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Abstract

We study the role that privacy-preserving algorithms,
which prevent the leakage of specific information about par-
ticipants, can play in the design of mechanisms for strategic
agents, which must encourage players to honestly report in-
formation. Specifically, we show that the recent notion of
differential privacy [15, 14], in addition to its own intrin-
sic virtue, can ensure that participants have limited effect
on the outcome of the mechanism, and as a consequence
have limited incentive to lie. More precisely, mechanisms
with differential privacy are approximate dominant strategy
under arbitrary player utility functions, are automatically
resilient to coalitions, and easily allow repeatability.

We study several special cases of the unlimited supply
auction problem, providing new results for digital goods
auctions, attribute auctions, and auctions with arbitrary
structural constraints on the prices. As an important pre-
lude to developing a privacy-preserving auction mecha-
nism, we introduce and study a generalization of previous
privacy work that accommodates the high sensitivity of the
auction setting, where a single participant may dramati-
cally alter the optimal fixed price, and a slight change in
the offered price may take the revenue from optimal to zero.

1 Introduction

The problem of analyzing sensitive data with an eye to-
wards maintaining its privacy has existed for some time.
Problems faced by the Census Bureau, among other exam-
ples, helped to develop the study of “disclosure limitation
mechanisms”1, which aim to limit the amount or nature
of specific information that leaks out of a data set. Tech-
niques emerged in which the sensitive input data is random-
ized, aggregated, anonymized, and generally contorted to

1The reuse of the term “mechanism” is not our choice, but we will see
that it is not entirely inappropriate either.

remove any concrete implications about its original form,
and thereby constrain the disclosures that might result.

As might be expected, a common part of most (but not
all) disclosure limitation mechanisms is a precise under-
standing of what constitutes an unacceptable disclosure.
Generally, disclosing specific information about a partici-
pant is unacceptable, whereas non-specific, general infor-
mation about a population is acceptable, even desirable.
Specific guarantees given by different techniques are, nat-
urally, different, and the tendency is to formally character-
ize privacy as protection from the disclosures prevented by
the mechanism at hand, rather than aiming for any specific
privacy goal.

Recent work [15, 14] avoids the difficulties of formally
characterizing disclosures through a definition that imposes
relative bounds the change in the probability of any event.
Rather than bound the probability that any event does or
does not happen, the definition bounds the relative change
in probability of events as a result of changes in any one
user’s data.

Definition 1 (Differential Privacy) A randomized func-
tion M gives ε-differential privacy if for all data sets D1

and D2 differing on a single user, and all S ⊆ Range(M),

Pr[M(D1) ∈ S] ≤ exp(ε) × Pr[M(D2) ∈ S] . (1)

A natural consequence is that any event (perhaps an un-
wanted disclosure of private information) as defined by a
subset S of Range(M), is not substantially more or less
likely as a result of any one user’s participation. Events that
are unlikely (or impossible) without a specific user’s data
remain so even after introducing the data to the computa-
tion.

The field of Mechanism Design studies the design and
analysis of algorithms robust to strategic manipulation of
their inputs by self-interested agents. One can view privacy
concerns as a form of strategic play: participants are con-
cerned that the specific values of their inputs may result in
noticeably different outcomes, of noticeably different utili-
ties. While results from Mechanism Design can potentially



provide interesting privacy-preserving algorithms, the sub-
ject of this note is to develop the converse: that strong pri-
vacy guarantees, such as given by differential privacy, can
inform and enrich the field of Mechanism Design.

1.1 Statement of Results and Comparison
with Related Work

The contributions of this note fall into three parts. We
introduce the use of differential privacy as a solution con-
cept for mechanisms design, we expand the applicability of
differential privacy by presenting a mechanism that can be
applied in a substantially larger set of contexts than previous
work, and we study the particular case of unlimited supply
auctions, providing substantially improved regret bounds
using this solution concept.

Differential Privacy as a Solution Concept Perhaps the
most common solution concept for mechanism design is
“truthfulness”, where the mechanism is designed so that
truthfully reporting one’s value is a dominant strategy for
each user. Designing mechanisms that are truthful simpli-
fies their analysis by removing the need to worry about po-
tential gaming that the users might apply in order to raise
their expected utility. For this reason, the comfort of truth-
fulness as a solution concept is very appealing.

The mechanisms are normally proved truthful in the set-
ting where collusion among multiple players is prohibited,
where the utility functions of the bidders are constrained
to simple classes, and where the mechanisms are executed
once, with limited possibility of recourse. Additionally,
the mechanisms may need provide large payments to some
users or offer goods to different users at different prices or
not at all. Such strong assumptions can limit the domains in
which the mechanisms can be faithfully implemented and
the benefits of truthfulness fully realized.

As we will develop in Section 2, differential privacy
leads to a relaxation of truthfulness where the incentive
to misrepresent a value is non-zero, but tightly controlled.
More importantly, the approximate truthfulness that results
gives immediate guarantees in the presence of collusion,
for arbitrary utility functions, and under repeated runs of
the mechanism. Owing to recent work of Chaudhuri et
al. [12], such mechanisms can be implemented to be truth-
ful with high probability. Moreover, it will allow us to de-
velop mechanisms for problems that cannot be addressed
with strict truthfulness, a notable example being the unlim-
ited supply pricing problem, where an unlimited supply of
goods must be made available to all at a single price.

A General Differential Privacy Framework Previous
approaches to differential privacy focus on real valued func-
tions whose values are relatively insensitive to the change in

the data of a single individual and whose usefulness is rela-
tively unaffected by additive perturbations. Many statistical
quantities fit these requirements, as do several other more
computational quantities. Most work has focused on the
goal of reducing the magnitude of additive perturbation, ei-
ther by studying properties of the function, or more recently
by taking advantage of non-uniformity in the sensitivity of
the function [33].

What the approaches have not discussed is how to ex-
pand their methods to domains where the above assump-
tions do not hold. Taking the example of unlimited sup-
ply auctions, the function “optimal fixed price to sell at”
is neither insensitive – a single bidder has the potential to
shift the optimal price arbitrarily – nor robust to additive
noise, as increasing the offered price even slightly has the
potential to send all bidders home empty-handed. While
the recent work of Nissim et al. [33] may address those in-
stances where the optimal price is insensitive, it does not
address sensitive instances or the issue of additive perturba-
tions, which we will.

A larger issue, which our general mechanism will also
address, is the design of mechanisms for problems where
the output is non-numeric. For example, in machine learn-
ing one produces models or classifiers; in optimization one
may want to activate facilities or route flow. While these
solutions may contain numbers in them, a large compo-
nent of the output is structural information that is not easily
“perturbed”. Our general framework will permit an arbi-
trary measurable range, and allow us to tackle problems like
those mentioned above in a privacy-preserving manner. In
fact, the framework captures any mechanism that gives dif-
ferential privacy, but does not necessarily expose the com-
putational benefits possible in special settings.

Applications to Digital Goods Auctions The digital
goods auction problem involves a set of n bidders, each
of which has a private utility for a good at hand, of which
the auctioneer has an unlimited supply. The bidders submit
bids in [0, 1], and the auctioneer determines who receives
the good and at what prices. We write OPT for the opti-
mal fixed price revenue the auctioneer could extract from
the submitted bids.

Theorem 1 There is a mechanism for the digital goods
auction problem giving ε-differential privacy and with ex-
pected revenue at least OPT − 3 ln(e + ε2OPTn)/ε.

This can be compared with the recent work of Balcan et
al. [6] who use machine learning applied to random sam-
ples of users to arrive at a truthful mechanism that gives
OPT − O(

√
OPT ) revenue in expectation. Our approach

trades strict adherence to truthfulness for the exponentially
smaller deficit from the optimal revenue. Moreover, in this



exchange our mechanism collects the strong properties dis-
cussed in Section 2, which are not present in the work of
[6]. In addition, our mechanism offers the same price to all
users, and is therefore envy-free.

As an extension of the digital goods auction problem,
the digital goods attribute auction problem adds public, im-
mutable attributes to each participant. The output of mecha-
nisms for this problem describe a market segmentation (i.e.
a partitioning) of the attribute space, and prices for each
market segment. It is common to constrain the possible seg-
mentations, thereby constraining the optimal solution to a
manageable space. We write OPTk for the optimal revenue
over segmentations into k markets, and SEGk for the num-
ber of segmentations of the specific bidders at hand into k
markets.

Theorem 2 There is a mechanism for the digital goods at-
tribute auction problem giving ε-differential privacy and
with expected revenue at least

max
k

(OPTk − 3 ln(e + εk+1OPTkSEGknk+1)/ε).

This can be compared with Theorem 5 in [6] which gives
a structural risk minimization based bound, guaranteeing
revenue at least

max
k

(OPTk − O((OPT 2
k ln(k2SEGk))1/3))

with high probability. Again, we give up strong truthful-
ness in exchange for the additional revenue as well as the
properties outlined in Section 2, and the single-price offer.

We also provide new results for constrained pricing prob-
lems, as well as the problem of selecting and applying the
best of a set of truthful algorithms.

1.1.1 Previous Work in Privacy

Several mechanisms that give differential privacy have been
detailed in prior work, mostly for tasks in data mining, ma-
chine learning, and statistics. A large class of mechanisms
take advantage of the fact that the outputs of interest are
robust to small additive noise, and consequently additive
perturbations chosen to preserve privacy do not compro-
mise their usefulness. Specifically, in [9, 15] the addition
of symmetric, exponentially distributed noise to functions
satisfying a Lipschitz condition is shown to ensure differen-
tial privacy.

Recent work of Nissim et al [33] shows how to take
advantage of non-uniformity in the sensitivity of functions
whose worst-case sensitivity may be large, while the “local
sensitivity” is small. These results can often substantially
reduce the amount of noise that is added to such computed
quantities.

Other disclosure limitation techniques involve input per-
turbation, scrambling the data that is received from the
users, and query restriction, in which certain questions are
not answered if it is determined that their outputs would
compromise privacy. Research in these areas have aimed to
prevent disclosures in the absolute sense, typically folding
assumptions on the adversary into the definition of disclo-
sure. Indeed, [14] shows that absolute disclosure limitation
is impossible without limiting the prior knowledge of the
adversary. We refer the reader to [1] for a good survey of
related work.

1.1.2 Previous Work in Mechanism Design

The field of mechanism design has been an active area of
research in game theory and economics for several years,
starting with the Vickrey auction and generalizations of it
to social choice theory (see e.g. the book by Mas-Colell,
Whinston, and Green [30]). Algorithmic mechanism de-
sign, starting with the work of Nisan and Ronen [32],
has mostly concentrated on designing truthful mechanisms.
Some examples include work on auctions for digital goods,
scheduling problems, and combinatorial auctions.

However, in many settings, truthfulness appears to be too
strong an assumption, preventing the mechanism from hav-
ing other very desirable properties. For example, Archer
and Tardos [4] and Elkind, Sahai and Steiglitz [16] show
that any truthful mechanism for buying a shortest path in
a graph must overpay by a lot. For the combinatorial auc-
tion problem, the work of Lavi, Mu’alem, and Nisan [27]
shows that under fairly natural assumptions, no truthful and
computationaly efficient mechanism can give a good ap-
proximation to the social welfare. While truthful mech-
anisms for single parameter agents are reasonably well-
understood, the characterization of truthful mechanisms for
multi-dimensional agents [8, 35] is more recent.

Thus relaxations to strong truthfulness are natural to con-
sider, and have been extensively studied. Implementation
in Bayes-Nash equilibria is fairly common in auction the-
ory (see e.g. [30]). Archer et al. [3] considered mechanisms
that are strongly truthful with high probability, in the set-
ting of combinatorial auctions for single-minded bidders.
Babaioff, Lavi, and Pavlov [5] designed mechanisms where
truthtelling is undominated for single-value combinatorial
auctions. For the case of shortest path auctions, Elkind et
al. [16] look at Bayes-Nash equilibria, while Czumaj and
Ronen [13] propose implementations in Nash equilibria and
Myopic equilibria. Immorlica et al. [24] look at ε-Nash im-
plementations in the same setting. Lavi and Nisan [28] in-
troduce the notion of set Nash and give a mechanism imple-
menting this notion, for auctioning items that have expiry
times. Finally, myopic equilibria is also commonly used as
a solution concept in the setting of ascending auctions (see



e.g. [34]).
Schummer [37] defined the notion of ε-dominant strat-

egy implementation, and showed how relaxing truthfulness
by a small amount allows one to bypass impossibility re-
sults in the context of 2-agent exchange economies with
two goods. Kothari, Parkes, and Suri [26] use this notion
to design mechanisms for multi-unit auctions. Feigenbaum
and Shenker [18] mention investigating study of approxi-
mate notions of truthfulness, including ε-dominance, as a
major open problem.

There has been a lot of work on the unlimited supply auc-
tion problem [21, 19, 6, 2, 17, 23]. The online variant of this
problem has also been extensively studied [7, 11, 25, 10].
Attribute auctions have been studied in [10, 6]. The work
on consensus auctions for digital good auctions by Gold-
berg and Hartline [19, 20] is close in spirit to our work, in
that a summary value is randomly perturbed to limit manip-
ulability; they get collusion resistance, but lose a constant
fraction of the revenue.

1.2 Paper Outline

We start in Section 2 with an articulation of the game
theoretic consequences of differential privacy. In Section 3
we develop a mechanism that provides differential privacy
and generalizes the additive noise mechanisms of [9, 15].
Along with the proof of differential privacy, we prove a
theorem about the usefulness of the mechanism, showing
that it is very unlikely to produce undesirable outputs. In
Section 4 we apply this general mechanism to the problem
of single-commodity pricing, attributes auctions, and struc-
turally constrained pricing problems. Finally, we conclude
with open problems and directions for further research.

2 Differential Privacy as a Solution Concept

We translate some implications of differential privacy
into language more familiar in the mechanism design space.

2.1 Approximate Truthfulness

Several notions of approximate truthfulness have been
proposed and studied; one that we will highlight is called
ε-dominance, proposed and studied by Schummer [37], in
which no agent has more than an ε additive incentive to re-
ply non-truthfully. We note that this is a stronger notion
than that of ε-Nash.

Mechanisms satisfying ε-differential privacy make truth-
telling an (exp(ε) − 1)-dominant strategy for any utility
function mapping Range(M) to [0, 1]. This follows from
a more general guarantee: that no user can cause a relative
change of more than exp(ε) in their utility.

Lemma 3 (Approximate Truthfulness) For any mecha-
nism M giving ε-differential privacy and any non-negative
function g of its range, for any D1 and D2 differing on a
single input

E[g(M(D1))] ≤ exp(ε) × E[g(M(D2))] . (2)

Proof: For any non-negative function g, we can rewrite

E[g(M(x))] =
∫

c

g(c) × px(c). (3)

Differential privacy bounds, via (1), the change from pD1 to
pD2 by a factor of exp(ε), concluding the proof.

We have made no assumptions on the nature of the func-
tion g, other than its non-negativity. This serves differential
privacy well in avoiding a priori definitions of privacy vio-
lations, and will serve us equally well accommodating non-
quasilinear utilities, risk-averse players, the temptations of
side payments, and certain other externalities. Of course,
the bound on the change in expectation is drawn from the
bound on the change in the distribution, which provides
even stronger guarantees, such as bounds on the relative
change in higher moments.

Remark: In recent work, Chaudhuri et al. [12] show that
any mechanism M with ε-differential privacy can be imple-
mented so that for all D1, with probability at least 1 − 2ε,
M(D1) = M(D2) for all D2 differing from D1 on a sin-
gle user. In the mechanism design context, this corresponds
to truthfulness with high probability [3]: starting from the
vector of private values, for most tosses of the random coins
of the mechanism, there is zero incentive for a user to mis-
report her private value. The approach uses a generalization
of min-wise independent sampling to non-uniform distribu-
tions, one implementation of which can be found in [29].

2.2 Collusion Resistance

Many truthful mechanisms suffer from the defect that al-
though no single player has incentive to lie for their own
benefit, groups of players can collude to improve each of
their utilities, even in the absence of side payments. One
fortunate property of differential privacy is that it degrades
smoothly with the number of changes in the data set.

Corollary 4 (Collusion Resistance) For any mechanism
M giving ε-differential privacy and any non-negative func-
tion g of its range, for any D1 and D2 differing on at most
t inputs

E[g(M(D1))] ≤ exp(εt) × E[g(M(D2))] . (4)

Corollary 4 applies to the notable case that g is the sum of
the utility functions of t players, ensuring that their collec-
tive utility does not increase by much, making the issue of
side payments between them irrelevant.



Clearly, exp(εt) is larger than exp(ε), and the resistance
to collusions deteriorates as the size of the coalition in-
creases. For coalitions of size less than 1/ε, the gain is es-
sentially linear in their size. For larger coalitions the change
in distribution can be substantial, which we view as a good
thing: we will want our mechanisms to react differently to
different populations.

Remark: Goldberg and Hartline[19] define t-truthful
mechanisms as those for which any group of t agents can
not increase their utility by submitting inputs other than
their true values. The implementation of Chaudhuri et
al. [12] for mechanisms that are truthful with high proba-
bility has the more general property of being t-truthful[19]
with probability 1 − 2εt for all t.

2.3 Composability

Many mechanisms suffer from problems of repeated ap-
plication: participants may misrepresent their utilities hop-
ing to influence early rounds so as to lead to more favorable
later rounds. As a concrete example, imagine an unlimited
supply auction that is rerun daily: clever participants may
underbid, hoping to lower the early prices and causing the
wealthier bidders to drop out faster, leaving less competition
in later rounds. However, any mechanism with differential
privacy is robust under composition.

Corollary 5 (Composability) The sequential application
of mechanisms {Mi}, each giving {εi}-differential privacy,
gives (

∑
i εi)-differential privacy.

In the auction above, assuming each instance of the auc-
tion mechanism gives ε-differential privacy, a single user
can skew the seven prices of the week ahead by at most
exp(7ε), even if each instance of the mechanism reacts to
the results of previous instances, for example ignoring bid-
ders who have won the good. This assumes the same user
data is used for each mechanism. To permit the users to
change their bids in each instance of the mechanism, we
would need to incorporate the result of Corollary 4.

3 A General Differential Privacy Mechanism

The goal of a privacy mechanism is to map, randomly, a
set of n inputs each from a domain D to some output in a
range R. We will make no specific assumptions about the
nature of D or R other than a base measure µ on R.

The general mechanism we design is driven by an input
query function q : Dn ×R → R that assigns a real valued
score to any pair (d, r) from Dn×R, with the understanding
that higher scores are more appealing.

Given a d ∈ Dn the goal of the mechanism is to re-
turn an r ∈ R such that q(d, r) is (approximately) maxi-
mized while guaranteeing differential privacy. We will start

from the base measure µ, commonly uniform, and amplify
the probability associated with each output by a factor of
exp(εq(d, r)):

Definition 2 For any function q : (Dn×R) → R, and base
measure µ over R, we define

Eε
q(d) := Choose r with probability proportional to

exp(εq(d, r)) × µ(r) .

Intuitively, a small additive change to q(d, r), as might be
caused by a single participant, has a limited multiplicative
influence on the density of any output, guaranteeing differ-
ential privacy. Nonetheless, the probability associated with
an output r increases exponentially with its score on the
input d, substantially biasing the distribution towards high
scoring outputs and bringing the expected score close to the
optimum.

Remark: For Eε
q(d) to be properly defined we will require∫

r
exp(εq(d, r))µ(r) to be bounded. This needn’t be the

case for general q, ε, but in this note all mechanisms will
have q bounded by n, bounding the integral by exp(εn).

Remark: The work of [15, 14], in which Laplace noise
is added to the result of a function f : Dn → R, can be
captured by taking q(d, r) = −|f(d) − r|. Technically, Eε

q

can capture any differential privacy mechanism M by tak-
ing q(d, r) to be the logarithm of the probability density of
M(d) at r. While such a transformation does not neces-
sarily provide any additional information about M , except
perhaps the function we should expect it to maximize, it as-
sures us that we have captured the full class of differential
privacy mechanisms.

3.1 Privacy

For any query function q, we define ∆q to be the largest
possible difference in the query function when applied to
two inputs that differ only on a single user’s value, for all r.

Theorem 6 (Privacy) Eε
q gives (2ε∆q)-differential pri-

vacy.

Proof: The density of Eε
q(d) at r is equal to

exp(εq(d, r))µ(r)∫
exp(εq(d, r))µ(r)dr

. (5)

A single change in d can change q by at most ∆q, giving
a factor of at most exp(ε∆q) in the numerator and at least
exp(−ε∆q) in the denominator, giving exp(2ε∆q).

This result highlights the fact that our mechanisms will be
the most useful when ∆q is limited. This is a natural as-
sumption in many contexts, described in the coming sec-
tion. Looking ahead, we will commonly choose q with
∆q ≤ 1 so that Eε

q ensures (2ε)-differential privacy.



Remark: In several cases, such as the unit demand
auction settings of the introduction, any change to
exp(εq(d, r))µ(r) will necessitate a change in the same
direction (increase/decrease) for the normalization factor,
strengthening the bound to (ε∆q)-differential privacy.

3.2 Accuracy

We would like the expected score of a configuration
drawn according to Eε

q(d) to achieve some value that is
nearly the maximum. Intuitively, the exponential bias of
Eε

q(d) puts configurations with high score at a substantial
advantage. Nonetheless, the base measure of high score
configurations may be low, counteracting this advantage.
Recall the notation µ(A) for the base measure of set A ⊆ R,
normalized so that R has unit measure, and write p(A) for
the measure defined by Eε

q(d), again normalized. We write
OPT for maxr q(d, r).

Lemma 7 Letting St = {r : q(d, r) > OPT − t}, we have
p(S2t) is at most exp(−εt)/µ(St).

Proof: The probability p(S2t) is at most p(S2t)/p(St), as
the new denominator is at most one. As the two probabili-
ties have the same normalizing term, we can write

p(S2t)
p(St)

=

∫
S2t

exp(εq(d, r)µ(r)dr∫
St

exp(εq(d, r)µ(r)dr
(6)

≤ exp(−εt)
µ(S2t)
µ(St)

. (7)

As µ(S2t) is at most one, we can discard it, arriving at the
statement of the theorem.

This lemma gives a very strong bound on the probability
that the score is less than any given level. Ignoring for the
moment the matter of division by µ(St), the deficit from
OPT exhibits an exponential tail, and is very unlikely to be
substantial.

To lower bound the expected score, we multiply the
probability that the output Eε

q(d) lies in S2t times OPT−2t,
a lower bound on its score.

Theorem 8 (Accuracy) For those values of t satisfying t ≥
ln(OPT/tµ(St))/ε, we have E[q(d, Eε

q(d))] ≥ OPT − 3t.

Proof: Lemma 7 assures score at least OPT −2t with prob-
ability at least 1 − exp(−εt)/µ(St). Our assumption on t
makes this probability at least 1− t/OPT . Multiplying this
with OPT − 2t yields the stated bound.

This theorem highlights a central parameter: the size of
µ(St) as a function of t defines how large we must take
t before our exponential bias can overcome the small size

of µ(St). In the case of discrete R, a uniform µ makes
µ(St) ≥ 1/|R|. For continuous R, we must take advantage
of the structure of q to provide non-trivial results. In Section
4 we will see several examples that yield interesting results.

4 Applications to Pricing and Auctions

In this section we apply our general mechanism to sev-
eral problems in unlimited supply auctions and pricing. Al-
though auctions permit offering different prices to different
players, all of our results will be single price, and envy-free.
Unless otherwise stated, we will assume that µ is uniform
over the output space.

4.1 Unlimited Supply Auctions

Imagine we as auctioneers have access to a endless sup-
ply of an appealing good, desired by some set of bidders.
Each bidder has a demand curve bi : [0, 1] → R

+ in mind,
describing how much of the item they would like at any
given price p. We require that the demand be non-increasing
with price, and we limit the resources of any one bidder, re-
quiring pbi(p) ≤ 1 for all i, p. Note that unit demand is a
special case of non-increasing demand.

For each price p, we can sell
∑

i bi(p) items, yielding
q(b, p) = p

∑
i bi(p) dollars in revenue.

Theorem 9 Taking q(b, p) = p
∑

i bi(p), the mechanism
Eε

q gives 2ε-differential privacy, and has expected revenue at
least OPT −3 ln(e+ε2OPTm)/ε, where m is the number
of items sold in OPT .

Proof: Privacy is seen from Theorem 6, as a bidder can
change q(b, p) by at most pbi(p) ≤ 1. To prove the bound
on expected revenue we will apply Theorem 8 using t =
ln(e + ε2OPTm)/ε, and must verify that

ln(e + ε2OPTm)/ε > ln(OPT/tµ(St))/ε . (8)

First, notice that t ≥ 1/ε, which implies that

ln(e + ε2OPTm)/ε > ln(OPTm/t2)/ε . (9)

Second, assume without loss of generality that OPT > t,
as otherwise the bound of OPT − 3t holds trivially. All
prices at most t/m less than the optimal price continue to
sell at least the same m items (non-increasing demand), at
a loss of at most t/m per item. Introducing µ(St) ≥ t/m
into (9) allows to conclude (8), completing the proof.

Theorem 1 follows, as the unit demand case is a special
case of a non-increasing demand curve. The factor of two
in the privacy guarantee is removed via the reasoning of the
remark of Section 3.1.



Remark: There are demand curves in which an agent might
like to purchase as many items as possible provided the total
cost does not exceed a fixed budget. This challenges the
bound above, as there is no a priori limit to the number of
items sold. We can impose a limit s if we like, as the regret
depends only logarithmically on m or impose a minimum
price δ, so that no agent wins more than 1/δ items.

4.2 Attribute Auctions

A natural and common extension to the standard auction
setting, in which all bidders are a priori indistinguishable,
is the introduction of public attributes about each of the bid-
ders. For example, bidders may be associated with public
information about their state of residence, age, gender, etc.
This information can be used to segment the market, offer-
ing different prices to different demographics and leading
to a larger optimal revenue. This increased flexibility in the
optimal solutions leads to challenges for competitive auc-
tions, which must compete with higher revenue over a more
complex solution space.

It is not difficult to extend our auction framework to han-
dle attribute auctions: we can still design an output space,
consisting of a partitioning of the labels and associated
prices for each part, and a revenue function that computes
how much each possible set of prices would yield. If there
are not terribly many possible segmentations of the bidders,
perhaps as guaranteed by a low VC-dimension, and we do
not segment into terribly many markets, our mechanism will
be assured to find a configuration with nearly optimal rev-
enue.

In the results that follow, we write OPTk for the opti-
mal revenue with the markets segmented into k parts and
SEGk for the number of permitted segmentations of the n
users into k markets. Sauer’s Lemma[36] bounds SEGk ≤
nkV C , where V C denotes the VC dimension of the permiss-
able segmentations of the attribute space, but we stay with
the use of SEGk as a more accurate bound. Note that µ is
now the uniform measure over the permitted segmentations
and offered prices.

Theorem 10 Taking q to be the revenue function over
segmentations into k markets and their prices, Eε

q

has expected revenue is at least OPTk − 3(ln(e +
εk+1OPTkSEGkmk))/ε.

Proof: As the attributes are public and available a priori,
our mechanism can restrict itself to the SEGk possible seg-
mentations of users. The base measure of St is then at least
the measure in the optimal segmentation, which is (t/m)k

divided by the number of segmentations SEGk. The bound
follows in the same manner as for the k = 1 case, taking
t = ln(e + εk+1OPTkSEGkmk)/ε.

Rather than fix a number of markets beforehand, we can
let this parameter change as needed, taking care to be sus-
picious of large values of k. By setting the base measure of
each segmentation proportional to 1/nSEGk, we arrive at
a result with the flavor of structural risk minimization:

Theorem 11 Taking q to be the revenue function over seg-
mentations into arbitrary markets and their prices, Eε

q ,
and taking the base measure of each segmentation into k
markets to be 1/nSEGk, the expected revenue is at least
maxk(OPTk − 3(ln(e + εk+1OPTkSEGknmk))/ε).

Proof: The optimal segmentation, say into k markets, has
base measure exactly 1/nSEGk. St restricted to this seg-
mentation has base measure at least (t/m)k/nSEGk, and
taking t = ln(e+εk+1OPTkSEGknmk)/ε gives the stated
bound.

Theorem 2 follows, as the unit demand case is a special
case of a non-increasing demand curve. The factor of two
is removed via the reasoning of the remark of Section 3.1.

4.3 Constrained Pricing Problems

Other types of auctions problems have been proposed
whose solutions have somewhat delicate structures. Con-
sider the problem of the independent film theater, who must
choose which single film of many to run each weekend. The
theater can solicit bids from its patrons on different films,
but is ultimately constrained to run only a single film, and
can only expect to collect revenue from bids for that film.

This is a special case of a multi-parameter problem,
where bidders come in with a bid for each of k different
kinds of items, and the mechanism is constrained to sell at
most one kind of item at a fixed price. Each bidder has a
demand curve bj

i : [0, 1] → R
+ for each item j ∈ [k]. As in

the case of single item auction, we require that the demand
be non-increasing with price and limit the endowment of
each bidder so that pbj

i (p) ≤ 1 for each i, j, p. Here R is
[k] × R. For each item j, at price p, we can sell

∑
i bj

i (p)
items, yielding a revenue q(b, (j, p)) = p

∑
i bj

i (p).

Theorem 12 Taking q(b, (j, p)) = p
∑

i bj
i (p), Eε

q gives
2ε-differential privacy, and has expected revenue at least
OPT − 3 ln(e + ε2OPTkm)/ε, where m is the number of
items sold in OPT .

Proof: Privacy is seen from Theorem 6, as a bidder can
change q(b, (j, p)) by at most pbj

i (p) ≤ 1. The bound on ex-
pected revenue follows using the same ideas from the proof
of Theorem 9.

We note that more general constraints can be easily ac-
commodated: one can imagine settings where a small num-
ber of items may be produced, and priced differently, or



different items could be made available to different market
segments. Hard constraints of this form are naturally ac-
commodated by restricting the space of solutions (eg: to
prices where all but one are infinite), and defining a rev-
enue function on this space. Other approaches such as cross
training [6], where the bidders are partitioned and the opti-
mal strategy for each group is applied to the other, do not
necessarily meet the hard structural constraint.

4.4 General Mechanism Design Problems

It is natural to expect that this general mechanism can
be applied more broadly to other mechanism design prob-
lems. Pricing problems have the property that their outcome
space is of low dimensionality, which leads to non-trivial
base measure around the optimal solution. In other contexts
where there are many near-optimal solutions relative to the
number of total solutions, the logarithm of the base measure
will be small, and the revenue will be nearly optimal.

Notice that the revenue can be replaced with any other
objective function; for example social welfare is a natural
choice in certain settings.

As shown by Mu’alem and Nisan [31], an algorithm that
takes the MAX of one or more monotone algorithms is not
necessarily monotone, and thus not truthful. They show cer-
tain conditions under which the MAX operator is monotone,
and use it to design truthful approximately efficient mech-
anisms for certain combinatorial auctions. We can model
this as the problem of selecting one algorithm from a dis-
crete set, and apply the mechanisms Eε

q where q(d, r) is the
revenue/welfare of algorithm r on d. Thus the MAX oper-
ator can in fact be implemented (approximately) truthfully,
with strong guarantees on the efficiency of the outcome.

5 Conclusions and Future Research

We have seen how Differential Privacy extends beyond
disclosure limitation to give broad game theoretic guaran-
tees, including approximate truthfulness, collusion resis-
tance, and repeatable play. These guarantees come with
the caveat that they are approximate: incentives are present,
though arbitrarily small as controlled by the parameter ε.

We have also introduced a new general mechanism with
differential privacy that comes with guarantees about the
quality of the output, even for functions that are not robust
to additive noise, and those whose output may not even per-
mit perturbation. This mechanism skews a base measure to
the largest degree possible while ensuring differential pri-
vacy, focusing probability on the outputs of highest value.

Finally, we applied this general mechanism to several
auction problems, yielding revenue that is within an addi-
tive logarithmic term of optimal. We stress that unlike some
previous work, eg [6], our mechanism is not strictly truthful.

On the other hand, we have shown several constrained pric-
ing settings where our mechanism can be applied directly,
but prior works such as [6] are unable to maintain the hard
structural constraints.

Future Directions One direction that went underdevel-
oped in this work is the issue of efficiently sampling from
the exponentially weighted distributions we define. We are
only aware of efficient algorithms in the case where the
query function q has very constrained structure, e. g. piece-
wise linear, or in the cases where the output space can be ef-
fectively discretized. Even managing the weights once con-
structed taxes modern computers, which restrict their values
to roughly 10100, whereas we can quite casually define dis-
tributions using much larger values. We refer the reader to
[29] for an algorithmic approach that operates strictly with
logarithms, and implements the strong truthfulness of [12],
but still uses brute-force examination of each element in the
range.

An additional computational challenge we face is the ex-
act computation of q(d, r) in cases where the optimization is
not known to be computationally efficient. In such settings,
we would like to use approximation algorithms in place of
the inefficient exact computation, but we face the challenge
of finding approximation algorithms that have small values
of ∆q. That is, the approximations themselves should also
be insensitive to changes in the values of few inputs. Most
natural approximation algorithms do not seem to have this
property. Halevi et al. [22] show that private approximation
can be hard, but use a stronger privacy requirement than we
need: that instances with the same set of optimal solutions
yield the same output.

Of course, extending the scope of our mechanisms to
other mechanisms design settings remains an interesting
challenge whose potential is unknown.
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