
Using User Interface Event Information in Dynamic Voltage Scaling Algorithms∗

Jacob R. Lorch
Microsoft Research
1 Microsoft Way

Redmond, WA 98052
lorch@microsoft.com

Alan Jay Smith
University of California, Berkeley
EECS Department, CS Division

Berkeley, CA 94720-1776
smith@eecs.berkeley.edu

Abstract

Increasingly, mobile computers use dynamic voltage
scaling (DVS) to reduce CPU voltage and speed and thereby
increase battery life. To determine how to change voltage
and speed when responding to user interface events, we an-
alyze traces of real user workloads. We evaluate a new
heuristic for inferring when user interface tasks complete
and find it is more efficient and nearly as effective as other
approaches. We compare DVS algorithms and find that for a
given performance level, the PACE algorithm uses the least
energy and the Stepped algorithm uses the second least.
We find that different types of user interface event (mouse
movements, mouse clicks, and keystrokes) trigger tasks with
significantly different CPU use, suggesting one should use
different speeds for different event types. We also find differ-
ences in CPU use between categories of the same event type,
e.g., between pressing spacebar and pressing enter, and be-
tween events of different applications. Thus, it is better to
predict task CPU use based solely on tasks of the same cat-
egory and application. However, energy savings from such
improved predictions are small.

Keywords—Workload characterization and generation,
modeling and simulation, response time, dynamic voltage
scaling, energy management, power management.

1 Introduction

Reducing energy consumption of portable computers
and other mobile devices is important, mainly because this
increases their battery lifetime. Transmeta, AMD, and Intel
now sell processors withdynamic voltage scaling(DVS), a
feature that lets the system change CPU speed without re-

∗This material is based upon work supported by the State of California
MICRO program, AT&T Laboratories, Cisco Systems, Fujitsu Microelec-
tronics, IBM, Intel Corporation, Maxtor Corporation, Microsoft Corpora-
tion, Sony Research Laboratories, Sun Microsystems, Toshiba Corpora-
tion, and Veritas Software.

booting to save energy while running at low speeds. To take
advantage of this, a DVS algorithm must know when it is
worthwhile to trade off speed for energy savings.

Research suggests that DVS algorithms should consider
task information, i.e., what tasks the system is working on,
how much CPU time those tasks use, and the deadlines for
those tasks [4, 10, 13, 14]. Unfortunately, most modern sys-
tems lack an interface allowing applications to specify such
task information. Even if such an interface were added, ex-
isting applications could not use it, and writers of many new
applications would be unwilling or unable to give it accu-
rate information. Thus, we [10] and others [4] suggest es-
timating task information for applications oblivious to task-
specification interfaces.

One way to infer task information is from user interface
events. User interface studies have shown that users are sat-
isfied with response times below 50–100 ms [15]. Thus, a
DVS algorithm can infer a task with deadline 50–100 ms
when a user interface event arrives. The algorithm must
also guess when the task completes, using a heuristic such
as Flautner et al.’s [4].

Researchers have studied DVS algorithms using short
benchmarks, each featuring a user using an application in
a specified manner. However, we feel that to design DVS
algorithms applicable to any user running any application,
it is beneficial to study how users act “in the wild” and
thereby answer questions benchmarks cannot answer. So,
we collected several months’ worth of trace data from each
of eight users running Windows NT/2000, then used them
to answer the following six questions.

1. What fraction of tasks result from user interface
events?On average, only 5.6%–43.7% of CPU time is di-
rectly caused by user interface events. Thus, a DVS algo-
rithm must consider other CPU use triggers, such as timers.

2. Is there an efficient heuristic to find when user in-
terface tasks end?We propose considering a user interface
task complete when all threads are blocked or when the next
user interface event occurs. This technique requires far less
intrusive monitoring than Flautner et al.’s [4] and our mea-



surements show it is nearly as accurate.
3. How often does handling user interface events require

waiting for I/O?This is relevant because I/O time does not
scale with CPU speed. We find that 1.3% of these tasks wait
for I/O, and different event types incur I/O at different rates.

4. How quickly should we run the CPU to achieve good
response time goals for user interface tasks?We find that
the minimum CPU speed is sufficient to achieve this for
tasks triggered by mouse movements. Keystroke tasks re-
quire more speed, and mouse clicks require the most.

5. Which DVS algorithms work best for user interface
tasks? The PACE algorithm [10], which optimally adapts
the CPU speed according to the expected distribution of the
next CPU task, saves the most energy. The Stepped algo-
rithm, which always uses the same steadily increasing CPU
speed schedule, performs nearly as well.

6. Is there significant enough difference between cate-
gories of user interface event (e.g., between pressing space-
bar and enter), or between user interface events of different
applications, that a DVS algorithm should handle them dif-
ferently?There are significant differences in the CPU use of
tasks that differ in these ways. However, these differences
are small, so DVS algorithms should only consider them if
they can do so easily and efficiently.

To our knowledge, we are the first to answer questions
1 and 6, and the first to answer the others using months of
traces rather than short traces or artificial benchmarks.

This paper has the following structure. Section 2 gives
background and related work. Section 3 describes the traces
we collected and our methodology for processing them to
infer when tasks begin and end. Section 4 analyzes the
workloads in many different ways to answer the above
questions and thereby make recommendations for design-
ing DVS algorithms. Finally, Section 5 concludes.

2 Background and Related Work

In CMOS circuits, the dominant component of power
consumption is proportional toV 2f , whereV is voltage
andf is frequency [18, p. 235]. Thus, energy per cycle is
proportional toV 2. The maximum safe CPU frequency de-
creases roughly linearly with decreasing voltage. Thus, the
system can reduce processor energy consumption by reduc-
ing the voltage, but this requires running more slowly.

Weiser et al. [17] and Chan et al. [1] proposed the first
DVS algorithms. Each divides time into fixed-length in-
tervals. It predicts the CPU utilization of the next interval
based on observations of the CPU utilization of previous
intervals, then sets the speed based on that prediction.

Later researchers pointed out the flaws inherent in such
interval-based strategies, e.g., that the arbitrarily chosen in-
terval boundaries do not correspond to real deadlines [5,
12]. Thus, recent proposed strategies have been task-based,

i.e., they use task information, especially task deadlines.
A deadline may behard, meaning it must be made, or it
may besoft, meaning the task may miss it but doing so im-
pacts perceived performance negatively. Pillai et al. [13]
developed a real-time DVS scheduler for embedded operat-
ing systems that derives an energy-efficient speed schedule
from information about ongoing periodic tasks. Pouwelse
et al. [14] modified a video player to set the CPU speed for
each frame after predicting each frame’s CPU requirements.

Flautner et al. [4] proposed deriving task information au-
tomatically from applications. They considered two task
types: interactive and periodic. Interactive tasks are trig-
gered by a user-initiated action, typically a user interface
event. Periodic tasks are triggered by a periodic event; an
event is considered periodic if the times between the last
n events have a small variance. They also presented the
following heuristic for inferring a task’s completion. The
thread receiving the triggering event forms the initialthread
setfor the event. When a member of this set communicates
with another thread, that other thread becomes part of the
set. The task is complete when, for each thread in the set,
that thread is not executing, data it has written have been
consumed, and it is blocked but not on I/O.

In earlier work [10], we demonstrated that the theoret-
ically optimal speed schedule for a task depends on the
probability distribution of that task’s CPU requirement and
desired performance. Desired performance is expressed as
a required number of CPU cycles before the deadline, or,
equivalently, an average pre-deadline speed. We gave a
method for producing an optimal speed schedule given an
estimate of the task work distribution; we called this method
PACE (Processor Acceleration to Conserve Energy). We
suggested estimating the distribution from a sample of re-
cent similar tasks’ CPU use, but we did not describe how
the system should identify tasks as being similar.

For certain tasks not triggered by user interface events,
individual task deadlines are less important than overall
task completion rate. For example, media players typically
use buffers, so different frames may take different amounts
of time as long as the aggregate processing rate is suffi-
cient. For workloads like this, methods such as Simunic et
al.’s [16] are more appropriate than those we consider here.

3 Methodology

3.1 Traces

We used VTrace [9] to trace people in normal opera-
tion on their desktop PC’s running Windows NT or 2000.
VTrace collects time-stamped records describing various
interesting system and application events. To limit trace
volume, VTrace only collects the full set of events for 90
minutes at a time, then pauses for 2 hours. Also, it stops



User 1 2 3 4 5 6 7 8

Trace period 8 months 7 months 4 months 15 months 3 months 19 months 2 months 9 months
Time traced 435.8 hr 504.3 hr 83.0 hr 212.2 hr 134.9 hr 202.6 hr 106.9 hr 215.1 hr
Trace size 21 GB 18 GB 17 GB 17 GB 16 GB 12 GB 15 GB 18 GB
CPU speed 450 MHz 300 MHz 500 MHz 200 MHz 500 MHz 400 MHz 433 MHz 350 MHz
CPU type Pentium 3 Pentium 2 Pentium 3 Pentium Pro Pentium 3 Pentium 2 Celeron Pentium 2
Memory size 128 MB unreported 96 MB 128 MB 256 MB 128 MB 256 MB 64 MB
Windows OS NT 4 SP 6 NT 4 SP 4 NT 4 NT 4 SP 3 2000 SP 1 NT 4 SP 4 2000 SP 1 NT 4 SP 4

Table 1: Trace information for all users. Note that “time traced” indicates time full tracing was on.

full event tracing when the user is idle for 10 minutes. In
this paper, we only use data collected during full tracing.

We used traces from eight users. Table 1 contains data
about these users’ machines as well as summary informa-
tion about the workloads traced from these users. The self-
reported characteristics of the users are as follows.

User 1, a computer science graduate student, mainly runs
an X server, but also uses his machine for mail, web brows-
ing, software development, and office applications. User
2, another CS graduate student, uses his machine primarily
for mail, web browsing, software development, and office
applications. User 3, the CTO of a computing-related com-
pany, uses his machine for system administration, office ap-
plications, web browsing, and mail. User 4, a university
system administrator, uses his machine for networking and
system administration tasks; he primarily runs an X server,
mail client, web browser, and Windows NT system admin-
istration tools. User 5 did not report his profession; judging
from his applications, he seems to use his machine largely
for recreation. User 6, a police captain, uses his machine
primarily for groupware and office suite applications. User
7, a software developer in Korea, uses his machine primarily
for software development, web browsing, and mail. User 8,
a crime laboratory director, uses his machine primarily for
groupware and office suite applications.

3.2 Tasks

Many of the questions we consider concerntasks. Usu-
ally, people loosely define a task as a sequence of operations
serving some end goal. However, we need to more precisely
define a task so we can determine when one begins and ends
in a trace. Our approach is similar to Flautner et al.’s [4].

When a thread is notified of something that can cause it
to begin working on something new, we call this anevent
for that thread. The time a thread spends running between
two of its consecutive events we call theresponseto the first
event. Possible events are:

• a thread receives a message,
• a thread successfully completes a wait on a waitable

object such as a timer or semaphore,

• a thread is notified it has an incoming network packet,
• a thread starts,
• a thread times out after an unsuccessful wait,
• a thread begins an asynchronous procedure call (APC),

i.e., a function call made asynchronously to the thread
and invoked via a software interrupt, and

• VTrace begins a session of full tracing. (When this
happens, threads may be running or ready to run. We
cannot know what events these threads are responding
to, as they occurred when full tracing was not on. This
event type is a proxy for such unknown events.)

If, during a response, a thread causes another event, we
say that event isdependenton the event that generated the
response. For example, if a thread responding to a message
starts another thread, the event of that thread starting is con-
sidered dependent on the message. As an exception, if a re-
sponse causes a time-delayed event, e.g., by starting a timer,
we do not consider the time-delayed event to be dependent
on the event that generated the response. Our rationale is
that if a process lets time pass before work continues, we
assume this work is not a critical part of the response.

We call an event that is not dependent on any other a
trigger event. Such an event is the root of a tree in which
each event has its dependent events as children. We define
a taskas the set of responses to all events in such a tree, and
consider the task to betriggeredby the root trigger event.

Note that these techniques for identifying when tasks be-
gin, what triggered them, and how long they last, are im-
perfect heuristics. We need them to make reasonable in-
ferences about tasks without unnecessarily intrusive tracing
techniques. It is possible we will miss the true trigger event
for a task, and it is possible we will improperly infer the
continuation of a task by the act of a thread sending a mes-
sage or signaling an object that another task receives.

3.3 More definitions

We consider auser interface eventto occur when a
thread receives a message representing either a keystroke
(i.e., a key press or release), a mouse movement, or a mouse



click. A user interface taskis a task triggered by a user in-
terface event. Note that such a task includes all time the sys-
tem spends responding to the event, not just the time to han-
dle the device interrupt. For example, if the event is due to
the user hitting enter in a spreadsheet, the task includes the
time to perform any consequent spreadsheet calculations.

User interface events are divided intotypesbased on
the Windows message type associated with the event [11].
Types include key press, key release, right mouse button
down, left mouse button double-click, and others. Events
are further divided intocategoriesbased on the particu-
lar key pressed or released, the modifiers held down dur-
ing event delivery, and what type of window component a
mouse click was for (e.g., the border, the menu, the maxi-
mize button, etc.). For instance, “Ctrl-F4 pressed” and “en-
ter key released” are categories of keystroke tasks.

We define anapplicationas a set of processes with the
same name, ignoring extensions such as .exe or .bat.

3.4 Aggregation

When presenting an average across all users, we will
scale all users’ results to the same level of activity. In this
way, the results will reflect a broad set of users, not just
those with a large amount of activity or willing to be traced
for more time. For example, if there were two users, one
with 4 million keystrokes taking an average of 5 ms to pro-
cess and one with 1 million keystrokes taking an average
of 4 ms, we would report the average keystroke processing
time as 4.5 ms, not 4.8 ms.

4 Analyses

In this section, we analyze the trace characteristics to
answer the questions we posed in Section 1. Most of our
analyses are independent of CPU characteristics, but some
require simulating a particular CPU. In these cases, we as-
sume the CPU can run between 200 MHz and 600 MHz, and
that power is proportional to speed cubed [17] and equal to
3 W at 600 MHz. This range is similar to that of the first
AMD chip with DVS, and has a maximum speed similar to
that of the users traced in these workloads. Machines cur-
rently for sale, of course, are much faster.

4.1 How much of the CPU’s time is spent on user
interface events?

First, we consider how much time the CPU spends on
user interface events. Table 2 shows the non-idle CPU time
triggered by the various types of trigger event. We see that
CPU time due to user interface events ranges from 5.6%–
43.7%, with an average of 20.3%. This is curiously low, as
most Windows applications are user interface applications,

and most apparent application work is in direct response to
user interface events. We thus now explore how the CPU
spends the remaining time.

A substantial fraction of total CPU time, especially for
users with little time spent on user interface events, is due
to timer messages. CPU time triggered by timer messages
is 6.8–68.1%, on average 35.1%. An application typically
uses such messages for a periodic operation. Some of this
activity has important implied deadlines, such as media
playback, and some does not, such as blinking the cursor.

User 7 spends substantial time (43.0%) on tasks already
running when VTrace began a tracing session. This sug-
gests a lot of time in long-running processes, and looking
at the application names we see they tend to be server pro-
cesses. We do not expect such server workloads on laptops,
so this value does not reflect typical portable computers.

The largest remaining component of CPU time, account-
ing for 21.9% of it on average, is triggered by threads com-
pleting a wait on a non-timer object that VTrace did not see
signaled by a thread. In other words, it is spent working
on tasks whose purpose VTrace could not determine. Most
likely, a thread caused this event in some way VTrace could
not detect. For example, when a thread posts an entry to
a shared queue, this implicitly signals the queue object to
wake any waiting thread. In Section 4.2, we will consider
an alternate approach to tracking event duration that can ac-
count for such implicit event signaling.

In conclusion, we see the CPU spends only about 20.3%
of its time responding to user interface events. One reason
this figure is low is limitations of our methodology, which
cannot identify the cause of 21.9% of CPU time. Another
reason is server activity that laptops typically lack. Besides
user interface events, timer events also trigger substantial
CPU time; these events can also be a source of tasks with
deadlines. We conclude that tasks detected only via infer-
ence from user interface events will reflect only some of the
CPU’s work; a mechanism such as Flautner et al.’s [4] for
detecting periodic tasks may help infer deadlines for some
of the remaining work.

4.2 Can we detect task completion efficiently?

In this subsection, we will explain and test an efficient
approach for detecting task completion. Such detection is
important for two reasons. First, when all tasks are com-
plete, there is no urgency, so the system can use the mini-
mum CPU speed. Second, to estimate task work distribution
we need to know how long past tasks took, which requires
knowing when they completed.

In Section 3, we described our method for estimating
when a task is complete; it is similar to Flautner et al.’s [4].
Unfortunately, this approach is not well suited to a real on-
line algorithm. It requires modifying or interposing many



User User interface Timer Other Timer Other Packet Thread Session Timeout APC
message message message object waitable object start start

1 29.5% 29.2% 3.6% 0.0% 23.4% 0.0% 2.9% 2.1% 2.7% 6.7%
2 43.7% 27.2% 3.9% 0.0% 16.4% 0.1% 2.6% 0.9% 4.1% 1.2%
3 7.3% 68.1% 2.5% 0.0% 6.4% 0.0% 0.2% 1.3% 11.6% 2.6%
4 22.9% 28.0% 3.9% 0.0% 21.6% 0.0% 0.4% 2.2% 20.4% 0.7%
5 10.9% 23.4% 4.9% 0.1% 29.8% 0.0% 6.1% 16.8% 7.9% 0.0%
6 17.7% 46.9% 2.3% 0.0% 22.7% 0.1% 1.0% 5.3% 3.8% 0.3%
7 5.6% 6.8% 1.5% 0.0% 39.0% 0.0% 0.2% 43.0% 3.9% 0.0%
8 24.5% 51.1% 1.4% 0.0% 16.0% 0.1% 0.6% 1.7% 4.0% 0.6%
Avg 20.3% 35.1% 3.0% 0.0% 21.9% 0.0% 1.8% 9.2% 7.3% 1.5%

Table 2: Non-idle CPU time triggered by each event type. See Section 3.2 for event type descriptions.

system calls to keep track of thread communication and how
threads block; these modifications can create high system
overhead. Also, it cannot be complete, since there are ways
for threads to communicate with each other that cannot be
efficiently tracked, e.g., writing to shared memory.

We propose the following simplified approach. We con-
sider a user interface task complete when one of the follow-
ing becomes true: the idle thread is running and no I/O is
ongoing; or the application receives another user interface
request. This greatly simplifies implementation; in partic-
ular, it requires no tracking of inter-thread communication.
One problem is that it occasionally misidentifies a task as
complete when it is not. Another apparent problem is that it
considers as part of a task all processing done by unrelated
threads, since the task is not considered complete untilall
threads in the system are blocked. However, this is actu-
ally a boon, since it automatically accounts for unrelated
work that nevertheless delays the completion of the task.
The amount of such unrelated work for this task is a rea-
sonable predictor of what it will be for future tasks, so it is
good to account for such sources of delay when estimating
the future CPU needs of similar tasks.

To evaluate this method’s potential inaccuracy, we de-
termined how many user interface tasks continue past the
point when the system goes idle with no I/O ongoing, and
how many continue past the point when the next user inter-
face event occurs. Table 3 contains these results.

Breaking down this information by application (see [8]
for details), we see that two applications, exceed and java,
have a substantial number of user interface tasks that go be-
yond the next idle time or the next user interface task. How-
ever, almost all other applications do not show this behavior.
We hypothesize that this is because the outlier applications
signal objects that cause threads to perform unrelated work;
for example, they may use locks, and our analysis sees the
release of such a lock and the subsequent acquire of that
lock as a continuation of the same task when it is not. We
support this hypothesis by repeating the analysis without

User % of user interface tasks continuing past. . .
system idle next UI event either boundary

1 10.9% 20.6% 20.8%
2 2.8% 3.1% 3.1%
3 0.3% 0.7% 0.8%
4 2.1% 5.7% 5.9%
5 2.2% 3.2% 3.3%
6 1.4% 1.9% 2.0%
7 2.6% 5.3% 5.3%
8 0.5% 0.8% 0.9%

Without exceed or java. . .
1 0.6% 1.3% 1.4%
2 1.4% 1.6% 1.6%
4 0.8% 1.5% 1.6%

With exceed and java, but without considering
object signaling to cause event dependence. . .

1 0.2% 0.6% 0.6%
2 0.7% 0.8% 0.8%
4 0.4% 1.0% 1.1%

Table 3: User interface tasks continuing past
system-idle or next user interface event

considering object signaling to cause event dependency (see
bottom of Table 3). Here, we find applications have a much
lower number of tasks that continue past the next idle and
user interface event arrival time.

Ignoring the two outlier applications, we find that few
tasks continue past system idle, no more than 2.6%. Also,
few tasks continue past the next user interface event, no
more than 5.3%. Furthermore, there is substantial over-
lap between these two types of persistent tasks, so the to-
tal number of both types is never more than 5.3%. It is
likely that many of these tasks only appear long due to our
base heuristic failing to detect their true end times, so if our
heuristic were better we would see fewer tasks extending
beyond either boundary.

Thus, our simplified approach to identifying when tasks



User Key press/release Mouse move Mouse click All user interface events
disk network either disk network either disk network either disk network either

1 0.3% 5.0% 5.2% 0.2% 1.1% 1.2% 8.3% 9.3% 15.5% 0.3% 3.2% 3.5%
2 0.7% 5.4% 5.9% 0.2% 0.4% 0.6% 5.0% 2.7% 6.8% 0.5% 1.1% 1.4%
3 0.7% 0.7% 1.4% 0.3% 0.2% 0.4% 12.5% 2.9% 14.5% 0.5% 0.3% 0.7%
4 0.1% 5.4% 5.5% 0.1% 1.1% 1.2% 6.1% 10.0% 14.6% 0.3% 2.2% 2.4%
5 0.2% 0.1% 0.3% 0.1% 0.1% 0.2% 3.1% 2.7% 5.1% 0.2% 0.2% 0.3%
6 0.4% 0.2% 0.6% 0.2% 0.1% 0.3% 10.0% 5.1% 13.3% 0.5% 0.2% 0.6%
7 2.6% 0.4% 2.7% 0.5% 0.1% 0.5% 10.0% 1.5% 10.5% 1.0% 0.2% 1.0%
8 0.8% 2.5% 3.1% 0.3% 0.1% 0.4% 17.2% 7.9% 18.1% 0.7% 0.3% 0.8%
Avg 0.7% 2.5% 3.1% 0.2% 0.4% 0.6% 9.0% 5.3% 12.3% 0.5% 1.0% 1.3%

Table 4: Percent of user interface tasks requiring waiting for I/O

end will likely work well for most applications. However,
for a small set of applications it may produce wrong results,
considering tasks complete when they are not.

4.3 How often do user interface tasks wait for I/O?

An important concern for DVS algorithms is how often
tasks wait for I/O, since I/O power and time do not scale
with CPU voltage and speed. Table 4 shows how many user
interface tasks require I/O of two kinds: disk and network.
For breakdowns by application, see [8]. We find that 0.3–
3.5% of user interface tasks wait for I/O, with an average
of 1.3%. Just looking at the disk, only 0.2–1.0% of user
interface tasks wait for I/O, with an average of 0.5%.

Part of the reason for infrequent I/O is that mouse move-
ments are frequent but seldom require I/O. In contrast,
5.1–18.1% of all mouse clicks, with an average of 12.3%,
wait for I/O. Thus, DVS algorithms planning schedules for
mouse click events may need to provide extra slack for I/O
time. The rate of I/O among keystroke tasks is a modest
0.3–5.9% with an average of 3.1%.

Some applications use I/O far more often than the av-
erage. For example, for user #4, ssh requires network I/O
for 29.1% of all its keystroke events, and for user #2, star-
craft requires network I/O for 20.5% of its keystroke events.
Thus, it may be worthwhile for a DVS algorithm to deter-
mine which applications require substantial I/O and treat
them specially.

Developing algorithms to deal with tasks requiring I/O
is beyond the scope of this paper, so in subsequent analyses
we restrict consideration to events that do not wait for I/O.

4.4 How fast should we run user interface tasks?

Generally, one can tune any DVS algorithm to provide
varying levels of performance. Average pre-deadline speed
is an important “knob” in such tuning, since it determines
which deadlines are met: a task misses its deadline if the
CPU cycles it needs exceed the pre-deadline CPU cycles.

Thus, the question of what average pre-deadline speed gives
good performance applies to any DVS algorithm.

We seek a pre-deadline speed satisfying a large percent-
age of task deadlines, such that running at higher speeds
does not substantially increase this percentage. For this, we
examine the cumulative distribution function of task CPU
needs on a logarithmic scale, as in Figure 1. Here, the slope
at any point reflects how much the deadline performance
improves for a constant speed increase factor. Our approach
for picking a good average pre-deadline speed is to find a
point above which the slope is low; often, this appears as
a “knee” in the curve. Dividing this point by the deadline
gives a pre-deadline speed above which a given speed in-
crease does not improve performance much.

Figure 1 suggests we should use a different average pre-
deadline speed for mouse movements, mouse clicks, and
keystrokes due to their different CPU needs. We now con-
sider what average speed seems best for each event type.

First, we consider mouse movements. Here, the 99.5th
percentile of CPU use is 3.5–13.3 Mc (million cycles), de-
pending on user. Assuming a soft deadline of 50 ms, as
Endo et al. [3] suggest, we see that 266 MHz is sufficient
for all users to complete 99.5% of tasks within this deadline.
Even at 200 MHz, all users complete 99% of tasks within
the deadline. Future CPU’s are unlikely to have speeds
lower than 200 MHz, so we recommend that mouse move-
ments simply use the minimum pre-deadline speed avail-
able. To see the potential energy savings of this approach,
we simulated mouse movement task processing assuming
a CPU with speed range 200–600 MHz. We found we
could save substantial energy, 68.3–84.0% with an average
of 77.5%, by using the minimum pre-deadline speed.

Next, we consider keystrokes, for which we assume a
soft deadline of 50 ms, following Shneiderman [15]. We
find an interesting dichotomy among users. Users 1, 3,
4, 5, and 6 show relatively low CDF slopes beyond about
10.5 Mc, but users 2, 7, and 8 show much steeper CDF
slopes above 10.5 Mc. In other words, five users would



90

91

92

93

94

95

96

97

98

99

100

1 10 100

1 10 100 1000
C

um
ul

at
iv

e 
di

st
ri

bu
tio

n 
pe

rc
en

til
e

Megacycles

MillisecondsUser #1

Key presses/releases
Mouse moves
Mouse clicks

All user-interface events
90

91

92

93

94

95

96

97

98

99

100

1 10 100

1 10 100 1000

C
um

ul
at

iv
e 

di
st

ri
bu

tio
n 

pe
rc

en
til

e

Megacycles

MillisecondsUser #2

Key presses/releases
Mouse moves
Mouse clicks

All user-interface events

Figure 1: The cumulative distribution function of CPU time required by various user interface event types. For
space reasons, only users 1 and 2 are shown, and only those parts of the graphs above the 90th percentile.
For the rest, see [8, pp. 180–181].

probably not mind a pre-deadline speed of 210 MHz, but
three users would likely notice increased response time
at that speed. This suggests that no single average pre-
deadline speed will work well for all users, so a DVS al-
gorithm should monitor deadlines and dynamically adjust
the pre-deadline speed to achieve reasonable performance.

Finally, we consider mouse clicks. For these tasks, we
assume a 50 ms deadline, conservatively following Shnei-
derman [15]. All users show a relatively high CDF slope at
and well beyond 10 Mc. In other words, increasing the CPU
speed substantially reduces deadlines missed and thus im-
proves user-perceived response time. Thus, it seems that the
average pre-deadline speed for these tasks should be high,
though it probably can be below the maximum. A good
reason not to use the maximum is that with PACE, even a
small reduction of the average pre-deadline speed can save
subtantial energy, as it means the task may start at a low
speed that may be sufficient to complete the entire task.

4.5 Which DVS algorithm should we use for user
interface events?

In earlier work [10], we showed how to compute an op-
timal speed schedule, given an average pre-deadline speed
and the probability distribution of a task’s CPU needs; we
called this the PACE schedule. However, estimating prob-
ability distribution and computing the PACE schedule is
complex, so in some cases it would be better to use a sim-
pler DVS algorithm that saves nearly as much energy. In
this section, we compare the energy savings for three sim-
ple DVS algorithms and for PACE. For this, we use simu-
lations assuming the CPU with speed range 200–600 MHz.
To make comparisons fair, we use the same pre-deadline
speed for all algorithms: 400 MHz for keystroke tasks and

500 MHz for mouse click tasks. We ignore mouse move-
ment events since, as we noted earlier, they should use the
minimum speed regardless of DVS algorithm.

The three non-PACE algorithms we consider are:

• Flat. The pre-deadline speed is constant.
• Past/Peg.The pre-deadline speed is 200 MHz for the

first interval, then goes up to 600 MHz thereafter. In-
terval length is chosen to achieve the desired average
pre-deadline speed. This models the algorithm sug-
gested by Grunwald et al. [5].

• Stepped. The pre-deadline speed begins at 200 MHz
and goes up 100 MHz after each interval. Interval
length is chosen to achieve the desired average pre-
deadline speed. This models algorithms such as that in
Transmeta’s LongRunTM [7].

Results are in Table 5. These include four different vari-
ants of PACE; we will discuss what these variants are later,
in subsection 4.6.3. For now, we consider only the best
PACE variant, PACE-CA.

For keystrokes, we find a nearly universal pattern among
users. PACE is always best, Flat is always worst, and for all
but one user Stepped is better than Past/Peg. On average,
Past/Peg reduces energy consumption by 30.4% relative to
Flat, Stepped reduces it by 9.1% relative to Past/Peg, and
PACE reduces it by 7.3% relative to Stepped. Thus, PACE is
best, but if the complexity of PACE is undesirable, Stepped
is best among non-PACE algorithms.

For mouse clicks, there is a different ordering among,
and less difference between, the algorithms. Here, PACE is
always best, followed by Stepped, and for all but one user
Flat is better than Past/Peg. On average, Flat reduces energy
consumption by 0.5% relative to Past/Peg, Stepped reduces
it by 3.8% relative to Flat, and PACE reduces it by 2.8%



User Task No DVS Flat P/P Step PACE-N PACE-A PACE-C PACE-CA

1 Key 4.577 (99.86%) 2.366 (99.77%) 1.630 1.491 1.394 1.393 1.367 1.350
2 Key 11.621 (98.52%) 6.904 (97.74%) 6.575 5.880 5.548 5.522 5.506 5.442
3 Key 5.973 (99.88%) 2.806 (99.80%) 1.673 1.415 1.328 1.320 1.310 1.289
4 Key 4.978 (99.93%) 2.300 (99.89%) 0.874 0.900 0.822 0.820 0.818 0.812
5 Key 8.380 (99.58%) 4.349 (99.45%) 2.640 2.506 2.441 2.438 2.441 2.426
6 Key 5.550 (99.94%) 2.546 (99.83%) 1.310 1.194 1.112 1.110 1.118 1.101
7 Key 13.515 (98.56%) 7.859 (97.88%) 7.396 6.557 6.283 6.276 6.179 6.158
8 Key 6.685 (99.80%) 3.508 (99.61%) 3.112 2.621 2.502 2.499 2.511 2.478

Avg Key 7.660 (99.51%) 4.080 (99.25%) 3.151 2.820 2.679 2.672 2.656 2.632

1 Click 54.22 (93.50%) 47.54 (92.55%) 48.34 46.59 45.97 45.90 45.59 45.42
2 Click 48.56 (95.05%) 41.89 (93.98%) 42.37 40.42 39.62 39.54 39.39 39.28
3 Click 85.12 (94.19%) 77.61 (93.42%) 78.11 75.96 75.32 75.28 74.42 74.27
4 Click 32.96 (96.03%) 27.70 (95.35%) 26.98 25.69 25.45 25.41 24.80 24.73
5 Click 57.12 (90.93%) 48.85 (89.94%) 49.69 47.55 46.66 46.59 46.32 46.17
6 Click 54.66 (94.10%) 48.48 (93.31%) 48.67 47.00 46.49 46.39 46.35 46.11
7 Click 41.52 (93.61%) 33.93 (92.51%) 34.30 31.92 31.16 31.09 30.93 30.85
8 Click 49.62 (93.55%) 42.42 (92.42%) 42.60 40.63 39.85 39.82 39.54 39.42

Avg Click 52.97 (93.87%) 46.05 (92.94%) 46.38 44.47 43.81 43.75 43.41 43.28

Table 5: Average per-task energy consumption in mJ (and, in parentheses, percent of deadlines made) for
various DVS algorithms operating on various task traces

relative to Stepped. Thus, PACE is also best for mouse
clicks, but for these tasks it may not be sufficiently better
than Stepped to make up for its complexity.

It is interesting that Stepped saves almost as much as
PACE, since PACE adapts the speed schedule to CPU us-
age, while Stepped uses the same schedule for every task.
This suggests that this particular schedule, i.e., a steadily
increasing CPU speed, is well suited to the CPU usage pat-
terns seen in most real user interface tasks.

4.6 Should a DVS algorithm distinguish between
user interface events from different categories
and applications?

To compute a schedule, PACE must estimate the proba-
bility distribution of a task’s CPU needs. It makes this es-
timate using a sample of past tasks’ CPU needs, weighting
recent tasks more heavily. In earlier work, we suggested di-
viding tasks into groups of similar tasks and keeping a sepa-
rate sample for each group; this way, the estimate for a task
is based only on similar tasks and thus should be more accu-
rate [10]. However, we did not provide or evaluate methods
for dividing tasks this way. In this section, we do so.

Dividing tasks into groups of similar ones is difficult. If
groups are too large, they can have too many tasks with sig-
nificantly different work distributions, decreasing estima-
tion accuracy. If groups are too small, there may be few
recent tasks in each group, so estimates may be made from
old and therefore less relevant information.

4.6.1 Does distinguishing tasks by category and appli-
cation improve prediction of task length?

First, we see whether distinguishing tasks by category
and application improves or worsens predictions of task
length, since we expect a sampling method that improves
prediction of task length to also improve prediction of over-
all task distribution. Later, in subsection 4.6.3, we will val-
idate this expectation by evaluating how much energy these
predictors allow PACE to save.

We consider four ways to predict task length: no classi-
fication (N), classification by application (A), classification
by category (C), and classification by category and appli-
cation (CA). N considers any two tasks similar; A consid-
ers two tasks similar if they have the same application; C
considers them similar if they have the same category; CA
considers them similar if they have the same category and
application. Givenn earlier similar tasks, theith most re-
cent of which has lengthLi, each predictor predicts the next

task will have length
Pn

i=1 αiLiPn
i=1 αi , whereα = 0.95. Earlier

research showed this value ofα worked well [10].
We compare two predictors usingpaired observations[6,

p.209]. For each task, we compute the difference between
the absolute prediction error for one predictor and that for
the other predictor. If the mean of these differences over all
tasks is less than zero and the 99% confidence interval about
this mean does not include zero, we say the first predictor is
significantly better than the other.

Figure 2 shows mean absolute predictor error for



Keystroke tasks Mouse click tasks

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 Avg

User

M
ea

n
 a

b
so

lu
te

 e
rr

o
r 

(M
c)

N A C CA

0

5

10

15

20

25

1 2 3 4 5 6 7 8 Avg

User

M
ea

n
 a

b
so

lu
te

 e
rr

o
r 

(M
c)

N A C CA

Figure 2: For each user trace, the mean absolute error of each predictor

keystroke and mouse click tasks for each user trace and each
predictor. In general, CA has the least error, C the second
least, A the third least, and N the highest error. This order
also holds formedianpredictor error, not shown here for
space reasons. Even restricting ourselves just to what we
can say with 99% confidence, CA is still significantly better
than each other predictor for each trace.

So, separating tasks by category and application signifi-
cantly improves task length prediction. We explore whether
it improves PACE’s energy savings in subsection 4.6.3.

4.6.2 Are some task categories so similar they should
be considered equivalent?

Some user interface event categories are so similar that
we might expect them to trigger tasks of similar lengths.
For example, we might expect most applications to use the
same amount of CPU time to process a plus keypress as a
minus keypress. If this is so, we can cluster multiple such
categories into the same group and thereby improve predic-
tors by having them treat tasks of the same category group
as equivalent. In this subsection, we discuss and evaluate
two methods for performing such clustering.

Our first method is based on intuition about which cate-
gories are similar. We cluster keys into these groups: letter,
shift-letter, ctrl-letter, space, number, shift-number, misc.
punctuation, backspace, tab, enter, escape, home, end, del,
arrow, F-key, page up/down, ctrl-F-key, ctrl-space, alt-letter,
modified-arrow (e.g., ctrl-arrow), Eastern-language charac-
ter, modified Eastern-language character, modifiers alone,
and other. We cluster mouse clicks into: left button down,
left button up, left button double-click, right button down,
right button up, and other.

Our second method is aglobal greedy agglomerative al-
gorithm, as defined by Cutting et al. [2]. We begin with a
collection of groups of categories, each group containing a
single category. We then randomly pick two groups and see
if combining them into one group improves the total abso-

lute prediction error. If it does so for each user’s trace, we
combine the groups. We repeat this step until we have tried
combining every pair of groups remaining. At the end, each
group is a group of categories we will consider equivalent.

We found that, in almost all cases, simply treating ev-
ery category as different is better than either clustering ap-
proach. We conclude that clustering categories into groups
in either manner is not worthwhile.

4.6.3 Should PACE separate tasks by category and ap-
plication?

Having shown that separating tasks by category and ap-
plication improves task length prediction, we now exam-
ine whether and to what extent such separation improves
PACE. To simulate PACE’s performance, we conducted
trace-driven simulations assuming a CPU with speed range
200–600 MHz. We compared the following four variants of
PACE. PACE-N computes the current task’s schedule us-
ing a probability distribution derived from all recent tasks,
regardless of their category or application.PACE-A uses
only recent tasks of the same application as the current task.
PACE-C uses only recent tasks of the same category as the
current task.PACE-CA uses only recent tasks of the same
category and application as the current task.

Results are in Table 5. We find that PACE-CA beats
PACE-N, PACE-A, and PACE-C for every user and for both
keystrokes and mouse clicks. These results validate our hy-
pothesis that separation to improve prediction of task length
will also improve prediction of task length distribution.

However, PACE derives only small energy savings by
separating tasks by category and application. The average
energy reduction for PACE-CA relative to PACE-N is only
1.7% for keystroke tasks and 1.3% for mouse click tasks.
We conclude that separation is worthwhile, but only barely
so. If such separation incurs significant complexity or over-
head, the system designer should avoid it.



5 Conclusions

In this paper, we analyzed months of traces of user oper-
ations to answer questions about using user interface events
to estimate task information for DVS algorithms.

We found that processing user interface events uses only
5.6%–43.7% of CPU time, so DVS algorithms should look
at other sources of tasks. Timer events are promising, as
their processing accounts for 6.8–68.1% of CPU time.

We described and evaluated a new heuristic for determin-
ing when a user interface task completes. It is much easier
to implement than existing heuristics, and we found that,
excepting two applications, it is nearly as accurate, prema-
turely estimating completion for only 0.8–5.3% of tasks.

Since I/O wait time is important to DVS algorithms, we
analyzed how frequently user interface tasks wait for I/O.
This occurs in only 0.3–3.5% of user interface tasks for the
various users. Mouse clicks require I/O far more often, 5.1–
15.5% of the time, so DVS algorithms should probably ac-
count for I/O during mouse click processing.

We then examined task work distributions to see
how DVS algorithms should choose average pre-deadline
speeds. We found that different event types need different
speeds. Mouse movements need only the minimum speed,
and simulations showed that this speed makes over 99% of
all deadlines while reducing energy consumption by 68.3–
84.0% with an average of 77.5%. Keystrokes can require
more speed, though the specific speed is different for differ-
ent users. Mouse clicks require an even higher pre-deadline
speed for reasonable response time.

Next, we compared DVS algorithms. We found that
Stepped, which gradually increases speed as a task pro-
gresses, does better than Flat and Past/Peg. PACE is even
better than Stepped: 7.3% better for keystrokes and 2.8%
for mouse clicks. Since Stepped saves almost as much en-
ergy as the near-optimal PACE, its schedule seems well
suited to user interface tasks in real workloads.

Finally, we found that separating tasks by both category
and application provides a better prediction of task length
than performing no separation or separating only by cat-
egory or only by application. Furthermore, simulations
showed that PACE actually saves energy by performing
such separation, improving 1.7% for keystrokes and 1.3%
for mouse clicks. However, the small effect size suggests
that a DVS algorithm should do this only if it would incur
minimal complexity and overhead.

References

[1] E. Chan, K. Govil, and H. Wasserman. Comparing algo-
rithms for dynamic speed-setting of a low-power CPU. In
Proceedings of the 1st ACM International Conf. on Mobile

Computing and Networking (MOBICOM 95), pages 13–25,
November 1995.

[2] D. R. Cutting, D. R. Karger, J. O. Pedersen, and J. W. Tukey.
Scatter/Gather: a cluster-based approach to browsing large
document collections. InProceedings of the 15th Annual In-
ternational ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, pages 318–329, June 1992.

[3] Y. Endo and M. Seltzer. Improving interactive performance
using TIPME. InProceedings of the 2000 ACM SIGMET-
RICS Conference, pages 240–251, June 2000.

[4] K. Flautner, S. Reinhardt, and T. Mudge. Automatic
performance-setting for dynamic voltage scaling. InPro-
ceedings of the 7th ACM International Conf. on Mobile
Computing and Networking (MOBICOM 2001), July 2001.

[5] D. Grunwald, P. Levis, K. I. Farkas, C. B. Morrey III, and
M. Neufeld. Policies for dynamic clock scheduling. InPro-
ceedings of the 4th Symposium on Operating Systems De-
sign and Implementation, October 2000.

[6] R. Jain.The Art of Computer Systems Performance Analysis:
Techniques for Experimental Design, Measurement, Simula-
tion, and Modeling. John Wiley & Sons, Inc., New York,
NY, 1991.

[7] A. Klaiber. The technology behind CrusoeTM processors.
White paper, Transmeta Corporation, January 2000.

[8] J. R. Lorch. Operating Systems Techniques for Reducing
Processor Energy Consumption. PhD thesis, Computer Sci-
ence Division, EECS Department, University of California
at Berkeley, December 2001.

[9] J. R. Lorch and A. J. Smith. The VTrace tool: building a
system tracer for Windows NT and Windows 2000.MSDN
Magazine, 15(10):86–102, October 2000.

[10] J. R. Lorch and A. J. Smith. Improving dynamic voltage
scaling algorithms with PACE. InProceedings of the 2001
ACM SIGMETRICS Conference, pages 50–61, June 2001.

[11] Microsoft. Platform SDK Documentation, 2002.
[12] T. Pering, T. Burd, and R. W. Brodersen. The simulation

and evaluation of dynamic voltage scaling algorithms. In
Proceedings of the 1998 International Symposium on Low
Power Electronics and Design, pages 76–81, August 1998.

[13] P. Pillai and K. G. Shin. Real-time dynamic voltage scaling
for low-power embedded operating systems. InProceedings
of the 18th ACM Symposium on Operating Systems Princi-
ples (SOSP), pages 89–102, October 2001.

[14] J. Pouwelse, K. Langendoen, and H. Sips. Dynamic voltage
scaling on a low-power microprocessor. InProceedings of
the 7th ACM International Conf. on Mobile Computing and
Networking (MOBICOM 2001), July 2001.

[15] B. Shneiderman.Designing the User Interface: Strategies
for Effective Human-Computer Interaction. Addison-Wes-
ley, Reading, MA, 1998.

[16] T. Simunic, L. Benini, A. Acquaviva, P. Glynn, and G. D.
Micheli. Dynamic voltage scaling and power management
for portable systems. InProceedings of the 38th Design Au-
tomation Conference, pages 524–529, June 2001.

[17] M. Weiser, B. Welch, A. Demers, and S. Shenker. Schedul-
ing for reduced CPU energy. InProceedings of the 1st Sym-
posium on Operating Systems Design and Implementation,
pages 13–23, November 1994.

[18] N. H. E. Weste and K. Eshraghian.Principles of CMOS
VLSI Design. Addison-Wesley, Reading, MA, 1993.


