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Abstract—We consider opportunistic routing in wireless mesh
networks. We exploit the inherent diversity of the broadcast
nature of wireless by making use of multi-path routing. We
present a novel optimization framework for opportunistic routing
based on network utility maximization (NUM) that enables us
to derive optimal flow control, routing, scheduling, and rate
adaptation schemes, where we use network coding to ease the
routing problem. All previous work on NUM assumed unicast
transmissions; however, the wireless medium is by its nature
broadcast and a transmission will be received by multiple nodes.
The structure of our design is fundamentally different; this
is due to the fact that our link rate constraints are defined
per broadcast region instead of links in isolation. We prove
optimality and derive a primal-dual algorithm that lays the basis
for a practical protocol. Optimal MAC scheduling is difficult
to implement, and we use 802.11-like random scheduling rather
than optimal in our comparisons. Under random scheduling, our
protocol becomes fully decentralized (we assume ideal signaling).
The use of network coding introduces additional constraints on
scheduling, and we propose a novel scheme to avoid starvation.
We simulate realistic topologies and show that we can achieve 20-
200% throughput improvement compared to single path routing,
and several times compared to a recent related opportunistic
protocol (MORE).

Index Terms—wireless mesh networks, network coding, op-
portunistic routing, broadcast, multi-path routing, flow control,
fairness, rate adaptation

I. INTRODUCTION

One of the main challenges in building wireless mesh net-
works ([1], [2], [3]) is to guarantee high performance despite
the unpredictable and highly-variable nature of the wireless
channel. In fact the use of wireless channels presents some
unique opportunities that can be exploited to improve the
performance. For example, the broadcast nature of the medium
can be used to provide opportunistic transmissions as sug-
gested in [4]. In addition, in wireless mesh networks, there
are typically multiple paths connecting each source destination
pair, hence using some of these paths in parallel can improve
performance [5], [6].

However most of the existing work on optimal wireless
protocol design (c.f. [7]) ignores the broadcast nature of the
channel. Instead, a transmitter selects a priori the next-hop
for a packet, and if the selected next-hop has not received the
packet, the packet is retransmitted (even though another next-
hop neighbor may have received it correctly). The routing is
not opportunistic (as in [4]) and the diversity of the broadcast
medium is ignored.

The main focus of this paper is the optimal use of both
multiple paths and opportunistic transmission. We use intra-
session network coding [8] to simplify the problem of schedul-
ing packet transmissions across multiple paths, as others have
done to [5], [6], [9]. We propose a network optimization
framework that optimizes the rate of packet transmissions
between source and destination pairs.

In order to use the resources of a wireless mesh network
efficiently, the system needs to take into account: (a) the
existence of multiple paths, (b) the unreliable nature of wire-
less links, (c) the existence of multiple transmission powers
and rates (which in turn affects the probability of correct
packet reception), (d) the broadcast nature of the channel, (e)
competition among many flows, (f) fairness and efficiency.
Observe that optimizing across all these parameters implies
optimizing across multiple layers of the networking stack;
for example, the choice of transmission power and rate is
typically done at the physical layer, whereas coordination
among different flows is typically done at the network layer.
As we shall see, it is important to perform such cross-layer
optimizations to achieve optimal performance.

We use an optimization framework to design a distributed
maximization algorithm. We account for transport layer con-
trols and address questions of fairness by maximizing the
aggregate utility of the end-to-end flows, where we associate
a utility function U(·) with a flow. Because we use network
coding, our optimization leverages existing theory [10], [9].
Our algorithm is a primal-dual algorithm [11]. The primal
formulation expresses the optimization problem as a function
of the rates of the various flows in the network; the dual for-
mulation uses as variables the queue lengths (per flow and per
node). The main advantage of using the dual formulation of the
optimization problem is that the dual variables (also referred
as shadow prices) relate to queue lengths and can be directly
used by back-pressure algorithms for flow control [12], [7].
As a simple example, a large number of queued packets for
a particular flow at an internal node can be interpreted that
the path going through that node is congested and should
be avoided. The main advantage of using the primal-dual
formulation is that it adapts the primal variables (i.e. flow
rates) more slowly, hence, allows TCP-like window-based
rate control modeling (as originally mentioned by Erylimaz
et al. [12]). We propose a novel algorithm for cross-layer
optimization and prove, using Lyapunov functions, that it
converges to the optimal rate allocation.
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Despite using similar optimization techniques to prior work
(e.g. [12], [7], [13], [14], [11]), the solution to our problem
is very different. We define rate constraint for each set of
broadcast receivers. Consequently, dual variables are related
to these broadcast sets, and allow us to adjust the level of
opportunism as a function of a congestion in the rest of the
network.

The proposed optimization framework is difficult to im-
plement; indeed, the joint scheduling, rate and power control
problem is NP-hard [15]. Additionally, current wireless MAC
protocols use uncontrolled randomized channel scheduling.
We propose a distributed heuristic based on the optimal algo-
rithm. We show that, even in the absence of optimal channel
scheduling, the other aspects of the optimization problem
(i.e. flow selection and transmission rate selection) still give
performance advantages. Hence, our heuristic hints toward an
implementation in practical systems. The fundamental idea
behind our algorithm (and, of its distributed implementation)
is to assign credits to nodes, transfer credits between nodes,
and schedule on the basis of credits (see Sec. III for more
details).

The main contributions of our paper are as follows:

• We propose a network wide optimization algorithm that
maximizes rate-based global network performance, and ex-
tends previous work by incorporating broadcast/opportunistic
routing, multi-path routing, and fairness/rate control (Sec-
tions II and III). We introduce a notion of virtual packets,
called credits, that enable us to decouple routing and flow
control from actual packet transmissions and delivery. We
prove the optimality of the algorithm.

• Based on the optimization algorithm, we give a dis-
tributed implementation (assuming ideal signaling) of routing,
rate adaptation, and flow control for networks with random
scheduling (Section III-C) that outperforms existing algo-
rithms. We prove that our algorithms extends and outperforms
a recent proposal, MORE [5]. The distributed algorithm can
be used with the current 802.11 MAC, and indeed is MAC
independent.

• Practical network coding schemes use finite generation sizes.
We show that a naive approach for scheduling generations may
lead to starvation. We propose a novel heuristic and we demon-
strate that it circumvents network starvation (Section IV-A).

• We demonstrate that rate selection is important for opti-
mizing performance in 802.11a networks (Section IV-B). We
confirm the findings from [5] that such optimizations are not
necessary for 802.11b networks.

• Using simulation on realistic topologies, we show we can
achieve 20-100% throughput improvement with our distributed
implementation compared to single path routing, and 20-300%
compared to MORE [5] (Section V).1

The rest of the paper is organized as follows. Section II de-
scribes the model we are using. Section III gives the optimiza-
tion problem, describes an approximation of the problem that

1Observe that MORE optimizes the number of delivered packets for flows
in isolation, and,when multiple flows are active, may perform worse than
single path routing w.r.t. rates.
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Fig. 1. A network with 4 nodes is shown on the left. For example, an
activation profile {(1, 2), (3, 4)} depicts a profile where nodes 1 and 3 are
transmitting, node 2 is receiving a packet from node 1, while node 4 is
receiving from node 3. Profile {(1, {2, 3})} depicts node 1 transmitting
and nodes 2 and 3 receiving (the same) packet from node 1. The feasible
rate region for (y12, y13) is given on the right, described by inequalities:∑

j∈J y1j ≤ C1J for all J ⊆ {2, 3}.

can be computed in a distributed system, and compares with
a recent proposal for multi-path routing. Section IV discusses
some practical issues, namely the effect of limited generation
sizes, and the effect of randomized 802.11-compatible channel
scheduling. Section V evaluates the performance of our system
using simulation. Section VI provides related work.

II. MODEL

In this section we introduce our notation, denoting vectors
in bold typeface. We extend the model of a wireless erasure
network developed in [16] to include multiple flows.

A. PHY And MAC Characteristics

We consider a network comprising of a set of nodes N , N =
|N |. Whenever a node transmits a packet, several nodes may
receive it. We model packet transmission from node i to a
set of nodes Ki ⊆ N with a hyperarc (i,Ki). We define an
activation profile S = {Sl} to be a set of hyperarcs active at
the same time. There may be several constraints on feasible
activation profiles. For example, a node may be limited to
receive from but one node, or transmit to only one node at a
time. The only condition we shall impose is that a node can
be the source of only one hyperarc in one activation profile.
All the other constraints can be expressed through reception
probabilities and our model is general enough to incorporate
them (in particular, it is possible that a node transmits while
some information is being sent to it, in which case we shall
set the probability of successful reception to 0; see below for
details). We denote by S the set of feasible activation profiles
and let SRC(S) = {i ∈ N | ∃Ki ⊆ N , (i,Ki) ∈ S} be the
set of transmitters in activation profile S.

Each transmission has two associated parameters, power
P ∈ P and rate R ∈ R, where P is the set of allowed
transmission powers (e.g. P ∈ [0, PM ], where PM is given by
regulations) and R is sets of available PHY transmission rates,
defined by supported spreading, coding, and modulations.

Consider an activation profile S in which node i transmits
to set of nodes Ki, and suppose node i is transmitting with
power Pi and rate Ri. We can associate power vector P =
(Pi)i∈N rate vector R = (Ri)i∈N to these transmissions. Let
Tij(P, Ri, S) be an indicator of a random event such that
Tij(P, Ri, S) = 1 if a packet is successfully delivered from
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Fig. 2. Forwarding example. Lines connect nodes that can exchange packets.
Opportunistic routing implies multiple-paths. Possible paths from 1 to 5 are
for example (1, 2, 3, 4, 5), (1, 2, 3, 5), (1, 2, 4, 5), (1, 3, 4, 5), (1, 3, 5). Path
(1, 2, 1, 3, 5) is also possible but will be typically eliminated by a routing
protocol due to suboptimality.

i to j ∈ Ki. It depends on the packet transmission power Pi

and rate Ri, as well as on the interference from concurrent
transmissions described through P and S. We also denote by

TiJ(P, Ri, S) = 1−
∏
j∈J

(1− Tij(P, Ri, S))

the indicator of the event that at least one of the nodes from
J , (J ∩Ki 6= ∅) receives a packet. Consequently

piJ(P, Ri, S) = Prob(TiJ = 1).

By convention, we assume piJ(P, Ri, S) = 0 if J ∩Ki = ∅,
for (i,Ki) ∈ S. Our model does not require any assumptions
on channel conditions; in particular, events Tij and Tik are
not assumed independent.

We can now calculate CiJ(P, Ri, S), the average number
of packets per unit time conveyed from node i to any of the
nodes in J ⊆ N . We have

CiJ(P, Ri, S) = Ri piJ(P, Ri, S) (1)

B. Traffic, Forwarding And Flow Scheduling

There is a set of unicast end-to-end flows C in the network,
and each flow c ∈ C has a source and a destination node
Src(c),Dst(c) ∈ N respectively. We denote by fc the rate of
flow c.

Opportunistic routing does not a priori rely on a notion
of a path or a route. Consider the example of Figure 2: a
packet going from node 1 to node 5 may be relayed by any of
the nodes 2, 3, 4, depending on which node happens to hear
it. Thus implicitly, opportunistic routing implies multi-path
routing without pre-specifying the path. Formally, a packet
from node i can reach node j if there exists an activation
profile that allows such a transmission (there exists S ∈ S such
that (i,Ki) ∈ S and j ∈ Ki). The goal of our optimization
framework is to derive how many packets should be forwarded
by each of the nodes.

In practice, an external routing protocol can be combined
with the opportunistic approach to further improve efficiency.
Consider again the example from Figure 2: if a packet is
broadcast by node 2 destined for 5, it may be received and
potentially forwarded by node 1. Our opportunistic routing
protocol will, as described latter, eliminate such events, but
will take some time to discover them. Instead, one may
use a readily available external routing protocol to promptly
eliminate obviously suboptimal paths (e.g. path (1, 2, 1, 3, 5)

from Figure 2). Our model can be easily extended to include
constraints imposed by an external routing protocol, but we
omit such extensions to simplify the exposition. We do con-
strain the set of available paths in the numerical results, as
explained in Section V.

A node that transmits a packet cannot control who will
receive the transmitted packets due to channel randomness.
A node that receives a packet has to decide whether it
will forward it or not. This decision is made through credit
assignment, described in Section II-D.

Whenever a node is about to transmit, it needs to decide
which flow it will transmit. This is defined through a flow-
scheduling profile matrix A. If node i transmits a packet from
flow c we set Aic = 1, otherwise Aic = 0. We say that a flow
scheduling profile is valid if for each i ∈ N there exists only
one c ∈ C such that Aic = 1. A denotes the set of all valid
flow scheduling profiles.

To illustrate the use of flow scheduling profile, consider the
example in Figure 1 having two flows C = {1, 2}, both from
1 to 4. The number of packets for flow c sent by node 1 and
received by node 2 depends not only on how often (1, 2)
is scheduled, but also on how often (1, {2, 3}) is scheduled
to transmit a packet from c. This is why the flow scheduling
decision is assigned to a node instead of a link, which is in
sharp contrast to [17], [18], [12].

C. Network Coding

We assume network coding per flow is used [16], [5]. The main
benefit of network coding is that it facilitates scheduling. If
the same packet is received by several nodes, a mechanism
is needed to prevent two or more nodes forwarding the same
packets [4]. To eliminate this problem, each relay forwards a
random linear combination of all previously received packets
from the same flow. It has been show in [9] that the ran-
dom linear combinations received at the destination will be
independent with high probability, hence the packets can be
restored.

Ideally, network coding should be performed across the
entire flow. However, this is not practical. Instead, packets
are divided in generations and only packets from the same
generation are combined. For more details see [16], [5]. In
Section III we analyze the optimal network design assuming
very large generation sizes (as in [16]); we address finite
generation sizes in Section IV.

D. Credits

As remarked on earlier, whenever a packet is transmitted,
it may be received by several nodes, and it is important
to decide which should forward packets, to avoid redundant
transmissions (as explained in [19], [5]).

We introduce the concept of credits, which is similar to the
control decision variable of Neely [19]. One credit is created
for each packet at the source node. Credits are identified with
a generation, not a specific packet. They are conserved until
they arrive at the flow’s destination. In this way we guarantee
that the destination will receive as many linear combinations of
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the packets as the number of packets generated at the source,
and hence will be able to decode the packets.

Credits are interpreted as the number of packets of a specific
flow to be forwarded by a node. By controlling the rate of
credits we control the rate of packets forwarded by next-hop
relays. Consider again the example from Figure 1. Node 1
should adapt the rate of packets forwarded through 2 and 3
not only as a function of link qualities p12 and p13, but also
as a function of p24 and p34, the quality of paths from 2 and
3 to the destination 4. For example, if p24 � p34 then node 2
should not forward any packet, regardless of how many it has
received. Node 1 cannot control what nodes 2 and 3 receive
due to randomness of the channel. Instead, node 1 sends a
credit to node 2 (or node 3) whenever it wants node 2 (or
node 3) to forward a packet.

The main advantage of the credit scheme is that it simplifies
scheduling. Credits are declarations of intent. The actual
packet transmissions may occur at arbitrary time instants. Due
to the use of network coding, we only need to ensure that the
total number of packets per generation transmitted between
each two nodes corresponds to the number of credits. Thus,
scheduling is done at a generation level and not at the packet
level, incuring significantly smaller overhead (especially when
the generation size is large).

In practice, credits can be piggybacked with packet trans-
missions. The receiving node only updates its credits when a
successful packet transmission actually occurs. In this work
we assume there is an ideal (no loss and no delay) signaling
plane that transmits credits and feedbacks.

As each credit delegates one packet to a node, we may
express all the rates in the system in terms of credits. For
example, yc

ij is the rate of credits of flow c passed from
node i to node j, and it equals the rate of innovative linear
combinations of packets of flow c delivered from i to j.
Theorem 1 shows that the rate of independent packets received
at a destination of each flow will correspond to the number of
credits delivered, when the generation size is large.

E. Dynamics And Stability
We further assume the system is slotted in time. In each slot
t = 0, 1, . . . a medium access protocol assigns an activation
profile S(t) and a flow-scheduling profile A(t), and to each
transmitter i ∈ SRC(S(t)) we assign transmit power Pi(t)
and rate Ri(t). Let yc

ij(t) be the number of credits for flow c
transmitted from node i to node j during slot t, and let xc

iJ(t)
denote the number of packets of flow c actually delivered from
i to any of the nodes in J during slot t (as if all nodes in J
are grouped as a single receiver). Let fc(t) be the number of
fresh packets/credits generated at the source of flow c.

Note that, because each successful packet delivery is always
associated with a credit transmission, we look at credit queues.
Let qc

i (t) be the amount of credits of flow c queued at node
i. The system is stable if every queue size is bounded. We
define stability more formally in Section III-D.

F. Constraints Of The Model And Possible Generalizations
We make several simplifying assumptions to make the

analysis tractable. Firstly, we assume that the system is slotted.

All operations within a slot occur concurrently and instantly.
Secondly, we assume the perfect signaling. There is no loss
or delay in signaling messages (credit transfers and acknowl-
edgments).

Our results can be extended to consider imperfect signaling
and arbitrary but limited delays in the system (see for example
[20, Part 2] on a discussion how does a delayed feedback affect
the speed of convergence). Also, see [21] for a practical imple-
mentation of a back-pressure based system and its interaction
with TCP.

III. OPTIMAL FLOW CONTROL FOR FAIRNESS

In this Section we introduce the optimization problem
(Sec. III-B), propose an algorithm for solving it (Sec. III-C),
and prove that the algorithm converges (Sec. III-D). Sec.III-A
introduces some further notation that is needed for the descrip-
tion of the optimization problem. Finally, in Sec. III-E we
compare our algorithm with the MORE algorithm proposed
in [5].

A. Feasible Average Rate Set

In this section we define a set of constraints on average rates
in the system. Assume an assignment of average end-to-end
rates fc, for each flow c, and denote the average rate vector by
f = (fc)c∈C . The vector of rates is valid under the following
three conditions. First, traffic at node i is stable if the total
ingress traffic is smaller than the total egress traffic, which we
write as ∑

j 6=i

yc
ji + fc1{i=Src(c)} ≤

∑
j 6=i

yc
ij , (2)

for all i 6= Dst(c), where 1x = 1 if x is true, 0 otherwise, and
where yij ≥ 0.

Second, traffic at each broadcast region is stable if we do
not receive more credits than we can actually forward (see
also Fig. 1): ∑

j∈J

yc
ij ≤ xc

iJ , for all J ∈ N . (3)

Recall that yc
ij is the average number of credits of flow c node

i assigns to node j and xc
iJ is the average number of packets

of flow c actually delivered from i to any of the nodes in J .
Finally, we define scheduling constraints. A schedule is a se-

quence {(S(t),R(t),P(t),A(t))}t≥0 which defines schedul-
ing profile S(t), routing profile A(t) and power and rate
allocations R(t),P(t) in each slot t ≥ 0. Since we are
interested in long-term average rates, we define

αS,R,P,A = lim
T→∞

1
T

∑
t≤T

1{S(t)=S,R(t)=R,P(t)=P,A(t)=A}

to be the fraction of time the network uses scheduling profile
S, routing profile A and power and rate allocations R,P.
By definition, αS,R,P,A ≥ 0 and

∑
S,R,P,A αS,R,P,A ≤ 1.

The schedule defined by {αS,R,P,A}S,R,P,A is stable if it
can support broadcast traffic {xc

iJ}i,J,c, and we write the
scheduling constraints as

xc
iJ ≤

∑
S,A,R,P

αS,R,P,AAicCiJ(P, Ri, S) (4)
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We use the following characterization of feasible rates from
[9]:

Definition 1: Vector f is said to be feasible if each flow c
can transport information from Src(c) to Dst(c) at average
rate fc.

Theorem 1: Let F be the set of average end-to-end
rate vector f = (fc)c∈C such that there exists vectors
y = (yc

ij)i,j∈N ,c∈C , x = (xc
iJ)i∈N ,J⊆N ,c∈C , and α =

(αS,R,P,A)S∈S,R∈RN ,P∈PN ,A∈A that satisfy (2), (3), and (4)
subject to αS,R,P,A ≥ 0 and

∑
S,R,P,A αS,R,P,A ≤ 1. The

vector f is feasible when coding generation size goes to infinity
if and only if it belongs to F . Moreover, the set of feasible
end-to-end rates F is convex.

Proof: Proof of feasibility follows directly from [9]. The
set is convex since all constraints are convex.

B. Utility Maximization

For each flow c ∈ C we define a utility function Uc(·) to
be a strictly concave, increasing function of end-to-end flow
rate fc. The utility of flow c is then Uc(fc). For example,
Uc(fc) = log(fc) represents proportional fairness [22] and
Uc(fc) ∝ −1/fc approximates TCP’s utility [11]. The goal
of utility maximization is to achieve a trade-off between
efficiency and fairness. Proportional fairness is an example
of such an approach [22].

We can write the network-wide optimization problem as

max
∑

c∈C Uc(fc)
s.t. f ∈ F .

(5)

Since set F is convex and the objective is strictly concave,
there exists a unique solution f∗ to the maximization problem.
Corresponding y∗,x∗ also exist but are not necessarily unique.

Let us denote with µc
i and ξc

iJ the Lagrangian multipliers as-
sociated with inequalities (2) and (3), respectively. To simplify
the notation we will also define µc

Dst(c) = 0. We can write the
KKT conditions at the optimal point for the constraints (2)
and (3)

µc∗
i

∑
j 6=i

yc∗
ij −

∑
j 6=i

yc∗
ji − f∗c 1i=Src(c)

 = 0, (6)

ξc∗
iJ

xc∗
iJ −

∑
j∈J

yc∗
ij

 = 0, (7)

Also, combining the condition that the rates are non-negative
(fc ≥ 0) and the gradient KKT condition, we can write

f∗c

(
U ′c(f∗c )− µc∗

Src(c)

)
= 0. (8)

Note that here we do not write the KKT for the constraint (4)
but we keep it in the explicit form (see for example (10)).
We see that µc∗

i = 0 if egress traffic is larger than ingress
traffic and there is no accumulation of credits at node i. Hence
intuitively we can relate µc∗

i to qc
i (t), the number of credits for

flow c queued at i. Similarly we can relate ξc∗
iJ to the number

of packets queued for broadcasting at i. In Section III-C we
express this relationship more formally. We will also use (8)
to develop a flow control algorithm.

As a consequence of KKT, and by optimizing the dual
problem [23] one can derive the conditions

0 ≥µc∗
i − µc∗

j −
∑

J⊆N | j∈J

ξc∗
iJ , (9)

C∗iJ =CiJ(P∗, R∗i , S
∗), (10)

(P∗, R∗i , S
∗) = argmax

{(P,Ri,S)}

∑
i

max
c

∑
J

ξc∗
iJCiJ(P, Ri, S).

We will use (10) in Section III-C to derive the optimal
scheduling.

C. Maximization Algorithm

We now present an algorithm that converges to the optimal
value of (5).

Node and Transport Credits : Recall that qc
i (t) is the amount

of commodity c credits queued at node i. We call such credits
node credits. In addition, let wc

iJ(t) be the number of credits
of commodity c queued at i and corresponding to packets that
have to be delivered to any of the nodes in J (as previously
decided by the credit transmission scheme). We call these
transport credits.

When a credit for flow c is transferred from node i to node
j, we decrease qc

i , we increase qc
j , and we increase wc

iJ for
all J 3 j (all by one unit). Note that this transfer happens
instantly, and before a corresponding packet has actually been
transmitted. We decrease wc

iJ when a packet from flow c is
actually delivered from i to any of the nodes in J . The amount
of node credits is conserved: when a responsibility for a credit
is transfered from i to j we decrease qc

i and increase qc
j .

Transport credits are of a different nature. They are created
when a forwarding decision is made and are destroyed when
the actual delivery takes place. Transport credits are local and
they are never transferred between nodes.

Routing protocol: Node credits represent intentions of packet
transmissions and a routing protocol describes when and how
such node credits transferred. Let yc

ij(t) be the number of node
credits for flow c transferred from node i to node j at time
t and let us define wc

ij(t) =
∑

X⊆N | j∈X wc
iX(t). A back-

pressure between nodes i and j is defined as

zc
ij(t) = qc

i (t)− wc
ij(t)− qc

j(t), (11)

the difference between the excess credits queued of flow c at
node i not destined for node j (qc

i−wc
ij) and the node credits at

node j (qc
j ). Back-pressure in (11) includes the credits queued

at the next hop as well as the credits assigned to different
broadcast regions, which is the main difference compared to
previous work [17], [18], [12].

A credit is transferred from i to j with the following
dynamics

yc
ij(t) =

qc
i (t)

|{k | zc
ik(t) > 0}|

1{zc
ij(t)>0}, (12)

where 1{x>0} is 1 if x > 0 or 0 otherwise, and |{k | zc
ik(t) >

0}| is the number of neighbors of i that have a positive back-
pressure for flow c. The queue qc

i (t) then has the following
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dynamics in time

qc
i (t+ 1) = qc

i (t) + fc(t)1i=Src(c) +
∑

j

yc
ji(t)−

∑
j

yc
ij(t).

Note that by definition
∑

j y
c
ij(t) ≤ qc

i (t) hence qc
i (t) is

always positive.
The intuition is as follows. We transfer a credit from i to j

only if the back-pressure is positive. Moreover, we share all
of the available credits qc

i (t) equally among all neighbors with
a positive back-pressure.

Scheduling, rate and power control: The optimal centralized
scheduling, rate and power control algorithm is the tuple
(S(t), P (t), R(t), A(t)) that solves the following optimization
problem

WCi(t,P, Ri, S) = max
c

∑
J

wc
iJ(t)CiJ(P, Ri, S), (13)

(S(t),P(t),R(t)) = argmax
S,P,R

∑
i∈N

WCi(t,P, Ri, S), (14)

CiJ(t) = CiJ(P(t), Ri(t), S(t)), (15)

c∗i (t) = argmax
c

∑
K

wc
iK(t)CiK(t), (16)

Aic(t) = 1{c=c∗i (t)}, (17)

xc
iJ(t) = AicCiJ(t). (18)

Intuitively, (13) follows from (10) and the fact we can equate
ξc
iJ and wc

iJ , since the transport credit update equation (21)
corresponds to the gradient update equation of ξc

iJ . The other
update rules follow directly from KKT conditions.

Equations (13)-(18) represent a joint scheduling, rate, and
power control problem. We find the optimal scheduling, power
and rate control (S(t), P (t), R(t)) by solving (14). Then,
equation (16) is used to select which flow will be transmitted
by each node in slot t.

The main novelty in our approach is that we explicitly
incorporate all broadcast regions in the scheduling algorithm in
Equation (13) through broadcast transport credits wc

iJ(t). This
is in contrast to previous works on back-pressure [17], [18],
[12], [14] that are not able to exploit the broadcast diversity. It
is only [19] that consider network optimization with broadcast
diversity, but using different optimization techniques. Also,
unlike [5], [4], we are able to make a trade-off between
broadcast diversity and network congestion.

Another difference with respect to [17], [18], [12], [14] is
that, as explained in Section II-B, we cannot decouple the
flow selection process A(t) and routing/scheduling/rate/power
control. Also, unlike in [17], [18], [12], [19], we do not
explicitly use back-pressure information for scheduling in (13)
- (18); instead we use transport credits wc

iJ(t).
The algorithm (13)-(18) is centralized. Observe that all

equations except (14) and (15) use local information only.
Hence, with the exception of (14) and (15), the problem could
have been solved with a distributed algorithm. We use this
observation to propose a heuristic based on modified rules
(14) and (15), and to derive a practical, distributed protocol
that is presented in Section IV.

Flow control: The optimal flow rate at the source, fc(t) can
be calculated using a primal-dual approach, as in [12]

fc(t+ 1) =
[
fc(t) + γ

(
U ′c(fc(t))− qc

Src(c)(t)
)]+

, (19)

where [x]+ = max{x, 0}. Each flow adapts its rate based
on the previous rate and current number of credits queuing
for transmission at the source node for that flow (qSrc(c)).
The primal-dual approach well describes additive-increase
multiplicative-decrease transport protocols, like TCP [11].

D. Convergence Of The Algorithm

We now consider a fluid model of the system, and show that
it converges to the optimal point. Analysis of a discrete-time
model can be derived from our fluid-model analysis, using a
similar approach to [12].

We assume that time is continuous and that queue evolutions
are governed by the following differential equations

q̇c
i (t) =

fc(t)1i=Src(c) +
∑

j

yc
ji(t)−

∑
j

yc
ij(t)


qc

i (t)≥0

(20)

ẇc
iJ(t) =

∑
j∈J

yc
ij(t)− xc

iJ(t)


wc

iJ (t)≥0

(21)

where (x)y≥z = x if y ≥ z and (x)y≥z = 0 otherwise.
Similarly, flow rate evolution in the fluid-model is given by

ḟc(t) = γ
(
U ′c(fc(t))− qc

Src(c)

)
fc(t)≥0

. (22)

We next prove that the algorithm presented in Section III-C
stabilizes the system with flow rates that maximize the opti-
mization problem (5).

Definition 2: We say that link (i, j) is active for flow c if
there exist a finite number T such that for each t that satisfies
yc

ij(t) > 0, there exists t′, t < t′ < t+T such that yc
ij(t′) > 0.

Theorem 2: Starting from any vectors f(0),q(0),w(0) and
applying rules (11)-(22), the rate vector f(t) converges to f∗

as t goes to infinity. Furthermore, queue sizes qc
i (t), qc

j(t) and
wc

ij(t) on all active links (i, j) for flow c are bounded, and
converge to the shadow prices µc∗

i , µc∗
j and ξc∗

iJ respectively.
Also, if a node is completely disconnected from the rest of

the network, or in any way not used by a flow, credits will
neither arrive to nor will leave from the node. Thus technically,
we cannot guarantee that an arbitrary initial number of credits
at this node will converge to any particular value. Instead, we
consider only links that have at least “some” traffic through-
out the network run-time (called active links, formalized in
Definition 2).

The proof uses a Lyapunov function with stability defined
on the set of active link, and we show that on all active links
that carry a positive amount of traffic, the delays are bounded
and hence the system is stable. The details are given in the
Appendix.
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E. Comparison with MORE

In this section we compare the performance of our algorithm
with the MORE forwarding algorithm described in [5], [24].
We summarize it here for sake of completeness. Consider a
single flow and the delivery of a single packet from the source
of the flow Src to the destination of the flow Dst. Let βi be
the number of transmissions made by node i to successfully
deliver the packet. The goal of MORE is to minimize the
number of transmissions [24, Eq.(1)-(4)]:

argmin
∑
i∈N

βi (23)

s.t.
∑
j∈N

ŷij −
∑
j∈N

ŷji = 1{i=Src} (24)

ŷij ≥ 0, (25)

βiCiJ ≥
∑
j∈J

ŷij . (26)

Note that the MORE forwarding algorithm is designed for a
single flow. As the authors note in [5], [24], its performance
drops as the number of flows increases.

Our algorithm converges to the optimal solution of the
optimization problem (5) (as shown in Theorem 2), hence
MORE is at best as good as our algorithm. We first show
under what conditions MORE is guaranteed to give the optimal
solution. We then illustrate by two examples that MORE can
yield strictly suboptimal rate allocations.

Theorem 3: If there is only one flow in the system, if
transmission rates and powers of all nodes are fixed and if only
one node can transmit at a time (that is |SRC(S)| = 1 for all
S ∈ S), MORE and our algorithm give the same performance.

Proof: Since only one node can transmit at a time, we
have S = N . Furthermore, transmission powers and rates are
fixed, hence (3) and (4) reads as

∑
j∈J yij ≤ αiCiJ . We also

omit c as there is only one flow in the system.
We start with the MORE optimization problem (23) - (26)

and we introduce f = 1/
(∑

i∈N βi

)
, yij = f ŷij and αi =

f βi. The optimization (23) - (26) is then equivalent to

min1/f (27)

s.t.
∑
j∈N

yij −
∑
j∈N

yji = f1{i=Src} (28)

αiCiJ ≥
∑
j∈J

yij , (29)∑
i∈N

αi = 1, (30)

which is exactly the optimization problem (5).
We next give two examples where the performance of

MORE is strictly suboptimal. Consider a hexagonal network
depicted in Figure 3. Let us first consider a case with a single
flow f1, (f2 = 0), and where p12 = p24 = p46 = 0.8
and p13 = p35 = p56 = 0.2. Since not all links interfere,
the conditions of Theorem 3 are clearly not satisfied. The
optimal rate allocation that maximizes (5) is f = 0.313 with
y1−2−4−6 = 0.251 and y1−3−5−6 = 0.063. However, MORE
will transmit all packets over the path 1 − 2 − 4 − 6, hence
the total rate will be fMORE = 0.267, some 15% less than the

optimal. Intuitively, the reason why MORE is suboptimal is
that it does not consider possibility that links 3− 5 and 5− 6
transmit in parallel with 4−6 and 2−4. (Recall that MORE’s
goal is to minimize the number of transmissions and not to
maximize the flow rate.) It will then conclude that forwarding
any packet to 3 is largely suboptimal, since links 3 − 5 and
5−6 are of a bad quality. Thus, if p35 and p56 are sufficiently
smaller than p12, p24 and p46, as in this example, MORE will
not use route 1− 3− 5− 6 at all.

In the second example we again consider the same hexag-
onal network but with two flows (f1, f2) active. Since MORE
does not take into consideration contention among flows, it
will again assign all traffic to the path 1−2−4−6. This traffic
will contend with the traffic from flow 2, and feasible end-to-
end rate allocations have to satisfy 3f1 +f2 = p. Note that the
routing scheme is fixed by MORE and does not depend on flow
control applied by transport layer. If for example the transport
layer on top of MORE is designed to maximize log utility,
the optimal rates will be fMORE

1 = p12/6 = 0.133, fMORE
2 =

p12/2 = 0.4. On the contrary, our distributed algorithm will
adapt routing to contentions among flows, and it will assign
y1 = 0.12, y2 = 0.03, f1 = 0.15 and f2 = y3 = 0.4. As we
can see, our algorithm balanced flow 1 by decreasing y1 and
increasing y2. As a result, the rate of flow f2 stayed the same
while the rate of f1 increased.

IV. PRACTICAL ISSUES

In this section we consider two practical issues that concern
implementation of the protocol proposed in Section III in a
mesh network: finite coding generation size and rate adaptation
for randomized scheduling. We leave other practical issues,
such as the effect of delayed feedback, for future work.

A. Finite Generation Size

Previous results assume that generation size used for network
coding tends to infinity (see Theorem 1). Practical reasons,
such as the complexity and performance of decoding, and
header overhead for storing the coefficient vector, require us
to limit the size of the header; some practical systems limit
the size to 32 bytes [5], [6]. We now modify our optimization
framework for a finite generation size.

3

1

2

6

5

4

p12

p13

p35

p24

p46

p56

Wall

y2

y1

y3

Fig. 3. A network with 6 nodes. Due to a dividing wall, nodes 2 and
4 do not interfere with nodes 3 and 5. The set of activation profiles is
S = {{(1, {2, 3})}, {(2, 4)}, {(3, 5)}, {(4, 6)}, {(5, 6)}, {(2, 4), (3, 5)},
{(2, 4), (5, 6)}, {(3, 5), (4, 6)}}. There are two flows in the system, flow
f1 = y1 + y2 which is assigned 2 routes (y1 = y1−2−4−6 and
y2 = y1−3−5−6) and flow f2 = y3 which is assigned a single route
(y3 = y2−4).
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3

1

2

p12

p13

p23

w12(0, 1) = 0,
w12(0, 2) = 5,

w1{2,3}(0, 1) = 0,
w1{2,3}(0, 2) = 4,

w13(0, 1) = 1,
w13(0, 2) = 0

Fig. 4. A simple example of a network with nodes {1, 2, 3} and a single
flow, going from 1 to 3 (directly or via node 2), where set p12 = p23 = 1
and p13 is close to 0. The values of corresponding transport credits wiJ (t, g)
are given on the right at time t = 0 for generations g = 1, 2 (in the example
we assume only two generations are in the networks).

Let G be the set of generations. Let us define qc
i (t, g) and

wc
iJ(t, g) be the number of node credits and transport credits

for generation g ∈ G of flow c queued at i. Similarly, we define
fc(t, g), yc

ij(t, g), xc
iJ(t, g) as before but with respect to gen-

eration g (thus we have for example yc
ij(t) =

∑
g∈G y

c
ij(t, g),

and by analogy for the other variables). The encoding pro-
cesses fc(t, g) are defined at the source. For example, if the
size of each generation is G, we have

∫
t
fc(t, g)dt = G for

all g ∈ G.
Extending the distributed maximization algorithm from Sec-

tion III-C to this setting is not straightforward. For example, a
naive way to modify scheduling rule (18) would be to schedule
the oldest generation available

g∗i (c, t) = min{g | (∃J)wc
iJ(t, g) > 0}, (31)

that is xc
iJ(t, g) = CiJ(t), if c = c∗i (t) and g = g∗i (c∗i (t), t).

However, this rule may yield poor rates.
To see why, consider the example of Figure 4 where one

link (1 − 3) has very poor quality compared to the others.
For simplicity we assume there are only two generations in
the system and we assume that node credits qc

i (t) are constant
hence only the transport credits are the focus of the scheduling
policy. The oldest generation that has a transport credit at node
1 is generation 1. Thus, when node 1 is selected to transmit, it
will transmit a packet from generation g∗1(t) = 1, according to
(31). On one hand, node 2 will certainly receive the transmitted
packet but, since w12(0, 1) = w1{2,3}(0, 1) = 0, node 2 does
not need more packets from generation 1 and the received
packet will be useless. On the other hand, node 3 is not likely
to receive the transmitted packet as p13 ≈ 0. Therefore, in
the next slot w13(1, 1) will most probably remain at 1 and
generation one is again selected for transmission. The same
situation will repeat until the transmitted packet is finally
received by node 3, and only then we will be able to transmit
a packet from generation 2.

It is easy to see that in such a scenario we may completely
starve the network. Instead of benefiting from diversity, the
opportunistic routing acts as a hindrance. The main reason
for starvation is the fact that the naive approach implicitly
restricts scheduling diversity over a single generation. Ob-
serve that the problem persists even when the number of
generations increases and the queues build up; the naive
approach tries to maintain the optimal traffic splitting strictly
per each generation instead on a cross-generation, long-term

average. Nevertheless, there is no reason why we should not
be able to exploit the diversity of link 1-3, because even a
few occasional packets transmitted over that link will improve
overall performance.

Finding a jointly optimal coding and scheduling strategy
that maximizes system utility for finite generation sizes is a
difficult problem. Apart from the scheduling issue, when the
generation size becomes finite, the coding results from [16]
no longer hold. This implies that packets received at the des-
tination may not be linearly independent and Theorem 1 does
not hold. Instead, we propose a heuristic inspired by the proof
of Theorem 2, which minimizes the drift Ẇ (f(t),q(t),w(t)).
It consists of modifying rules (12) and (18) to

zc
ij(t, g) = qc

i (t, g)− wc
ij(t, g)− qc

j(t, g), (32)

yc
ij(t, g) =

qc
i (t, g)

|{k | zc
ik(t, g) > 0}|

1{zc
ij(t,g)>0}, (33)

g∗i (c, t) = argmax
g

∑
J

wc
iJ(t, g)xc

iJ(t) 1{wc
iJ (t,g)>0}, (34)

xc
iJ(t, g) =

{
CiJ(t) if c = c∗i (t), g = g∗i (c, t)
0, otherwise

. (35)

where 1{wc
iJ (t,g)>0} is true when there are queued transport

credits wc
iJ for generation g.

Intuitively, the idea behind the heuristic is to transmit the
generation that has the highest chance of being useful. We
select flow c to transmit according to (16). The benefit of such
a transmission is

∑
K wc

iK(t)CiK(t), the expected decrease in
transport credits. However, this is only true if the generation
size G is infinite. The transmitted packet from generation
g will not be useful if the generation size is finite, and
some of the nodes no longer need any more packets from
generation g (that is wc

iJ(t, g) = 0 for some J , as illustrated
in the example). To maximizes the actual expected decrease
of the amount of transport credits we select a generation g
that maximizes

∑
J w

c
iJ(t, g)xc

iJ(t, g) 1{wc
iJ (t,g)>0}, which is

indeed (34).
To see how the new policy works, consider again the

example of Figure 4. Unlike the naive policy (31) that se-
lects generation 1 as the oldest generation among all queued
generations, the new policy (34) will select the most useful
generation which is generation 2, which circumvents network
starvation. A detailed explanation of how this policy is derived
is given in the Appendix. Performance simulations for finite
generation sizes are given in Section V.

The policy (33) - (35) needs a slight caveat, in that some
credits from old generations may get stuck in the network
(as the credit from generation 1 did in the previous example).
A straightforward extension is to reassign the credits from
the selected generation g∗i (c, t) and from the oldest queued
generation such that the total number of credits is not altered,
and to guarantee in-order delivery. However in practice, unless
a network is very asymmetric, this is not needed, as the
simulations in Section V verify.

B. Rate Adaptation For 802.11-compatible Scheduling
Finding the optimal scheduling rule (14) is an NP-hard cen-
tralized optimization problem, as Sharma et al. show [15].
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Some recent research [25], [15], [26] explores decentralized
implementations of similar problems. Applying these ideas to
our setting is outside the scope of this paper, and left for
future work. Instead, we consider a more realistic, suboptimal
scheduling process and we show how our algorithm can be
applied as a distributed heuristic.

We assume that nodes always transmit packet at the full
power Pi(t) = {0, PMAX}, which reflects current practice in
most existing wireless mesh networks deployments. We call a
set of feasible activation profiles S 802.11-compatible if for all
S ∈ S and for all (i1, J1) ∈ S there is no (i2, J2) ∈ S such
that reception probabilities pi1,i2 > 0, (∃j ∈ J2)pi1,j > 0
or (∃j ∈ J1)pi2,j > 0. Intuitively, this corresponds to
802.11-like protocol with RTS/CTS mechanism. When node i1
establishes communication with nodes J1, all nodes involved
in communication send an RTS/CTS. All nodes that hear the
RTS/CTS (p > 0) will be prevented from transmission or
reception during the same slot.

Furthermore, we will assume that the underlying scheduling
process {S(t)}t is outside our control, and that it is inde-
pendent of the actions of our protocol. At every time t, the
scheduling process will select a set of non-interfering nodes
I(t) ∈ N to transmit (i.e. for each i, j ∈ I(t), pij = 0).
Each node i ∈ I(t) has a set of possible destinations
Ji(t) = {j ∈ N | pij > 0, (∀k ∈ I(t), k 6= i), pkj = 0},
which in turns define a schedule S(t) = {i, Ji}i∈I(t). A set
of activation profiles S = {{i, Ji}i∈I | I ∈ P(N )} is clearly
802.11-compatible.

With such a schedule S(t), the optimization (13) - (18)
simplifies to

(c∗i (t), R∗i (t)) = argmax
c,Ri

∑
K⊆Ji

wc
iK(t)C̄iK(Ri). (36)

where C̄iK(Ri) = ES [CiK(Ri, S)] are the average rates
observed over a long period of time. This optimization can be
easily solved in a distributed manner, locally and separately at
each node. Node i can estimate C̄iK(Ri) either by probing,
or using statistics from previous transmissions. In practice, as
reported in [27], successful transmissions Tij and Tik are often
independent for j 6= k which further simplifies the estimation.
The rest of (36) clearly relies only on local information.
Alternatively, if one deploys a form of interference-aware
scheduling (e.g. [28]) which disposes of S(t) in any slot,
algorithm (36) can be improved by estimating CiK(Ri, S) for
each scheduling policy S = S(t) separately, instead of using
the average estimate C̄iK(Ri). In the simulation part of our
paper we implement the simpler, interference-oblivious form,
as given in (36).

Note that for an arbitrary scheduling process {S(t)}t, the
distributed routing (12) and rate adaptation (36) algorithm
do not necessarily minimize the optimization problem (5).
The optimal algorithm will depend on the characteristics of
{S(t)}t, {S(t)}t will depend on our routing algorithm, and
it is difficult to characterize these dependences. We present
(12) and (36) as a heuristic that can be used as a prac-
tical implementations of opportunistic multi-path routing in
networks with 802.11-compatible scheduling. We illustrate
by simulations in Section V that in the case of random,

802.11-compatible scheduling, the heuristic (36) outperforms
a conventional, single-path routing approach.

V. SIMULATION RESULTS

We now present simulation results which quantify the per-
formance advantages of the opportunistic routing, scheduling
and flow control algorithms defined in the previous sections.
We are primarily interested in algorithms that can be ap-
plied in 802.11-like mesh networks, where the scheduling
algorithm is not under our control. Hence in our simulations
we used an 802.11-compatible schedule {S(t)}t, as defined
in Section IV-B, assuming I(t) is randomly selected among
backlogged nodes.

We use the roofnet network topology based on 802.11b
cards, given in [4], for our simulations. We further assume
the (802.11-compatible) node-exclusive model with random
channel parameters from [1]). We developed a slotted discrete-
event simulator that implements the routing, flow and rate
control algorithms. A scheduler randomly selects a set of non-
exclusive nodes for transmission in each slot. The amount of
data transmitted in each slot is proportional to the transmission
rate and the packet loss probability is obtained from [1]
(assuming that a concurrent transmission is allowed; otherwise
it is set to 0). Unless stated otherwise, we assume finite
generation size of 32 and use rules (33) - (35) to select
which generation to transmit. In addition, we allow credit and
packet transmissions by a node only if a node has received
an innovative packet for a given generation since the previous
transmission. We used Uc(·) = log(·), hence the rate allocation
that maximizes (5) is the proportionally fair rate allocation
[22].

We looked at three performance metrics. The first one
is the improvement in total utility

∑
c U(fc) −

∑
c U(f ′c).

Allocation f is better than f ′ if the sum is positive. The
proportional fair rate maximizes the optimization problem (5)
hence has the highest utility.2 The second metric is the total
rate improvement

∑
c fc/

∑
c f
′
c. Allocation f is better than

f ′ if the quotient is larger than 1. The proportionally fair
allocation does not always have highest total rate. The third
metric is the Jain’s fairness index improvement. Jain’s fairness
index is defined as FI(f) = (

∑
c fc)2/(|C|

∑
c f

2
c ) and the

Jain’s fairness index improvement is FI(f)/FI(f ′). Note that
the fairness index can be deceiving as a metric in some cases:
if f has all rates larger than f ′ it may still have smaller fairness
index although the system has clearly improved.

We compared our algorithm with a conventional, single path
routing algorithm, and with the MORE algorithm [5]. To make
the comparison fair, we assumed that the single-path routing
algorithm used the same kind of jointly-optimal routing and
flow-control approach as our scheme, which boils down to
[12], constrained to the best path. In contrast, MORE does
not integrate flow control or flow scheduling with the routing
algorithm. When simulating the MORE algorithm, defined in
[5], [24], we assumed that each source had a large backlog

2Since in the simulations we use random and not the optimal scheduling,
the resulting rate allocation does not necessarily have the highest utility.
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Fig. 5. Cumulative performance improvement of opportunistic over single-path (fs
c - rates using single path, fm

c - rates using multiple paths): (a) Absolute
improvement in utility (

∑
c log(fm

c )−
∑

c log(fs
c )); (b) Relative improvement in total rate (

∑
c fm

c /
∑

c fs
c ); (c) Relative improvement in fairness index

(FI(fm)/FI(fs)). We perform the experiments with 4 and 8 concurrent flows. In all cases we ran 100 experiments and sorted them by performance
improvement. In many cases, for single-path routing, some flow had zero rates for the duration of the simulation, caused by slow convergence; we omitted
such plots (as they would give an infinite utility difference).
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Fig. 6. Cumulative performance improvement of our algorithm over MORE (fs
c - rates using single path, fm

c - rates using multiple paths): (a) Relative
improvement in utility (

∑
c log(fm

c )−
∑

c log(fs
c )); (b) Improvement in total rate (

∑
c fm

c /
∑

c fs
c ); (c) Improvement in fairness index (FI(fm)/FI(fs)).

We perform the experiments with 4 and 8 concurrent flows. In all cases we ran 100 experiments then sorted them by performance improvement.

of packets to transmit, and that each relay performed FIFO
scheduling among packets from different flows.

We ran simulations to obtain end-to-end rate allocations.
Figure 7, (a) illustrates the optimal rate allocations, obtained
by our algorithm, for 8 randomly selected source-destination
pairs on one example. In this case, we can see both utility and
total rate increase if we use the opportunistic routing instead
of the single-path routing, where we benefit from broadcast
and multi-path diversity.

We then ran the previous experiment with 100 random
realizations of 4 or 8 coexisting unicast sessions and compared
the performances of the different algorithms with respect to
the two performance metrics.

Single Path vs. Opportunistic: We start by illustrating the
benefits of the opportunistic routing over the single-path rout-
ing in Figure 5. We first look at the network utility. The rate
allocation obtained by the optimal algorithm (Section III-C)
always maximizes the utility. However, this is not the case for
the distributed heuristic (Section IV-B). In our simulations we
saw that in about 90% of the runs, the distributed heuristic for
opportunistic routing achieves higher utility than does single-
path routing. In only about 10% – 15% of cases is the utility
for single-path routing higher.

Also, in more than 80% of runs, our decentralized heuristic

achieved higher total rate than the conventional, single-path
algorithm. In more than half of the runs, the total rate has
increased by 20%, and in some cases by over 100%. From
these results we see that there is a significant advantage in
using our opportunistic routing algorithm over the single-path
one. Fairness index also improves in more than half of the
cases.

Decentralized Heuristic vs. MORE: We next compare our
decentralized heuristics with MORE. The results are depicted
in Figure 6. Network utility is increased in about 90% of
the runs. Total rate is increased in almost all of the runs,
sometimes up to a factor of 4 – 5. The fairness index has also
increased in most of the cases. The performance of MORE
drops with the number of flows.

From these results we can see that in many cases MORE be-
haves worse than the single-path routing. This resonates with
the findings of [5] where the benefits of opportunistic routing
decrease as the number of flows increase (for an explanation,
see Section III-E). MORE is essentially a routing protocol,
whereas our single-path routing algorithm also includes more
intelligent flow control and flow scheduling.

Effects of Finite Generation Size: Figure 7, (b) illustrates
the impact of a finite generation size. The performance drop
is due to imperfect generation scheduling (34) and occasional
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Fig. 7. (a) End-to-end rate allocation example: eight flows among randomly selected source-destination pairs. The vertical axis shows flows rates. Small
bars denote rates per flow. Large bars show total rate. The marks connected by a line gives utilities with an arbitrary scaling (to fit the figure). (b) Relative
efficiency for total rate (

∑
c ffinite

c /
∑

c f infinite
c ) for opportunistic routing with a finite generation size of G = 32. (c) Optimal distribution of PHY rates

for roofnet network with 802.11a cards, for one random selection of 8 source-destination pairs.

linear dependency of received packets. We can see that a finite
generation size of 32 packets can cause a performance drop of
up to 22% with respect to the infinite generation size. 3 How-
ever, a larger generation size would impose more overhead in
transmitting larger coefficients in the packet header.

The Optimal PHY Rate Selection: Finally, we consider
the optimal PHY rate selection at different nodes. We analyze
how frequently each node uses each PHY rate. In the case of
roofnet topology with 802.11b cards we find that in almost
all cases it is optimal to use the highest rate of 11 Mbps,
which confirms the findings from [5]. We then used the SNR
data from roofnet topology and measurements from [29] to
analyze the approximatively optimal performance in the same
network topology with 802.11a cards. The results are depicted
in Figure 7, (c). As expected, the optimal PHY rate selection
is no longer uniform, a consequence of the large number of
available rates. This demonstrates the need for an intelligent
PHY rate selection algorithm.

VI. RELATED WORK

One of the first uses of opportunistic routing for unicast
sessions in wireless mesh networks is presented in [4]. It has
been extended in [5] to include network coding to facilitate
scheduling. However, in [5] the authors do not explicitly
consider multiple flows, fairness, or scheduling, and in fact
show that the performance benefit drops as number of flows
increases.

One of the works most similar to our own is the opti-
mization framework for opportunistic routing that minimize
power consumption, presented in [19], which shows significant
benefits over [4]. Nevertheless, [19] considers neither network
coding, nor the TCP-like primal-dual rate adaptation. It is not
clear how to generalize [19] to use network coding with finite
generation size and to derive a generation scheduling policy
analog to (34).

Another related paper is the work on energy-efficient oppor-
tunistic network coding [30], which use a similar formulation

3Note that an additional performance drop for finite generation size may
occur due to imperfect signaling, but we do not consider it in our model.

of an optimization problem, which can further be extended to
intersession network coding. [30] does not consider a problem
of a limited generation size, TCP dynamics, nor a suboptimal
rate allocation algorithms and has a less general interference
model. Cross-layer design for network coding with unicast or
multi-cast sessions is considered in [9]; however, [9] considers
only stability and not any form of rate maximization. End-to-
end rate maximization of a single flow is also considered in
[31].

Several theoretical analysis of linear network coding algo-
rithms for unicast sessions have been performed [16], [10].
Network coding for unicast sessions is used also in COPE
[32]. Compared to COPE, we perform encoding operations
only between packets of the same flow; in that respect our
approach is orthogonal to COPE. Optimal control of inter-
session network coding is presented for example in [33];
however, it does not consider opportunistic routing and its
inherent diversity.

Our work is an example of cross-layer optimization, and we
have built on top of and extended exiting research. Cross-layer
design in wireless is a widely research topics (see [7], [13],
[14] and references therein). Optimizing network performance
in terms of network utility is originally proposed in [22];
see [11], [14] for an overview. Our primal-dual approach is
similar to [11], where it is shown that it can capture different
versions of TCP. None of the algorithms in [7], [13], [14], [11]
consider opportunistic routing, broadcast diversity and intra-
session network coding.

VII. CONCLUSIONS

This paper proposes an optimization framework for addressing
questions of multi-path routing in wireless mesh networks. We
have extended previous work by incorporating the broadcast
nature of wireless and simultaneously addressing fairness
issues. Implicit in our approach is the use of network coding,
which enables us to define notions of credits that are associated
with number of packets in a generation, rather than specific
packets. Using our framework we show that our algorithm
significantly outperforms single-path routing and MORE [5].
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When scheduling is pre-determined by a MAC protocol,
such as by random scheduling or 802.11-like scheduling,
we have shown how our approach leads to a distributed
heuristic, which still outperforms existing approaches. Using
a simulation results on a realistic topology, we found in our
examples that for 802.11b, using the maximal rate is optimal,
but for 802.11a this was not the case. We have addressed
some of the practical issues associated with having a finite
generation size for network codes.

Our primal-dual rate adaptation can be used to model
window-based flow control schemes, such as TCP. The per-
formance of applications that run on top of our system and
use TCP is an interesting open problem. Another interesting
direction is to analyze the performance of our protocol with
more realistic signaling schemes.
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APPENDIX

Before proving Theorem 2 we first introduce the following
lemma

Lemma 1: The following equalities and inequalities hold
for any t:

∑
i,j∈N

∑
c∈C

yc∗
ij (µc∗

i − µc∗
j ) =

∑
c∈C

f∗c µ
c∗
i , (37)

ξc∗
iJx

c∗
iJ = ξc∗

iJ

∑
j∈J

yc∗
ij , (38)∑

i∈N ,J∈P(N )

∑
c∈C

ξc∗
iJx

c
iJ(t) ≤

∑
i∈N ,J∈P(N )

∑
c∈C

ξc∗
iJx

c∗
iJ ,

(39)∑
i∈N ,J∈P(N )

∑
c∈C

ξc∗
iJx

c
iJ(t) ≤

∑
i,j∈N ,c∈C

ξc∗
ij y

c∗
ij , (40)

∑
i,j∈N ,c∈C

yc∗
ij (qc

i (t)− qc
j(t)) =

∑
c∈C

f∗c q
c
Src(c)(t), (41)∑

i∈N ,J∈P(N )

wc
iJ(t)

∑
j∈J

yc
ij(t) =

∑
i,j∈N

wc
ij(t)yc

ij(t), (42)

∑
i∈N ,J∈P(N )

∑
c∈C

wc
iJ(t)xc

iJ(t) ≥
∑

i,j∈N ,c∈C
wc

ij(t)yc∗
ij (43)

Proof: Equalities (37) and (38) follow directly from (6)
and (7). From (4) we further have

∑
c∈C x

c
iJ(t) = CiJ(t);
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Together with (10) this implies

∑
i,J,c

ξc∗
iJx

c
iJ(t) ≤

∑
i,J,c

(∑
J

ξc∗
iJCiJ(t)

)

≤
∑
i,J,c

(∑
J

ξc∗
iJC

∗
iJ

)
=
∑
i,J,c

ξc∗
iJx

c∗
iJ

which proves (39). From (38) and (39) we derive (40). Since
by definition qc

Dst(c)(t) = 0 we have∑
i,j∈N ,c∈C

yc∗
ij (t)(qc

i (t)− qc
j(t)) =

∑
c∈C,j∈N

yc∗
Src(c)jq

c
Src(c)(t)

from which we derive (41). Equality (42) follows from the
definition of wc

ij . Also, by definition of scheduling (13)-(18),
we have∑

i,J,c

wc
iJ(t)xc

iJ(t) ≥
∑

i

max
c

∑
J

wc
iJ(t)CiJ(∀CiJ) (44)

≥
∑
i,J,c

wc
iJ(t)xc∗

iJ (45)

which yields (43).

A. Proof of Theorem 2

Proof: We will follow the idea of the proof of Theorem
2 from [12]. First, let us define Lyapunov function

W (f ,q,w) =
1

2γ

∑
c∈C

(fc − f∗c )2 +
1
2

∑
i∈N ,c∈C

(qc
i − µc∗

i )2

+
1
2

∑
i∈N ,J∈P(N )

∑
c∈C

(wc
iJ − ξc∗

iJ )2. (46)

We want to show that the derivative Ẇ ≤ 0. For brevity,
we define f c

i (t) = fc(t)1{i=Src(c)}. Using (20), (21) and (22)
gives derivative of W as

Ẇ (f(t),q(t),w(t))

=
∑

c

(fc(t)− f∗c )(U ′c(fc(t))− qc
Src(c)(t))fc(t)≥0

+
∑
i,c

(qc
i (t)− µc∗

i )

f c
i (t) +

∑
j

yc
ji(t)−

∑
k

yc
ik(t)


qc

i (t)≥0

+
∑
i,J,c

(wc
iJ(t)− ξc∗

iJ )

∑
j∈J

yc
ij(t)− xc

iJ(t)


wc

iJ (t)≥0

. (47)

As in (10)-(13) from [12] we have that, when qc
i (t) < 0 the

derivative q̇c
i (t) is by definition positive; also µc∗

i ≥ 0. The
same holds for wc

iJ(t) and fc(t) and we can upperbound the

derivative

Ẇ (f(t),q(t),w(t)) ≤
∑

c

(fc(t)− f∗c )(U ′c(fc(t))− qc
Src(c)(t))

+
∑
i,c

(qc
i (t)− µc∗

i )

f c
i (t) +

∑
j

yc
ji(t)−

∑
k

yc
ik(t)


+
∑
i,J,c

(wc
iJ(t)− ξc∗

iJ )

∑
j∈J

yc
ij(t)− xc

iJ(t)

 (48)

Let us further add and subtract U ′c(f∗c ) = µc∗
Src(c), as in [12],

to obtain

Ẇ (f(t),q(t),w(t)) ≤
∑

c

(fc(t)− f∗c )(U ′c(fc(t))− U ′c(f∗c ))

+
∑
i,c

µc∗
i

∑
k

yc
ik(t)−

∑
j

yc
ji(t)− f c∗

i


+
∑
i,c

qc
i (t)

∑
j

yc
ji(t)−

∑
k

yc
ik(t) + f c∗

i


+
∑
i,J,c

(wc
iJ(t)− ξc∗

iJ )

∑
j∈J

yc
ij(t)− xc

iJ(t)

 .

Due to concavity of Uc we have (fc(t) − f∗c )(U ′c(fc(t)) −
U ′c(f∗c )) ≤ 0. Next, let us pick any set of link rates {yc∗

ij }i,j,c
that correspond to the optimal flow allocation {f∗c }c. We
expand f∗c using (37) and (41) to obtain

Ẇ (f(t),q(t),w(t)) ≤
∑
i,j,c

(µc∗
i − µc∗

j )(yc
ij(t)− yc∗

ij )

+
∑
i,j,c

(qc
i − qc∗

j )(yc∗
ij − yc

ij(t))

+
∑
i,J,c

(wc
iJ(t)− ξc∗

iJ )

∑
j∈J

yc
ij(t)− xc

iJ(t)

 .

Let us denote zc∗
ij = µc∗

i − µc∗
j − ξc∗

ij . Then, from (40), (42)
and (43) we have

Ẇ (f(t),q(t),w(t))

≤
∑
i,j,c

(yc
ij(t)− yc∗

ij )×[
(µc∗

i − µc∗
j − ξc∗

ij )− (qc
i (t)− qc

j(t)− wc
ij(t))

]
(49)

=
∑
i,j,c

(yc
ij(t)− yc∗

ij )(zc∗
ij − zc

ij(t)) (50)

(a)
=
∑
i,j,c

yc
ij(t)zc∗

ij − (yc
ij(t)− yc∗

ij )zc
ij(t) (51)

(b)

≤ −
∑
i,j,c

(yc
ij(t)− yc∗

ij )zc
ij(t)

(c)

≤ 0. (52)

where (a) follows from KKT and the fact that yc∗
ij z

c∗
ij = 0,

(b) from (9) and (c) from the fact that whenever qc
i (t) > 0

and zc
ij(t) > 0 then yc

ij(t) can be made arbitrarily large in the
fluid model limit as the slot length goes to zero.
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Hence we have that Ẇ (f(t),q(t),w(t)) ≤ 0 for all f(t) >
0,q(t) > 0,w(t) ≥ 0. Let us define

Q(t) =

(q,w) |
∑
i,j,c

(yc
ij(t)− yc∗

ij )(zc∗
ij − zc

ij(t))

 (53)

Let us define E = {(f ,q,w) | Ẇ (f ,q,w) = 0}. It is easy to
see from (50) that E ⊆ Q. We can further apply LaSalle’s
invariance principle as in [12] to show that f(t) converges to
f∗ and (q(t),w(t)) converges to Q(t).

However, set Q(t) is not bounded in general. If link (i, j) is
active for flow c then for every t, yc

ij(t) > 0 we have qc
j(t) +

wc
ij(t) = qc

i (t)−zc∗
ij . If the maximum node degree in a network

is D, we have that qc
j(t) +wc

ij(t) ≤ qc
i (t)− zc∗

ij + 2DT . Since
qc
Src(c) converges to U ′c(f∗c ) we see that queues qc

i (t), qc
j(t)

and wc
ij(t) are bounded for all active links (i, j) of each flow

c.

B. Derivation of (33)-(35)
Let us write modified queue evolution equations:

q̇c
i (t, g) =

f c
i (t, g) +

∑
j

yc
ji(t, g)−

∑
j

yc
ij(t, g)


qc

i (t,g)≥0

ẇc
iJ(t, g) =

∑
j∈J

yc
ij(t, g)− xc

iJ(t, g)


wc

iJ (t,g)≥0

.

Note that (20) and (21) do not hold anymore. Consequently,
we cannot claim that (48) follows from (47) and the proof of
Theorem 2 cannot be applied.

We first consider q̇c
i (t, g). We see from (33) that yc

ik(t, g) >
0 only if qc

i (t, g) > 0. Thus, the exact queue evolution is given
by

q̇c
i (t, g) = f c

i (t, g) +
∑

j

yc
ji(t)−

∑
k

yc
ik(t).

Next, let us look at the evolution of wc
iJ(t, g). We have that

ẇc
iJ(t, g) = 0 only if wc

iJ(t, g) = 0 and xc
iJ(t, g) > 0, thus if

g = g∗(c, t). Therefore, we can write

ẇc
iJ(t, g) ≥

∑
j∈J

yc
ij(t)− xc

iJ(t, g) 1{wc
iJ (t,g)≥0},

ẇc
iJ(t) ≥

∑
j∈J

yc
ij(t)− xc

iJ(t) 1{wc
iJ (t,g∗(c,t))≥0}.

and from (47) we can write

Ẇ (f(t),q(t),w(t))

≤
∑

c

(fc(t)− f∗c )(U ′c(fc(t))− qc
Src(c)(t)) (54)

+
∑
i,c

(qc
i (t)− µc∗

i )

f c
i (t) +

∑
j

yc
ji(t)−

∑
k

yc
ik(t)


(55)

+
∑
i,J,c

(wc
iJ(t)− ξc∗

iJ )

∑
j∈J

yc
ij(t)− xc

iJ(t)

 (56)

+
∑
i,J,c

wc
iJ(t)xc

iJ(t) 1{wc
iJ (t,g∗(c,t))<0}. (57)

Intuitively (57) means that if we decide to transmit generation
g∗(c, t), we will not remove any credit from queues for which
there is no such generation queued (that is wc

iJ(t, g∗(c, t)) <
0). Note that this cannot happen with infinite generation
sizes as wc

iJ(t, g∗(c, t)) < 0 implies wc
iJ(t) < 0. Since

we have already proven in Theorem 2 that (54) + (55) +
(56) ≤ 0, we want to minimize (57), which is equivallent
to maximization in (34) and (35) (with a slight caveat that
the condition wc

iJ(t, g∗(c, t)) < 0 in the fluid model reads as
wc

iJ(t, g∗(c, t)) = 0 in the packet model, due to continuity).
It is also easy to see from (57) that the naive policy (31) may
yield an unbounded drift.
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