties automatically.
Our method makes the interplay between the temporal and
first-order quantification explicit in a constraint encoding
that combines recursion and existential quantification. By in-
tegrating this constraint encoding with an off-the-shelf solver
we obtain an automatic verifier for CTL+FO.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verifica-
tion; F.3.1 [Logics and Meanings of Programs]: Speci-
fying and Verifying and Reasoning about Programs

General Terms

Verification, Theory

Keywords

Model Checking, Software Verification, Temporal Logic

1. Introduction

In specifying the correct behaviour of systems, relating
data at various stages of a computation is often crucial. Ex-
amples include program termination [7] (where the value of a
rank function should be decreasing over time), correctness of
reactive systems [13] (where each incoming request should be
handled in a certain timeframe), and information flow [11]
(where for all possible secret input values, the output should

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPIN ’14, July 21Ű23, 2014, San Jose, CA, USA
Copyright 2014 ACM 978-1-4503-2452-6/14/07 ...$15.00.

be the same). The logic CTL+FO offers a natural specifica-
tion mechanism for such properties, allowing to freely mix
temporal and first-order quantification. First-order quantifi-
cation makes it possible to specify variables dependent on
the current system state, and temporal quantifiers allow to
relate this data to system states reached at a later point.

While CTL+FO and similar logics have been identified as
a specification language before, no fully automatic method
to check CTL+FO properties on infinite-state systems was
developed. Hence, the current state of the art is to either
produce verification tools specific to small subclasses of prop-
erties, or using error-prone program modifications that ex-
plicitly introduce and initialize ghost variables, which are
then used in (standard) CTL specifications.

In this paper, we present a fully automatic procedure to
transform a CTL+FO verification problem into a system of
existentially quantified recursive Horn clauses. Such systems
can be solved by leveraging recent advances in constraint
solving [3], allowing to blend first-order and temporal reason-
ing. Our method benefits from the simplicity of the proposed
proof rule and the ability to leverage on-going advances in
Horn constraint solving.

Related Work.
Verification of CTL+FO and its decidability and com-

plexity have been studied (under various names) in the past.
Bohn et al. [5] presented the first model-checking algorithm.
Predicates partitioning a possibly infinite state space are
deduced syntactically from the checked property, and repre-
sented symbolically by propositional variables. This allows to
leverage the efficiency of standard BDD-based model checking
techniques, but the algorithm fails when the needed parti-
tion of the state space is not syntactically derivable from the
property.

Working on finite-state systems, Hallé et al. [10], Patthak
et al. [15] and Rensink [16] discuss a number of different
techniques for quantified CTL formulas. In these works, the
finiteness of the data domain is exploited to instantiate quan-
tified variables, thus reducing the model checking problem
for quantified CTL to standard CTL model checking.

Hodkinson et al. [13] study the decidability of CTL+FO
and some fragments on infinite state systems. They show
the general undecidability of the problem, but also identify
certain decidable fragments. Most notably, they show that by
restricting first order quantifiers to state formulas and only
applying temporal quantifiers to formulas with at most one
free variable, a decidable fragment can be obtained. Finally,
Da Costa et al. [8] study the complexity of checking prop-
erties over propositional Kripke structures, also providing

an overview of related decidability and complexity results.
In temporal epistemic logic, Belardinelli et al. [1] show that
checking FO-CTLK on a certain subclass of infinite systems
can be reduced to finite systems. In contrast, our method
directly deals with quantification over infinite domains.

2. Preliminaries
Programs.

We model programs as transition systems. A program P
consists of a tuple of program variables v, an initial condition
init(v), and a transition relation next(v, v′). A state is a
valuation of v. A computation π is a maximal sequence
of states s1, s2, . . . such that init(s1) and for each pair of
consecutive states (s, s′) we have next(s, s′). The set of
computations of P starting in s is denoted by ΠP (s).

CTL+FO Syntax and Semantics.
The following definitions are standard, see e.g. [5, 14].
Let T be a first order theory and |=T denote its satisfac-

tion relation that we use to describe sets and relations over
program states. Let c range over assertions in T and x range
over variables. A CTL+FO formula ϕ is defined by the
following grammar using the notion of a path formula φ.

ϕ ::= ∀x : ϕ | ∃x : ϕ | c | ϕ ∧ ϕ | ϕ ∨ ϕ | Aφ | E φ
φ ::= Xϕ | Gϕ | ϕUϕ

As usual, we define Fϕ = (trueUϕ). The satisfaction relation
P |= ϕ holds if and only if for each s such that init(s) we
have P, s |= ϕ. We define P, s |= ϕ as follows using an
auxiliary satisfaction relation P, π |= φ. Note that d ranges
over values from the corresponding domain.

P, s |= ∀x : ϕ iff for all d holds P, s |= ϕ[d/x]

P, s |= ∃x : ϕ iff exists d such that P, s |= ϕ[d/x]

P, s |= c iff s |=T c
P, s |= ϕ1 ∧ ϕ2 iff P, s |= ϕ1 and P, s |= ϕ2

P, s |= ϕ1 ∨ ϕ2 iff P, s |= ϕ1 or P, s |= ϕ2

P, s |= Aφ iff for all π ∈ ΠP (s) holds P, π |= φ

P, s |= E φ iff exists π ∈ ΠP (s) such that P, π |= φ

P, π |= Xϕ iff π = s1, s2, . . . and P, s2 |= ϕ

P, π |= Gϕ iff π = s1, s2, . . . for all i ≥ 1 holds P, si |= ϕ

P, π |= ϕ1Uϕ2 iff π = s1, s2, . . . and exists j ≥ 1 such that

P, sj |= ϕ2 and P, si |= ϕ1 for 1 ≤ i ≤ j

Quantified Horn Constraints.
Our method uses the Ehsf [3] solver for forall-exists Horn

constraints and well-foundedness. We omit the syntax and
semantics of constraints solved by Ehsf, see [3] for details.
Instead, we consider an example:

x ≥ 0→ ∃y : x ≥ y ∧ rank(x, y), wf (rank).

These constraints are an assertion over the interpretation of
the “query symbol” rank (the predicate wf is not a query
symbol, but requires well-foundedness). A solution maps
query symbols into constraints. The example has a solution
that maps rank(x, y) to the constraint (x ≥ 0 ∧ y ≤ x− 1).

Ehsf resolves clauses like the above using a CEGAR scheme
to discover witnesses for existentially quantified variables.
The refinement loop collects a global constraint that declara-
tively determines which witnesses can be chosen. The chosen

witnesses are used to replace existential quantification, and
then the resulting universally quantified clauses are passed
to a solver over decidable theories, e.g., HSF [9] or µZ [12].
Such a solver either finds a solution, i.e., a model for unin-
terpreted relations constrained by the clauses, or returns a
counterexample, which is a resolution tree (or DAG) repre-
senting a contradiction. Ehsf turns the counterexample into
an additional constraint on the set of witness candidates, and
continues with the next iteration of the refinement loop.

For the existential clause above, Ehsf introduces a wit-
ness/Skolem relation sk over variables x and y, i.e., x ≥
0 ∧ sk(x, y)→ x ≥ y ∧ rank(x, y). In addition, since for each
x such that x ≥ 0 holds we need a value y, we require that
such x is in the domain of the Skolem relation using an addi-
tional clause x ≥ 0 → ∃y : sk(x, y). In the Ehsf approach,
the search space of a Skolem relation sk(x, y) is restricted
by a template function Templ(sk)(x, y). To conclude this
example, we note that one possible solution returned by Ehsf
is the Skolem relation sk(x, y) = (y ≤ x− 1).

3. Constraint Generation

In this section we present our algorithm Gen for generating
constraints that characterize the satisfaction of a CTL+FO
formula. We also consider its complexity and correctness and
present an example.

See Figure 1. Gen performs a top-down, recursive de-
scent through the syntax tree of the given CTL+FO formula.
It introduces auxiliary predicates and generates a sequence
of implication and well-foundedness constraints over these
predicates. We use “,” to represent the concatenation opera-
tor on sequences of constraints. At each level of recursion,
Gen takes as input a CTL+FO formula ϕ0, a tuple of vari-
ables v0 that are considered to be in scope and define a
state, assertions init(v0) and next(v0, v

′
0) that describe a

set of states and a transition relation, respectively. We as-
sume that variables bound by first-order quantifiers in ϕ0

do not shadow other variables. To generate constraints for
checking if P = (v, init(v),next(v, v′)) satisfies ϕ we exe-
cute Gen(ϕ, v, init(v),next(v, v′)).

Handling First-Order Quantification.
When ϕ0 is obtained from some ϕ1 by universally quan-

tifying over x, we directly descend into ϕ1 after adding
x to the scope. Hence, the recursive call to Gen uses
v1 = (v0, x). Since init(v0) defines a set of states over
v1 in which x ranges over arbitrary values, the application
Gen(ϕ1, v1, init(v0), . . .) implicitly requires that ϕ1 holds for
arbitrary x. Since the value of x is arbitrary but fixed within
ϕ1, we require that the transition relation considered by the
recursive calls does not modify x and thus extend next to
next(v0, v

′
0) ∧ x′ = x in the last argument.

When ϕ0 is obtained from some ϕ1 by existentially quanti-
fying over x, we use an auxiliary predicate aux that implicitly
serves as witness for x. A first constraint connects the set
of states init(v0) on which ϕ0 needs to hold with aux(v1),
which describes the states on which ϕ1 needs to hold. We
require that for every state s allowed by init(v0), a choice
of x exists such that the extension of s with x is allowed by
aux(v1). Then, the recursive call Gen(ϕ1, v1, aux(v1), . . .)
generates constraints that keep track of satisfaction of ϕ1 on
arbitrary x allowed by aux(v1). Thus, aux(v1) serves as a
restriction of the choices allowed for x. Again, we enforce
rigidness of x by adding x′ = x to the next relation.

Gen(ϕ0, v0, init(v0),next(v0, v
′
0)) =

match ϕ0 with

| ∀x : ϕ1 ⇒
let v1 = (v0, x) in

Gen(ϕ1, v1, init(v0),next(v0, v
′
0) ∧ x′ = x)

| ∃x : ϕ1 ⇒
let v1 = (v0, x) in

let aux = fresh symbol of arity |v1| in

init(v0)→ ∃x : aux (v1),

Gen(ϕ1, v1, aux (v1),next(v0, v
′
0) ∧ x′ = x)

| c ⇒
init(v0)→ c

| EFϕ1 ⇒
let inv , aux = fresh symbols of arity |v0| in

let rank = fresh symbol of arity |v0|+ |v0| in

init(v0)→ inv(v0),

inv(v0) ∧ ¬aux(v0) → ∃v′0 : next(v0, v
′
0) ∧ inv(v′0) ∧

rank(v0, v
′
0),

wf (rank),

Gen(ϕ1, v0, aux (v0),next(v0, v
′
0))

Figure 1: Constraint generation rules for FO quantification,
assertions, and existential/eventually temporal quantification.

Handling Temporal Quantification.
We use a deductive proof system for CTL [14] and consider

its proof rules from the perspective of constraint generation.
When ϕ0 is a background theory assertion, i.e., does not use

path quantification, Gen produces a constraint that requires
ϕ0 to hold on every initial state.

When ϕ0 requires that there is a path on which ϕ1 eventu-
ally holds, then Gen uses an auxiliary predicate aux(v0) to
describe those states in which ϕ1 holds. Gen applies a combi-
nation of inductive reasoning together with well-foundedness
to show that aux(v0) is eventually reached from the initial
states. The induction hypothesis is represented as inv(v0)
and is required to hold for every initial state and whenever
aux(v0) is not reached yet. Then, the well-foundedness con-
dition wf , which requires that it is not possible to come back
into the induction hypothesis forever, ensures that eventu-
ally we reach a “base case” in which aux(v0) holds. Hence,
eventually ϕ1 holds on some computations.

Note that the induction hypothesis inv(v0), the well-
founded relation rank(v0, v

′
0), and the predicate aux (v0) are

left for the solver to be discovered.
See [2] for the remaining rules that describe the full set of

CTL temporal quantifiers.

Complexity and Correctness.
Gen performs a single top-down descent through the syntax

tree of the given CTL+FO formula ϕ. The running time and
the size of the generated sequence of constraints is linear in
the size of ϕ. Finding a solution for the generated constraints
is undecidable in general. In practice however, the used
solver often succeeds in finding a solution (cf. Sect. 4). We
formalize the correctness of Gen in the following theorem.

Theorem 1. For a given program P with init(v) and
next(v, v′) over v and a CTL+FO formula ϕ the application

Gen(ϕ, v, init(v),next(v, v′)) computes a constraint that is
satisfiable if and only if P |= ϕ.

Proof. (sketch) We omit the full proof here for space rea-
sons. We proceed by structural induction, as the constraint
generation of the algorithm Gen. Formally, we prove that the
constraints generated by Gen(ϕ0, v0, init(v0),next(v0, v

′
0))

have a solution if and only if the program P =
(v0, init(v0),next(v0, v

′
0)) satisfies ϕ0. The base case, i.e.,

ϕ0 is an assertion c from our background theory T , is trivial.
As example for an induction step, we consider ϕ0 = ∃x : ϕ1.

To prove soundness, we assume that the generated constraints
have a solution. For the predicate aux , this solution is a
relation Saux that satisfies all constraints generated for aux .
For each s with init(s), we choose xs such that (s, xs) ∈ Saux .
As we require init(v0) → ∃x : aux(v0, x), this element is
well-defined. We now apply the induction hypothesis for
P ′ = ((v0, x), aux (v0, x),next(v0, v

′
0) ∧ x′ = x) and ϕ1. Then

for all s with init(s), we have P ′, (s, xs) |= ϕ1, and as P ′ is
not changing x by construction, also P ′, (s, xs) |= ϕ1[xs/x].
From this, P, s |= ϕ0 directly follows.

For completeness, we proceed analogously. If P,ϕ0 |=
holds, then a suitable instantiation xs of x can be chosen for
each s with init(s), and thus we can construct a solution for
aux (v0, x) from init(v0).

Example.
We illustrate Gen (see Figure 1) on a simple example. We

consider a property that the value stored in a register v can
grow without bound on some computation.

∀x : v = x→ EF (v > x)

This property can be useful for providing evidence that a
program is actually vulnerable to a denial of service attack.
Let init(v) and next(v, v′) describe a program over a single
variable v.

We apply Gen on the property and the program and obtain
the following application trace (here, we treat → as expected,
as its left-hand side is a background theory atom).

Gen(∀x :v=x→ EF (v>x),v, init(v), next(v, v′))

Gen(v=x→ EF (v>x), (v, x),init(v), next(v, v′) ∧ x′=x)
Gen(v=x→ aux(v, x), (v, x),init(v), next(v, v′) ∧ x′=x)
Gen(EF (v>x), (v, x),aux(v, x),next(v, v′) ∧ x′=x)

This trace yields the following constraints.

init(v)→ (v = x→ aux (v))

aux (v)→ inv(v, x)

inv(v, x) ∧ ¬(v>x)→ ∃v′, x′ :next(v, x, v′, x′) ∧ x′ = x

∧ inv(v′, x′) ∧ rank(v, x, v′, x′)

wf (rank)

Note that there exists an interpretation of aux , inv , and rank
that satisfies these constraints if and only if the program
satisfies the property.

4. Evaluation
In this section we present CTLFO, a CTL+FO verification

engine. CTLFO implements the procedure Gen and applies
Ehsf [3] to solve resulting clauses.

We run CTLFO on the examples OS frag.1, . . . , OS
frag.4 from industrial code from [6, Figure 7]. Each ex-
ample consists of a program and a CTL property to be

Property φ |=CTL+FO φ |=CTL+FO ¬φ
Res. Time Res. Time

P1 ∃x : AG(a = x→ AF (r = 1)) X 1.0 × 0.1
AG(∃x : a = x→ AF (r = 1)) X 0.9 × 0.1

P2 ∃x : EF (a = x ∧ EG(r 6= 5)) X 0.9 × 0.2
EF (∃x : a = x ∧ EG(r 6= 5)) X 0.6 × 0.2

P3 ∃x : AG(a = x→ EF (r = 1)) X 1.1 × 0.1
AG(∃x : a = x→ EF (r = 1)) X 1.0 × 0.1

P4 ∃x : EF (a = x ∧AG(r 6= 1)) X 1.8 × 0.4
EF (∃x : a = x ∧AG(r 6= 1)) X 0.9 × 0.4

P5 ∃x : AG(s = x→ AF (u = x)) X 7.0 × 0.1
AG(∃x : s = x→ AF (u = x)) X 7.2 × 0.1

P6 ∃x : EF (s = x ∧ EG(u 6= x)) X 1.8 × 2.2
EF (∃x : s = x ∧ EG(u 6= x)) X 1.1 × 2.1

P7 ∃x : AG(s = x→ EF (u = x)) X 3.1 × 0.2
AG(∃x : s = x→ EF (u = x)) X 6.5 × 0.1

P8 ∃x : EF (s = x ∧AG(u 6= x)) X 14.3 × 1.8
EF (∃x : s = x ∧AG(u 6= x)) X 13.9 × 1.8

P9 ∃x : AG(a = x→ AF (r = 1)) X 118.7 × 17.3
AG(∃x : a = x→ AF (r = 1)) X 82.3 × 1.4

P10 ∀x : EF (a = x ∧ EG(r 6= 1)) T/O - × 3.5
EF (∀x : a = x ∧ EG(r 6= 1)) T/O - × 3.5

P11 ∃x : AG(a = x→ EF (r = 1)) X 126.8 × 3.6
AG(∃x : a = x→ EF (r = 1)) X 140.3 × 0.2

P12 ∀x : EF (a = x ∧AG(r 6= 1)) X 146.7 × 3.2
EF (∀x : a = x ∧AG(r 6= 1)) X 161.7 × 0.2

P13 ∃x : AF (io = x) ∨AF (ret = x) X 576.8 × 0.3
P14 ∃x : EG(io 6= x) ∧ EG(ret 6= x) X 15.1 × 48.1
P15 ∃x : EF (io = x) ∧ EF (ret = x) X 166.4 × 1.9
P16 ∃x : AG(io 6= x) ∨AG(ret 6= x) X 3.4 T/O -

Table 1: Evaluation of CTLFO on benchmarks from [6].

proven. We have modified the given properties to lift the
CTL formula to CTL+FO. As example, consider the prop-
erty AG(a = 1 → AF (r = 1)). One modified property to
check could be ∃x : AG(a = x→ AF (r = 1)), and another
one is AG(∃x : (a = x → AF (r = 1))). By doing similar
satisfiability-preserving transformations of the properties for
all the example programs, we get a set programs whose prop-
erties are specified in CTL+FO as shown in Table 1. For
each pair of a program and CTL+FO property φ, we gener-
ated two verification tasks: proving φ and proving ¬φ. While
the existence of a proof for a property φ implies that ¬φ is
violated by the same program, we consider both properties
to show the correctness of our tool.

We report the results in Table 1. X (resp. ×) marks the
cases where CTLFO was able to prove (resp. disprove) a
CTL+FO property. T/O marks the cases where CTLFO
was not able to find either a solution or a counter-example
in 600 seconds.

CTLFO is able to find proofs for all the correct programs
except for P10 and counter-examples for all incorrect pro-
grams except for P16. Currently, CTLFO models the control
flow symbolically using a program counter variable, which we
believe is the most likely reason for the solving procedure to
time out. Efficient treatment of control flow along the lines
of explicit analysis as performed in the CPAchecker frame-
work could lead to significant improvements for dealing with
programs with large control-flow graphs [4]. An executable
of CTLFO, together with a more verbose evaluation, can be
found at https://www7.in.tum.de/~beyene/ctlfo/.

For cases where the property contains nested path quan-
tifiers and the outer temporal quantifier is F or U , our im-
plementation may generate non-Horn clauses following the

proof system from [14]. While a general algorithm for solving
non-Horn clauses is beyond the scope of this paper, we used a
simple heuristic to seed solutions for queries appearing under
the negation operator.

5. Conclusion
This paper presented an automated method for proving

program properties written in the temporal logic CTL+FO,
which combines universal and existential quantification over
time and data. Our approach relies on a constraint genera-
tion algorithm that follows the formula structure to produce
constraints in the form of Horn constraints with forall/exists
quantifier alternation. The obtained constraints can be solved
using an off-the-shelf constraint solver, thus resulting in an
automatic verifier.

6. References
[1] F. Belardinelli, A. Lomuscio, and F. Patrizi. An

abstraction technique for the verification of
artifact-centric systems. In KR, 2012.

[2] T. Beyene, M. Brockschmidt, and A. Rybalchenko.
CTL+FO verification as constraint solving. CoRR,
abs/1406.3988, 2014.

[3] T. Beyene, C. Popeea, and A. Rybalchenko. Solving
existentially quantified Horn clauses. In CAV, 2013.

[4] D. Beyer and S. Löwe. Explicit-state software model
checking based on CEGAR and interpolation. In FASE,
2013.

[5] J. Bohn, W. Damm, O. Grumberg, H. Hungar, and
K. Laster. First-order-CTL model checking. In
FSTTCS, 1998.

[6] B. Cook and E. Koskinen. Reasoning about
nondeterminism in programs. In PLDI, 2013.

[7] B. Cook, A. Podelski, and A. Rybalchenko.
Termination proofs for systems code. In PLDI, 2006.

[8] A. Da Costa, F. Laroussinie, and N. Markey. Quantified
CTL: expressiveness and model checking. In CONCUR,
2012.

[9] S. Grebenshchikov, N. P. Lopes, C. Popeea, and
A. Rybalchenko. Synthesizing software verifiers from
proof rules. In PLDI, 2012.

[10] S. Hallé, R. Villemaire, O. Cherkaoui, and B. Ghandour.
Model checking data-aware workflow properties with
CTL-FO+. In EDOC, 2007.

[11] J. Heusser and P. Malacaria. Quantifying information
leaks in software. In ASAC, 2010.

[12] K. Hoder, N. Bjørner, and L. M. de Moura. µZ - an
efficient engine for fixed points with constraints. In
CAV, 2011.

[13] I. Hodkinson, F. Wolter, and M. Zakharyaschev.
Decidable and undecidable fragments of first-order
branching temporal logics. In LICS, 2002.

[14] Y. Kesten and A. Pnueli. A compositional approach to
CTL∗ verification. Theor. Comput. Sci.,
331(2-3):397–428, 2005.

[15] A. C. Patthak, I. Bhattacharya, A. Dasgupta,
P. Dasgupta, and P. Chakrabarti. Quantified
computation tree logic. Information processing letters,
82(3):123–129, 2002.

[16] A. Rensink. Model checking quantified computation
tree logic. In CONCUR, 2006.

https://www7.in.tum.de/~beyene/ctlfo/

	Introduction
	Preliminaries
	Constraint Generation
	Evaluation
	Conclusion
	References

