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Abstract

Advertising (ad) revenue plays a vital role in support-
ing free websites. When the revenue dips or increases
sharply, ad system operators must find and fix the root-
cause if actionable, for example, by optimizing infras-
tructure performance. Such revenue debugging is analo-
gous to diagnosis and root-cause analysis in the systems
literature but is more general. Failure of infrastructure
elements is only one potential cause; a host of other di-
mensions (e.g., advertiser, device type) can be sources
of potential causes. Further, the problem is complicated
by derived measures such as costs-per-click that are also
tracked along with revenue.

Our paper takes the first systematic look at revenue
debugging. Using the concepts of explanatory power,
succinctness, and surprise, we propose a new multi-
dimensional root-cause algorithm for fundamental and
derived measures of ad systems to identify the dimen-
sion mostly likely to blame. Further, we implement the
attribution algorithm and a visualization interface in a
tool called the Adtributor to help troubleshooters quickly
identify potential causes. Based on several case studies
on a very large ad system and extensive evaluation, we
show that the Adtributor has an accuracy of over 95%
and helps cut down troubleshooting time by an order of
magnitude.

1 Introduction
Many free websites are supported today by revenue gen-
erated through advertisements (ads). Website ads can be
of two types, namely, search and display. In the case of
a search ad, an end user goes to a publisher website such
as bing.com and enters a query phrase. The response to
the query is a search results page that may contain one
or more ads. If the user clicks on one of these ads, the
publisher earns revenue. In the case of a display ad, an
end user may visit a publisher website, such as cnn.com,
where she might see ads at the top or sides of the page.
The display of these ads earns revenue for the publisher.

Ad systems facilitate generation and accounting of
millions of such search and display ads every day. Apart
from users and publishers noted above, there are two
other key constituents who interact with the ad system.
The ads shown to the user are the result of an ad auction
between various advertisers who bid to compete to have

their ad displayed to the user. Also in the midst are vari-
ous fraud operators [8] that try to usurp a fraction of the
advertising revenue.

Ad systems manage the interaction between users,
publishers, advertisers and fraud operators. Ad sys-
tems implement various ad-related algorithms that run
the real-time ad auctions between the advertisers, return
the winning ads to the publisher, monitor the user clicks,
detect and remove potential fraudulent activity, compute
the revenue from each displayed or clicked ad, charge
the advertiser the appropriate bid amount, and pay the
publishers. At the core of the ad system is a large-scale
distributed system consisting of thousands of servers dis-
tributed across several data centers that execute the ad al-
gorithms and manage the serving and accounting of ads.

The focus of this paper is on debugging ad systems.
Typically, an ad system monitor issues an alert whenever
a measure of interest is identified as anomalous (e.g., rev-
enue or number of searches is down sharply). 1 Our goal
is to automatically identify the potential root cause of
this anomaly. We term our approach revenue debugging,
even though it is applicable to several measures of inter-
est to ad system operators, to acknowledge the promi-
nence of the revenue metric. In this paper, we describe a
new revenue debugging algorithm that analyses the large
amount of data logged by the ad system and narrows
down the scope of potential root-cause of an anomaly to
a sub-component of the ad system for further investiga-
tion by a human troubleshooter.

Root-cause identification and diagnostics is an age-
old problem in systems. Various performance root-
causing tools have been proposed in the past [1, 2, 3,
10, 14, 15]. But all these solutions have focused on per-
formance/failure debugging. Here, we address a sim-
ilar yet more general problem: diagnostics in ad sys-
tems. While performance/failure of infrastructure sys-
tems components can be one possible root-cause for an
anomalous measure, there may be various other root-
causes that depend on other components that interact
with the ad system. Consider the following examples.
1. Papal Election: We noticed that the papal election
caused a revenue drop because many searches were made
for non-monetizable query terms such as pope or papal

1Anomaly detection is a challenging problem in itself but is out of
scope of this paper.



election, that advertisers typically do not bid for. The
total number of ads shown dropped which resulted in
an anomalous revenue drop. While identifying the root-
cause as the papal election is not actionable, root-cause
identification is still important as it eliminates an action-
able root-cause such as the example below.
2. Browser Ad Failure: We found a revenue drop was
caused by a manual error in updating a configuration
file that had the side-effect of not showing ads on cer-
tain browser versions. In this case, quick identification
helped rectify the configuration error, thereby restoring
advertising revenue. A more extensive set of examples is
depicted in Table 1 and discussed in Section 2.1.

The first challenge in ad systems debugging is sheer
scale. There are hundreds of millions of searches and
clicks every day; performing diagnostics at the level of a
search or a click is not scalable (imagine running Mag-
pie [3] or tracking a string of system calls through hun-
dreds of system components for every click). Thus, for
scalability reasons, ad system debugging operates over
aggregates of various measures. These measures are
typically counters aggregated over certain time intervals
(e.g., revenue generated over the last 1 hour). Root-cause
identification can only be triggered by anomalous behav-
ior of these aggregate counters.

A second distinguishing characteristic of ad systems
as compared to typical systems trouble shooting is the ex-
istence of multiple dimensions, and the need to first iso-
late the dimension that explains the anomaly. Measures
such as revenue can be broken down or projected along
different dimensions such as advertiser, browser, or data
center. For instance, in Example 2, if revenue were pro-
jected along the browser dimension, one could observe
that some browser versions were not generating their
“typical” share of revenue. However, if the same rev-
enue were sliced by the advertiser dimension, perhaps
the distribution of revenue would not have changed sig-
nificantly.

Typical systems root-causing algorithms such as
SCORE [11] use succinctness (Occam’s razor) and
explanatory power (does the root-cause explain the
change?) as their main parameters for optimization and
do not have to account for multiple dimensions. To iso-
late anomalous dimensions, we introduce the notion of
surprise, captured by quantifying the change in distribu-
tion of measure values across each dimension. For in-
stance, in Example 2, change in distribution of revenue
along the browser dimension is more surprising than the
change in distribution of revenue along the advertiser di-
mension. Thus, our first contribution in the paper is
the root-causing algorithm described in Section 3 that
uses surprise in addition to succinctness and explanatory
power to identify root-causes in ad systems.

A third unique characteristic of ad systems is the

prevalence of derived measures. Consider two funda-
mental measures: revenue per hour and number of clicks
per hour. From these two measures, one can define a de-
rived measure called cost-per-click that is simply revenue
divided by number of clicks. Ad system operators moni-
tor and track many such derived measures that are func-
tions of various fundamental measures (see Figure 1).
For example, the change in number of clicks and change
in revenue may be small by themselves and not anoma-
lous (e.g., less than 10%). However, correlated changes
(e.g., revenue drops and simultaneously clicks increase,
each by say 10%), are anomalous and is captured by the
derived cost-per-click measure (20% change). As we
discuss in Section 4, attributing a root-cause to derived
measures is challenging. To address this, we propose a
novel partial-derivative inspired attribution solution for
derived measures, our second contribution of the paper.

The outcome of our root-cause identification algo-
rithm is a set of candidates that potentially explain an
anomaly. However, this is only the first step in the di-
agnosis process where a troubleshooter may, if appro-
priate, take actions to fix the issue. To help the trou-
bleshooter quickly identify potential root-cause candi-
dates, we have implemented our root-cause identification
algorithm and a graphical visualizer in a tool called the
Adtributor, our third contribution of the paper. Through
experiences from a pilot deployment in a production sys-
tem, we have refined the visualization interface and data
representation techniques in Adtributor to further reduce
turnaround time for troubleshooters.

Finally, we perform extensive evaluation of our root-
causing algorithm. First, we tabulate and discuss a rep-
resentative set of case studies that highlight the value of
our root-causing tool. Second, we evaluate our algorithm
on 128 anomaly alerts over 2 weeks of real ad system
data and find that our algorithm achieves an accuracy of
over 95%. In fact, Adtributor even found root-causes for
a few anomalies that were missed by the manual trou-
bleshooters. Further, the tool also speeds up the trou-
bleshooting process by an order of magnitude.

2 Problem Statement
In this section, after providing a system overview, we
show examples of real problems and their root-causes.
Next, we state the problem more precisely and motivate
our solution.

2.1 System Overview
Figure 1 shows a simplified representation of an ad
system, and the entities such as users, fraud opera-
tors, publishers and advertisers that directly interact with
the ad system. The ad system itself has various sub-
components, some of which we show.

While the logging infrastructure does track each
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Figure 1: A simplified representation of an ad system, and the measures it monitors.

search request or ad-click, the sheer scale makes it hard
to track down a problem at the individual request level.
Instead, the system monitors a set of aggregate measures,
as shown in Figure 1. From the raw logs, it first cal-
culates, for each time interval, total searches received,
total ads shown, total ad-clicks received, and total rev-
enue from these clicks. These measures are all additive,
and can be sliced along different dimensions. For in-
stance, the total revenue is the sum of the revenue made
from each advertiser using the system. The total revenue
is also the sum of revenue received from different geo-
graphical regions where the ad system is active. We term
such additive measures fundamental measures.

Additionally, the system also monitors a set of
non-additive derived measures, which are functions
of fundamental measures, such as ads-per-search
(ads/searches), clicks-per-ad (clicks/ads), cost-per-
click (revenue/clicks), and revenue-per-search (rev-
enue/searches).

An anomalous rise or drop in any of these measures is
an indication of a problem. Therefore, a diagnostic en-
gine needs to first detect an anomaly, and then perform
root-cause analysis. In this paper, we focus on the lat-
ter aspect of root-causing, while relying on well-known
ARMA model-based methods [4] for anomaly detection.
The anomaly detector generates a model-based predic-
tion of measure values based on 8 weeks of historical
data, taking into account normal time-of-day and day-of-
week fluctuations. It then compares the actual value with
the forecasted value – when the actual value of a mea-
sure is significantly different from the forecasted value,
it generates an anomaly alert. The threshold difference
above which we generate an alert is measured in terms
of a percentage deviation from the expected value. In the
current system, troubleshooters manually set this value
based on experience. For each alert, our objective is to
attribute the anomaly in a measure to a dimension and its
corresponding elements. We define these terms next.

Dimension: A dimension is an axis along which a mea-
sure can be projected. For instance, we can project rev-
enue along the axis of advertisers, and determine how

much revenue comes in from each advertiser. The di-
mension in this case is “Advertiser”. Derived measures
can be similarly projected across dimensions. Some
other dimensions are “Publisher”, “Data Center”, and
“User Location”. Typically, an ad system deals with
dozens of such dimensions. Note that a dollar of rev-
enue could be added to Advertiser 1 in one dimension,
and Publisher 3 in a second dimension.
Element: Every dimension has a domain of values called
elements. For instance, the “Advertiser” domain can
have the following elements: {Geico, Microsoft, Toyota,
Frito-Lay, ...}. The Publisher dimension may have ele-
ments: {Bing, Amazon, NetFlix, ...}.

Table 1 provides a number of problem examples we
encountered, both actionable and not actionable, that
need to be detected and root-caused to the appropriate
dimensions and elements. Column 1 shows that prob-
lems can happen at various levels. Column 3 shows the
anomalous measure. Column 4 shows the output of the
root-cause analysis, the focus of this paper.

Note that Column 4 is only the first step towards root-
causing, but it is essential as it gives the troubleshooter
the best indication of where the problem actually lies.
Other post-processing techniques (correlation engines,
NLP techniques, manual investigation) use the output of
the multi-dimensional analysis to perform a deeper dive
into the issue to arrive at the final root-cause, shown in
Column 5, but this aspect of root-causing is outside the
scope of this paper. For instance, in row 9, while the
multi-dimensional analysis did narrow down the problem
to a few query strings, an administrator had to seman-
tically interpret the strings to determine that the papal
election was the cause.

2.2 Problem Definition and Scope
The multi-dimensional analysis problem of revenue de-
bugging is to find the dimension and its elements that
best explain an anomalous rise or fall in a measure. In
this context, we need to define what constitutes the “best
explanation” for an anomaly.

Consider the following example. The revenue of an ad
system was forecasted to be $100 at a given time. In real-
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Category No. Symptom Faulty Di-
mension and
Elements

Final Root-Cause

Infrastructure 1. Ads shown dropped Data Center:
DC1

Deployment of certain updates to data center DC1 failed.

2. Revenue dropped Log Server: L10,
L11, L12

Bug caused abnormally large logs on these logging servers, and they went
out of storage.

Ad System 3. Revenue increased Bucket: B1, B2 Buckets are A/B tests that are run on disjoint subsets of traffic to test new
algorithms. Buckets B1 and B2 were using a different algorithm that in-
creased the number of ads they showed.

4. Ads, revenue dropped Browser: WB1 Configuration file error caused no ads to be shown to users who used web
browser WB1. See Section 6.

Advertiser 5. Cost-per-click, rev-
enue increased

Advertiser: A1,
A2, ..., An

These advertisers were all retail companies who increased their budgets
during the holiday shopping season. This caused auction prices to go up,
thereby increasing cost-per-click and revenue. See Section 6.

6. Cost-per-click
dropped

Advertiser: Ax A large advertiser Ax reduced their marketing budget drastically. This
caused an overall drop in revenue, and clicks on ads from this advertiser.
This made the cost-per-click drop anomalously.

Publisher 7. Clicks-per-ad in-
creased

Publisher: P1 One publisher launched a new UI with more ads shown on the top of the
page than on the side. Users tend to click more on ads at the top of the
page, and so this publisher reported more ad-clicks. See Section 6.

8. Revenue dropped Publisher: P2, P3 Publishers P2 and P3 started blocking ads returned by the ad system to
make for a cleaner UI. Their revenue dropped.

User 9. Ads-per-search
dropped

Query string:
“pope”, “papal
election”

During the papal election, users searched for ”Pope”, ”Papal election”, etc.
which are non-monetizable searches. These searches showed no ads, con-
sequently the derived measure ads-per-search dropped.

10. Revenue dropped User Location:
New Orleans

A hurricane in New Orleans caused fewer searches from the affected geo-
graphical areas.

Fraud 11. Searches increased User-agent String A large number of searches used an identical user-agent string. This was
traced to a bot that was spoofing search requests and blindly replicating the
user-agent string. See Section 6.

Table 1: Some example issues that cause anomalies in advertising system measures.

Data Forecasted Actual Diff-
Center Revenue Revenue erence

X $94 $47 $47
Y $6 $3 $3

Total $100 $50 $50

Table 2: Revenue by Data Center

Device Forecasted Actual Diff-
Type Revenue Revenue erence
A1 $50 $24 $26
A2 $20 $21 -$1
A3 $20 $4 $16
A4 $10 $1 $9

Total $100 $50 $50

Table 3: Revenue by Advertiser

Device Forecasted Actual Diff-
Type Revenue Revenue erence
PC $50 $49 $1

Mobile $25 $1 $24
Tablet $25 $0 $25
Total $100 $50 $50

Table 4: Revenue by Device Type

ity, the actual revenue was only $50. An alert is triggered
on the revenue measure, which brings a troubleshooters
attention to the problem.

To find the root-cause when such problems occur,
the ad system continuously tracks the revenue generated
across a host of dimensions. For this scenario, con-
sider three such dimensions: Data center (DC), Adver-
tiser (AD), and Device type (DT). Tables 2, 3, 4 show
the projection of revenue values along these dimensions,
and the values attributed to the individual elements.

We now explain the semantics of these attributions.
When the ad system receives a search query, it routes
the query to a data center that in turn serves a number
of ads in response. The revenue attributed to a data cen-
ter is the total revenue received from clicks on ads that
this data center serves. Each ad has an associated adver-
tiser. When a user clicks an ad, the system charges the
advertiser a pre-determined sum of money. The revenue
attributed to the advertiser is the total cost of all such
clicks made on the advertiser’s ads. Users make search
queries using a host of devices, which could be phones,

tablets, or PCs. The revenue attributed to a device type
is the sum total of all revenue that the ad system obtains
from ad-clicks from that specific device-type.

The question that we seek to answer is: how do we
pinpoint the revenue drop to the right dimensions and
their elements? We restate the problem as follows:

“Find a Boolean expression, in terms of dimensions
and their elements, such that the revenue drop attributed
to the expression best explains the total drop in revenue.”

While we examine how to determine “best” shortly,
consider the following expressions that could explain the
$50 revenue drop:

Revenue Drop(DC == X) = $47 (1)

Revenue Drop(AD == A1 ∨AD == A3 ∨AD == A4) = $51
(2)

Revenue Drop(DT == Mobile ∨DT == Tablet) = $49
(3)

For example, equation 2 states that the sum of the dif-
ferences between the forecasted and actual revenues for
rows 1, 3, and 4 of the advertiser table is $51, which is
very close to the total revenue drop of $50.

In general, such expressions could include multiple
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dimensions such as Revenue Drop (DT == PC ∧
DC == X) which refers to a revenue drop across PC
users served ads from data center X . Based on about
one year of monitoring alerts in ad systems we have ob-
served, through manual study as well as through using an
attribution algorithm that blames anomalies on multiple
dimensions, that such cases where multiple dimensions
contribute together to a root-cause are very rare. There-
fore, for simplicity of exposition, in this paper, we limit
our discussions to finding a Boolean expression that in-
volves a single dimension and a set of its elements that
explains the anomalous change.

To understand what constitutes the “best” dimension
and a set of its elements, we studied several criteria. Con-
sider the following strawman approach that motivates our
final problem statement.
Strawman: Find the dimension and a set of its elements
whose revenue drop is at least a threshold fraction, TEP ,
of the total revenue drop, and is most succinct.

We quantify the explanatory power (EP) of a set of
elements as the fraction of the measure change that it
explains. We quantify succinctness (P) of a set of ele-
ments as the total number of elements in the expression.
Therefore, the strawman will find the expression that has
explanatory power of at least TEP , and uses the smallest
number of elements.

Occam’s razor suggests that the most succinct set, as
long as it explains the drop within a certain margin of
error (TEP ), is the best explanation. By this argument, if
TEP is set to 0.9, the best dimension and set of elements
among the three equations is in Equation 1, since the data
center X alone can explain 94% of the total drop.

This approach, however, has deficiencies for root-
causing in the presence of multiple dimensions. Though
data center X’s revenue drop is a high 94% of the total
revenue drop, notice that both the forecasted and actual
revenue are equally spread between the two data centers
X and Y. Data center X provided 94% of the forecasted
revenue ($94 out of $100), and actual revenue ($47 out
of $50). Data center Y contributed 6% across both val-
ues. By comparison, in the device type dimension, de-
vice type PC contributed 50% of forecasted revenue ($50
out of $100), but 98% of actual revenue ($49 out of $50).
The contributions of Mobile and Tablet device types also
varies widely from 25% of forecasted revenue to 0% of
actual revenue. The contributions vary along the adver-
tiser dimensions as well, but not as much as they do along
the device type dimension.

This large change in the contributions between fore-
casted and actual revenue from the different elements of
the device type dimension is, in general, surprising and
unexpected. Consequently, we propose that surprise is a
better indication of a problem than if we only used suc-
cinctness and explanatory power of an expression. Say

the root-cause of this revenue drop was due to a configu-
ration file error which caused no ads to be shown on mo-
biles and tablets. While data center X would still show
a huge drop in revenue because it provides 94% of all
ads shown across devices, the actual root-cause is bet-
ter explained by the device type dimension, and the ele-
ments Mobile and Tablet. In other words, the expression
in Equation 3 is the best one, even though it is not the
most succinct.

To capture this observation, our approach includes a
notion of “surprise” (S) associated with an expression
(Section 3 has the precise definition). Therefore, gen-
eralizing to any measure, our final revenue debugging
problem statement can be captured in three steps:
• For a dimension, find all sets of elements that explain

at least a threshold fraction, TEP , of the change in the
measure (have high explanatory power).

• Among all such sets for each dimension, find the sets
that are most succinct in that dimension.

• Across all such sets for all dimensions, find the one
set that is the most surprising in terms of changes in
contribution.

Again, for the mock example, with TEP = 0.9, the first
step will narrow down the sets to {X} for Data Center,
{A1, A3, A4} for Advertiser, and {Mobile, Tablet} and
{PC, Mobile, Tablet} for Device Type. Step 2 will nar-
row down the sets for each dimension to {X}, {A1, A3,
A4}, and {Mobile, Tablet}. Step 3 will then use the sur-
prise metric to pick the Device Type dimension and its
set {Mobile, Tablet} as the best explanation of the drop.

Our algorithm use a per-element threshold of the
change in the measure, TEEP , to add to the idea of suc-
cinctness. Not only do we want the smallest set of ele-
ments, we also want only those elements that contribute
at least a fraction of TEEP to the anomaly.

We show in Section 3.4 that solving this problem can
take exponential time (in number of elements) in the
worst case. Therefore, we use a greedy approach that
solves this problem approximately.

3 Root-Cause Identification Algorithm
We start with some notation and use it to formally define
explanatory power and surprise. We then describe the
root-cause identification algorithm. While the algorithm
remains the same for fundamental and derived measures,
the way explanatory power and surprise are computed
for derived measures is more complex and is discussed
separately in Section 4.

3.1 Notation
The list of important terms used in this section and
their notation are summarized in Table 5. Let the
set of measures (e.g., revenue, number of searches)
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Term Notation Example
Dimensions D = {D1, D2, ..., Dn} {Advertiser,Data center,...}

Cardinality of Dimension Di Ci 1000’s for advertiser, 10’s for Data center,...
Elements of Dimension Di Ei = {Ei1, Ei2, ..., EiCi

} {Flower123,...} for Advertisers
Measures M = {m1,m2, ...,mk} {Revenue, Number of Searches,...}

Forecasted and Actual Values of measure m for element Eij Fij(m), Aij(m) Revenue for Flowers123: forecast = $100, actual = $90
Overall forecasted and actual values of measure m F (m), A(m) Total revenue: forecast = $1,000,000 and actual = $900,000

Table 5: Notation

be denoted as M = {m1,m2, ...,mk} and let the
set of dimensions (e.g., advertisers, data centers) be
D = {D1, D2, ..., Dn}. Further, let the set of ele-
ments of a given dimension Di be denoted as Ei =
{Ei1, Ei2, ..., EiCi} where Ci is the cardinality of di-
mension i. For example, E21 may be “Flowers123”, an
element of the advertiser dimension.

For each of the measures m ∈ M of interest (includ-
ing the fundamental and derived measures) and for each
of the elements Eij , we have access to the predicted or
forecasted values, Fij , as well as the actual observed val-
ues, Aij . Note that, as discussed earlier, these values are
aggregates corresponding to some time interval of inter-
est (e.g., $100 revenue forecast, $90 revenue actual for
element Flower123, dimension advertiser).

For fundamental measures such as revenue or number
of searches, both the overall forecasted value for the mea-
sure, F (m), as well as the overall actual value, A(m), re-
main identical across all the dimensions (e.g., $100 fore-
casted and $50 actual revenue in the example in the pre-
vious section). For fundamental measures, the overall
measure is simply the summation of value of the mea-
sures of the elements of the respective dimensions, but
the same is not true for derived measures as they are not
additive (Section 4).

Thus, given F (m) and A(m), the algorithm needs to
output a potential root cause to explain the difference be-
tween the two. For this, it uses explanatory power and
surprise, defined next.

3.2 Explanatory power
Explanatory power of an element can be defined as the
percentage of change in the overall value of the measure
that is explained by change in the given element’s value.
For fundamental measures, the explanatory power of an
element j in dimension i is simply

EPij = (Aij(m)− Fij)/(A(m)− F (m)) (4)

For example, the total number of searches at a given
hour deviates from a forecasted value of 1 million to 0.8
million, and the number of searches at the same hour at
a particular data center, DC1, differs from its forecasted
value of 0.5 million to 0.4 million, the explanatory power
for element DC1 is (0.4-0.5)/(0.8-1) = 50%.

Note that, explanatory power for an element can be
more than 100% or even negative, if the change in ele-

ment is in opposite direction to overall change. However,
the sum of explanatory powers of all elements of any
dimension should sum up to 100%. Thus, explanatory
power fully explains the change in the overall measure.

3.3 Surprise
As discussed in the example in Section 2, a dimension
that has large change in its distribution (e.g., Device
Type) is more likely to be a root-cause than the dimen-
sion that does not exhibit such a change (e.g., Data Cen-
ter). We now formally define a measure of surprise to
capture this notion.

For each element Eij , let pij(m) be the forecasted or
prior probability value given by

pij(m) = Fij(m)/F (m),∀Eij (5)

Given a new anomalous observation, let qij(m) be the
actual or posterior probability value

qij(m) = Aij(m)/A(m),∀Eij (6)

Intuitively, the new observations for a given dimension
are surprising if the posterior probability distribution is
significantly different from the prior probability distri-
bution. This difference between two probability distri-
butions P and Q can be captured by the relative entropy
or Kullback-Leibler (KL) divergence [12]. However, the
use of KL divergence in our context has two issues. First,
KL divergence is not symmetric. Second, KL divergence
is only defined if, for all i, qi = 0 only if pi = 0, which
does not hold in our setting (e.g., advertiser pauses his
campaign).

Thus, instead of KL Divergence, we use a related mea-
sure called the Jensen-Shannon (JS) divergence [12] for
computing surprise, defined as

DJS(P,Q) = 0.5(Σipi log
2pi

pi + qi
+ Σiqi log

2qi
pi + qi

)

Observe that DJS(P,Q) is symmetric and is finite
even when qi = 0 and/or pi = 0. Further, 0 ≤
DJS(P,Q) ≤ 1, where 0 denotes no change in distri-
bution between P and Q, with higher values denoting
greater differences.

Thus, to compute surprise Sij for element Eij , we use
p = pij(m) and q = qij(m) to compute

Sij(m) = 0.5 (p log(
2p

p + q
) + q log(

2q

p + q
)) (7)

6



3.4 Algorithm

1 Foreach m ∈M // Compute surprise for all measures
2 Foreach Eij // all elements, all dimensions
3 p = Fij(m)/F (m) // Equation 5
4 q = Aij(m)/A(m) // Equation 6
5 Sij(m) = DJS(p, q) // Equation 7
6 ExplanatorySet = {}
7 Foreach i ∈ D
8 SortedE = Ei.SortDescend(Sij(m)) //Surprise
9 Candidate = {}, Explains = 0, Surprise = 0

10 Foreach Eij ∈ SortedE
11 EP = (Aij(m)− Fij(m))/(A(m)− F (m))
12 if (EP > TEEP ) // Occam’s razor
13 Candidate.Add += Eij

14 Surprise += Sij(m)
15 Explains += EP
16 if (Explains > TEP ) // explanatory power
17 Candidate.Surprise = Surprise
18 ExplanatorySet += Candidate
19 break
20 //Sort Explanatoryset by Candidate.Surprise
21 Final = ExplanatorySet.SortDescend(Surprise)
22 Return Final.Take(3) // Top 3 most surprising

Figure 2: Root-Cause Identification Algorithm

The root-cause identification algorithm seeks to solve
the optimization problem specified in Section 2 using the
above definitions of explanatory power and surprise.

Note that, obtaining the optimal solution to the prob-
lem in the worst case will take exponential time. This
can be shown through a simple example: consider a set
of size n where each element has an identical explana-
tory power and we require n/2 elements of the set to
explain TEP . In this case, every possible subset of car-
dinality n/2 is of minimum size possible (succinct) and
has explanatory power of TEP . Thus, we have to com-
pare the surprise values of all these subsets (whose count
is exponential in n) in order to find the subset that has the
maximum surprise, the optimal solution.

Instead of enumerating various minimum cardinality
subsets that have explanatory power of at least TEP , our
algorithm (Figure 2) uses the following greedy heuris-
tic. In each dimension, after computing the surprise for
all elements (lines 1–5), it first sorts the elements in de-
scending order of surprise (line 8). It then adds each ele-
ment to a candidate set as long as the element explains at
least TEEP of the total anomalous change by itself (lines
12–15). The parameter TEEP helps control the cardinal-
ity of the set (Occam’s razor). For example, if TEEP is
10% and TEP is 67%, we can have at most 7 elements
that explain anomalous change. Further, by examining

elements in descending order of surprise, we greedily
seek to maximize the surprise of the candidate set. The
algorithm adds at most one candidate set per dimension
(lines 16–19), as long as the set is able to explain a major-
ity (TEP ) of the anomalous change (explanatory power).
Finally, the algorithm sorts the various candidate sets by
their surprise value and returns the top three most sur-
prising candidate sets as potential root-cause candidates
(lines 21–22).

4 Derived Measures
Derived measures are functions of fundamental measures
that are tracked by troubleshooters since they reveal more
information than if one simply tracked the fundamental
measures. In this section, we discuss how we compute
explanatory power and surprise for derived measures.

4.1 Explanatory Power
While attributing contribution of an individual element
to the overall value of a derived measure is important for
root-cause identification, this is not as straightforward
as computing the same for fundamental measures. In
this section, we first start with a illustrative example that
helps define explanatory power for derived measures and
then present our solution to the derived measure attribu-
tion problem.
Example. Consider the hypothetical example in Tables 6
and 7 that shows revenue and number of clicks, respec-
tively, for four different advertisers during an anomalous
period. For these two fundamental measures, attribution
of the overall change to each of the advertisers is simple
using the explanatory power (equation 4) and is shown
in the column labelled EP. Thus, for the revenue drop,
one can attribute it to advertiser A1 (400%) while for the
increase in clicks, one can attribute it to advertiser A2
(200%).

Let us assume that an anomaly is thrown on a mea-
sure if it differs from its expected value by at least 20%.
Note that the overall revenue has gone down by 10%
while the number of clicks is up 16%, neither of which
exceeds the anomalous threshold. The corresponding
cost-per-click values are shown in Table 8 and using the
same 20% threshold, the overall cost-per-click (22.5%
decrease) can be labelled anomalous Thus, one can see
that derived measures can be useful in surfacing anoma-
lies that are not surfaced by just examining fundamental
measures. We confirm this quantitatively in Section 6.

The derived measure attribution problem is the follow-
ing: how does one attribute the drop in overall cost-per-
click from 0.2 (expected) to 0.155 (actual) to each of
the advertisers? If one examines the individual cost-per-
clicks of the advertisers in Table 8, we see that cost-per-
click for advertisers A1, A2, A4, are unchanged while
the cost-per-click for advertiser A3 has increased. Thus,
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Adver- Forecasted Actual EP
tiser Revenue Revenue %

Overall 100 90 -10
A1 50 10 400
A2 0 0 0
A3 40 70 -300
A4 10 10 0

Table 6: Revenue

Adver- Forecasted Actual EP
tiser Clicks Clicks %

Overall 500 580 16
A1 100 20 -100
A2 200 360 200
A3 100 100 0
A4 100 100 0

Table 7: Clicks

Adver- Forecasted Actual EP
tiser Cost/Click Cost/Click %

Overall 0.2 0.155 -22.5
A1 0.5 0.5 125
A2 0 0 106
A3 0.4 0.7 -131
A4 0.1 0.1 0

Table 8: Cost-per-click

at first glance, it appears that none of the advertisers can
be blamed for the overall drop but surely one or more of
them must be responsible! Given this situation, how do
we go about assigning explanatory power values for the
change in cost-per-click to these advertisers?

Examining the fundamental measures does help shed
more light. For example, even though cost-per-click of
A1 is unchanged, A1 had a 5X drop compared to its
forecasted values for both revenue and clicks. Given
A1’s cost-per-click (0.5) was higher than the overall
value (0.2), the 5X reduction implies that A1 was indeed
pulling down the overall cost-per-click. The fact that A1
explains some of the decrease in the overall derived mea-
sure can be further validated by observing that if we used
A1’s actual values but assume that the rest of the adver-
tisers delivered their respective forecasted values, then
the overall cost-per-click goes down to 60/420 = 0.143
for an impact of -29%.

Similarly, while A2 had 0 revenue as forecasted, A2
had a large increase in clicks, which ends up decreas-
ing the overall cost-per-click. Again, if we used A2’s
actual values but keep the rest of the advertisers’ mea-
sures to their forecasted value, the overall cost-per-click
goes down to 100/660 = 0.152 for an impact of -24%.
The above exercise of changing one advertiser’s value at
a time also suggests that A1 was more responsible for
pulling down overall cost-per-click than A2 (since use of
A1’s actual values resulted in lower overall value than
for A2).

Now consider A3. A3 had a higher revenue than fore-
casted without change in clicks, so A3 was clearly not
contributing to the overall drop. Using A3’s actual val-
ues in the above exercise would in fact increase the over-
all cost-per-click to 0.26, for an impact of +30%.

Finally, A4 had no change in either revenue or clicks.
Therefore, A4 had no impact in overall cost-per-click.

Normalizing the individual impact values so that all
the elements in total explain 100% of the overall change,
the above exercise would give A1’s explanatory power as
125%, A2’s as 106%, A3’s as -131% and A4’s as 0%.

Summarizing the observations in the above example,
one can see that an element’s explanatory power for de-
rived measures can be determined by computing a new
derived measure value, where the actual value of the
given element and forecasted values of all other elements
are used, and comparing this derived measure value to
the expected value of the derived measure.

Now, the question is how do we formalize this intu-
ition in order to determine the explanatory power for ar-
bitrary derived measures? We describe this next.
Derived measure attribution. Our solution to the de-
rived measure attribution problem is adapted from par-
tial derivatives and finite-difference calculus. Recall that
a partial derivative is a measure of how a function of sev-
eral variables changes when one of its variable changes.
However, since we operate in the discrete domain, we
use partial derivative equivalents from finite-difference
calculus [13].

We formally define explanatory power of an element i
for a derived measure, which is function h(m1,...,mk) of
fundamental measures m1, ...,mk, as the partial deriva-
tive with respect to i in finite-differences of h(.), normal-
ized so that the value across all elements of the dimen-
sion sum up to 100%.

While the above definition is general and applica-
ble to derived measures that are arbitrary functions of
fundamental measures (as long as they are differen-
tiable in finite-differences), we now illustrate it through
the specific example of derived functions of the form
A(m1)/A(m2), which make up many of the derived
measures in ad systems (Figure 1). For example, for the
cost-per-click derived measure, we have m1 = revenue
and m2 = clicks.

The partial derivative in finite-differences of f(.)/g(.)
is of the form (∆f ∗ g − ∆g ∗ f)/(g ∗ (g + ∆g)), and
is similar to continuous domain partial derivative, except
for the extra ∆g in the denominator.

Thus, explanatory power of element j for dimension i
for derived measures of the form m1/m2 is given by

EPij = ((Aij(m1)− Fij(m1)) ∗ F (m2)

−(Aij(m2)− Fij(m2)) ∗ F (m1))

/(F (m2) ∗
(F (m2) + Aij(m2)− Fij(m2))) (8)

We compute EPij for each of the elements using the
above equation and normalize it so that they add up to
100%.

Table 8 shows the explanatory power computed using
the above formula for each of the advertisers. We can see
that the rank ordering of A1, A2, A4, and A3 and their
respective explanatory power values for the attribution to
the overall change agrees with the intuitive observations
made earlier.
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4.2 Surprise
Recall that we defined surprise for fundamental mea-
sures in Section 3.3 based on the relative entropy (specif-
ically, JS divergence) between the prior and posterior
mass functions of values for measure m. In this section,
we seek to extend the notion of surprise to derived func-
tions of multiple measures.

Consider the cost-per-click example in the previous
section. A simple approach for computing surprise for
derived measure is as follows. Just as for fundamental
measures, one could compute prior and posterior proba-
bility values for cost-per-click for each element Eij , say
pij(cost-per-click) and qij(cost-per-click) and compute
the surprise just as in Section 3.3.

However, such an approach will not work. Consider
the example of advertiser A2 in Table 8. A2’s cost-per-
click was forecasted to be zero and the actual value was
also 0. Thus, if one used the above approach to com-
pute surprise for element A2, it would have a value of 0
(no surprise). However, we found that A2 had a high ex-
planatory power of 106% for the overall change in cost-
per-click due to changes in A2’s number of clicks.

Examining the problem from the perspective of
relative-entropy, given several measures, we first need
to compute the joint probability distribution of the mea-
sures and then compute relative entropy of the joint prob-
ability distribution function. If the measures are indepen-
dent, then the relative entropy (JS divergence as well) of
the joint probability distribution is simply the sum of the
relative entropy of the individual measure’s probability
distributions. In ad systems, the measures are not always
strictly independent since some of them can be correlated
(e.g., as the number of searches increase, revenue can be
expected to increase). However, as an approximation, we
assume that measures are independent, and compute the
surprise for derived measures as the summation of the
surprise of the individual measures that are part of the
derived function.

5 Implementation and Experience
In this section, we describe our implementation of the
above algorithms in the Adtributor tool and outline our
experience with a pilot deployment in a production ad
system.

5.1 Implementation
In our implementation, a database records, in real-time,
counters for all measures, dimensions, and elements and
exposes them as an OLAP service that supports multi-
dimensional analytical queries [19]. When the system
triggers an anomalous event, the Adtributor toolchain
first gathers data relevant to the anomaly such as time
of anomaly, measure, data for various measures, dimen-
sions and elements. After the data has been queried

Figure 3: An example output of the Adtributor. Note:
certain sensitive fields are masked.

from the database, Adtributor employs the root-cause al-
gorithm to discover potential root-causes for the given
anomaly.

Recall that measures are not necessarily independent
of each other. An anomaly on a certain measure could
be correlated with changes in value of another. There-
fore, we build a dependency graph of measures, and for
a given anomalous measure, run the root-causing algo-
rithm for every measure that correlates with it.

Adtributor filters the candidate set of root-causes (as
described in Section 3) to produce the final list of root-
causes. We use a TEP value of 67% and a TEEP value of
10%. These threshold values are driven by what the trou-
bleshooters already use in the manual process. Also, our
current implementation singles out a list of the top three
dimensions. The troubleshooting experts recommended
this number based on their own requirements and also on
ease of visualization. With a smaller number they could
miss useful information, while a larger number would
lead to too much information for them to sift through.

The final output is a self-contained HTML5 applica-
tion. Figure 3 shows an example of the output produced
by the Adtributor toolchain. The visualization of the
root-causes contains the following information:
• Dependency Graph: A graphical representation of

dependencies between the different measures in the
system (left half).

• Measure Historical Graph: A graph depicting the
historical behavior of a measure (top right graph).

• Element Root-Causes and Historical Graph: For a
given measure and dimension, the top elements that
are root-causes. The element root-causes are grouped
by dimensions with their historical graphs (under top
right graph).

We arrived at the visualization requirements through
iterative discussions with the troubleshooting experts.
The dependency graph allows them to observe causality
between the values of different measures, and the histori-
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cal graphs per-dimension help them in making a more in-
formed choice on what exactly was the root-cause. The
entire Adtributor toolchain is implemented using .NET
Framework 4 using 12,500 lines of code and executed
automatically for each anomaly.

5.2 Deployment Experience
We conducted a pilot deployment of Adtributor between
May 1, 2013 and May 10, 2013 with the troubleshooters
who work with the production system on root-causing
anomalies to understand the usefulness of Adtributor.
This deployment was partially successful in helping the
troubleshooters with their current processes. The find-
ings of this pilot resulted in a set of improvements to
our algorithm and visualization which led to significantly
better performance as we show in our evaluation in Sec-
tion 6.
Volatile dimensions: Various dimensions can be ex-
tremely volatile, and unexpected changes can occur in
measures along these axes even though they are not nec-
essarily the root-cause of the problem. Consider the ex-
ample of an advertiser who frequently changes the bud-
get allotment to their ads. When there is a revenue
anomaly, this can sometimes cause the root-causing al-
gorithm to pick the advertiser as a culprit even though
the change coincidentally occurred just a little before the
anomaly event. This drove us to improve our predic-
tion algorithm for measures associated with elements of
volatile dimensions by increasing the weightage given to
large changes in the near-past in our prediction model,
thereby fixing this problem to a large extent.
Visualization enhancements: The dependency graph of
related measures was found to be very useful by the trou-
bleshooters. However, the current view in the tool is lim-
ited to a small set of measures. There are hundreds of
other measures being monitored within the ad system for
which the dependencies are not known. We have there-
fore used a Bayesian structure learning algorithm [5] to
infer a subset of these dependencies and plan to enhance
the visualization of the dependency graph with these ad-
ditional measures.

6 Evaluation
In the Section, we first describe four case studies in
which multi-dimensional analysis is key to arriving at the
final root-cause. Next, we provide a quantified evalua-
tion of the accuracy of Adtributor, and the time savings
we achieve with the tool.

6.1 Case Studies
Case 1: This was triggered by an anomalous drop in rev-
enue. On performing the multi-dimensional analysis, we
found that the dimension Browser was responsible. Fig-
ure 4 helps explain how Adtributor arrived at this result.

It shows the percentage contribution to revenue along
three dimensions – Browser, Data Center, and Bucket
– for predicted revenue and actual revenue (see Table 1,
example 3 for the definition of a bucket.). Notice that
Browser 3’s revenue contribution was predicted to be
12%, but its actual revenue was 0%! Similarly, Browser
1’s contribution was predicted to be 60%, but was actu-
ally much higher at 74%. Neither the Data Center di-
mension nor the Bucket dimension show such surprising
changes in contribution. This problem was actionable,
since a further investigation revealed that a configuration
error had caused no ads to be shown to users on Browser
3. Correcting the error fixed the problem and further loss
in revenue.

Case 2: We noted an anomalous revenue increase at
a particular time, which Adtributor attributed to a cer-
tain set of six advertisers. Two of these advertisers were
airline ticket vendors, two were car rental agencies, and
the remaining two were hotels. In aggregate, they fully
explained the change in revenue. Delving into the is-
sue, we noticed that these advertisers had deliberately
increased their budgets for a certain period of time. The
ads were appearing in a geographic region which had a
long-weekend holiday approaching. Thus, we inferred
that the advertisers were trying to capitalize and capture
the attention of users as they performed vacation-related
searches. Clearly, in this case, the sudden rise in revenue
was attributed to advertiser behavior and not due to an ac-
tionable bug in the system. Several such anomalies also
occur when advertisers deliberately drop their budgets as
well.

Case 3: The total number of searches went anoma-
lously high, and an analysis showed that most of the in-
crease was attributed along the User-agent string dimen-
sion. From post-processing on this result, it was inferred
that a majority of the searches with the repeated user-
agent string were coming from a small range of IP ad-
dresses, and therefore, suspiciously characteristic of bot-
traffic. In particular, the goal of this bot was to perform
queries and collect information for search-engine opti-
mization (SEO). This was an actionable issue which was
fixed promptly by filtering the contribution of this traffic
to the various metrics.

Case 4: We notice that sometimes, publishers change
the placement of advertisements on their page, which
make ads more (or less) conspicuous. This in turn causes
a corresponding increase or decrease in revenue. These
show up as revenue changes along the dimension of Ad
Position on the page. For instance, if the publisher moves
an ad meant to be shown on the side of the page to the top
of the page, this presents itself as a surprising increase in
revenue attributed to ads shown on the top. This is be-
cause users tend to click more on ads shown on the top
of a page than they do on ads shown on the side.
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Figure 4: Predicted and actual revenues for the Browser, Data center, and Bucket dimensions (Case Study 1).

6.2 Comparative Study
Our quantitative evaluation is based on using Adtribu-
tor to root-cause problems in a widely deployed ad sys-
tem. We evaluate all anomalies generated on a total of
12 measures, both fundamental and derived, across 33 di-
mensions. The results we present here use a subset of 128
valid anomalies generated by over a billion searches be-
tween September 1, 2013 and September 15, 2013 across
8 populations: PC and Mobile ad systems for USA, UK,
France and Germany. For the purpose of this study, we
do not consider false-positives in the anomaly genera-
tion process as they are weeded out by troubleshooters
before applying the root-causing process2. 50% of the
tested anomalies were generated solely on derived mea-
sures, with no related anomalies being generated on the
respective fundamental measures that constitute the de-
rived measure. This shows that using derived measures
in aggregate root-cause analysis is extremely important.

We compare the output of Adtributor’s multi-
dimensional analysis with the output of the troubleshoot-
ing team that performs an in-depth and detailed analysis
of these anomalies through manual means with the assis-
tance of other tools (not Adtributor). Manually analyz-
ing the cause of the anomalies has a number of advan-
tages. The troubleshooters are aware of a large amount of
information and domain-knowledge, and they frequently
use this knowledge in the troubleshooting process. An
automated tool such as Adtributor cannot possibly have
an understanding of all of this. Further, Adtributor only
narrows the scope of the root-cause (Column 4 of Ta-
ble 1) – a manual process may still be necessary in many
cases to identify the final root-cause (Column 4 of Ta-
ble 1) since some of the data necessary to do this next
step may not be available for the automated process (e.g.,
verifying whether the publisher indeed changed the po-
sition of ads).

However, the advantage of using Adtributor is that
it aids the manual troubleshooting process by 1) us-
ing the multi-dimensional root-cause analysis to exhaus-
tively check all possible dimensions (as we show, in a

2Evaluating the number of false-positives and negatives would be to
evaluate the anomaly detection algorithm which, as mentioned earlier,
is out of scope of this paper.

few cases, the manual process may overlook a dimen-
sion, leading to erroneous conclusions) and 2) Signifi-
cantly faster processing to bubble up the top suspect can-
didates. For example, there are dozens of dimensions and
some dimensions can have thousands of elements.

As described in Section 5, Adtributor displays the
top three dimensions and their elements as potential sus-
pects. We say that Adtributor matches the output of the
manual root-causing process if it shows the same dimen-
sion and exactly the same elements as the manual process
at any one of these three positions.

No. of anomalies 128
No. of matches 118 (1:81, 2:27,3:10)
Manual errors found 4
Adtributor’s errors 5
Ambiguous 1
Adtributor accuracy (118+4)/128=95.3%
Strawman accuracy (no surprise) 20.0%

Table 9: Results summary from our comparison of
Adtributor with manual scrutiny (and Strawman).

Table 9 shows the results of the comparison between
the output of Adtributor and the manual investigation.
Of the 128 anomalies, Adtributor matched the results of
the manual analysis in 118 cases. Of these, 81 (69%)
matched in position 1, 27 (23%) matched only in po-
sition 2 and not in position 1, and 10 (8%) matched in
position 3, and not in position 1 or 2. Of the 10 anoma-
lies for which we did not match the manual output, we
performed a deeper dive with the troubleshooting expert.
On careful scrutiny, we found that out of the 10, 4 of
the manual root-causes were erroneous, and Adtributor’s
output in position 1 was, in fact, the correct root-cause.
This shows the utility of using a systematic algorithm, as
in Adtributor, that exhaustively searching all dimensions
to perform multi-dimensional root-cause analysis.

Out of the remaining 6 anomalies, the manual output
was correct in 5 of them while the output of Adtribu-
tor was erroneous. In all of these cases, Adtributor suf-
fered from a lack of domain knowledge, or the lack of
knowledge of events external to the system which the
troubleshooters were explicitly aware of. In one case
(labelled ambiguous), however, the troubleshooter felt
the dimension and elements blamed by Adtributor was
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as likely to be the true root-cause as the one obtained
through manual analysis. In this case, he felt a fur-
ther drill-down would be required to determine the cor-
rect root-cause. Taking the manual errors into account,
Adtributor’s overall accuracy was (118+4)/128, or 95%.

We also compare the potential time that could be saved
using Adtributor compared to the first step in the man-
ual troubleshooting process that identifies the dimension
and elements that may be potential root-causes. Adtrib-
utor uses a multi-threaded implementation and caching
to speed up the process of studying every dimension
and every measure. It has a turnaround of approxi-
mately 3-5 minutes for each anomaly. The manual pro-
cess of troubleshooting took between 13 minutes for the
fastest anomaly to up to 231 minutes, with an average
turnaround time of 73 minutes. Therefore, we conclude
that Adtributor speeds up the initial root-causing process
by an order of magnitude.

Finally, we show the value of using surprise by com-
paring our algorithm to the Strawman discussed in Sec-
tion 2 that only uses succinctness and explanatory power.
Compared to Adtributor’s accuracy of 95%, we found
that Strawman had an accuracy of only 20%. This clearly
demonstrates the value of using surprise to identify the
right dimension and elements as the root-cause.

7 Applicability beyond Ad Systems
We believe that the techniques introduced in this paper
are general enough to be useful in other settings. For
example,
Multi-dimensional analysis: Consider a web-server
with a global audience that suddenly sees the number of
hits drop sharply. Many of the dimensions considered
in this paper such as data centers or CDNs, browsers,
user locations, fraud operators/bots, etc. may all be po-
tential root-causes that a multi-dimensional analysis can
help disambiguate.
Derived measure attribution: Consider the following
problem. The Mean-opinion-score (MOS) for VoIP calls
has dropped and the investigators would like to under-
stand which of the links in the route of the call is most
responsible for this drop. Each link may have different
amounts of delay, jitter, and loss percentages, and the
MOS is a complex function of measures such as delay,
loss, and jitter [6]. The use of the derived attribution
technique can help compute the explanatory power of the
drop in MOS for each of links.

8 Related Work
System and Network Root-Cause Analysis: Previ-
ous research has extensively studied root-causing perfor-
mance and failure problems in systems and networks [14,
2, 10, 1, 21, 15, 3, 20, 11, 18]. Some of these use traces
across individual requests through systems [3, 14] to di-

agnose problems, while others use aggregate counters of
system performance or configuration values [15, 10, 20]
to diagnose problems.

Distalyzer [14] is an example of the former category.
It uses individual event logs and learns anomalous pat-
terns between events that indicate a performance prob-
lem in a system component. Ganesha [15] is an example
of the latter. It uses clustering approaches across aggre-
gate measures, such as CPU usage, to build distinct pro-
files of MapReduce nodes. While our approach too uses
aggregate measures, we intend to find more than perfor-
mance problems or diagnose failures.

Q-Score [18] uses machine-learning to arrive at root-
causes. We tried similar approaches and decided against
them because selecting the right set of features to input
to a stock machine-learning algorithm turned out to be a
non-trivial task. Instead, we found that building a cus-
tomized algorithm was simpler and better suited to anal-
ysis and feedback by our domain experts.

SCORE [11] localizes IP faults to underlying com-
ponents using succinctness of explanation. Given a set
of link failures as observation, it determines the smallest
set of risk groups that explain failures. However, as we
show, this approach is not enough to perform attribution
across dimensions and a notion of surprise is essential to
complete our solution.
Data Mining for Summarization: Previous work in
data mining [17, 16, 7] has concentrated on summariz-
ing multi-dimensional data in OLAP products. The ob-
jective is to provide an easily interpretable summary of
the differences in data values across multiple dimensions.
Such summarization techniques have been applied to net-
work traffic summarization as well [9]. While data sum-
marization across multiple dimensions is related to our
work, it does not match our objective of finding sur-
prising changes to perform root-cause analysis. In fact,
our approach to root-cause analysis is complementary to
these approaches and can be applied on the summaries
that they generate.

9 Conclusion
We have described an algorithm, implementation, and
evaluation of an approach that uses multi-dimensional
analysis for root-causing problems in large-scale ad sys-
tems. We found that our approach has high accuracy
(95%), helped identify more accurate root causes than
the manual investigation in a few cases, and was able to
reduce troubleshooting time significantly.
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