
An Epistemic Perspective on Consistency of
Concurrent Computations

Klaus v. Gleissenthall1 and Andrey Rybalchenko1,2

1 Technische Universität München
2 Microsoft Research Cambridge

Abstract. Consistency properties of concurrent computations, e.g., se-
quential consistency, linearizability, or eventual consistency, are essential
for devising correct concurrent algorithms. In this paper, we present a
logical formalization of such consistency properties that is based on a
standard logic of knowledge. Our formalization provides a declarative
perspective on what is imposed by consistency requirements and pro-
vides some interesting unifying insight on differently looking properties.

1 Introduction

Writing correct distributed algorithms is notoriously difficult. While in the se-
quential case, various techniques for proving algorithms correct exist [14,17], in
the concurrent setting, due to the nondeterminism induced by scheduling deci-
sions and transmission failures, it is not even obvious what correctness actually
means. Over the years, a variety of different consistency properties restricting
the amount of tolerated nondeterminism have been proposed [10–12, 16, 18, 19].
These properties range from simple properties like sequential consistency [16]
or linearizability [10, 12] to complex conditions like eventual consistency [19], a
distributed systems condition. Reasoning about these properties is a difficult,
yet important task since their implications are often surprising.

Currently, the study of consistency properties and the development of rea-
soning tools and techniques for such properties [4,6,20] is done for each property
individually, i.e., on a per property basis. To some extent, this trend might be
traced back to the way consistency properties are formulated. Typically, they
explicitly require existence of certain computation traces that are obtained by
rearrangement of the trace that is to be checked for consistency, i.e., these de-
scriptions of consistency properties do not rely on a logical formalism. While such
an approach provides fruitful grounds for the design of specialized algorithms
and efficient tools, it leaves open important questions such as how various prop-
erties relate to each other or whether advances in dealing with one property can
be leveraged for dealing with other properties.

In contrast to the trace based definitions found in literature, we propose to
study consistency conditions in terms of epistemic logic [7, 9]. Here we can rely
on a distributed knowledge modality [7], which is a natural fit for describing
distributed computation. In this logic, an application DG(ϕ) of the distributed

knowledge modality to a formula ϕ denotes the fact that a group G knows that
a formula ϕ holds.

We present a logical formalization of three consistency properties: the clas-
sical sequential consistency [16] and linearizability [10, 12], as well as a recently
proposed formulation [5] of eventual consistency for distributed databases [19].
Our characterizations show that moving the viewpoint from reasoning about
traces (models) to reasoning about knowledge (logic) can lead to new insights.
When formulated in the logic of knowledge, these differently looking properties
agree on a common schematic form: ¬DG(¬correct). According to this schematic
form, a computation satisfies a consistency property if and only if a group G of
its participants, i.e., threads or distributed nodes, do not know that the com-
putation violates a specification correct that describes computations from the
sequential perspective, i.e., without referring to permutations thereof. For ex-
ample, when formalising sequential consistency of a concurrent register correct
only states that the first read operation returns zero and any subsequent read
operation returns the value written by the latest write operation.

The common form of our characterizations exposes the differences between
the consistency properties in a formal way. A key difference lies in the group
of participants that provides knowledge for validating the specification correct .
For example, a computation is sequentially consistent if it satisfies the for-
mula ¬DThreads(¬correct), i.e., the group G of agents needed to validate the
sequential specification comprises the group of threads Threads accessing
the shared memory. Surprisingly, the same group of agents is needed to vali-
date eventual consistency, since in our logic it is characterized by the formula
¬DThreads(¬correctEVC). This reveals an insight that eventual consistency is
actually not an entirely new consistency condition, but rather an instance of
sequential consistency that is determined by a particular choice of correct . In
contrast to the two above properties, the threads’ knowledge is not enough to
validate linearizability. To capture linearizability, the set of participants G needs
to go beyond the participating threads Threads and include an additional ob-
server thread obs as well. The observer only acquires knowledge of the relative
order between returns and calls. As logical characterization of linearizability, we
obtain ¬DThreads∪{obs}(¬correct).

We show that including the observer induces a different kind of knowledge,
i.e., it weakens the modal system from S5 to S4 [21]. As a consequence, the
agents lose certainty about their decision whether or not a trace is consistent.
For sequential consistency (seqCons) the agents know whether or not a trace
is sequentially consistent, i.e., the formula (seqCons ↔ DThreads(seqCons)) ∧
(¬seqCons ↔DThreads(¬seqCons)) is valid. In contrast, for linearizability (Lin)
the threads cannot be sure whether a trace they validate as linearizable is indeed
linearizable, i.e., there exists a trace that satisfies Lin ∧ ¬DThreads⊎{obs}(Lin).

The discovery that eventual consistency can be reduced to sequential con-
sistency is facilitated by a generalization of classical sequential consistency that
follows naturally from taking the epistemic perspective. Our formalization of
correct for eventual consistency is given by correctEVC that requires nodes to

2

keep consistent logs, i.e., whenever a transaction is received by a distributed
node, the transaction must be inserted into the node’s logs in a way that is con-
sistent with the other nodes’ recordings. We allow correctEVC not only to refer
to events that are performed by the nodes that take part in the computation, but
also to auxiliary events that model the environment that interacts with nodes.
We use the environment to model transmission of updates from one distributed
node to another. Our knowledge characterization then implicitly quantifies over
the order of occurrence of such events, which serves as a correctness certificate
for a given trace.

Contributions In summary, our paper makes the following contributions. We
provide characterizations for sequential consistency (Section 4), eventual con-
sistency (Section 5) and linearizability (Section 6) which we prove correct wrt.
their standard definitions. Our characterizations reveal a remarkable similarity
between consistency properties that is not apparent in their standard formu-
lations. Through our characterizations, we identify a natural generalization of
sequential consistency that allows us to reduce eventual consistency, a complex
property usually defined by the existence of two partial-ordering relations, to
sequential consistency. In contrast to this reduction, we show that linearizability
requires a different kind of knowledge than sequential consistency and prove a
theorem (Section 7) illustrating the ramifications of this difference.

2 Examples

In this section, before providing technical details, we give an informal overview
of our characterizations.

2.1 Sequential Consistency

Trace-Based Definition The most fundamental consistency condition that con-
current computations are intuitively expected to satisfy is sequential consis-
tency [16]. Its original definition reads:

The result of any execution is the same as if the operations of all the
processors were executed in some sequential order, and the operations of
each individual processor appear in the sequence in the order specified
by its program.

Equivalently, this more formal version can be found in the literature (cf., [1]):
For a trace E to be sequentially consistent, it needs to satisfy two conditions:
(1) E must be equivalent to a witness trace E′ and (2) trace E′ needs to be
correct with respect to some specification. To be equivalent, two traces need to
be permutations that preserve the local order of events for each thread.

Example 1. Consider the following traces representing threads t1 and t2 storing
and loading values on a shared register. For the purpose of this example, we

3

assume the register to be initialized with value 0. We use “∶=” to abbreviate
“equals by definitions”.

E1 ∶= (t2, ld(0)) (t2, ld(1)) (t1, st(1))
E2 ∶= (t2, ld(0)) (t1, st(1)) (t2, ld(1))
E3 ∶= (t2, ld(0)) (t1, st(1)) (t2, ld(2)) .

Trace E1 is sequentially consistent, because it is equivalent to E2 and E2 meets
the specification of a shared register, i.e., each load returns the last value stored.
In contrast, E3 is not sequentially consistent, because no appropriate witness
can be found. In no equivalent trace, t2’s load of 2 is preceded by an appropriate
store operation.

Logic In this paper, in contrast to the above trace-based formulation, we in-
vestigate consistency from the perspective of epistemic logic. Epistemic logic is
a formalism used for reasoning about the knowledge distributed nodes/threads
acquire in a distributed computation. For example, in trace E1 thread t2 knows
it first loaded value 0 and then value 1 while t1 knows it stored 1. When we
consider the knowledge acquired by the threads t1 and t2 together as a group,
we say that the group of threads {t1, t2} jointly knows t2 first loaded 0 and
then 1 while t1 stored 1. We denote the fact that a group G jointly knows
that a formula ϕ holds by DG(ϕ), which is an application of the distributed
knowledge modality. According to our logical characterization of sequential con-
sistency: ¬DThreads(¬correct), a trace is sequentially consistent, if the group of
all threads accessing the shared data-structure does not jointly know that the
trace is not correct.

Example 1 (continued). This means trace E1 is sequentially consistent. In trace
E1, the threads know that t2 first loaded 0 and then 1 and that t1 stored 1,
however they do not know in which order these events were scheduled. This
means, for all they know t1 could have stored 1 before t2 loaded it and after t2
loaded 1, which would meet the specification. In contrast, E3 is not sequentially
consistent. The threads know that t2 loaded 2, however they also know that no
thread stored this value. This means E3 cannot have met the specification.

Indistinguishability We formalize this notion of knowledge in terms of the local
perspective individual threads have on the computation. We extract this per-
spective by a function ↓ such that E ↓ t projects trace E onto the local events
of thread t. If two traces do not differ from the local perspective of thread t, we
say that they are indistinguishable for t. We write E ∼t E′ to denote that for
thread t, trace E is indistinguishable from trace E′. Combining their abilities to
distinguish traces, a group of threads can distinguish two traces whenever there
is a thread in the group that can. We write E ∼G E′ to denote that for for every
member of group G trace E is indistinguishable from trace E′. Indistinguisha-
bility allows us to define the knowledge of a group. A group G knows a fact ϕ
if this fact holds on all traces that the threads in G cannot distinguish from the

4

actual trace. We write E ⊧ ϕ to say that trace E satisfies formula ϕ. Formally
(see Section 3.3): E ⊧ DG(ϕ) :iff for all E′ s.t. E ∼G E′: E′ ⊧ ϕ, where we use
“:iff” to abbreviate “equals by definition”.

Example 1 (continued). For trace E1, the thread-local projections are: E1 ↓ t1 =
(t1, st(1)) and E1 ↓ t2 = (t2, ld(0))(t2, ld(1)). We get the same projections for
E2, and E3 ↓ t1 = (t1, st(1)) and E3 ↓ t2 = (t2, ld(0))(t2, ld(2)). From these
projections, we get: E1 ∼t1 E2 ∼t1 E3 and E1 ∼t2 E2 but E1 /∼t2 E3 and E2 /∼t2
E3. For groups of threads, we have: E1 ∼{t1,t2} E2 but E2 /∼{t1,t2} E3, because
E2 /∼t2 E3. We write E ⊧ correctREG to say E is correct with respect to the
specification of a shared register. Then E1 ⊧ ¬DThreads(¬correctREG), E2 ⊧
¬DThreads(¬correctREG) and E3 ⊧DThreads(¬correctREG).

Knowledge in the Trace-Based Formulation Interestingly, the notion of equiv-
alence found in the trace-based formulation of sequential consistency precisely
corresponds to ∼Threads, the indistinguishability relation of all threads accessing
the shared data-structure. This suggests that the knowledge-based formulation
of consistency lies already buried in the original definition. Similarly, the formu-
lation “The result of any execution is the same as if ...”, found in the original
definition alludes to the possibility of a fact ϕ, which, in epistemic logic, is rep-
resented by the dual modality of knowledge ¬DG(¬ϕ).

2.2 Eventual Consistency

Eventual consistency [19] is a correctness condition for distributed database sys-
tems, as those employed in modern geo-replicated internet services. In such sys-
tems, threads (distributed nodes) keep local working-copies (repositories) of the
database which they may update by performing a commit operation. Queries
and updates have revision ids, representing the current state of the local copy.
Whenever a thread commits, it broadcasts local changes to its repository and
receives changes made by other threads. After the commit, a new revision id
is assigned. As the underlying network is unreliable, committed changes may
however be delayed or lost before reaching other threads.

In this setting, weaker guarantees on consistency than in a multi-processor
environment are required, as network partitions are unavoidable, causing up-
dates to be delayed or lost. Consequently, eventual consistency is a prototypical
example for what is called “weak”-consistency. We present a recent, partial-order
based definition drawn from the literature [5] in Section 5.

Taking the knowledge perspective on eventual consistency reveals a remark-
able insight. Eventual consistency is actually not an entirely new, weaker con-
sistency condition, but sequential consistency – with an appropriate sequential
specification.

In our logical characterization, eventual consistency is defined by the for-
mula: E ⊧ ¬DThreads(¬correctEVC). That is, to be eventually consistent, a
trace needs to be sequentially consistent with respect to a sequential specifi-
cation correctEVC . Our formula for correctEVC uses the past time modality

5

⊟(ϕ) (see Section 3.3), representing the fact that so far, formula ϕ was true. We
specify correctEVC by:

correctEVC ∶= ∀t∀q∀r(⊟(query(t, q, r)→ ∃L(L validLog t ∧ result(q,L, r))))
∧ atomicTrans ∧ alive ∧ fwd .

This formula says that for all threads, queries and results, so far, whenever a
thread t posed a query q to its local repository, producing result r, thread t
must be able to present a valid log L, such that the result of posing query q
on a machine that performed only the operations logged in log L matches the
recorded result r. The additional conjuncts atomicTrans, alive and fwd specify
further requirements on the way updates may be propagated in the network.

In our characterization, a log L is a sequence of actions (i.e., queries, updates
and commits). The formula validLog describes the conditions a log has to satisfy
to be valid for a thread t:

L validLog t ∶= ∀a(a in L↔ t klog a) ∧ consistent(L) .

This formula requires that for all actions a, a is logged in L (represented by
the infix-predicate in) if and only if thread t knows about action a. A thread
knows about all the actions that it performed itself and the actions performed
in revisions that were forwarded to it. The formula consistent(L) ensures that
all actions in the log L appear in an order consistent with the actual order of
events.

Environment Events To make this result possible, we make a generalization
that comes naturally in the knowledge setting. We allow traces to contain en-
vironment events that represent actions that are not controlled by the threads
that participate in the computation. In our characterization, environment events
are used to mark positions where updates were successfully forwarded from one
client to another. By allowing correctEVC to refer to those events, we implicitly
encode an existential quantification over all possible positions for these events.
That means a trace is eventually consistent if any number of such events could
have occurred such that the specification correctEVC is met.

Example 2. Consider the following traces of a simple database that allows clients
to update and query the integer variable x:

E4 ∶= (t1,up(0, x ∶= 0)) (t1, com(0)) (t1,up(1, x ∶= 1))(t1, com(1))
(t2, qu(0, x,0))(t2, com(0)) (t2, qu(1, x,1))

E5 ∶= (t1,up(0, x ∶= 0)) (t1, com(0)) (env , fwd(t1, t2,0))(t1,up(1, x ∶= 1))
(t1, com(1)) (t2, qu(0, x,0))(t2, com(0)) (env , fwd(t1, t2,1))
(t2, qu(1, x,1)) .

Updates are of the form up(id , u), where id is the revision-id and u the actual
update. In our example, updates are variable assignments x ∶= v meaning that

6

a variable x is assigned value v. Queries are of the form qu(id , q, r), where id
stands for the revision-id, q for the query, and r for the result. Queries in our
example consist only of variables, i.e., a query returns the current value assigned.
The action com(id) represents the act of committing, that is, sending revision id
over the network and checking for updates. Forwarding actions are performed by
the environment env . The event (env , fwd(t , t ′, id)) represents the environment
forwarding the changes made in revision id from thread t to thread t′.

In trace E5, when thread t2 queries the value of x in revision 0, thread t2
can present the log L ∶= up(0, x ∶= 0) com(0) qu(0, x,0) as an evidence of the
correctness of the result 0. As by the time of t’s query, only revision 0 has been
forwarded from t1 to t2, thread t2 only knows about t1’s first update and its own
query. Querying x after the update x ∶= 0 yields 0, so result(x,L,0) holds.

When thread t2 queries x in revision 1, thread t1’s second update has been
forwarded, so t2 can present the log L ∶= up(0, x ∶= 0) com(0) up(1, x ∶=
1) com(1) qu(0, x,0) com(0) qu(1, x,1). Since t2 received the t1’s revision 1 the
log contains the second update x ∶= 1 and t2’s query of x returns 1. This means
E5 ⊧ correctEVC . As a consequence, we have E4 ⊧ ¬DThreads(¬correctEVC),
because E4 ∼Threads E5 and E5 ⊧ correctEVC . The forwarding events in E5

mark positions where the transmission of updates through the network could
have occurred to make the computation meet correctEVC .

2.3 Linearizability

While the threads’ knowledge characterizes sequential consistency and eventual
consistency, their knowledge is not strong enough to define linearizability. Lin-
earizability extends sequential consistency by the requirement that method calls
must effect all visible change of the shared data at some point between their
invocation and their return. Such a point is called the linearization points of the
method.

To characterize linearizability, we introduce another agent called the observer
that tracks the available information on linearization points. To do this, the
observer monitors the order of non-overlapping (sequential) method calls in a
trace. The observer’s view of a trace is the order of non-overlapping method
calls. This order is represented by a set of pairs of return and invoke events,
such that the return took place before the invocation. We extract this order by
a projection function obs(⋅).

Example 3. Consider the following traces where method calls are split into
invocation- and return events:

E6 ∶= (t2, inv ld()) (t2, ret ld(1)) (t1, inv st(1)) (t1, ret st(true))
E7 ∶= (t2, inv ld()) (t1, inv st(1)) (t2, ret ld(1)) (t1, ret st(true))
E8 ∶= (t1, inv st(1)) (t1, ret st(true)) (t2, inv ld()) (t2, ret ld(1)) .

For trace E6, the observer’s projection function obs(⋅) yields: obs(E6) =
{((t2, ret ld(1)), (t1, inv st(1)))}. This means the observer sees that t2’s load

7

returned before t1’s store was invoked. In trace E7, the method calls overlap.
Consequently, the observer knows nothing about this trace: obs(E7) ∶= ∅. For
E8, we get obs(E8) = {((t1, ret st(true)), (t2, inv ld()))}.

The observer’s view tracks the available information on linearization points. In
trace E6, thread t2’s linearization point for the call to load must have occurred
before the linearization point of t1’s call to store. This follows from the fact
that t2’s load returned before t1’s call to store and that linearization point must
occur somewhere between a method’s invocation and its return. In trace E7

linearization points may have occurred in any order as the method calls overlap.
To the observer, a trace E is indistinguishable from a trace E′ if the order

of linearization points in E is preserved in E′ and maybe an order between
additional linearization points is fixed (see Section 3.1): E ⪯obs E′ :iff obs(E) ⊆
obs(E′). A trace E is linearizable if the threads together with the observer do
not know that the trace is incorrect: E ⊧ ¬DThreads⊎{obs}(¬correct).

Example 3 (Continued). We have E6 /⪯obs E7 , but E7 ⪯obs E6. Trace E7 is
linearizable since E7 ∼Threads⊎{obs} E8 and E8 ⊧ correctREG . However, trace
E6 is not linearizable since there is no indistinguishable trace that meets the
specification. Note that the threads without the observer could not have detected
this violation of the specification, i.e., E6 ⊧ ¬DThreads¬correctREG .

2.4 Knowledge about Consistency

As we describe sequential consistency in a standard logic of knowledge,
corresponding axioms apply (see, e.g. [21, chapter 2.2]). For example, ev-
erything a group of threads knows is also true: (T) ∶= ⊧ DG(ϕ) →
ϕ (Truth axiom), groups of threads know what they know: (4) ∶= ⊧ DG(ϕ) →
DG(DG(ϕ)) (positive introspection) and groups of threads know what they do
not know: (5) ∶= ⊧ ¬DG(ϕ) → DG(¬DG(ϕ)) (negative introspection). For a
complete axiomatization of a similar epistemic logic with time see [3].

Interestingly, adding the observer not only strengthens the threads’ ability
to distinguish traces but changes the kind of knowledge agents acquire about a
computation. Whereas ∼Threads is an equivalence relation, ∼Threads⊎{obs} is only
a partial order. As a consequence, DThreads corresponds to the modal system S5,
whereas DThreads⊎{obs} corresponds to the weaker system S4 [21]. This means,
that DThreads⊎{obs} does not satisfy the axiom of negative introspection (5).

It seems natural to ask if the differences in the type of knowledge between
sequential consistency and linearizability affect the ability to detect violations
of the specification. In Section 7, we show that the difference the lack of axiom
(5) makes, lies in the certainty threads have about their decision. Whereas for
sequentially consistent (seqCons ∶= ¬DThreads(¬correct)), whenever the threads
decide that a trace is sequentially consistent, they can be sure that the trace is
indeed sequentially consistent: (seqCons ↔DThreads(seqCons)) for linearizabil-
ity (Lin ∶= ¬DThreads⊎{obs}(¬correct)), it can occur that the threads together
with the observer decide that a trace is linearizable, however, they cannot be
sure that it really was: Lin ∧ ¬DThreads⊎{obs}(Lin).

8

3 Logic Of Knowledge

In this section we present a standard logic of knowledge (see [9]) that we use
for our characterizations. We follow the exposition of [15]. We define the set E
of events as E ∋ e ∶= (t,act), representing t ∈ Threads ⊎ {env} performing an
action act ∈ A. The environment env can perform synchronization events that
go unseen by the threads. In our characterization of eventual consistency, the
environment forwards transactions from one node to the other. We define the
generic set of actions: A ∋ act ∶= inv(m,v) ∣ ret(m,v). Threads can invoke or
return from methods m ∈ Methods with v ∈ Values. For our characterization
of eventual consistency, we instantiate A with application-specific actions. These
can easily be translated back into the generic form by splitting up events into
separate invocation- and return-parts.

3.1 Preliminaries

We denote by E∗ the set of finite-, and by E∞ the set of infinite sequences over
E . We denote the empty sequence by ε. Let Eω ∶= E∗ ⊎ E∞ and E ∈ Eω. Then
E ⇂ i denotes the finite prefix up to- and including i. We let E@i be the element
of sequence E at position i. We define len(E) to be the length of E, where
len(ε) = 0, and len(E) = ω, if E ∈ E∞. For e ∈ E , we say that pos(e,E) = j, if
E@j = e and pos(e,E) = ω otherwise. Hence, we write e ∈ E if pos(e,E) < ω. We
make the assumption that each event occurs only once in a trace. This is not a
restriction as we could add a unique time-stamp or a sequence number to each
event.

We formally define projection functions and indistinguishability relations. A
thread’s view of a computation trace is the part of the trace it can observe. We
define this part by a projection function that extracts the respective events. We
use this projection function to define an indistinguishability relation for each
thread.

Thread Indistinguishability Relation For a thread t ∈ Threads the indistin-
guishability relation ∼t ⊆ (Eω × (N ⊎ {ω)})2 is defined such that: (E, i) ∼t
(E′, i′) :iff (E ⇂ i) ↓ t = (E′ ⇂ i′) ↓ t where ↓∶ (Eω × Threads) → Eω desig-
nates a projection function onto t’s local perspective. E ↓ t is the projection
on events in the set {(t,act) ∣ act ∈ A}, i.e., the sequence obtained from E by
erasing all events that are not in the above set.

Observer Indistinguishability Relations The observer’s view of a trace is the
order of non-overlapping method calls. We let Inv ∋ in ∶= (t, inv(m,v)) and
Ret ∋ r ∶= (t, ret(m,v)). The indistinguishability relation of the observer
⪯obs ⊆ (Eω × N)2 is given by: for all (E, i), (E′, i′) ∈ Eω × N: (E, i) ⪯obs
(E′, i′) :iff obs(E, i) ⊆ obs(E′, i′) where obs: (Eω × N) → P(E2) designates a
projection onto the observer’s local view, such that: obs(E, i) = {(r, in) ∈ Ret
× Inv ∣ pos(r,E) < pos(in,E) ≤ i}. We abbreviate obs(E) ∶= obs(E, len(E)).

9

Joint Indistinguishability Relations Joint indistinguishability relations link pairs
of traces that a group of threads can distinguish if they share their knowledge.
Whenever a thread in the group can tell the difference between two traces, the
group can. Let G ⊆ Threads. We define the joint indistinguishability relation of
group G to be ∼G∶= (⋂t∈G ∼t) and ∼G⊎{obs}∶=∼G ∩ ⪯obs . For any indistinguishabil-
ity relation ∼, we write E ∼ E′ as an abbreviation for (E, len(E)) ∼ (E, len(E′)).

3.2 Syntax

A formula in the logic takes the form:

ϕ,ψ ∶∶= ϕ ∧ ψ ∣ ¬ϕ ∣ ϕSψ ∣ ϕUψ ∣DG(ϕ) ∣ ∀x(ϕ) .

with G ⊆ Threads ⊎ {obs} and p ∈ Predicates, which we instantiate for
each of our characterizations. The logic provides the temporal modalities ϕSψ
representing the fact that since ψ occurred, ϕ holds and the modality ϕUψ
representing the fact that until ψ occurrs, ϕ holds. Additionally, it provides the
distributed knowledge modality DG and first order quantification. Let Φ denote
the set of all formulae in the logic.

3.3 Semantics

We now define the satisfaction relation ⊧ ⊆ (Eω × (N ⊎ ω)) ×Φ. We let:

(E, i)⊧ϕ ∧ ψ :iff (E, i) ⊧ ϕ and (E, i) ⊧ ψ
(E, i)⊧¬ϕ :iff not (E, i) ⊧ ϕ .

We define the temporal modalities by:

(E, i)⊧ϕSψ :iff there is j ≤ i s.t. (E, j) ⊧ ψ and
for all j < k ≤ i ∶ (E,k) ⊧ ϕ

(E, i)⊧ϕUψ :iff there is j ≤ i s.t. (E, j) ⊧ ψ and
for all 1 ≤ k < j ∶ (E,k) ⊧ ϕ .

We define distributed knowledge as: (E, i) ⊧DG(ϕ) :iff for all (E′, i′): if (E, i) ∼G
(E′, i′) then (E′, i′) ⊧ ϕ, with G ⊆ Threads ⊎ {obs}. Let D be the domain of
quantification. We define first-order quantification: (E, i) ⊧ ∀x(ϕ) :iff for all
d ∈D ∶ (E, i) ⊧ ϕ[d/x]. By ϕ[d/x], we denote the term ϕ with all occurrences of
x replaced by d. We define D as the disjoint union of all quantities used in the
definition of a condition. We write E ⊧ ϕ as an abbreviation for (E, len(E)) ⊧ ϕ.

Additional Definitions For convenience, we define the following standard oper-
ators in terms of our above definitions: ϕ ∨ ψ ∶= ¬(¬ϕ ∧ ¬ψ), ϕ → ψ ∶= ¬ϕ ∨ ψ,
⊺ ∶= (p ∨ ¬p) for some atomic predicate p, xϕ ∶= ⊺Sϕ (“once ϕ”), ⊟ϕ ∶= ¬x ¬ϕ
(“so far ϕ”), ◇ϕ ∶= ⊺Uϕ (“eventually ϕ”), ◻ϕ ∶= ¬ ◇ ¬ϕ (“always ϕ”),
ϕWψ ∶= ϕUψ ∨ ◻ϕ (“weak until”), ∃x(ϕ) ∶= ¬∀x(¬ϕ).

10

4 Sequential Consistency

We present a trace-based definition of sequential consistency (cf., [1]) and prove
our logical characterization equivalent. Our definition of sequential consistency
generalizes the original definition [16] by allowing non-sequential specifications.

Definition 1 (Sequential Consistency). Let Spec ⊆ E∗ be a specification of
the shared data-structure. A trace E ⇂ i is sequentially consistent seqCons(E, i)
if and only if there is (E′, i′) ∈ Eω ×N s.t. for all t ∈ Threads:

(E ⇂ i) ↓ t = (E′ ⇂ i′) ↓ t and E′ ⇂ i′ ∈ Spec .

Basic Predicates For our logical characterization, we define the predicate correct
representing the fact that a trace meets the specification:

(E, i) ⊧ correct :iff E ⇂ i ∈ Spec .

Theorem 1 (Logical Characterization of Sequential Consistency). A
trace E ⇂ i is sequentially consistent if and only if the threads do not jointly
know that it is incorrect: seqCons(E, i) iff (E, i) ⊧ ¬DThreads(¬correct).

5 Eventual Consistency

We define the set of actions for eventual consistency as:

A ∋ act ∶= qu(id , q, r) ∣ up(id , u) ∣ com(id) ∣ fwd(t, t′, id) .

Threads may pose a query (qu) q ∈ Queries with result r ∈ Values, issue
an update (up) u ∈ Updates, or commit (com) their local changes. Queries,
updates and commits get assigned a revision-id id ∈ Identifiers, representing
the current state of the local database copy. We assume that if a thread commits,
the committed revision id matches the revision id of the previous queries and
updates i.e., those performed since the last commit, and that thread-revision-id
pairs (t, id) are unique. Again, this is no restriction. To fulfil the requirement,
the threads can just increment their local revision id whenever they commit. As
updates may get lost in the network, we represent by fwd(t, t′, id) the successful
forwarding of the updates made by thread t in revision id to thread t′.

Preliminaries We let set(E) = {e ∣ e ∈ E}, i.e., the set of events in trace E. On
a fixed trace E, we define the program order ≺p as e ≺p e′ :iff if there is t such
that pos(e,E ↓ t) < pos(e′,E ↓ t). We let “ ” represent irrelevant, existential
quantification. Let e ≡t e′ if and only if there is id ∈ Identifiers such that
e = (t, (id ,)) and e′ = (t, (id ,)), i.e., if the events belong to the same revision
of thread t. A relation ⪯ factors over ≡t if x ⪯ y, x ≡t x′ and y ≡t y′ imply x′ ⪯ y′.
Updates are interpreted in terms of a set of states States, i.e., we assume there
is an interpretation function u# ∶ States→ States, for each u ∈ Updates, and
a designated initial state s0 ∈ States. For each query q ∈ Queries, there is an
interpretation function q# ∶ States → Values. For a finite set of events ES , a
total order ≺ over the events in ES , and a state s we let apply(Es,≺, s) be the
result of applying all updates in Es to s, in the order specified by ≺.

11

Definition 2 (Eventual Consistency). We use the definition presented in
[5]. A trace E ∈ Eω is eventually consistent (evCons(E)) if and only if there
exist a partial order ≺v (visibility order), and a total order ≺a (arbitration order)
on the events in set(E) such that:

– ≺v⊆≺a (arbitration extends visibility).

– ≺p⊆≺v (visibility is compatible with program-order).

– for each eq = (t, qu(id , q, r)) ∈ E, we have r = q#(apply({e ∣ e ≺v eq},≺a, s0))
(consistent query results).

– ≺a and ≺v factor over ≡t (atomic revisions).

– if (t, com(id)) /∈ E and (t, (id ,)) ≺v (t′,) then t = t′ (uncommitted up-
dates).

– if e = (t, com(id)) ∈ E then there are only finitely many e′ ∶= (t′, com(id ′))
such that e′ ∈ E and e /≺v e′ (eventual visibility).

5.1 Logical Characterization

Basic Predicates We represent queries and updates by predicates query(t, q, r, id)
and update(t, u, id), representing t ∈ Threads, issuing q ∈ Queries with result
r ∈ Values on revision id ∈ Identifiers, and t performing u ∈ Updates on
revision id , respectively. As threads work on their local copies, revision ids mark
the version of data the threads work with. We represent commits by the predicate
commit(t, id), representing t committing its state in revision id. After performing
a commit, a new revision id is assigned. We define:

(E, i)⊧query(t, q, r, id) :iff E@i = (t, qu(id , q, r))
(E, i)⊧update(t, u, id) :iff E@i = (t,up(id , u))
(E, i)⊧commit(t, id) :iff E@i = (t, com(id)) .

We let query(t, q, r) ∶= ∃id(query(t, q, r, id)). Upon commit, a thread for-
wards all the information from its local repository to the database system and
receives updates from other threads. Committed updates may however be de-
layed or lost by the network. By the predicate forward(t, t′, id) we mark the
event that the environment forwarded the updates t performed in revision id
to t′. We let: (E, i) ⊧ forward(t, t′, id) :iff E@i = (env , fwd(t, t′, id)). Eventual
consistency requires all threads to keep valid logs. Logs are finite sequences of
actions, i.e., L ∈ A∗. We let: (E, i) ⊧ a in L ∶iff a ∈ L. By t klog a we denote
the fact that t knows about action a. The predicate klog represents individual
knowledge, i.e., knowledge in the sense of knowing about an action in contrast
to knowing that a fact is true [15]. We let:

(E, i) ⊧ t klog a :iff there is j ≤ i ∶ (E@j = (t, a) or

((E, j) ⊧ forward(t′, t, id) and there is l < j ∶ (E, l) ⊧ commit(t′, id)
and (E, l) ⊧ t′ klog a)) .

12

That is, threads know an action if they performed it themselves, or they received
an update containing it. Upon commits, threads pass on all actions they know
about. We represent log validity by the formula: L validLog t ∶= ∀a(t klog a↔
a in L) ∧consistent(L). That is, to be a valid log for thread t, log L must contain
exactly the actions that t knows of and these actions must be arranged in an
order consistent with respect to the other threads logs. A log L is consistent if the
actions in the log occur in the same order as the actions in the real trace. This
means the sequence of actions in L must be a subsequence of the actions in the
real trace. A sequence a = a1a2 . . . an is a subsequence of a sequence b = b1b2 . . . bm
(a ⪯ b), if and only if there exist 1 ≤ i1 < i2 < . . . < in ≤ m such that for all
1 ≤ j ≤ n ∶ aj = bij . We project a sequence of events to a sequence of actions by the
function act ∶ E∗ → A∗, such that act((t1, a1)(t2, a2) . . . (tn, an)) = a1a2 . . . an.
We define: (E, i) ⊧ consistent(L) ∶iff L ⪯ act(E ⇂ i).

Query Results All queries that threads issue must return the correct result with
respect to the logged operations. That is, the query’s result must match the
result the query would yield when issued on a database that performed all the
updates in the log. We represent the fact that query q would yield result r on
log L by the predicate result(q,L, r). We define the order of actions in a log
L by the relation <L. We let a <L a′ :iff pos(a,L) < pos(a′,L) < ω. We define:
(E, i) ⊧ result(q,L, r) ∶iff r = q#(apply(set(L),<L, s0)).

Network Assumptions We pose additional requirements on the network: up-
dates in the same revision must be sent as atomic bundles (atomicTrans).
Only committed updates can be forwarded (fwd). Active threads must even-
tually receive all committed update (alive). We define the helper predicate:
rev(t, id) := ∃q∃r(query(t, q, r, id)) ∨ ∃u(update(t, u, id)) representing the fact,
that the current action belongs to revision id of thread t. We specify the re-
quirements that updates made in the same revision must be sent bundled as
indivisible transactions by the formula : atomicTrans ∶= ∀t∀id(⊟(rev(t, id) →
rev(t, id) W commit(t, id))). That is, queries and updates from revision id
are only followed by other queries and updates from the same revision, or
a commit. We enforce that only committed revisions can be forwarded by:
fwd ∶= ∀t∀t′∀id(⊟(fwd(t, t′, id) → ◻(¬commit(t, id)))). Threads that makes
progress, i.e. that commit infinitely often must eventually receive all committed
updates. We formalize this as:

alive ∶= ∀t∀t′∀id
(⊟(commit(t, id) ∧ ◻◇ (∃id ′(commit(t′, id′)))→
◇forward(t, t′, id))) .

We represent correctEVC by the formula:

correctEVC ∶= ∀t∀q∀r
(⊟(query(t, q, r)→ ∃L(L validLog t ∧ result(q,L, r))))
∧atomicTrans ∧ alive ∧ fwd .

13

Theorem 2 (Logical Characterization of Eventual Consistency). A
trace is eventually consistent if and only if the threads do not know that it violates
correctEVC . For all traces E ∈ Eω:

evCons(E) if and only if E ⊧ ¬DThreads¬(correctEVC) .

6 Linearizability

Linearizability refines sequential consistency by guaranteeing that each method
call takes its effect at exactly one point between its invocation and its return.

For our definition of linearizability, we follow [8]. As for sequential consis-
tency, our definition generalizes the original notion [10, 12] by allowing non-
sequential specifications. We define the real-time precedence order ⪯real ⊆ (Eω ×
N)2: (E, i) ⪯real (E′, i′) :iff i = i′ and there is a bijection π ∶ {1, . . . , i}→ {1, . . . , i}
s.t for all j ∈ N such that j ≤ i ∶ E@j = E′@π(j), i.e., E′ is a permutation of E,
and for all j, k ∈ N such that j < k ≤ i ∶ if E@j ∈ Ret and E@k ∈ INV then π(j) <
π(k), i.e., when permuting the events in E, calls are never pulled before returns.

Definition 3 (Linearizability). A trace (E, i) is linearizable (lin(E, i)) if and
only if there is (E′, i′) ∈ Eω ×N such that (1) for all t ∈ Threads: (E ⇂ i) ↓ t =
(E′ ⇂ i′) ↓ t (2) (E, i) ⪯real (E′, i′) and (3) E′ ⇂ i′ ∈ Spec.

Theorem 3 (Logical Characterization of Linearizability). A trace E ⇂
i ∈ E∗ is linearizable if and only if the threads together with the observer do not
know that it is incorrect:

lin(E, i) iff (E, i) ⊧ ¬DThreads⊎{obs}¬correct .

7 Knowledge about consistency

We write ⊧ ϕ as an abbreviation for: for all E ∈ Eω: E ⊧ ϕ. Let seqCons ∶=
¬DThreads(¬correct).
Theorem 4 (Detection Sequential Consistency). Threads can de-
cide whether a trace is sequentially consistent or not: ⊧ (seqCons ↔
DThreads(seqCons)) ∧ (¬seqCons ↔DThreads(¬seqCons)).

Let Lin ∶= ¬DThreads⊎{obs}¬correct .

Theorem 5 (Detection Linearizability). There is E ∈ Eω such that
(E, i) ⊧ Lin ∧ ¬DThreads⊎{obs}(Lin). As in sequential consistency, the threads
together with the observer can spot if a trace is not linearizable: ⊧ ¬Lin ↔
DThreads⊎{obs}(¬Lin).

8 Related Work

The only applications of epistemic logic to concurrent computations that we are
aware of are a logical characterization of wait-free computations by Hirai [13]
and a knowledge based analysis of cache-coherence by Baukus et al. [2].

14

Acknowledgements We would like to thank Jade Alglave, Alexey Gotsman,
Rose Hoberman, Simon Kramer, Corneliu Popeea, Moshe Y. Vardi, and the
anonymous reviewers for helpful feedback. This research was supported in part
by a Microsoft Research Scholarship and by the ERC project 308125 VeriSynth.

References

1. H. Attiya and J. L. Welch. Sequential consistency versus linearizability. ACM
Trans. Comput. Syst., 12(2):91–122, May 1994.

2. K. Baukus and R. van der Meyden. A knowledge based analysis of cache coherence.
In ICFEM, 2004.

3. F. Belardinelli and A. Lomuscio. A complete first-order logic of knowledge and
time. In KR, 2008.

4. S. Burckhardt, C. Dern, M. Musuvathi, and R. Tan. Line-up: a complete and
automatic linearizability checker. In PLDI, 2010.

5. S. Burckhardt, D. Leijen, M. Fähndrich, and M. Sagiv. Eventually consistent
transactions. In ESOP, 2012.

6. T. Elmas, S. Qadeer, and S. Tasiran. A calculus of atomic actions. In POPL, 2009.
7. R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning About Knowledge.

MIT Press, 2003.
8. A. Gotsman and H. Yang. Liveness-preserving atomicity abstraction. In ICALP.

2011.
9. J. Y. Halpern and Y. Moses. Knowledge and common knowledge in a distributed

environment. JACM, 37(3):549–587, 1990.
10. Herlihy, M. P., and J. M. Wing. Linearizability: a correctness condition for con-

current objects. ACM TOPLAS, 12(3):463–492, 1990.
11. M. Herlihy and N. Shavit. The art of multiprocessor programming. Morgan Kauf-

mann, 2008.
12. M. P. Herlihy and J. M. Wing. Axioms for concurrent objects. In POPL, 1987.
13. Y. Hirai. An intuitionistic epistemic logic for sequential consistency on shared

memory. In LPAR, 2010.
14. C. A. R. Hoare. An axiomatic basis for computer programming. CACM,

12(10):576–580, 1969.
15. S. Kramer and A. Rybalchenko. A multi-modal framework for achieving account-

ability in multi-agent systems. In LIS, 2010.
16. L. Lamport. How to make a multiprocessor computer that correctly executes

multiprocess programs. IEEE Transactions on Computers, C-28(9):690–691, 1979.
17. P. W. O’Hearn, J. C. Reynolds, and H. Yang. Local reasoning about programs

that alter data structures. In CSL, 2001.
18. C. H. Papadimitriou. The serializability of concurrent database updates. JACM,

26(4):631–653, 1979.
19. M. Shapiro and B. Kemme. Eventual consistency. In M. T. Özsu and L. Liu,

editors, Encyclopedia of Database Systems, pages 1071—1072. Springer, 2009.
20. V. Vafeiadis. Automatically proving linearizability. In CAV, 2010.
21. H. van Ditmarsch, W. van der Hoeck, and B. Kooi. Dynamic Epistemic Logic.

Springer, Dordrecht, 2008.

15

