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Abstract. We present a novel technique to analyse the bounded reach-
ability probability problem for large Markov chains. The essential idea is
to incrementally search for sets of paths that lead to the goal region and
to choose the sets in a way to easily determine the probability mass they
represent. To effectively dispatch the resulting formulas using an SMT
solver, we employ a finite-precision abstraction on the Markov chain and
a custom quantifier elimination strategy. Through experimental evalua-
tion on PRISM benchmark models we demonstrate the feasibility of the
approach on models that are out of reach for previous methods.

1 Introduction

Probabilistic model checking is used in a wide array of applications, e.g., in
reliability analysis, analysis of randomized algorithms, but also for analysis of
system models that arise from the natural sciences like in computational biol-
ogy [1]. Especially in the sciences, there has always been a large interest in the
analysis of probabilistic models, as testified by countless applications of Markov
chains, Markov decision process, and their associated analysis procedures. Versa-
tile logics, such as PCTL [2], offer a flexible framework for specifying questions
in probabilistic systems. We consider one of the main building blocks for the
analysis of PCTL specifications: the bounded reachability probability problem.
It asks for the probability that a given event, characterized by a set of states
(the goal region), occurs within a given number of steps of the model.

The general area of probabilistic model checking has received increased in-
terest recently, which is to a large degree due to advances made both in the-
ory and in practical analysis tools, e.g., in model checkers like PRISM [3] and
MRMC [4]. Like all model checkers, these tools face the state-space explosion
problem, though the challenge of dealing with probabilities makes the analysis
of even moderate size systems very difficult. Various strategies have been devel-
oped to manage the size of the state-space, including techniques like abstraction
refinement (e.g., [5]), Stochastic SAT (SSAT) and Stochastic SMT (SSMT) [6,
7], generalized Craig interpolation [8], symmetry reduction [9], as well as bisim-
ulation minimization [10, 11]. Other techniques use SAT-based path search to
enumerate paths (possibly with cycles) that lead to the goal region [12, 13] and



1 module p1
2 x : [ 0 . . 9 9 ] i n i t 0 ;
3 [ ] x<50 −> 0 . 5 : ( x ’=x+1) + 0 . 5 : ( x ’=2∗x ) ;
4 [ ] x=50 −> ( x ’=x ) ;
5 endmodule

Fig. 1: A symbolic DTMC in simplified PRISM syntax with one integer variable
x with domain [0, 99] and initial value 0. The first action is enabled if x < 50
and it offers 2 probabilistic choices: With probability 0.5, x is incremented or it
is doubled. The second action is enabled when x = 50 and idles.

add up their probabilities; this approach was recently enhanced to enumerat-
ing path fragments in a BDD-representation [14]. Even though these approaches
scale to models that cannot be solved by explicit state methods (i.e. numerical
approaches), the number of states in these models is still fairly small compared
to other symbolic techniques in automated (program) verification.

In this paper we present a new approach to approximate the bounded reach-
ability probability in large Markov chains using solvers for satisfiability modulo
theories (SMT-solvers). The approach starts with a new problem representation:
Instead of focusing on probability distributions over states, we consider the whole
probability space of sequences of random decisions up to the given step bound.
We then iteratively approximate the bounded reachability probability through
the SMT-based search for sets of paths that lead to the goal region.

Example. Consider the example system of Fig. 1. What is the probability
that x is smaller than 20 after 8 steps? For example, the set of paths executing
(x’=2*x) in the first 3 steps and anything in the 5 steps thereafter ensures that
x is smaller than 20 until step 8 and it has a probability of 2−3. A second set
of paths starting with one execution of (x’=x+1), then four unrestricted steps,
followed by three executions of (x’=x+1) is disjoint to the first set and also
ensures to stay below 20. Hence its probability of 2−4 can be counted separately
from the first set.

Organization. In Section 2 we characterize the probabilistic transition relation
of a Markov chain given in a symbolic representation via an integral over a
propositional formula, which enables a conceptually simple characterization of
the bounded reachability probability. Next, we present the iterative approach to
the approximation of the bounded reachability probability by searching sets of
paths that lead to the goal region. We choose the shape of sets in a way that
allows us to easily determine their probability mass (Section 3). To effectively
solve the resulting formulas, we discuss a finite-precision abstraction (Section 4)
to obtain a purely discrete problem that we can effectively dispatch to SMT
solvers. To enhance the efficiency, we present a specialized quantifier elimination
strategy that makes use of the convexity of the sets we search for (Section 5). In
Section 6 we report on an experimental evaluation of our approach on a set of
common benchmark models and discuss the findings. Section 7 discusses related
work.



2 Preliminaries

We assume familiarity with the basic concepts of probability spaces and distri-
butions and we start directly with the definition of the system model:

Definition 1 (Markov chain). A (discrete-time) Markov chain (S, sinit , P )
consists of a finite set of states S, an initial state sinit ∈ S, and a probabilistic
transition function P : S → Dist(S) assigning each state s ∈ S a probability
distribution over successor states.

An execution of a Markov chain is an infinite sequence of states. Although it is
intuitively clear what the behavior of Markov chains is, we need to construct the
probability space over executions carefully. We employ the theorem of Ionescu-
Tulcea [15, Thm. 2.7.2] to build this probability space out of the infinite sequence
of random experiments (random variables). Recursively, we define a random
variable Xi over the sequences of states of length i as

Xi(s0 . . . si) =
∑

si−1∈S
P (si−1)(si) ·Xi−1(s0 . . . si−1) ,

and we define X0 to assign probability 1 to sinit . The fact that each Xi, for
i ≥ 0, is a random variable, is easily verified.

This construction defines a σ-algebra over cylindrical sets of executions, i.e.
sets of executions that are defined via a common prefix, and it yields a unique
Borel-measurable probability space over the infinite executions of the Markov
chain. For a given Markov chain M we denote this measure on executions (and
on their prefixes) as PrM , mapping Borel-measurable sets of finite and infinite
executions to probabilities.

2.1 Bounded Reachability Probability

The analysis problem we consider in this paper is to determine the probability
to reach a specified set of final states in a given number of steps. This problem
is motivated by encodings of practical problems into Markov chains, where steps
correspond to steps in time in the original system. To ask for the probability to
reach the final states in a given number of steps is, therefore, often equivalent
to asking what the probability is that a certain event happens at a certain time.
The time bounded reachability probability problem is also a basic building block
for model checking logics like PCTL [2].

Formally, for a given Markov chain M = (S, sinit , P ), a set of final states
F ⊆ S, and a step number k we define the problem as computing

Pr M (F, k) = Pr M

(
{s0s1 . . . sk . . . ∈ Sω | s0 = sinit ∧ sk ∈ F}

)
.

Note that this formulation of the problem asks for the probability of reaching F
after exactly k steps. The computation of the probability of reaching F in k or
fewer steps is a variation of the problem requiring ∃i. si ∈ F instead of sk ∈ F .



2.2 Symbolic Markov Chains

We aim to analyze systems with large state spaces. Hence we begin with a
symbolic encoding of the state space and the probabilistic transition function.
Figure 1 shows an example system. The state space is described by variables
v1, v2, . . . , vn with given finite domains. The transition function is given by a
list of actions, each of them describing a probability distribution over successor
states. Actions have the following form:

(guard)→ p1 : (update1) + · · ·+ pm : (updatem) ;

The guard : S → B is a predicate on states that indicates whether the action is
enabled. If the system has multiple actions, their guards need to partition the
(reachable) state space. Thus, whenever a guard holds in a state, it is executed.

Intuitively, when executing an action, one of its probabilistic choices, which
are separated by the symbol +, is selected at random. The probability distribu-
tion over the probabilistic choices is defined by the expressions p1, . . . , pm : S →
[0, 1] ∩ Q. Each action a and probabilistic choice p entails a unique successor
state given by an update function, updatea,p : S → S.

The description of Markov chains in terms of actions is inspired by the PRISM
input language [3], as it proved to be flexible enough for a wide range of appli-
cation areas, such as distributed algorithms, communication protocols, security,
dependability, and biology. The PRISM input language supports more features,
like the parallel composition of multiple modules, but for the sake of simplicity,
we restrict the discussion to the features described above. Our implementation
presented in Section 6 does support modules, however.

2.3 The Markov Chain Entailed by a Symbolic Markov Chain

The state space of the Markov chain entailed by a symbolic Markov chain is
simply the cross product of the domains of the variables v1, v2, . . . , vn. The initial
state sinit is fixed by an expression in the symbolic model. To construct the
transition relation, we first consider the execution of a particular action a in a
state s. The probabilistic choices of a with their probabilities p1(s), . . . , pm(s),
respectively, define a partitioning of the interval [0, 1] into the sub-intervals

Ia,pi(s) =

i−1∑
j=1

pj(s),

i∑
j=1

pj(s)


for i < m and Ia,pm =

[∑
j<m pj , 1

]
. To execute a step in the model, we draw a

value r from the interval [0, 1] uniformly at random and then proceed according
to the deterministic transition relation. For a pair of states s and s′ and a given
random value r ∈ [0, 1], the transition relation is defined as

T (s, s′, r) =
∧

1≤j≤n

guardaj
(s) =⇒

∧
1≤i≤m

(
r ∈ Iaj ,pi

(s) =⇒ updateaj ,pi
(s, s′)

)
.



That is, we determine which action a is enabled and then apply the update
function of the probabilistic choice belonging to the sub-interval the random
number r falls in.

The probabilistic transition function of the entailed Markov chain, is thus

P (s, s′) =

∫ 1

0

T (s, s′, r) dr , (1)

where T (s, s′, r) is interpreted as 1 iff it holds true.
Other works in the area (e.g. [7, Definition 5.2]) define the probabilistic tran-

sition relation as a sum of the probabilities of all probabilistic choices that result
in the specified state. Our definition untangles the possible system behaviors and
the measure. This allows us to formulate a conceptually simple approximation
algorithm (Section 3). Of course, both approaches to define the entailed Markov
chain result in the same system behaviour.

3 Incremental Symbolic Approximation

In this section, we present a method to incrementally approximate the bounded
reachability probability for a given (symbolic) Markov chain. It is based on a
characterization of the bounded reachability probability as an integral over a
propositional formula, similar to the formulation for the one-step probabilistic
transition given in Subsection 2.3.

We begin by characterizing executions of length k, that is legal combina-
tions of execution prefixes s̄ = s0s1 . . . sk of sequences of random decisions
r̄ = r1r2 . . . rk; we define

T k(s̄, r̄) =
(
s0 = sinit ∧

∧
0≤i≤k−1 T (si, si+1, ri+1)

)
. (2)

Note that for all sequences r̄ there is exactly one sequence of states that fulfills
this condition. We are interested in all sequences of random decisions that lead
to a given goal region F , i.e.,

T k(r̄, F ) = ∃s̄ ∈ Sk+1. T k(s̄, r̄) ∧ sk ∈ F .

Proposition 1. Let M be a DTMC entailed by a symbolic Markov chain. For
the bounded reachability probability for a given goal region F and step number k
it holds that

Pr M (F, k) =

∫ 1

0

. . .

∫ 1

0

T k(r0 . . . rk, F ) dr0 . . . drk .

3.1 Identifying Cubes in the Probability Space

Proposition 1 leads to a new view on the problem. Instead of considering how
the probability distributions over the state space evolve over time, we consider



the probability space over all sequences of random decisions. This ‘state-less’
representation of the problem helps to attack the problem for models beyond the
scale at which their state space can be represented explicitely or via (MT)BDDs.

We propose to exploit the additivity of the probability measure at the level
of traces, i.e., to search for subsets R1, . . . , Rn ⊆ [0, 1]k with ∀i∀r̄ ∈ Ri. T

k(r̄, F )
and then to count them separately:

Pr M (F, k) =
∑
i

(∫
Ri

1 dr̄

)
+

∫ 1

0

. . .

∫ 1

0

T k(r̄, F ) ∧
∧
i

r̄ /∈ Ri dr̄ .

It is important to pick sets Ri that are easy to integrate. By choosing them to
be disjoint (closed and/or open) rectangles in [0, 1]k, we are able to obtain an
arbitrarily close approximation and it is easy to determine the volume of each
Ri. To see this, note that the space T k(r̄, F ) is the finite disjoint union of the sets
R(s̄) = {r̄ ∈ [0, 1]k | T k(s̄, r̄)} with sk ∈ F . The sets R(s̄) are in general closed
and open rectangles, as in each dimension they are defined by an upper bound
and a lower bound given by the expressions pi(s) in the system description.

In practice it is of course desirable to find larger rectangles. Our proposal is
essentially a greedy algorithm that searches for the next largest rectangle in a
system: Check, for increasing rectangle sizes x, whether a rectangle of that size
still exists; which translates to

∃l̄, ū ∈ [0, 1]k. x ≤
∏

1≤i≤k ui − li ∧
∀r̄ ∈ [0, 1]k.

(∧
1≤i≤k li ≤ ri ≤ ui

)
=⇒ T k(r̄, F ) ∧

∧
i r̄ /∈ Ri

(3)
Whenever we find a rectangle that satisfies the conditions above, we add it to
the set of rectangles Ri and repeat the process. If no rectangle exists, we reduce
the size of the rectangle to search for. It is clear that we can stop the process at

any time and obtain an under-approximation, i.e.,
∑

i

(∫
Ri

1 dr̄
)
≤ PrM (F, k).

Note that this method has an advantage over enumerating paths through the
system, if there are multiple probabilistic choices that do not change the fact
that the executions reach the goal region with the same probabilistic choices in
other steps—the sequence of states visited may be different though.

4 A Finite-Precision Abstraction

Our problem formulation of Section 3 is not very amenable to efficient solving
with automatic methods; to achieve this goal, we employ a layer of automatic
abstraction refinement, where each abstraction is obtained by bounding the pre-
cision of the analysis. In practice, we encode each of the sub-problems in the
SMT theory of uninterpreted functions and bit-vectors (SMT UFBV) as this
theory offers an efficient quantifier elimination/instantiation strategy [16].

To encode the problem in this purely discrete theory, we discretize the ran-
dom variables according to a precision parameter h. We propose a symbolic
discretization technique on the level of the formula T k(s̄, r̄) that maintains the



conciseness of the representation. That is, we do not need to consider every
state or transition of the entailed DTMC, but the technique works directly on
the symbolic description. This discretization preserves the probability measure
up to an arbitrarily small error.

First, we replace the real valued variables r ∈ [0, 1] by discrete variables
r ∈

{
0, . . . , 2h − 1

}
, where each of the discretization levels now corresponds to

a small portion ( 1
2h

) of the probability mass. Second, for every action of the
symbolic Markov chain with m probabilistic choices, we discretize the intervals
Ia,i introduced in Section 2.3 according to a precision parameter h:

⌈
Iaj ,pi

⌉
h
(s) =

2h ·
i−1∑
j=1

pj(s)

,
2h ·

i∑
j=1

pj(s)


 ,

for i < m and
⌈
Iaj ,pm

⌉
h

=
[⌊

2h ·
∑m

j=1 pj(s)
⌋
, 2h − 1

]
.

This simplifies the encoding of the one-step transition relation T (s, s′, r) to∧
1≤j≤n

guardaj
(s) =⇒

∧
1≤i≤m

(
r ∈

⌈
Iaj ,pi

⌉
h
(s) =⇒ updateaj ,pi

(s, s′)
)
,

which is a formula over a purely discrete space. The probability of a particular
probabilistic choice now approximately corresponds to the number of values for
r for which the transition relation holds true and shows this choice.

Due to the overlapping intervals
⌈
Iaj ,pi

⌉
h
, some of the discretization levels

are assigned to multiple intervals, but otherwise this transformation maintains a
clear correspondence of the values of r. Thus, the approximated transition rela-
tion now represents an over-approximation of the original transition relation, or,

in other words, the formula T k
h (s̄, r̄) =

(
s0 = sinit ∧

∧
0≤i≤k−1 T (si, si+1, ri+1)

)
is a relaxation of T k(s̄, r̄) and we define T k

h (r̄, F ) to be {r̄ ∈ [0, 1]k | ∃s̄ ∈
Sk+1. T k

h (s̄, br̄ · 2hc) ∧ sk ∈ F} ⊇ T k(r̄, F ).
Replacing T k(r̄, F ) by T k

h (r̄, F ) in Equation 3 does not result in the desired
approximation, as for the incremental symbolic search for under-approximations
of the probability, we are interested in an under-approximation of the transition
relation. We use the duality of the search for F and its complement F̄ (that is
PrM (F, k) = 1 − PrM (F̄ , k)) to derive that, we replace T k(r̄, F ) by ¬T k

h (r̄, F̄ ),
which yields an under-approximation, as desired. The reason for not starting
with an under-approximation right away is to avoid the additional quantifier
alternation that lures in the set T k(r̄, F ). In this way, the discretized version of
Equation 3 has only one quantifier alternation from an existential quantifier to
a universal quantifier.

4.1 Precision

The total probability mass affected by this approximation within one step of the
transition relation, is the probability of the union of all ambiguous discretization



levels. For a given action with m probabilistic choices, there can be at most
m − 1 ambiguous discretization levels, hence the quality of the approximation
for executing action a is m−1

2h
. The affected probability mass in one step of the

system is easily obtained by considering the action with the maximal number of
probabilistic choices.

When considering k steps, an obvious upper bound of the probability mass
affected by the approximation is

∑
0<i≤k

m−1
2h
· (1− m−1

2h
)i−1 , which is smaller

than k · m−1
2h

. As we are free to choose the parameter h, it is feasible to keep
the amount of affected probability mass arbitrarily small, because we have
limh→∞ PrMh

(F, k) = PrM (F, k).

Proposition 2. For a given symbolic Markov chain M , its discretized variant
Mh, a step number k, and a goal region F , we have

PrMh
(F, k) ≤ PrM (F, k) and

PrMh
(F, k) + k · (m−1

2h
) ≥ PrMh

(F ∪ {s∗}, k) .

As a consequence, the finite-precision abstraction of an under-approximation of
the bounded reachability probability as discussed in Section 3 is still an under-
approximation of the bounded reachability probability.

5 Implementation and Optimizations

We implemented our technique in a prototype model checker named pZ3 to eval-
uate its practical efficacy. We use the Z3 theorem prover (specifically its theory
for SMT UFBV [16]) as a back-end to dispatch the generated SMT instances.
The input to the tool is a PRISM model file, a predicate F on the state space
that represents the goal region, a step number k ∈ N, and a target probability
p∗ ∈ [0, 1]. The tool then determines whether the probability to reach a state sat-
isfying F is larger than or equal to p∗. Answering similar questions, like whether
the probability is below a certain bound, or within some upper and lower bounds
is straightforward, but not currently implemented.

5.1 The Basic Encoding

By the basic encoding, we refer to the direct encoding of Eq. 3 in the theory
of bit-vectors with quantifiers, using the finite-precision abstraction presented
in Section 4. Thereby we completely rely on the SMT solver’s ability to handle
the quantifiers. We chose the theory of bit-vectors over a pure SAT encoding to
make use of the word-level reasoning and optimizations of the SMT solver.

We omit the details of the translation of Eq. 3 into bit-vectors as this is
as usual. However, it is interesting to note that the size of the generated SMT
instance is (1) logarithmic in the domains of the variables, and (2) linear in the
number of variables, the number of actions, the precision parameter h, number
of updates, and the number of steps.



Note that the PRISM language supports modules that can perform actions
jointly via a synchronization mechanism. We encode such synchronized actions
of multiple modules compactly to avoid enumerating the exponential number of
synchronizations actions.

This basic encoding, while correct, challenges the current state-of-the-art
in SMT-solving as it produces large and complex quantified formulas that can
not be quickly dispatched. In the following, we discuss optimizations, first and
foremost a custom quantifier elimination strategy, that does enable checking
Eq. 3 effectively for large Markov chains.

5.2 Custom Quantifier Elimination

To improve the performance of the SMT solver, we implemented a customized
quantifier elimination procedure that relies on the notions of example paths and
close counter-examples. The idea is to not search for a sufficiently large rectangle
directly, but instead we pick a local environment by fixing an example path that
leads to the goal region and only search for rectangles that contain this path,
such that we find the largest rectangle containing at least this path. Abstractly,
we pick candidate rectangles and check whether they are valid rectangles by
searching for a path inside the rectangle that does not lead to the goal region,
i.e., a counter-example. If we find such a counter-example, we remember it and
generate a new candidate rectangle. This procedure is similar to what a strategy
like model-based quantifier instantiation [17, 16] does with a problem like Eq. 3.

However, we may have to perform many queries to find a rectangle that does
not contain a counter-example (i.e., a rectangle only containing paths that lead to
the goal region). So, when searching for counter-examples, it is highly beneficial
to rule out as many candidate rectangles as possible. Here, we exploit the fact
that the rectangles we are looking for are convex. Therefore, counter-examples
that are ‘closer’ to the example path rule out more candidate rectangles than
those that are strictly further away. As a measure of distance between paths, we
use the Hamming distance of the bit-strings that represent the random choices,
as follows: Instead of encoding the random choices of each step by a bit-vector of
length h, we consider these as h independent Boolean variables, such that we are
able to compute the Hamming distance between two different instantiations of
those variables. This entails a change of view from a k-dimensional space where
each dimension has 2h values, to a k · h-dimensional space with Boolean values
and it slightly changes the notion of rectangles: A rectangle in the bit-vector
representation is not necessarily a rectangle in the Boolean representation, and
vice versa. (Rectangles in the Boolean space are also called cubes.) Currently, we
only support this restricted notion of shapes, but in general any type of convex
polygonal shape can be used.

Using these definitions, we search for those counter-examples that are closest
to the example path. We call these counter-examples close counter-examples. Fi-
nally, we provide a sketch of the process in Algorithm 1, which uses the following
functions:



Data: Initial states I, k-step transition relation T k, goal states F , target
probability p∗

Result: true if the probability to reach F from I via T k is at least p∗, false
otherwise.

rectangles := ∅ ;
p := 0 ;
while p < p∗ do

path := findPath (I, T k, F , ¬rectangles) ;
if path 6= ∅ then

closeCEs := ∅ ;
rectangleFound := false;
while not rectangleFound do

rectangle := findCandidateRectangle(path, closeCEs);

closeCE := findClosestCE(rectangle, path, I, T k, ¬F );
if closeCE 6= ∅ then

closeCEs := closeCEs ∪ { closeCE };
else

p := p + computeVolume(rectangle, rectangles);
rectangles := rectangles ∪ { rectangle } ;
rectangleFound := true;

end

end

else
return false;

end

end
return true;
Algorithm 1: Quantifier elimination based on close counter-examples

findPath: Yields a path that starts with the initial state, follows the k-step
transition relation and ends up in a state satisfying F . Paths that were already
counted in previous runs of the outer loop are excluded by ¬rectangles. This
is essentially an SMT-based bounded model checking query. We utilize both
under- and over-approximations as described in Section 4. Searching paths in
the over-approximation results in example paths that share their sequence of
random decisions with a second path that does not lead to the goal region. As
an optimization, we also search for example paths in the under-approximation
of the transition relation that does not allow for overlapping intervals.

findCandidateRectangle: Finds a rectangle that contains the example path and
avoids all counter-examples. Note that this check is completely agnostic to the
transition relation.

findClosestCE: This function iteratively searches for counter-examples of in-
creasing Hamming distance, starting with distance 0. Finding close counter-
examples seems to be a hard task for SMT solvers—in many models this is



harder than finding a path that is not related by distance to the original path.
Typically our tool spends >50% of its run time in this routine.

Note that, while we require example paths to not be covered by any of the
identified rectangles, we do not require the rectangles to be intersection-free. This
is an optimization that tries to avoid the fragmentation of the remaining parts
of the probability space. The function computeVolume(. . . ) finally computes the
volume that the new rectangle adds to the union of all rectangles.

6 Experimental evaluation

We conducted a set of experiments to evaluate our technique and to determine
its effectiveness in verifying the bounded reachability probability problem and
its performance in relation to existing approaches.

Models. To obtain a benchmark set that is not biased toward our tool, we chose
to consider all Markov chain models in the benchmark set that is delivered with
the PRISM model checker. Out of those, we picked all models that come with
a bounded reachability specification. This set comprises the Bounded retrans-
mission protocol (BRP) [18], the Crowds protocol (CROWDS) [19], a contract
signing protocol (EGL) [20], the self-stabilization protocol (HERMAN) [21], a
model of von Neumann’s NAND multiplexing [22], and a synchronous leader elec-
tion protocol (LEADER) [23].3 For each of these models, we considered multiple
parameter settings, that, for example, control the number of participants in the
protocol or the minimal probability that must be proven. Most of the instances
considered satisfy the specified probability bounds. The full list of experiments
can be found in Appendix A.

Experimental Setup. All experiments were performed on machines with two Intel
Xeon L5420 quad core processors (2.5GHz, 16GB RAM). All tools were limited
to 2GB of memory and the time limit was set to 2 hours (7200s).

Comparison to the PRISM model checker. For the comparison, we configured
PRISM to use its symbolic MTBDD engine and we extended the available mem-
ory of PRISM’s BDD library to 2GB. Figure 2 summarizes the comparison of
pZ3 to PRISM. From this plot it is evident that pZ3 solves many of the large
problem instances, for which PRISM runs out of time or memory. On Markov
chains that are small or of moderate size, however, PRISM has a clear advantage.
Especially for the models of the leader election protocol, the bounded retrans-
mission protocol and the self-stabilization protocol, we observe that scaling the
model parameters has little effect on the run time of pZ3, whereas PRISM ex-
ceeds the time or memory limits. For the models LEADER and HERMAN, all
reachable states can be reached within the considered step bound (> 1012 states

3 These models and a detailed description for each of them can be found at
http://www.prismmodelchecker.org/casestudies/
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Fig. 2: The performance of PRISM vs the performance of pZ3 on all models
and parameter settings. The size of the circles around datapoints indicate the
logarithm of the size of the state space. For the full list of experiments, see
Appendix A.

in case of the HERMAN model), suggesting that the advantage of pZ3 is due
to its use of a symbolic reasoning engine rather than a variant of state space
enumeration.

Scalability in the target probability. Figure 3a displays the scalability in the target
probability. As expected for an incremental method, the run time increases when
we specify a target probability close to the actual bound. The approximation
quality that can be achieved varies greatly for the different models: While for
the model of the leader election protocol 99% of the probability mass is found in
acceptable time, in other models only a fraction of the actual probability mass
is found by pZ3.

Scalability in the precision parameter. In theory, the precision parameter h plays
an important role in the quality of the results as presented in Section 4. The
probabilities computed by our approach are always sound under-approximations
of the bounded reachability probability; regardless of the precision parameter.
For the models in the PRISM benchmark suite, small values of the precision
parameters, between h = 1 and h = 8, are often enough to verify many models.
Nevertheless, for some models the precision might be an issue. Figure 3b shows
the sensitivity or our approach with respect to h on the leader election protocol
with 4 participants and 11 probabilistic alternatives each, where it has only
a moderate effect on the run time. The choice of 11 probabilistic alternatives
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Fig. 3: Run time of pZ3 for increasing (a) target probability on the BRP model
with parameters N = 16 and MAX = 2 and (b) precision on the leader election
model with parameters N = 4 and K = 11.

ensures that increasing the precision parameter actually increases the maximal
probability that can be detected by our approach.

7 Related work

The first formulation of the bounded reachability problem for MDPs goes back
to Bellman [24] and Shapley [25]. These are the foundation of the numerical
methods included in MRMC [4], IscasMC[26], and Murphi [27] and enable precise
model checking, but consider states and transition probabilities explicitly and so
do not scale to problem sizes where the state space is not efficiently enumerable.
Simulation based techniques and statistical model checking are well suited to
explore the likelihood of relatively likely events in large executable systems.
However, when the events are very unlikely, simulation based techniques struggle
to produce results with small margins of error.

The first symbolic approach to analysis of MDPs is based on MTBDDs [28].
Experiments with the (MTBDD-based) tool PRISM show that the approach is
limited to fairly small state spaces, compared to other symbolic techniques in
general automated (program) verification.

Abstract interpretation [29] and general static analysis are widely employed
techniques for approximate analysis of systems, but existing frameworks based
thereupon are often limited to software-specific behavior (like numerical anal-
ysis) and their precisions strongly depends on the choice of abstract domains.
Esparza and Gaiser [30], basing their work upon that of Hermanns et al. [5] and
Kattenbelt et al. [31], as well as Monniaux [32] give a first taste of how abstract
interpretation can be employed effectively in the probabilistic setting.

Fränzle et al. [33] proposed to encode the bounded reachability problem
of Markov chains and Markov decision processes into Stochastic SAT (SSAT)
Stochastic SMT (SSMT), hoping to replicate the tremendous progress SAT and
SMT solvers brought to other fields. The proposed algorithms for SSAT and



SSMT branch over the probabilistic decisions and recursively add up the reach-
ability probability of the individual branches. This requires exploration of an
exponential number of probabilistic branches and hence the number of steps we
can explore with this approach is limited, even for small models (cf. [7, Section
6.7]). SSAT and SSMT-based analysis of Markov chains is similar to our ap-
proach, but our method does not try do develop a specialized algorithm to solve
SSAT instances; it instead builds upon general purpose SMT solvers. We make
use of quantified theories to search for sets of paths that lead to the goal region.

Counterexample generation is a closely related branch of research [34, 35]. It
is concerned with generating proof objects or counter-examples to the bounded
reachability problem (or alternatively reward problems) that are—in principle—
human readable. Also symbolic approaches have been explored for generating
counter-examples for Markov chains [12–14]. Similar to the approach discussed
here, these works present methods to iteratively find evidence for the probability
of a given event in probabilistic systems. These methods mostly enumerate single
paths (possibly with cycles [12] or fragments of paths [14]) such that they require
a large number of calls to a SAT or SMT solver. In contrast, our method detects
large sets of paths with few calls to a solver and builds on a fundamentally
different representation: Instead of considering paths as sequences of states of
the Markov chain, we consider paths to be sequences of random decisions.

Since the presented technique is not the first symbolic approach able to solve
the bounded reachability probability problem in Markov chains, a comparison
of all approaches would be in order. However, to the best of our knowledge there
is no tool besides PRISM that (1) symbolically analyzes Markov chains (2) is
publicly available and (3) is able to parse PRISM files. A first impression of
the relative performance of recent counter-example generation techniques to the
technique presented here can be obtained through the data presented in this work
and in [14] (see also Appendix A). Both works consider the same models, though
the model parameters in this work are often considerably higher. For example
the leader election protocol seems to be not amendable to enumerating paths,
whereas the search for sets of paths performs well. For the crowds protocol,
however, enumerating paths (potentially with cycles and path fragments) by
many SAT or SMT calls seems considerably faster than searching for sets of
paths. This raises the question on combinations or generalizations of the methods
to combine the best of both worlds.

8 Conclusion

We present a novel approach to iteratively approximate the bounded reachability
probability in large Markov chains, which is based on a novel problem encoding
in quantified SMT theories. We employ a finite-precision abstraction to obtain a
discrete problem encoding. A specialized quantifier elimination strategy is given
to effectively dispatch the encoded formulas. We demonstrate the feasibility of
the approach on the set of benchmark models of the PRISM model checker.
Especially for large models our tool is able to outperform PRISM, suggesting



that our method is a suitable, complementary approach in cases where existing
methods do not scale.
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A Experimental data

Model Parameters Prec. Prob. Steps log10(States) time pZ3 time PRISM
BRP N= 16 MAX= 2 h = 8 10−9 14 2.83 6.49 0.09
BRP N= 32 MAX= 4 h = 8 10−9 14 3.34 31.25 0.17
BRP N= 64 MAX= 4 h = 8 10−9 14 3.72 52.79 0.23
BRP N= 200 MAX= 4 h = 8 10−9 14 4.13 26.41 0.64
BRP N= 400 MAX= 4 h = 8 10−9 14 4.43 86.54 1.33
BRP N= 600 MAX= 4 h = 8 10−9 14 4.61 92.40 2.09
BRP N= 800 MAX= 4 h = 8 10−9 14 4.74 51.23 2.89
BRP N= 1000 MAX= 4 h = 8 10−9 14 4.83 52.56 3.79
BRP N= 2000 MAX= 4 h = 8 10−9 14 5.13 36.00 9.72
BRP N= 3000 MAX= 4 h = 8 10−9 14 5.31 40.56 17.71
BRP N= 4000 MAX= 4 h = 8 10−9 14 5.43 50.32 26.85
BRP N= 5000 MAX= 4 h = 8 10−9 14 5.53 27.32 38.13
BRP N= 10000 MAX= 4 h = 8 10−9 14 5.83 28.94 153.73
BRP N= 105 MAX= 4 h = 8 10−9 14 n/a 27.90 t/o
BRP N= 106 MAX= 4 h = 8 10−9 14 n/a 28.05 t/o
BRP N= 107 MAX= 4 h = 8 10−9 14 n/a 68.35 t/o
BRP N= 108 MAX= 4 h = 8 10−9 14 n/a 60.56 t/o
NAND N= 20 K= 2 h = 8 5 · 10−6 80 5.19 4108.10 0.91
NAND N= 20 K= 3 h = 8 5 · 10−6 80 5.36 4234.30 1.23
NAND N= 20 K= 4 h = 8 5 · 10−6 100 5.49 t/o 1.67
EGL N= 5 L= 2 h = 1 0.5 31 4.53 42.38 0.38
EGL N= 5 L= 4 h = 1 0.5 60 4.87 212.20 1.12
EGL N= 7 L= 2 h = 1 0.5 100 5.87 92.28 0.70
EGL N= 7 L= 4 h = 1 0.5 100 6.22 520.50 2.09
EGL N= 10 L= 2 h = 1 0.5 100 7.82 227.78 1.26
EGL N= 10 L= 4 h = 1 0.5 100 8.18 1396.62 4.38
CROWDS Runs= 3 Size= 5 h = 7 0.005 15 3.08 17.68 0.17
CROWDS Runs= 3 Size= 5 h = 7 0.007 15 3.08 45.99 0.14
CROWDS Runs= 6 Size= 10 h = 7 0.005 15 5.55 20.14 0.44
CROWDS Runs= 6 Size= 10 h = 7 0.007 15 5.55 35.51 0.42
CROWDS Runs= 10 Size= 20 h = 7 0.005 15 9.35 20.34 2.76
CROWDS Runs= 10 Size= 20 h = 7 0.007 15 9.35 38.76 2.76
CROWDS Runs= 10 Size= 40 h = 7 0.005 15 11.90 21.29 29.00
CROWDS Runs= 20 Size= 40 h = 7 0.005 15 17.80 21.37 79.98
CROWDS Runs= 40 Size= 128 h = 7 0.005 15 n/a 264.53 m/o
CROWDS Runs= 60 Size= 128 h = 7 0.005 15 n/a 251.15 m/o
LEADER N= 3 K= 2 h = 1 0.1 4 1.41 0.72 0.03
LEADER N= 3 K= 2 h = 1 0.5 4 1.41 1.45 0.03
LEADER N= 3 K= 2 h = 1 0.9 4 1.41 1.70 0.03
LEADER N= 3 K= 8 h = 3 0.1 4 3.02 1.86 0.11
LEADER N= 3 K= 8 h = 3 0.5 4 3.02 3.57 0.09
LEADER N= 3 K= 8 h = 3 0.9 4 3.02 7.38 0.11
LEADER N= 3 K= 32 h = 5 0.1 4 4.82 4.76 26.13
LEADER N= 3 K= 32 h = 5 0.5 4 4.82 11.70 25.91
LEADER N= 3 K= 32 h = 5 0.9 4 4.82 23.86 25.99
LEADER N= 3 K= 64 h = 6 0.1 4 5.72 10.11 6382.27
LEADER N= 3 K= 64 h = 6 0.5 4 5.72 33.12 6375.88
LEADER N= 3 K= 64 h = 6 0.9 4 5.72 118.54 6359.91



Model Parameters Prec. Prob. Steps log10(States) time pZ3 time PRISM
LEADER N= 4 K= 2 h = 1 0.1 5 1.79 1.34 0.03
LEADER N= 4 K= 2 h = 1 0.5 5 1.79 4.04 0.03
LEADER N= 4 K= 2 h = 1 0.9 5 1.79 4.11 0.06
LEADER N= 4 K= 8 h = 3 0.1 5 4.09 7.51 2.51
LEADER N= 4 K= 8 h = 3 0.5 5 4.09 44.74 2.50
LEADER N= 4 K= 8 h = 3 0.9 5 4.09 142.26 2.54
LEADER N= 4 K= 32 h = 5 0.1 5 n/a 18.48 m/o
LEADER N= 4 K= 32 h = 5 0.5 5 n/a 490.30 m/o
LEADER N= 4 K= 32 h = 5 0.9 5 n/a 838.84 m/o
LEADER N= 4 K= 64 h = 6 0.1 5 n/a 99.42 m/o
LEADER N= 4 K= 64 h = 6 0.5 5 n/a 459.57 m/o
LEADER N= 4 K= 64 h = 6 0.9 5 n/a 3130.91 m/o
LEADER N= 6 K= 2 h = 1 0.1 7 2.53 9.66 0.09
LEADER N= 6 K= 2 h = 1 0.5 7 2.53 15.88 0.11
LEADER N= 6 K= 2 h = 1 0.9 7 2.53 16.28 0.11
LEADER N= 6 K= 8 h = 3 0.1 7 n/a 210.56 t/o
LEADER N= 6 K= 8 h = 3 0.5 7 n/a 2625.98 t/o
LEADER N= 6 K= 8 h = 3 0.9 7 n/a t/o t/o
LEADER N= 6 K= 32 h = 5 0.1 7 n/a 2000.57 m/o
LEADER N= 6 K= 32 h = 5 0.5 7 n/a t/o m/o
LEADER N= 6 K= 32 h = 5 0.9 7 n/a t/o m/o
LEADER N= 6 K= 64 h = 6 0.1 7 n/a t/o m/o
LEADER N= 6 K= 64 h = 6 0.5 7 n/a t/o m/o
LEADER N= 6 K= 64 h = 6 0.9 7 n/a t/o m/o
HERMAN N= 3 h = 1 0.1 20 0.90 0.17 0.03
HERMAN N= 3 h = 1 0.99 20 0.90 0.20 0.02
HERMAN N= 9 h = 1 0.01 20 2.71 0.15 0.16
HERMAN N= 9 h = 1 0.05 20 2.71 0.18 0.17
HERMAN N= 15 h = 1 10−4 20 4.52 0.20 32.47
HERMAN N= 15 h = 1 5 · 10−4 20 4.52 0.17 32.40
HERMAN N= 21 h = 1 10−5 20 n/a 0.19 t/o
HERMAN N= 21 h = 1 5 · 10−5 20 n/a 0.19 t/o
HERMAN N= 31 h = 1 10−8 20 n/a 0.20 t/o
HERMAN N= 31 h = 1 5 · 10−8 20 n/a 0.17 t/o
HERMAN N= 41 h = 1 10−11 20 12.34 0.21 1586.00
HERMAN N= 41 h = 1 5 · 10−11 20 12.34 0.18 1661.00

Time presented in seconds. The number of states was determined by PRISM.
For models on which PRISM reached a t/o or a m/o we assumed a large number
(1018) to generate the plot in Figure 2. “Prob.” denotes the lower bound on the
probability mass to find. We had to extend models LEADER, CROWDS, and
HERMAN to support larger parameter values. The extended models were only
used for those parameters not supported by the original model in the PRISM
benchmark set.


