
Solving Existentially Quantified Horn Clauses

Tewodros A. Beyene1, Corneliu Popeea1, and Andrey Rybalchenko1,2

1 Technische Universität München
2 Microsoft Research Cambridge

Abstract. Temporal verification of universal (i.e., valid for all compu-
tation paths) properties of various kinds of programs, e.g., procedural,
multi-threaded, or functional, can be reduced to finding solutions for
equations in form of universally quantified Horn clauses extended with
well-foundedness conditions. Dealing with existential properties (e.g.,
whether there exists a particular computation path), however, requires
solving forall-exists quantified Horn clauses, where the conclusion part of
some clauses contains existentially quantified variables. For example, a
deductive approach to CTL verification reduces to solving such clauses.
In this paper we present a method for solving forall-exists quantified
Horn clauses extended with well-foundedness conditions. Our method is
based on a counterexample-guided abstraction refinement scheme to dis-
cover witnesses for existentially quantified variables. We also present an
application of our solving method to automation of CTL verification of
software, as well as its experimental evaluation.

1 Introduction

Temporal verification of universal, i.e., valid for all computation paths, properties
of various kinds of programs is a success story. Various techniques, e.g., abstract
domains [13], predicate abstraction [18,22], or interpolation [26], provide a basis
for efficient tools for the verification of such properties, e.g., Astree [5], Blast [22],
CPAChecker [3], SatAbs [9], Slam [2], Terminator [12], or UFO [1]. To a large ex-
tent, the success of checkers of universal properties is determined by tremendous
advances in the state-of-the-art in decision procedures for (universal) validity
checking, i.e., advent of tools like MathSAT [6] or Z3 [15].

In contrast, advances in dealing with existential properties of programs, e.g.,
proving whether there exists a particular computation path, are still not on par
with the maturity of verifiers for universal properties. Nevertheless, important
first steps were made in proving existence of infinite program computations, see
e.g. [16, 20, 29], even in proving existential (as well as universal) CTL proper-
ties [11]. Moreover, bounded model checking tools like CBMC [8] or Klee [7] can
be very effective in proving existential reachability properties. All these initial
achievements inspire further, much needed research on the topic.

In this paper, we present a method that can serve as a further building
block for the verification of temporal existential (and universal) properties of
programs. Our method solves forall-exists quantified Horn clauses extended with

well-foundedness conditions. (The conclusion part of such clauses may contain
existentially quantified variables.) The main motivation for the development of
our method stems from an observation that verification conditions for existential
temporal properties, e.g., generated by a deductive proof system for CTL [25],
can be expressed by clauses in such form.

Our method, called E-HSF, applies a counterexample-guided refinement
scheme to discover witnesses for existentially quantified variables. The refinement
loop collects a global constraint that declaratively determines which witnesses
can be chosen. The chosen witnesses are used to replace existential quantifica-
tion, and then the resulting universally quantified clauses are passed to a solver
for such clauses. At this step, we can benefit from emergent tools in the area
of solving Horn clauses over decidable theories, e.g., HSF [19], µZ [23], or Du-
ality [27]. Such a solver either finds a solution, i.e., a model for uninterpreted
relations constrained by the clauses, or returns a counterexample, which is a
resolution tree (or DAG) representing a contradiction. E-HSF turns the coun-
terexample into an additional constraint on the set of witness candidates, and
continues with the next iteration of the refinement loop. Notably, our refinement
loop conjoins constraints that are obtained for all discovered counterexamples.
This way E-HSF guarantees that previously handled counterexamples are not
rediscovered and that a wrong choice of witnesses can be mended.

We applied our implementation of E-HSF to forall-exists quantified Horn
clauses with well-foundedness conditions that we obtained by from a deductive
proof system for CTL [25]. The experimental evaluation on benchmarks from [11]
demonstrates the feasibility of our method.

2 Preliminaries

In this section we introduce preliminary definitions.

Constraints Let T be a first-order theory in a given signature and |=T be
the entailment relation for T . We write v, v0, v1, . . . and w to denote non-empty
tuples of variables. We refer to a formula c(v) over variables v from T as a con-
straint. Let false and true be an unsatisfiable and a valid constraint, respectively.

For example, let x, y, and z be variables. Then, v = (x, y) and w = (y, z)
are tuples of variables. x ≤ 2, y ≤ 1 ∧ x− y ≤ 0, and f(x) + g(x, y) ≤ 3 ∨ z ≤ 0
are example constraints in the theory T of linear inequalities and uninterpreted
functions, where f and g are uninterpreted function symbols. y ≤ 1 ∧ x − y ≤
0 |=T x ≤ 2 is an example of a valid entailment.

A binary relation is well-founded if it does not admit any infinite chains. A
relation ϕ(v, v′) is disjunctively well-founded if it is included in a finite union of
well-founded relations [31], i.e., if there exist well-founded ϕ1(v, v′), . . . , ϕn(v, v′)
such that ϕ(v, v′) |=T ϕ1(v, v′) ∨ · · · ∨ ϕn(v, v′). For example, the relation x ≥
0 ∧ x′ ≤ x − 1 is well-founded, while the relation (x ≥ 0 ∧ x′ ≤ x − 1) ∨ (y ≤
0 ∧ y′ ≥ y + 1) is disjunctively well-founded.

2

Queries and dwf-predicates We assume a set of uninterpreted predicate
symbols Q that we refer to as query symbols. The arity of a query symbol
is encoded in its name. We write q to denote a query symbol. Given q of a
non-zero arity n and a tuple of variables v of length n, we define q(v) to be a
query. Furthermore, we introduce an interpreted predicate symbol dwf of arity
one (dwf stands for disjunctive well-foundedness). Given a query q(v, v′) over
tuples of variables with equal length, we refer to dwf (q) as a dwf -predicate. For
example, let Q = {r, s} be query symbols of arity one and two, respectively.
Then, r(x) and s(x, y) are queries, and dwf (s) is a dwf -predicate.

Forall-exists Horn-like clauses Let h(v) range over queries over v, constraints
over v, and existentially quantified conjunctions of queries and constraints with
free variables in v. We define a forall-exists Horn-like clause to be either an
implication c(v0) ∧ q1(v1) ∧ · · · ∧ qn(vn) → h(v) or a unit clause dwf (q). The
left-hand side of the implication is called the body, written as body(v), and the
right-hand side is called the head.

We give as example a set of forall-exists Horn-like clauses below:

x ≥ 0→ ∃y : x ≥ y ∧ rank(x, y), rank(x, y)→ ti(x, y),

ti(x, y) ∧ rank(y, z)→ ti(x, z), dwf (ti).

These clauses represent an assertion over the interpretation of predicate symbols
rank and ti .

Semantics of forall-exists Horn-like clauses A set of clauses can be seen
as an assertion over the queries that occur in the clauses.

We consider a function ClauseSol that maps each query q(v) occurring in
a given set of clauses into a constraint over v. Such a function is called a so-
lution if the following two conditions hold. First, for each clause of the form
body(v) → h(v) from the given set we require that replacing each query by the
corresponding constraint assigned by ClauseSol results in a valid entailment.
That is, we require body(v)ClauseSol |=T h(v)ClauseSol , where the juxtaposi-
tion represents application of substitution. Second, for each clause of the form
dwf (q) we require that the constraint assigned by ClauseSol to q represents a
disjunctively well-founded relation. Let |=Q be the corresponding satisfaction
relation, i.e., ClauseSol |=Q Clauses if ClauseSol is a solution for the given set
of clauses.

For example, the previously presented set of clauses, say Clauses, has a so-
lution ClauseSol such that ClauseSol(rank(x, y)) = ClauseSol(ti(x, y)) = (x ≥
0 ∧ y ≥ x − 1). To check ClauseSol |=Q Clauses we consider the validity of the
following implications:

x ≥ 0→ ∃y : x ≥ y ∧ x ≥ 0 ∧ y ≤ x− 1,

x ≥ 0 ∧ y ≤ x− 1→ x ≥ 0 ∧ y ≤ x− 1,

x ≥ 0 ∧ y ≤ x− 1 ∧ y ≥ 0 ∧ z ≤ y − 1→ x ≥ 0 ∧ z ≤ x− 1.

and the fact that ClauseSol(ti(x, y)) = (x ≥ 0 ∧ y ≤ x − 1) is a (disjunctively)
well-founded relation.

3

function Skolemize(Clauses)

1

2

3

4

5

6

7

8

9

10

11

12

13

Skolemized := Parent := Rels := Grds := ∅
for each clause ∈ Clauses do

match clause with

| body(v)→ ∃w :
∧n

i=1 conj i(v, w) ->

rel , grd := fresh predicate symbols of arity |v|+ |w| and |v|, resp.

Parent := {(grd , clause), (rel , clause)} ∪ Parent

Rels := {rel} ∪ Rels

Grds := {grd} ∪Grds

Skolemized := {body(v) ∧ rel(v, w)→ conj i(v, w) | i ∈ 1..n} ∪
{body(v)→ grd(v)} ∪ Skolemized

| -> Skolemized := {clause} ∪ Skolemized

done

return (Skolemized ,Parent ,Rels,Grds)

Fig. 1. Function Skolemize replaces existential quantification by application of Skolem

relations. In line 4, each conj i(v, w) is either a query or a constraint.

Solving Horn-like clauses without existential quantification We assume
an algorithm HSF for solving Horn-like clauses whose heads do not contain
any existential quantification. This algorithm computes a solution ClauseSol
when it exists. There already exist such algorithms as well as their efficient
implementations that are based on predicate abstraction and interpolation [19],
as well as interpolation based approximation [27].

3 Solving algorithm E-HSF

In this section we present our algorithm E-HSF for solving constraints in form
of Horn clauses that contain existential quantification and well-foundedness con-
ditions.

Our solving method proceeds in two steps. First, we rely on Skolemization
to re-formulate the problem of dealing with existential quantification as a prob-
lem of finding witnesses for the existentially quantified variables. Such witnesses
are represented by Skolem relations (which is a slight generalisation of Skolem
functions that is convenient in our setting). For an existentially quantified clause
body(v) → ∃w : head(v, w), the corresponding Skolem relation rel(v, w) deter-
mines which value w satisfies head(v, w) for a given v. Since for each v such that
body(v) holds we need a value w, we require that such v is in the domain of the
Skolem relation. We represent the domain of Skolem relation rel(v, w) as the
guard grd(v), and will use it later to implement the above requirement.

A function Skolemize shown in Figure 1 implements the Skolemization step.
It outputs a set of clauses without existential quantification, yet containing
Skolem relations and guards. Furthermore, Skolemize keeps track of which
Skolem relations and guards belong to which clauses.

4

The second step takes as input a set of Skolemized clauses produced by
Skolemize and either finds a solution, returns that no solution can be found,
or diverges. At this step we rely on a set of templates that determine the search
space for Skolem relations, their guards, as well as termination arguments used
for dealing with well-foundedness. In order to ensure that the guard of a Skolem
relation entails its domain, we assume that the guard template implies the pro-
jection of the Skolem relation template. Formally, we require that the template
functions GrdT and RelT providing guard and Skolem relation templates for
the output of Skolemize satisfy the following condition: for each grd ∈ Grds
and rel ∈ Rels such that Parent(grd) = Parent(rel) the implication

GrdT(grd)(v)→ ∃w : RelT(rel)(v, w) (1)

is valid (for arbitrary values of template parameters). We establish Equation 1
by choosing templates accordingly.

See Figure 2. The solving process iteratively determines appropriate candi-
dates for Skolem relations and their guards by using a counterexample driven
approach. Each counterexample induces constraints on template parameters and
thus rules out failed attempts. Given candidates for Skolem relations and their
guards, we record these candidates by introducing appropriate Horn clauses
called Defs. Then, we apply a solver for (ordinary) Horn clauses, which we call
HSF, on the set of Skolemized clauses that is extended with Defs. If HSF finds
a solution, then we report it as a solution for the original set of clauses. Oth-
erwise, we inspect a counterexample given by HSF. Such a counterexample is
presented by a set of recursion-free Horn clauses which uses a form of Static
Single Assignment (SSA) to represent an unfolding of Skolemized ∪ Defs that
cannot be satisfied.

If the counterexample does not involve any Skolem relations or their guards,
then we report that Skolemized cannot be satisfied. Otherwise, the unfolding is
not satisfiable either because there are no Skolem relations together with guards
that make Skolemized satisfiable, or because the currently chosen candidates are
not correct. To find out, we replace the candidates by templates and create a
constraint over template parameters ensuring that the counterexample is elimi-
nated. This constraint is determined by EncodeValidity and results in a for-
mula whose free variables are template parameters. We consider a conjunction of
such constraints, which is stored as Constraint , across all iteration of the solving
process, thus ensuring that previously analysed and eliminated counterexamples
will not re-appear. A solution of Constraint determines new candidates, which
we formally record using the set of clauses Defs. Now our iteration is ready to
go in the next round.

Correctness The algorithm E-HSF relies on the following propositions. First,
the Skolemization step preserves equi-satisfiability under an assumption that
each guard needs to be a subset of the corresponding Skolem relation.

Lemma 1 (Skolemization preserves satisfiability). The set of clauses

Clauses is equi-satisfiable with the set of clauses computed by Skolemize when

5

algorithm E-HSF(Clauses)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

31

32

33

34

Skolemized ,Parent ,Rels,Grds := Skolemize(Clauses)

Constraint := true

Defs := {true → rel(v, w) | rel ∈ Rels} ∪ {grd(v)→ true | grd ∈ Grds}
match HSF(Skolemized ∪Defs) with

| solution ClauseSol -> return “solution ClauseSol”

| error derivation Cex and symbol map Sym ->

CexDefs := {(body → q(. . .)) ∈ Cex | Sym(q) ∈ Rels ∪Grds}
if CexDefs = ∅ then return “error derivation Cex and symbol map Sym”

else

(body ∧
∧n

i=1 qi(vi, wi)→ head) := Resolve(Cex \ CexDefs)

body := body ∧
∧n

i=1 RelT(Sym(qi))(vi, wi)

match head with

| q(v, w) when dwf (Sym(q)) ∈ Clauses ->

head := BoundT(Sym(q))(v) ∧DecreaseT(Sym(q))(v, w)

| q(v) when Sym(q) ∈ Grds ->

head := GrdT(Sym(q))(v)

| -> skip

Constraint := EncodeValidity(body → head) ∧ Constraint

match SmtSolve(Constraint) with

| solution CexSol ->

Defs := {RelT(rel)(v, w)CexSol → rel(v, w) | rel ∈ Rels} ∪
{grd(v)→ GrdT(grd)(v)CexSol | grd ∈ Grds}

goto line 4

| -> return “error derivation Cex and symbol map Sym”

Fig. 2. Solving algorithm E-HSF for Horn clauses with existential quantification and

disjunctive well-foundedness predicates. Resolve applies resolution. EncodeValidity

encodes the Farkas’ lemma from linear programming [32], while SmtSolve returns an

assignment of constants to template parameters provided its argument is satisfiable.

domains of Skolem relations contain corresponding guards. Formally, Clauses is

equi-satisfiable with the set

{grd(v)→ ∃w : rel(v, w) | grd ∈ Grds ∧ rel ∈ Rels ∧

Parent(grd) = Parent(rel)} ∪ Skolemized .

Proof. (Sketch) Let clause = (body(v) → ∃w : q(v, w)) and Parent(rel) =

Parent(grd) = clause. We keep pairs (v∗, w∗) such that body(v∗) and q(v∗, w∗)

hold in a relation rel while storing v∗ in grd . Then the statement of the lemma

follows immediately. ut

6

As previously mentioned, the above relation between Skolem relations and
their guards is established by the appropriate choice of RelT and GrdT func-
tions, see Equation 1. Then E-HSF inherits its soundness from HSF.

Theorem 1 (Soundness). If HSF is sound, i.e., it returns solutions for given

sets of clauses, and if Equation 1 holds for each grd ∈ Grds and rel ∈ Rels

such that Parent(grd) = Parent(rel), then, upon termination, E-HSF returns a

solution for Clauses.

Proof. Let ClauseSol be a result of applying HSF in line 5 of Figure 2. The

first assumption of the theorem statement guarantees that ClauseSol satisfies

Skolemized . The first assumption ensures that Lemma 1 is applicable, hence,

ClauseSol satisfies Clauses. ut

Our method is based on a counterexample guided scheme for discovery of
Skolem relations and guards. While this scheme has successful applications in
practice, it does not guarantee termination of the refinement process when the
set of candidates for Skolem relations and guards is unbounded. Our method
necessarily inherits this limitation.

Despite this undecidability imposed limitation, our method strives at achiev-
ing termination of refinement process in practice. An important ingredient is
provided by the fact that Constraint keeps track of the conjunction of constraints
used to discover candidates Skolem relations and guards across all iterations.

Theorem 2 (Progress of refinement). E-HSF does not consider any error

derivation/counterexample more than once.

Proof. (Sketch) The progress of refinement property follows directly from the

observation that every solution for Constraint yields Skolem relations and guards

that satisfy each previously discovered error derivation. ut

4 Example of applying E-HSF

We consider the following set Clauses that encodes a check whether a program
with the variables v = (x, y), an initial condition init(v) = (y ≥ 1) and a
transition relation next(v, v′) = (x′ = x+y) satisfies a CTL property EF dst(v),
where dst(v) = (x ≥ 0).

init(v)→ inv(v), inv(v) ∧ ¬dst(v)→ ∃v′ : next(v, v′) ∧ inv(v′) ∧ rank(v, v′),

rank(v, v′)→ ti(v, v′), ti(v, v′) ∧ rank(v′, v′′)→ ti(v, v′′), dwf (ti).

Here, inv(v), rank(v, v′), and ti(v, v′) are unknown predicates that we need to
solve for. The predicate inv(v) corresponds to states reachable during program
execution, while the second row of clauses ensures that rank(v, v′) is a well-
founded relation [31].

7

We start the execution of E-HSF from Figure 2 by applying Skolemize
to eliminate the existential quantification. As a result, the clause that contains
existential quantification is replaced by the following four clauses that contain
an application of a Skolem relation rel(v, v′) introduced by Skolemize as well
as an introduction of a lower bound on the guard grd(v) of the Skolem relation:

inv(v) ∧ ¬dst(v) ∧ rel(v, v′)→ next(v, v′),

inv(v) ∧ ¬dst(v) ∧ rel(v, v′)→ inv(v′),

inv(v) ∧ ¬dst(v) ∧ rel(v, v′)→ rank(v, v′),

inv(v) ∧ ¬dst(v)→ grd(v).

Furthermore, this introduction is recorded as Rels = {rel} and Grds = {grd}.
Note that we replaced a conjunction in the head of a clause by a conjunction of
corresponding clauses.

First candidate for Skolem relation Next, we proceed with the execution of
E-HSF. We initialise Constraint with the assertion true. Then, we generate a set
of Horn clauses Defs that provides initial candidates for the Skolem relation and
its guard as follows: Defs = {true → rel(v, v′), grd(v) → true}. Now, we apply
the solving algorithm HSF for quantifier free Horn clauses on the set of clauses
that contains the result of Skolemization and the initial candidates in Defs, i.e.,
we give to HSF the following clauses:

init(v)→ inv(v), rank(v, v′)→ ti(v, v′),

inv(v) ∧ ¬dst(v) ∧ rel(v, v′)→ next(v, v′), ti(v, v′) ∧ rank(v′, v′′)→ ti(v, v′′),

inv(v) ∧ ¬dst(v) ∧ rel(v, v′)→ inv(v′), dwf (ti),

inv(v) ∧ ¬dst(v) ∧ rel(v, v′)→ rank(v, v′), true → rel(v, v′),

inv(v) ∧ ¬dst(v)→ grd(v), grd(v)→ true.

HSF returns an error derivation that witnesses a violation of the given set
of clauses. This derivation represents an unfolding of clauses in Skolemized ∪
Defs that yields a relation for ti(v, v′) that is not disjunctively well-founded. To
represent the unfolding, HSF uses a form of static single assignment (SSA) that
is applied to predicate symbols, where each unfolding step introduces a fresh
predicate symbol that is recorded by the function Sym. We obtain the clauses
Cex consisting of

init(v)→ q1(v), q1(v) ∧ ¬dst(v) ∧ q2(v, v′)→ next(v, v′), true → q2(v, v′)

together with the following bookkeeping of the SSA renaming: Sym(q1) = inv
and Sym(q2) = rel . From Cex we extract the clause CexDefs that provides the
candidate for the Skolem relation. We obtain CexDefs = {true → q2(v, v′)},
since Sym(q2) = rel and hence Sym(q2) ∈ Rels.

We analyse the counterexample clauses by applying resolution on
Cex \ CexDefs. The corresponding resolution tree is shown below (literals

8

selected for resolution are boxed):

init(v)→ q1(v) q1(v) ∧ ¬dst(v) ∧ q2(v, v′)→ next(v, v′)

init(v) ∧ ¬dst(v) ∧ q2(v, v′)→ next(v, v′)

Note that q2(v, v′) was not eliminated, since the clause true → q2(v, v′) was
not given to Resolve as input. The result of applying Resolve is the clause
init(v) ∧ ¬dst(v) ∧ q2(v, v′) → next(v, v′). We assign the conjunction init(v) ∧
¬dst(v) to body and next(v, v′) to head , respectively.

Now we iterate i through the singleton set {1}, which is determined by the
fact that the above clause contains only one unknown predicate on the left-hand
side. We apply RelT on Sym(q2) and set the free variables in the result to (v, v′).
This yields a template v′ = Tv + t for the Skolem relation rel(v, v′). Here, T

is a matrix of unknown coefficients (
txx txy

tyx tyy
), and t is a vector of unknown free

coefficient (tx, ty). In other words, our template represents a conjunction of two
equality predicates x′ = txxx+ txyy + tx and y′ = tyxx+ tyyy + ty. We conjoin
this template with body and obtain body = (v′ = Tv+t∧init(v)∧¬dst(v)). Since
head is not required to be disjunctively well-founded, E-HSF proceeds with the
generation of constraints over template parameters.

We apply EncodeValidity on the following implication:

x′ = txxx+ txyy + tx ∧ y′ = tyxx+ tyyy + ty ∧ y ≥ 1 ∧ ¬x ≥ 0→ x′ = x+ y .

This implication is valid if the following constraint returned by EncodeValid-
ity is satisfiable.

∃
λ︷ ︸︸ ︷

λ1, λ2, λ3, λ4,

µ︷ ︸︸ ︷
µ1, µ2, µ3, µ4 : λ3 ≥ 0 ∧ λ4 ≥ 0 ∧ µ3 ≥ 0 ∧ µ4 ≥ 0 ∧

(
λ

µ

)
txx txy −1 0

tyx tyy 0 −1

0 −1 0 0

1 0 0 0

 =

(
−1 −1 1 0

1 1 −1 0

)
∧

(
λ

µ

)
−tx
−ty
−1

−1

 =

(
0

0

)

This constraint requires that the right-hand side on the implication is obtained as
a linear combination of the (in)equalities on the left-hand side of the implication.
We conjoin the above constraint with Constraint .

We apply an SMT solver to compute a satisfying valuation of template pa-
rameters occurring in Constraint and obtain:

txx txy tx tyx tyy ty
1 1 0 0 0 10

By applying CexSol on the template v′ = Tv + t, which is the result of
RelT(rel)(v, v′), we obtain the conjunction x′ = x+y∧y′ = 10. In this example,
we assume that the template GrdT(grd)(v) is equal to true. Hence, we modify
the clauses that record the current candidate for rel(v, v′) and grd(v) as follows:

Defs = {x′ = x+ y ∧ y′ = 10→ rel(v, v′), grd(v)→ true}

Now we proceed with the next iteration of the main loop in E-HSF.

9

Second candidate for Skolem relation The second iteration in E-HSF uses
Defs and Constraint as determined during the first iteration. We apply HSF on
Skolemized ∪Defs and obtain an error derivation Cex consisting of the clauses

init(v) ∧ q1(v), q1(v) ∧ ¬dst(v) ∧ q2(v, v′)→ q3(v, v′),

x′ = x+ y ∧ y′ = 10→ q2(v, v′), q3(v, v′)→ q4(v, v′),

together with the function Sym such that Sym(q1) = inv , Sym(q2) = rel ,
Sym(q3) = rank , and Sym(q4) = ti . From Cex we extract CexDefs = {x′ =
x + y ∧ y′ = 10 → q2(v, v′)} since Sym(q2) ∈ Rels. We apply Resolve on
Cex \ CexDefs and obtain:

init(v) ∧ ¬dst(v) ∧ q2(v, v′)→ q4(v, v′) .

As seen at the first iteration, we have RelT(rel)(v, v′) = (v′ = Tv + t). Hence
we have body = (init(v) ∧ ¬dst(v) ∧ v′ = Tv + t).

Since Sym(q4) = ti and dwf (ti) ∈ Skolemized , the error derivation witnesses
a violation of disjunctive well-foundedness. Hence, by applying BoundT and
DecreaseT we construct templates bound(v) and decrease(v, v′) corresponding
to a bound and decrease condition over the program variables, respectively.

bound(v) = (rxx+ ryy ≥ r0) ,

decrease(v, v′) = (rxx
′ + ryy

′ ≤ rxx+ ryy − 1) .

Finally, we set head to the conjunction rxx+ryy ≥ r0∧rxx′+ryy′ ≤ rxx+ryy−1.
By EncodeValidity on the implication body → head we obtain the con-

straint

∃
λ︷ ︸︸ ︷

λ1, λ2, λ3, λ4,

µ︷ ︸︸ ︷
µ1, µ2, µ3, µ4 : λ3 ≥ 0 ∧ λ4 ≥ 0 ∧ µ3 ≥ 0 ∧ µ4 ≥ 0 ∧

(
λ

µ

)
txx txy −1 0

tyx tyy 0 −1

0 −1 0 0

1 0 0 0

 =

(
−rx −ry 0 0

−rx −ry rx ry

)
∧

(
λ

µ

)
−tx
−ty
−1

−1

 =

(
−r0
−1

)
.

We add the above constraint as an additional conjunct to Constraint . That is,
Constraint is strengthened during each iteration.

We apply the SMT solver to compute a valuation template parameters that
satisfies Constraint . We obtain the following solution CexSol :

txx txy tx tyx tyy ty
1 0 1 0 0 1

The corresponding values of r and r0 are (−1, 0) and −1, which lead to the
bound −x ≥ 1 and the decrease relation −x′ ≤ −x− 1. By applying CexSol on
the template v′ = Tv + t we obtain the conjunction x′ = x + 1 ∧ y′ = 1. Note
that the solution for rel(v, v′) obtained at this iteration is not compatible with

10

the solution obtained at the first iteration, i.e., the intersection of the respective
Skolem relations is empty. Finally, we modify Defs according to CexSol and
obtain:

Defs = {x′ = x+ 1 ∧ y′ = 1→ rel(v, v′), grd → true}
Now we proceed with the next iteration of the main loop in E-HSF. At this
iteration the application of HSF returns a solution ClauseSol such that

ClauseSol(inv(v)) = (y ≥ 1) ,

ClauseSol(rel(v)) = (x′ = x+ 1 ∧ y′ = 1) ,

ClauseSol(rank(v, v′)) = (x ≤ −1 ∧ x′ ≥ x+ 1) ,

ClauseSol(ti(v, v′)) = (x ≤ −1 ∧ x′ ≥ x+ 1) .

Thus, the algorithm E-HSF finds a solution to the original set of forall-exists
Horn clauses (and hence proves the program satisfies the CTL property).

5 Verifying CTL properties using E-HSF

In this section we show how E-HSF can be used for automatically proving CTL
properties of programs. We utilize a standard reduction step from CTL prop-
erties to existentially quantified Horn-like clauses with well-foundedness condi-
tions, see e.g. [25]. Here, due to space constraints, we only illustrate the reduction,
using examples and refer to [25] for details of the CTL proof system.

We consider a program over variables v, with an initial condition given by
an assertion init(v), and a transition relation next(v, v′). Given a CTL property,
we generate Horn-like clauses such that the property is satisfied if and only if
the set of clauses is satisfiable.

The generation proceeds in two steps. The first step decomposes the property
into sub-properties by following the nesting structure of the path quantifiers that
occur in the property. As a result we obtain a set of simple CTL formulas that
contain only one path quantifier. Each property is accompanied by a predicate
that represents a set of program states that needs to be discovered.

As an example, we present the decomposition of (init(v),next(v, v′)) |=CTL

AG(EF (dst(v))), where dst(v) is a first-order assertion over v. Since EF (dst(v))
is a sub-formula with a path quantifier as the outmost symbol, we introduce a
fresh predicate p(v) that is used to replace EF (dst(v)). Furthermore, we re-
quire that every computation that starts in a state described by p(v) satis-
fies EF (dst(v)). Since the resulting CTL formulas do not have any nested path
quantifiers we stop the decomposition process. The original verification ques-
tion is equivalent to the existence of p(v) such that (init(v),next(v, v′)) |=CTL

AG(p(v)) and (p(v),next(v, v′)) |=CTL EF (dst(v)).
At the second step we consider each of the verification sub-questions obtained

by decomposing the property and generate Horn-like clauses that constrain aux-
iliary sets and relations over program states. For (init(v),next(v, v′)) |=CTL

AG(p(v)) we obtain the following clauses over an auxiliary predicate inv1(v):

init(v)→ inv1(v), inv1(v) ∧ next(v, v′)→ inv1(v′), inv1(v)→ p(v).

11

Due to the existential path quantifier in (p(v),next(v, v′)) |=CTL EF (dst(v)) we
obtain clauses that contain existential quantification. We deal with the eventual-
ity by imposing a well-foundedness condition. The resulting clauses over auxiliary
inv2(v), rank(v, v′), and ti(v, v′) are below (note that dst(v) is a constraint, and
hence can occur under negation).

p(v)→ inv2(v), inv2(v) ∧ ¬dst(v)→ ∃v′ : next(v, v′) ∧ rank(v, v′),

rank(v, v′)→ ti(v, v′), ti(v, v′) ∧ rank(v, v′)→ ti(v, v′′), dwf (ti).

Finally, the above clauses have a solution for inv1(v), p(v), inv2(v), rank(v, v′),
and ti(v, v′) if and only if (init(v),next(v, v′)) |=CTL AG(EF (dst(v))). Then,
we apply E-HSF as a solver.

6 Experiments

In this section we present our implementation of E-HSF and its experimental
evaluation on proving universal and existential CTL properties of programs.

Our implementation relies on HSF [19] to solve universally-quantified Horn
clauses over linear inequalities (see line 4 in Figure 2) and on the Z3 solver [15]
at line 19 in Figure 2 to solve (possibly non-linear) constraints. The input to our
tool is a transition system described using Prolog facts init(v) and next(v, v′),
as well as forall-exists Horn clauses corresponding to the CTL property to be
proved or disproved.

We run E-HSF on the examples from industrial code from [11, Figure 7]: OS
frag.1, OS frag.2, OS frag.3, OS frag.4, OS frag.5, PgSQL arch and S/W

Updates. For each pair of a program and CTL property φ , we generated two
verification tasks: prove φ and prove ¬φ. The existence of a proof for a property
φ implies that ¬φ is violated by the same program. (Similarly, a proof for ¬φ
implies that φ is violated by the same program.)

GrdT and RelT are provided by the user and need to satisfy Equation 1.
Currently, this condition is not checked by the implementation, but could be
done for linear templates using quantifier elimination techniques. For our exam-
ples, linear templates are sufficiently expressive. We use RelT(next)(v, v′) =
(next(v, v′) ∧ w′ = Tv + t ∧ Gv ≤ g) and GrdT(next)(v, v′) = (Gv ≤
g ∧ ∃v′ : next(v, v′)) , where w is a subset of v that is left unconstrained by
next(v, v′). Such w′ are explicitly marked in the original benchmark programs
using names rho1, rho2, For direct comparison with the results from [11],
we used template functions corresponding to the rho-variables. The quantifier
elimination in ∃v′ : next(v, v′) can be automated for the theory of linear arith-
metic. For dealing with well-foundedness we use linear ranking functions, and
hence corresponding linear templates for DecreaseT and BoundT.

We report the results in Table 1. Columns 3 and 6 show X marks for the
cases where E-HSF was able to find a solution, i.e., prove the CTL property. See
Columns 4 and 7 for the time spent on finding solutions. E-HSF is able to find
proofs for all the correct programs except for P14 and P15 that correspond to

12

Program Property φ |=CTL φ |=CTL ¬φ
Result Time Name Result Time Name

P1 AG(a = 1→ AF (r = 1)) X 1.2s 1 × 2.7s 29

P2 EF (a = 1 ∧ EG(r 6= 5)) X 0.6s 30 × 5.2s 2

P3 AG(a = 1→ EF (r = 1)) X 4.8s 3 × 0.1s 31

P4 EF (a = 1 ∧AG(r 6= 1)) X 0.6s 32 × 0.4s 4

P5 AG(s = 1→ AF (u = 1)) X 6.1s 5 × 0.2s 33

P6 EF (s = 1 ∧ EG(u 6= 1)) X 1.4s 34 × 3.6s 6

P7 AG(s = 1→ EF (u = 1)) X 12.9s 7 × 0.2s 35

P8 EF (s = 1 ∧AG(u 6= 1)) X 44.7s 36 × 3.8s 8

P9 AG(a = 1→ AF (r = 1)) X 51.3s 9 × 120.0s 37

P10 EF (a = 1 ∧ EG(r 6= 1)) X 132.0s 38 × 45.9s 10

P11 AG(a = 1→ EF (r = 1)) X 67.6s 11 × 3.9s 39

P12 EF (a = 1 ∧AG(r 6= 1)) X 67.9s 12 × 3.8s 40

P13 AF (io = 1) ∨AF (ret = 1) X 37m54s 13 T/O - 41

P14 EG(io 6= 1) ∧ EG(ret 6= 1) T/O - 42 × 136.6s 14

P15 EF (io = 1) ∧ EF (ret = 1) T/O - 15 × 1.4s 43

P16 AG(io 6= 1) ∨AG(ret 6= 1) X 0.1s 44 × 874.5s 16

P17 AG(AF (w ≥ 1)) X 3.0s 17 × 0.1s 45

P18 EF (EG(w < 1) X 0.5s 46 × 3.5s 18

P19 AG(EF (w ≥ 1)) X 3.3s 19 × 0.1s 47

P20 EF (AG(w < 1) X 0.7s 48 × 0.1s 20

P21 AG(AF (w = 1) X 2.8s 21 × 0.1s 49

P22 EF (EG(w 6= 1) X 2.2s 50 × 5.0s 22

P23 AG(EF (w = 1) X 4.5s 23 × 0.1s 51

P24 EF (AG(w 6= 1) X 3.4s 52 × 0.7s 24

P25 c > 5→ AF (r > 5) X 3.2s 25 × 0.1s 53

P26 c > 5 ∧ EG(r ≤ 5) × 0.1s 54 × 1.3s 26

P27 c > 5→ EF (r > 5) × 0.2s 27 × 0.1s 55

P28 c > 5 ∧AG(r ≤ 5) × 0.1s 56 × 0.3s 28

Table 1. Evaluation of E-HSF on industrial benchmarks from [11]. Each “Name”

column gives the corresponding program number in [11, Figure 7]. For P12, E-HSF

returns different results compared to [11]. For P26, P27 and P28 both properties φ and

¬φ are satisfied only for some initial states. (Neither φ nor ¬φ hold for these programs.)

Windows frag.4. Currently, E-HSF models the control flow symbolically using
a program counter variable, which is most likely the reason for not succeeding
on P14 and P15. Efficient treatment of control flow along the lines of explicit
analysis as performed in the CPAchecker framework could lead to significant
improvements for dealing with programs with large control-flow graphs [4].

13

For cases where the property contains more than one path quantifier and
the top-most temporal quantifier is F or U , our implementation generates non-
Horn clauses following the proof system from [25]. While a general algorithm for
solving non-Horn clauses is beyond the scope of this paper, we used a simple
heuristic to seed solutions for queries appearing under the negation operator.
For example, for the verification task obtained from proving φ for P2, we used
the solution (a = 1∧ r 6= 5) for the query corresponding to the nesting structure
of φ. This solution is obtained as a conjunction of the atomic constraints from φ.

7 Related work

Our work is inspired by a recent approach to CTL verification of programs [11].
The main similarity lies in the use of a refinement loop to discover witnesses
for resolving non-determinism/existentially quantified variables. The main dif-
ference lies in the way candidate witnesses are selected. While [11] refines wit-
nesses, i.e., the non-determinism in witness relations monotonically decreases at
each iteration, E-HSF can change witness candidates arbitrarily (yet, subject
to the global constraint). Thus, our method can backtrack from wrong choices
in cases when [11] needs to give up.

E-HSF generalizes solving methods for universally quantified Horn clauses
over decidable theories, e.g. [19, 23, 27]. Our approach relies on the templates
for describing the space of candidate witnesses. Computing witnesses using a
generalisation approach akin to PDR [23] is an interesting alternative to explore
in future work.

Template based synthesis of invariants and ranking functions is a prominent
technique for dealing with universal properties, see e.g. [10, 21, 30, 33]. E-HSF
implementation of EncodeValidity supporting linear arithmetic inequalities
is directly inspired by these techniques, and puts them to work for existential
properties.

Decision procedures for quantified propositional formulas on bit as well as
word level [24,34] rely on iteration and refinement for the discovery of witnesses.
The possibility of integration of QBF solvers as an implementation of Encode-
Validity is an interesting avenue for future research.

Some formulations of proof systems for mu-calculus, e.g., [14] and [28], could
be seen as another source of forall-exists clauses (to pass to E-HSF). Compared
to the XSB system [14] that focuses on finite state systems, E-HSF aims at
infinite state systems and employs a CEGAR-based algorithm. XSB’s exten-
sions for infinite state systems are rather specific, e.g., data-independent sys-
tems, and do not employ abstraction refinement techniques. Finally, we remark
that abstraction-based methods, like ours, can be complemented with program
specialization-based methods for verification of CTL properties [17].

14

8 Conclusion

Verification conditions for proving existential temporal properties of programs
can be represented using existentially quantified Horn-like clauses. In this paper
we presented a counterexample guided method for solving such clauses, which
can compute witnesses to existentially quantified variables in form of linear arith-
metic expressions. By aggregating constraints on witness relations across differ-
ent counterexamples our method can recover from wrong choices. We leave the
evaluation of applicability of our method for other problems requiring witness
computation, e.g., software synthesis or game solving to future work.

Acknowledgements We thank Byron Cook and Eric Koskinen for valuable
discussion and for generously making their benchmarks available. This research
was supported in part by ERC project 308125 VeriSynth and by the DFG
Graduiertenkolleg 1480 (PUMA).

References

1. A. Albarghouthi, Y. Li, A. Gurfinkel, and M. Chechik. Ufo: A framework for

abstraction- and interpolation-based software verification. In CAV, 2012.

2. T. Ball and S. K. Rajamani. The SLAM project: debugging system software via

static analysis. In POPL, 2002.

3. D. Beyer and M. E. Keremoglu. CPAchecker: A tool for configurable software

verification. In CAV, 2011.

4. D. Beyer and S. Löwe. Explicit-state software model checking based on CEGAR

and interpolation. In FASE, 2013.

5. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,

and X. Rival. A static analyzer for large safety-critical software. In PLDI, 2003.

6. R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, and R. Sebastiani. The

MathSAT 4SMT solver. In CAV, 2008.

7. C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted and automatic gener-

ation of high-coverage tests for complex systems programs. In OSDI, 2008.

8. E. M. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C programs.

In TACAS, 2004.

9. E. M. Clarke, D. Kroening, N. Sharygina, and K. Yorav. SATABS: SAT-based

predicate abstraction for ANSI-C. In TACAS, 2005.

10. M. Colón, S. Sankaranarayanan, and H. Sipma. Linear invariant generation using

non-linear constraint solving. In CAV, 2003.

11. B. Cook and E. Koskinen. Reasoning about nondeterminism in programs. In

PLDI, 2013.

12. B. Cook, A. Podelski, and A. Rybalchenko. Termination proofs for systems code.

In PLDI, 2006.

15

13. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In POPL, 1977.

14. B. Cui, Y. Dong, X. Du, K. N. Kumar, C. R. Ramakrishnan, I. V. Ramakrishnan,

A. Roychoudhury, S. A. Smolka, and D. S. Warren. Logic programming and model

checking. In PLILP/ALP, 1998.

15. L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS, 2008.

16. F. Emmes, T. Enger, and J. Giesl. Proving non-looping non-termination automat-

ically. In IJCAR, 2012.

17. F. Fioravanti, A. Pettorossi, M. Proietti, and V. Senni. Generalization strategies

for the verification of infinite state systems. Theory and Practice of Logic Pro-

gramming, 13:175–199, 2 2013.

18. S. Graf and H. Säıdi. Construction of abstract state graphs with PVS. In CAV,

1997.

19. S. Grebenshchikov, N. P. Lopes, C. Popeea, and A. Rybalchenko. Synthesizing

software verifiers from proof rules. In PLDI, 2012.

20. A. Gupta, T. A. Henzinger, R. Majumdar, A. Rybalchenko, and R.-G. Xu. Proving

non-termination. In POPL, 2008.

21. A. Gupta, R. Majumdar, and A. Rybalchenko. From tests to proofs. In TACAS,

2009.

22. T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. Abstractions from

proofs. In POPL, 2004.

23. K. Hoder, N. Bjørner, and L. de Moura. µZ- an efficient engine for fixed points

with constraints. In CAV, 2011.

24. M. Janota, W. Klieber, J. Marques-Silva, and E. M. Clarke. Solving QBF with

counterexample guided refinement. In SAT, 2012.

25. Y. Kesten and A. Pnueli. A compositional approach to CTL* verification. Theor.

Comput. Sci., 331(2-3):397–428, 2005.

26. K. L. McMillan. Lazy abstraction with interpolants. In CAV, 2006.

27. K. L. McMillan and A. Rybalchenko. Computing relational fixed points using

interpolation. Technical report, 2012. available from authors.

28. K. S. Namjoshi. Certifying model checkers. In CAV, 2001.

29. É. Payet and F. Spoto. Experiments with non-termination analysis for Java Byte-

code. Electr. Notes Theor. Comput. Sci., 253(5), 2009.

30. A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear

ranking functions. In VMCAI, 2004.

31. A. Podelski and A. Rybalchenko. Transition invariants. In LICS, 2004.

32. A. Schrijver. Theory of linear and integer programming. Wiley-Interscience series

in discrete mathematics and optimization. Wiley, 1999.

33. S. Srivastava and S. Gulwani. Program verification using templates over predicate

abstraction. In PLDI, 2009.

34. C. M. Wintersteiger, Y. Hamadi, and L. M. de Moura. Efficiently solving quantified

bit-vector formulas. Formal Methods in System Design, 2013.

16

