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Abstract. We analyze the bounded reachability problem of programs
that use abstract data types and set comprehensions. Such programs
are common as high-level executable specifications of complex protocols.
We prove decidability and undecidability results of restricted cases of
the problem and extend the Satisfiability Modulo Theories approach to
support analysis of set comprehensions over tuples and bag axioms. We
use the Z3 solver for our implementation and experiments, and we use
AsmL as the modeling language.

1 Introduction

Programs that use high-level data types are commonly used to describe
executable specifications [22] in form of so called model programs. An
important and growing application area in the software industry is the
use of model programs for specifying and documenting expected behav-
ior of application-level network protocols [14]. Model programs typically
use abstract data types such as sets and maps, and comprehensions to
express complex state updates. Correctness assumptions about the model
are usually expressed through state invariants. An important problem is
to validate a model prior to its use as an oracle or final specification.
One approach is to use Satisfiability Modulo Theories or SMT to perform
bounded reachability analysis or bounded model-checking of model pro-
grams [36]. The use of SMT solvers for automatic software analysis has
recently been introduced [1, 11] as an extension of SAT-based bounded
model checking [5]. The SMT based approach makes it possible to deal
with more complex background theories. Instead of encoding the verifi-
cation task of a sequential program as a propositional formula the task
is encoded as a quantifier free formula. The decision procedure for check-
ing the satisfiability of the formula may use combinations of background
theories [29].
? Part of this work was done during an internship at Microsoft Research, Redmond.



The main contribution of this paper is a characterization of the decid-
able and undecidable cases of the bounded reachability problem of model
programs. We show in Section 3 that already the single step reachabil-
ity problem is undecidable if a single set-valued parameter is allowed. In
Section 4 we show that the bounded reachability problem remains de-
cidable provided that all parameters have basic (non-set valued) types.
This result is orthogonal to the decidable fragment of bounded reach-
ability of model programs that use the array property fragment [8]. In
Section 5 the paper extends the work started in [36] through improved
handling of quantifier instantiation and extended support for background
axioms to support for example bag or multi-set axioms. We use the SMT
solver Z3 [10] for our experiments and we use AsmL [16] as the modeling
language. Related work is discussed in Section 6.

2 Model programs and bounded reachability

In this section we define some background material related to model pro-
grams, in order to make the paper self-contained. A more thorough ex-
position can be found in [36].

Model programs The main use of model programs is as high-level spec-
ifications in model-based testing tools such as Spec Explorer [37] and
NModel [30]. In Spec Explorer, one of the supported input languages is
the abstract state machine language AsmL [16]. AsmL is used in this pa-
per as the concrete specification language for update rules that correspond
to basic ASMs [15].

We let Σ denote the overall signature of function symbols. Part of Σ
is denoted by Σvar and contains nullary function symbols whose interpre-
tation may vary from state to state, called state variables. The remaining
part Σstatic contains symbols whose interpretation is fixed by the back-
ground theory. A ground term over Σstatic is called a value term. A subset
of Σstatic, denoted by Σacts are free constructors called action symbols.
Given an action symbol f , an action or f -action is a value term whose
function symbol is f .

For all action symbols f with arity n ≥ 0, and all i, 1 ≤ i ≤ n, there
is a unique parameter variable (not in Σvar) denoted by fi. We write Σf
for {fi}1≤i≤n. Note that if n = 0 then Σf = ∅.

Definition 1. A model program P is a tuple (VP , AP , IP , RP ), where

– VP is a finite set of state variables, let ΣP denote Σstatic ∪ VP ;



– AP is a finite set of action symbols;
– IP is a formula over ΣP , called the initial state condition;
– RP is a family {RfP }f∈AP

of action rules RfP = (GfP , U
f
P ), where

• GfP is a quantifier free formula over ΣP ∪Σf called the guard ;
• UfP , called the update rule, is a block {v := tfv}v∈V f

P
of assignments

where tfv is a term over ΣP ∪Σf and V f
P ⊆ VP .

This definition is a variation of model programs that syntactically restricts
the update rules to be block assignments. This restriction is not a true
limitation because if-then-else terms are allowed and nondeterministic
choices can be encoded as branching based on action parameter values
(i.e. the choices are made explicit). We often say action to also mean an
action rule or an action symbol, if the intent is clear from the context.

In general, model programs can have a rich background theory, in-
cluding the theory of maps. In the following example, the fragment of
interest is the so-called array theory fragment where all map sorts have
domain sort Z and the theory of Z is Presburger arithmetic

Example 1 (Credits). The following model program is written in AsmL.
It specifies how a client and a server need to use message ids, based on
a sliding window protocol. It models part of the credits-algorithm in the
SMB2 [34] protocol.

var window as Set of Integer = {0}

var maxId as Integer = 0

var requests as Map of Integer to Integer = {->}

[Action("Req(_,m,c)")] Req(m as Integer, c as Integer)

require m in window and c > 0

requests := Add(requests,m,c)

window := window difference {m}

[Action("Res(_,m,c,_)")] Res(m as Integer, c as Integer)

require m in requests

require requests(m) >= c

require c >= 0

window := window union {maxId + i | i in {1..c}}

requests := RemoveAt(requests,m)

maxId := maxId + c

[Invariant] ClientHasEnoughCredits()

require requests = {->} implies window <> {}

The Credits model program illustrates a typical use of model programs
as protocol-specifications. Actions use parameters, maps and sets are used
as state variables and a comprehension expression is used to compute a
set. (Since the domain of the maps and sets is Z, the example is in the



array theory fragment.) Each action has a guard and an update rule given
by a basic ASM. For example, the guard of the Req action requires that
the id of the message is in the current window of available ids and that
the number of credits that the client requests from the server is positive.
The state invariant associated with the model program is that the client
must not starve, i.e. there should always be a message id available at some
point, so that the client can issue new requests.

Let P be a fixed model program. A P -state is a mapping of VP to
values.3 Given an action a = f(a1, . . . , an), let θa denote the parameter
assignment {fi 7→ ai}1≤i≤n. Given a P -state S, an extension of S with
the parameter assignment θ is denoted by (S; θ).

Let S be a P -state, an f -action a is enabled in S if (S; θa) |= GfP
(where |= is the standard satisfaction relation of first-order logic). The
action a causes a transition from S to S′, where

S′ = {v 7→ tfv
(S;θa)}

v∈V f
P
∪ {v 7→ vS}

v∈VP \V f
P
.

A labeled transition system or LTS is a tuple (S,S0, L, T ), where S is
a set of states, S0 ⊆ S is a set of initial states, L is a set of labels and
T ⊆ S × L× S is a transition relation.

Definition 2. Let P be a model program. The LTS of P , denoted by
[[P ]] is the LTS (S,S0, L, T ), where S0, is the set of all P -states s such
that s |= IP ; L is the set of all actions over AP ; T and S are the least
sets such that, S0 ⊆ S, and if s ∈ S and there is an action a that causes
a transition from s to s′ then s′ ∈ S and (s, a, s′) ∈ T .

A run of P is a sequence of transitions (si, ai, si+1)i<κ in [[P ]], for some
κ ≤ ω, where s0 is an initial state of [[P ]]. The sequence (ai)i<κ is called
an (action) trace of P . The run or the trace is finite if κ < ω.

Bounded reachability of model programs Let P be a model program and
let ϕ be a ΣP -formula. The main problem we are addressing is whether
ϕ is reachable in P within a given bound.

Definition 3. Given ϕ and k ≥ 0, ϕ is reachable in P within k steps, if
there exists an initial state s0 and a (possibly empty) run (si, ai, si+1)i<l in
P , for some l ≤ k, such that sl |= ϕ. If so, the action sequence α = (ai)i<l
is called a reachability trace for ϕ and s0 is called an initial state for α.
3 More precisely, this is the foreground part of the state, the background part is the

canonical model of the background theory T .



Note that, given a trace α and an initial state s0 for it, the state where
the condition is reached is reproducible by simply executing α starting
from s0. This provides a cheap mechanism to check if a trace produced
by a solver is indeed a witness. In a typical model program, the initial
state is uniquely determined by an initial assignment to state variables,
so the initial state witness is not relevant.

The bounded reachability formula for a given model program P , step
bound k and reachability condition ϕ is:

Reach(P,ϕ, k) def= IP ∧ (
∧

0≤i<k
P [i]) ∧ (

∨
0≤i≤k

ϕ[i])

P [i] def=
∨
f∈AP

(action[i] = f(f1[i], . . . , fn[i]) ∧GfP [i]

∧
v∈V f

P

v[i+ 1] = tfv [i]
∧

v∈VP \V f
P

v[i+ 1] = v[i])

where an expression E[i] denotes E where each state variable and param-
eter variable has been given index i if i > 0. A skip action has the action
rule (true, ∅). We use the following Theorem from [36].

Theorem 1. Let P be a model program that includes a skip action, k ≥
0 a step bound and ϕ a reachability condition. Then Reach(P,ϕ, k) is
satisfiable if and only if ϕ is reachable in P within k steps. Moreover, if
M satisfies Reach(P,ϕ, k), let M0 = {v 7→ vM}v∈VP

, let ai = action[i]M

for 0 ≤ i < k, and let α be the sequence (ai)i<k. Then α is a reachability
trace for ϕ and M0 is an initial state for α.

3 One step reachability

The bounded reachability problem of model programs is undecidable in
the general case. In this section we pin down various minimal cases of the
undecidability with respect to certain background theories. In all cases
it is enough to restrict the reachability bound and the number of action
symbols to 1, i.e. the undecidability arises already using a single step
and a single action symbol. We call it the one step reachability problem.
In Section 4 we argue that these undecidable cases are minimal in some
sense.

First, we define a theory TS(A) that extends a given theory A (for
example Presburger arithmetic) with tuples and sets. It is assumed that
the language of A does not include the new symbols. It is convenient to



Basic elements : E ::= TA | 〈E, . . . , E〉 | πi(E) | x | ite(F,E,E)

Sets of basic elements : S ::= {E |x F} | ∅ | S ∪ S | S ∩ S | S \ S | v | ite(F, S, S)

Formulas : F ::= FA | ¬F | F ∧ F | F ∨ F | ∀xF | ∃xF |
E = E | S ⊆ S | S = S | E ∈ S

Fig. 1. Well-formed expressions in TS(A). The theory A has terms TA and Formulas
FA. It is assumed that all terms in TA have sort A. Set variables are denoted by v and
basic variables (tuple variables or variables of sort A) are denoted by x. The grammar
omits sorts (type annotations) for ease of readability, but it is that of standard many-
sorted first order logic. For example in a set operation term s1 � s2, it is assumed that
both s1 and s2 have the same sort (so sets contain only homogeneous elements), in an
element-of atom t ∈ s it is assumed that if the sort of t is σ then the sort of s is {σ},
a tuple (t1, t2) has the sort σ1 × σ2 provided that ti has sort σi, etc.

restrict the set of all possible expressions of TS(A) to a set of well-formed
expressions that are shown in Figure 1. When considering a formula of
TS(A) as defined in Figure 1, it is assumed that by default all set variables
are existentially quantified, i.e. have an outermost existential quantifier.
We write TS(A) both for the class of expressions as defined in Figure 1,
as well as the axioms of TS(A).

The axioms of TS(A) include the axioms of A, the axioms for tuples
stating that for each arity k the k-tuple constructor is a free constructor,
axioms for set union, set intersection, element-of relation, subset relation,
and the extensionality axiom for sets. Given a model A of TS(A), i.e., a
structure A in the language of TS(A) that is a model of the axioms of
TS(A), the comprehension term s = {t(x) |x ϕ(x)}, where t and ϕ may
include parameters, has the interpretation sA in A such that A |= ∀y(y ∈
sA ↔ ∃x(t(x) = y∧ϕ(x))) which is well-defined due to the extensionality
axiom: ∀v w(∀y(y ∈ v ↔ y ∈ w)→ v = w).

Example 2. Let P be Presburger arithmetic. The following is a range
expression, in TS(P): {z | x ≤ z ∧ z ≤ y} where we omit the z from |z.
We often use the abbreviation {x..y} for a range from x to y. The following
is a direct product v×w between two sets v and w: {〈x, y〉 | x ∈ v∧y ∈ w}.

Note that, not all well-formed TS(P) expressions can be used in a
model program, in a model program all expressions are quantifier free
and each set comprehension variable has a finite range.

Theorem 2. One can effectively associate a deterministic 2-register ma-
chine M with a formula haltsM (m,n) in TS(P) with integer parameters
m and n, such that M halts on (m,n) if and only if haltsM (m,n) holds.



type Config = (Integer, Integer, Integer)

steps as Set of (Integer,Config,Config)

length as Integer

[Action] haltsM(m as Integer, n as Integer)

require validM(m, n, steps, length)

Fig. 2. Model program PM .

Proof (Outline). Let STEPM (〈i,m, n〉, 〈i′,m′, n′〉) be the Presburger pro-
gram formula for M as defined in [6, Theorem 2.1.15], where i,m, n and
i′,m′, n′ denote the current and the next configuration of the 2-register
machine. Let 1 . . . k be the instructions of M and assume that M is such
that the initial instruction is 1 and the final instruction is k > 1 and when
the final instruction is reached then both registers are zero. Let haltsM
be the following formula:

haltsM (m,n) def= ∃s∃l(validM (m,n, s, l))

validM (m,n, s, l) def=
s = {〈j, x, y〉 | 〈j, x, y〉 ∈ s ∧ STEPM (x, y) ∧ 1 ≤ j ∧ j ≤ l} ∧
{〈π0(z), π1(z)〉 | z ∈ s} ∪ {〈l, 〈k, 0, 0〉〉} =
{〈1, 〈1,m, n〉〉} ∪ {〈π0(z) + 1, π2(z)〉 | z ∈ s}

The statement is now straightforward to prove through an argument sim-
ilar to shifted pairing [17, Theorem 15]. �

The following is an immediate consequence of the proof of Theorem 2.

Corollary 1. TS(P) is undecidable. Undecidability arises already for for-
mulas of the form ∃v∃xϕ, where ϕ is quantifier free and uses at most three
unnested comprehensions.

The construction of haltsM in Theorem 2 shows that comprehensions
together with pairing (or tuples) leads to undecidability of the one step
reachability problem, because validM can be used as an enabling condition
of an action as illustrated in Figure 2, and the halting problem of 2-register
machines is undecidable.

Only a small fragment of Presburger arithmetic is needed. In partic-
ular, divisibility by a constant is not needed. The proof of the theorem
does not change if M is assumed to be a Turing machine (assume M has
two input symbols and the configuration (i,m, n) represents a snapshot
of M where i is the finite state of M , m represents the tape content to
the left of the tape head and n represents the tape content to the right



of the tape head), only the construction of STEP is different. However, in
that case one needs to express divisibility by 2 to determine the input
symbol represented by the lowest bit of the binary representation of m or
n, which can be encoded using an additional existential quantifier.

Another consequence of the construction in Theorem 2 is that decid-
ability of the bounded reachability problem cannot in general be obtained
by fixing the model program or by limiting the number of set variables
(without disallowing them).

Corollary 2. There is a fixed model program Pu over TS(P) with one
set-valued state variable, one integer-valued state variable, and an action
symbol with two integer-valued parameters, such that the following prob-
lem is undecidable: given an action a, decide if a is enabled in Pu.

Proof. Let Mu be a 2-register machine that is universal in the following
sense, given a Turing machine M and an input v (over a fixed alphabet),
let pM,vq be an effective encoding of M and v as an input for Mu, so that
Mu accepts pM,vq if and only if M accepts v. Such a 2-register machine
exists and can be constructed effectively [21, Theorem 7.9]. Let Pu be like
PMu in Figure 2. Let M be a Turing machine and v an input for M . Then
haltsMu(pM, vq) is enabled in Pu iff (by Theorem 2) Mu halts on pM,vq
iff M accepts v. �

A basic value or sort is a non-set value or sort. A parameter or state
variable is basic if its sort is basic.

Definition 4. A model program is basic if all of its action parameters
are basic, each state variable is either basic or a set of basic elements, and
set-sorted state variables are initialized with expressions that contain no
set-sorted state variables.

Example 3. The model program Pu in Corollary 2 is not basic because
the initial value of steps is undefined. The following model program on
the other hand is basic, where STEP and k are the same as above.

[Action] halts(maxCounter as Integer, l as Integer)

let steps = {(j,(i,m,n),(i’,m’,n’)) | i,i’ in {1..k}, j in {1..l},

m,n,m’,n’ in {1..maxCounter}, STEP((i,m,n),(i’,m’,n’))}

require {(j,x) | (j,x,y) in steps} union {(l,(k,0,0))} =

{(1,(1,m,n))} union {(j+1,y) | (j,x,y) in steps}

It seems as if it is possible to express the halting problem just us-
ing bounded reachability of basic model programs. This is not the case
as is shown in Section 4. Intuitively, a comprehension adds “too many”
elements.



An extension of basic model programs that leads to undecidability of
the one step reachability problem is if we allow set cardinality. We can
then express integer multiplication as follows, given two (non-negative) in-
tegers m and n: m·n def= |{1..m}×{1..n}|. Also, if we allow bag comprehen-
sions we can define the cardinality of a set s as |s| def= {{0|x ∈ s}}[0]. Either
of these extensions allows us to effectively encode diophantine equations
(e.g. 5x2y+6z3−7 = 0 is a diophantine equation). Let p(x) be a diophan-
tine equation and let P(x) be an action whose enabling condition is the
encoding of p(x). Then P(n) is enabled iff n is an integer solution for p(x).
The problem of deciding whether a diophantine equation has an integer
solution is known as Hilbert’s 10th problem and is undecidable [28].

4 Bounded reachability of basic model programs

We show that the bounded reachability problem of basic model programs
over a background TS(A) is decidable provided that Th(A) is decidable,
where Th(A) is the closure of A under entailment. We say that Th(A) is
decidable, if for an arbitrary closed first-order formula ϕ in the language
of A it is decidable whether ϕ ∈ Th(A).

The proof has two steps. First, we show that there is a fragment of
TS(A) formulas, denoted by TS(A)≺, for which the validity or satisfiabil-
ity problem reduces effectively to A, by showing that there is an effective
equivalence preserving mapping from formulas in TS(A)≺ to formulas
in A. Second, we show that the bounded reachability problem of basic
model programs over TS(P) reduces to (satisfiability in) TS(P)≺. Let A
be fixed. Let V (ϕ) denote the collection of all set variables that occur in
a formula ϕ over TS(A).

Definition 5. A TS(A) formula ϕ is in TS(A)≺ (also called stratified) if

– ϕ has the form ψ ∧
∧
v∈V (ϕ) v = Sv, and

– the relation ≺ def= {(w, v)|v ∈ V (ϕ), w ∈ V (Sv)} is well-founded.

The equation v = Sv is called the definition of v in ϕ.

Theorem 3. TS(A)≺ reduces effectively to A.

Proof (Outline). The definition of TS(A)≺ is equivalent to the following
construction in the case when all tuples are required to be flat. Let L0

be the language of A and let A0 = A. Given Li and Ai, create Li+1

and Ai+1 as follows: expand Li with a relation symbol Rϕ of arity n for
each Li-formula ϕ(x1, . . . , xn) and add the definition ∀x(Rϕ(x) ↔ ϕ(x))



to Ai. Now TS(A)≺ corresponds to
⋃
iAi as follows. Due to the well-

founded ordering, each set variable v with the definition v = {〈x〉 |x ϕ(x)}
corresponds to a relation symbol Rϕ. Given a formula ϕ in TS(A)≺, it
corresponds thus to a formula ϕk in Ak for some k. The statement fol-
lows by using the theorem of the existence of definitional expansions [20,
Theorem 2.6.4] to reduce ϕi+1 in Li+1 to an equivalent ϕi in Li. �

It follows that TS(P)≺ is decidable. We also get the following corollary
that is the main result of this section.

Corollary 3. Bounded reachability of basic model programs over TS(P)
is decidable.

Proof. Let P be a basic model program over TS(P) let ϕ be a reacha-
bility condition, and let k be a step bound. It is easy to see that ψ =
Reach(P,ϕ, k) can be written as a stratified TS(P) formula: First, we can
assume that there is only one action symbol (with a specific parameter
that identifies a particular action). Since P is basic, the initial value of
each state variable v(0) must be defined. In each step formula for step i,
the value v(i+1) is given a definition that uses only variables or parameters
from state i and parameters are basic. The definition can be written on
a form that uses ite and is a top level equation of the generated formula.
The only variables that are not given definitions are parameters, but all
parameters are basic. Satisfiability of ψ in the language that includes the
state variables reduces to entailment of the existential closure of ψ from
TS(P), which by Theorem 3, reduces to P and is thus decidable. �

General integer arrays and array read and write operations are, strictly
speaking, not in the TS(P) fragment but can easily be encoded using
tuples and comprehensions. For example, given an array variable v from
integers to integers with the default value 0, encode it as the graph ṽ of v.
The relation Read(ṽ, l, x) that holds when v[l] = x, can be defined through
Read(ṽ, l, x) def= ite({x} = {π1(y) | y ∈ ṽ ∧ π0(y) = l}, true, x = 0) and
the corresponding write operation Write(ṽ, l, x) can be defined through
Write(ṽ, l, x) def= {y | y ∈ ṽ ∧π0(y) 6= l}∪ {(l, x)}. Using this encoding one
can for example transform the Credits model program in Example 1 into
an equivalent model program over TS(P).

5 Implementation

We use the state of the art Z3 SMT solver for the implementation of
bounded model checking. The initial implementation was described in [36].



We have extended this work in several aspects, including support for
comprehensions with multiple comprehension variables and non-invertible
comprehension expressions, bag(multiset) support etc., all of which make
use of the iterated model refinement technique (explained in the follow-
ing paragraphs). This is possible due to the fact that model programs
are executable, so the feasibility of traces provided by the solver can be
checked.

While, in principle, the traces could be executed directly on the model
program via the ASML compiler, we use the approach to translate them
to C# and executed the traces on C# code. This provides several benefits:
we can conveniently use .Net API’s for reflection, we can add auxiliary
methods for evaluating and saving intermediate results for pinpointing
error locations (in case an erroneous trace is provided by the solver) etc.
Additionally, this eases the adoption of other languages for describing
model programs. For example, NModel [30] uses C# as the modelling
language. In this case, we would only need to provide a parser from C#
to the internal abstract syntax to be able to use the framework.

The refinement loop works as follows. A trace provided by the Z3
solver is executed step by step on the generated program via reflection,
and after each step it is checked whether the state given in the model
matches the actual state (simply by comparing the variable values as as-
signed by the solver to the values in the actual state). If it does not match,
we know at which action the mismatching state was reached. By exam-
ining the statements in the action we can check which of the axioms was
not instantiated correctly and on which variables, consequently pinpoint-
ing the exact error source. The interpretation on this operation can then
be fixed, by adding new formulas to the original model formula, giving
explicit instantiations of the “misinterpreted” axiom on each index term.
The new formula can be sent back to Z3 and a new trace obtained, which
might again be erroneous (on some other axiom application), in which
case it is again fixed and the refinement loop continues. This technique
helps us circumvent SMT solvers’ difficulties in coping with quantifiers.
The approach is similar to CEGAR [9] (counter example guided abstrac-
tion refinement), the main difference being that we do not refine the level
of abstraction, but instead lazily instantiate axioms in case their use has
not been triggered during proof search.

We make use of the iterative refinement in several cases. In comparison
to [36], we have added support for comprehensions which include more
than 1 variable, and for the case where the element term is not invertible.
In this case we rewrite the comprehension into formulas ∀y(ϕ[x]→ t[x] ∈



s′) and ∀y(y ∈ s′ → ∃x(y = t[x] ∧ ∧ϕ[x])). Existential quantifiers can be
eliminated from the latter by skolemization. During the refinement loop,
the two axioms are instantiated for specific index terms if needed.

Similar approach is used when extending the framework with bag sup-
port. While adding the bag axioms to Z3 is straightforward (for example
the definition of bag union is ∀x, s1, s2.((s1]s2)[x] ≡ s1[x]+s2[x])), traces
given by Z3 might be incorrect. (Quantifiers are implemented via pattern
matching in Z3, so axioms are instantiated only if the particular pattern
is encountered during proof search. If the pattern is not encountered, the
axiom never gets used.) In this case, we can again use the model check-
ing technique to pinpoint the source of error, and refine the model. This
procedure is complete in case of integer bags.

6 Related work

The unbounded reachability problem for model programs without com-
prehensions and with parameterless actions is shown to be undecidable
in [13], where it is called the hyperstate reachability problem. General
reachability problems for transition systems are discussed in [33] where
the main results are related to guarded assignment systems. A guarded
assignment system is a union of guarded assignments or update rules.
Detailed proofs of the theorems in this paper are given in [38]. The case
when A = P in Theorem 3 is related to decidable extensions of P that
are discussed in [4].

The decidable fragment BAPA [26] is an extension of Boolean alge-
bra with P. The sets in BAPA are finite and bounded by a maximum
size and the cardinality operator is allowed, which unlike for TS(P)≺,
does not enable encoding of multiplication. Comprehensions are not pos-
sible and the element-of relation is not allowed, i.e. integers and sets can
only be related through the cardinality operator. A decidable fragment
of bag (multiset) constraints combined with summation constraints are
considered in [31] where summation constraints can be used to express
set cardinality (without using bag cardinality that is also included in the
fragment). A related fragment of integer linear arithmetic with a star
operator is considered in [32].

In [8] a decision procedure for an array fragment is introduced and in
[36] it is shown that this decision procedure can be applied to the bounded
reachability problem of a subclass of model programs. However, the frag-
ment in [8] does not allow expressions that include universally quantified
variables, other than the variable itself, to occur in array read operations.



Consequently, comprehensions where the comprehension expression is not
invertible are not covered in [36]. In [19] another fragment of arrays is
considered that allows universal variables in array read expressions that
relate consecutive elements or talk about periodic properties.

The full fragment TS(P) is also part of the data structures that are
allowed in the Jahob verification system [7]. Formulas in this fragment are
translated in Jahob to standard first-order formulas that can be proven
using a resolution theorem prover.

A technique for translating common comprehension expressions (such
as sum and count) into verification conditions is presented in [27] within
the Spec# verification system that uses Boogie to generate verification
conditions for SMT solvers [3]. The system does not support arbitrary
set comprehension expressions as terms but allows axioms that enable
explicit definitions of sets.

The reduction of the theories of arrays, sets and multisets to the theory
of equality with uninterpreted function symbols and linear arithmetic is
used in [24] for constructing interpolants for these theories. This work
is based on the results of [25], where it is shown that the quantifier-
free theories of arrays, sets and multisets can be reduced to quantifier-
free theories of uninterpreted symbols with equality, constructors and
Presburger arithmetic.

Using SAT for bounded reachability of transition systems was intro-
duced in in [5] and the extension to SMT was introduced in [1]. Besides
Z3 [10], other SMT solvers that support arrays are described in [2, 35].
The formula encoding we use [36] into SMT follows the same scheme but
does not unwind comprehensions and makes the action label explicit.

Our quantifier elimination scheme is inspired by [8], and refines it
by using model-checking to implement an efficient incremental saturation
procedure on top of the SMT solver. The work here extends the work
in [36] through support for set comprehensions with multiple comprehen-
sion variables and non-invertible comprehension expressions, as well as
bag (multi-set) axioms. A recent application of the quantifier elimination
scheme has been pursued by [23] in the context of railway control systems.

The following problems have not been addressed yet. Bounded reach-
ability of model programs that use nested comprehensions, including for
example sets and bags, is interesting for analysis of general purpose al-
gorithms, see e.g. [18]. Given the (computational) complexity of A, what
is the complexity of TS(A)≺? It seems that a TS(A)≺ formula can be
exponentially more succinct than the corresponding A formula. So, the
complexity of TS(P)≺ could thus be 222cn

, since the complexity of P is



22cn
[12]. The proper instantiation of array indices and avoidance of false

models generated by an SMT solver, due to the inherent incompleteness
of the triggering mechanism of universally quantified axioms, is an im-
portant open problem in the general case.
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