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ABSTRACT
In this paper, we address the following question: given a
speci�c placement of wireless nodes in physical space and a
speci�c traÆc workload, what is the maximum throughput
that can be supported by the resultant network? Unlike
previous work that has focused on computing asymptotic
performance bounds under assumptions of homogeneity or
randomness in the the network topology and/or workload,
we work with any given network and workload speci�ed as
inputs.
A key issue impacting performance is wireless interference

between neighboring nodes. We model such interference us-
ing a conict graph, and present methods for computing
upper and lower bounds on the optimal throughput for the
given network and workload. To compute these bounds, we
assume that packet transmissions at the individual nodes
can be �nely controlled and carefully scheduled by an omni-
scient and omnipotent central entity, which is clearly unreal-
istic. Nevertheless, using ns-2 simulations, we show that the
routes derived from our analysis often yield noticeably bet-
ter throughput than the default shortest path routes even
in the presence of uncoordinated packet transmissions and
MAC contention. This suggests that there is opportunity for
achieving throughput gains by employing an interference-
aware routing protocol.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Wireless
networks|multi-hop, interference

General Terms
Algorithm, Performance
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1. INTRODUCTION
Multi-hop wireless networks have been studied since the

70's [6]. Several new applications of such networks have
recently emerged. Community wireless networks [1, 3] are
multi-hop wireless networks that provide \last-mile" access
to peoples' homes. This approach is an alternative to to
cable modem and DSL technologies. In large networks of
sensors [10] the scale and the environment are such that
a multi-hop wireless network is the only feasible means of
communication.
A fundamental issue in multi-hop wireless networks is that

performance degrades sharply as the number of hops tra-
versed increases. For example, in a network of nodes with
identical and omnidirectional radio ranges, going from a sin-
gle hop to 2 hops halves the throughput of a ow because
wireless interference dictates that only one of the 2 hops can
be active at a time.
The performance challenges of multi-hop networks have

long been recognized and have led to a lot of research on
the medium access control (MAC), routing, and transport
layers of the networking stack. In recent years, there has
also been a focus on the fundamental question of what the
optimal capacity of a multi-hop wireless network is. The
seminal paper by Gupta and Kumar [16] showed that in a
network comprising of n identical nodes, each of which is
communicating with another node, the throughput capacity
per node is �( 1p

n log n
) assuming random node placement

and communication pattern and �( 1p
n
) assuming optimal

node placement and communication pattern. Subsequent
work has considered alternative models and settings, such
as the presence of relay nodes and mobile nodes, and local-
ity in inter-node communication, and their results are less
pessimistic [13, 20, 12].
This paper also deals with the problem of computing the

optimal throughput of a wireless network. However, a key
distinction of our work from previous work such as [16] is
that we work with any given wireless network con�guration
and workload speci�ed as inputs. In other words, the node
locations, ranges, etc. as well as the traÆc matrix indicat-
ing which source nodes are communicating with which sink
nodes are speci�ed as the input. We make no assumptions
about the homogeneity of nodes with regard to radio range
or other characteristics, or regularity in communication pat-
tern. This is in contrast to previous work that has focused
on asymptotic bounds under assumptions such as node ho-



mogeneity and random communication patterns.
We use a conict graph to model the e�ects of wireless

interference. The conict graph indicates which groups of
links mutually interfere and hence cannot be active simulta-
neously. We formulate a multi-commodity ow problem [8],
augmented with constraints derived from the conict graph,
to compute the optimal throughput that the wireless net-
work can support between the sources and the sinks. We
show that the problem of �nding optimal throughput is NP-
hard, and we present methods for computing upper and
lower bounds on the optimal throughput.
We show how our methodology can accommodate a diver-

sity of wireless network characteristics such as the availabil-
ity of multiple non-overlapping channels, multiple radios per
node, and directional antennae. We also show how multiple
MAC protocol models as well as single-path and multi-path
routing constraints can be accommodated.
We view the generality of our methodology and the con-

ict graph framework as a key contribution of our work.
To compute bounds on the optimal throughput, we as-

sume that packet transmissions at the individual nodes can
be �nely controlled and carefully scheduled by an omniscient
and omnipotent central entity. While this is clearly an un-
realistic assumption, it gives us a best case bound against
which to compare practical algorithms for routing, medium
access control, and packet scheduling. Moreover, ns-2 simu-
lations show that the routes derived from our analysis often
yield noticeably better throughput than the default short-
est path routes, even in the presence of real-world e�ects
such as uncoordinated packet transmissions and MAC con-
tention. In some cases, the throughput gain is over a factor
of 2. The reason for this improvement is that in optimizing
throughput, we tend to �nd routes that are less prone to
wireless interference. For instance, a longer route along the
periphery of the network may be picked instead of a shorter
but more interference prone route through the middle of the
network.
We use our technique to evaluate how the per-node through-

put in a multi-hope wireless network varies as the number
of nodes grows. Previous work (e.g., [16]) suggests that the
per-node throughput falls as the number of nodes grows.
But this result is under the assumption that nodes always
have data to send and are ready to transmit as fast as their
wireless connection will allow. In a realistic setting, however,
sources tend to be bursty, so nodes will on average transmit
at a slower rate than the speed of their wireless link. In such
a setting, we �nd that the addition of new nodes can actually
improve the per-node throughput because the richer connec-
tivity provides increased opportunities for routing around
interference \hotspots" in the network. This more than o�-
sets the increase in traÆc load caused by the new node.
The rest of this paper is organized as follows. In Section 2,

we discuss related work. In Section 3, we present details of
our conict graph model and methods for computing bounds
on the optimal network throughput. In Section 4, we present
results obtained from applying our model to di�erent net-
work and workload con�gurations. Section 5 concludes the
paper.

2. RELATED WORK
A number of papers have been published on the problem

of estimating the capacity of a multi-hop wireless network.
Here, we consider the work that is most closely related to

ours.
In their seminal paper [16], Gupta and Kumar studied the

capacity of wireless networks under two models of interfer-
ence: a protocol model that assumes interference to be an all-
or-nothing phenomenon and a physical model that considers
the impact of interfering transmissions on the signal-to-noise
ratio. They show that in a network comprising of n identical
nodes, each of which is communicating with another node,
the throughput capacity per node is �( 1p

n log n
) assuming

random node placement and �( 1p
n
) assuming optimal node

placement and communication pattern. These results are
shown under the protocol model, but the latter result also
holds in the case of the physical model under reasonable as-
sumptions. According to the intuitive explanation in [20],
while the overall one-hop capacity of the network grows as
O(n), the average path length grows as O(

p
n), so the end-

to-end throughput per node is O( 1p
n
).

Li et al. [20] have extended the work of Gupta and Ku-
mar [16] by considering the impact of di�erent traÆc pat-
terns on the scalability of per node capacity. They point
out that a random traÆc pattern represents the worst case
from the viewpoint of per-node capacity. They also show
that for traÆc patterns with power law distance distribu-
tions, the per-node capacity stays roughly constant as the
network size grows, provided the distance distribution de-
cays more rapidly than the square of the distance. Li et
al. also consider the interactions of packet forwarding with
the 802.11 MAC and show that the use of 802.11 instead of
a global scheduling scheme does not a�ect the asymptotic
bound on per-node capacity derived in [16].
In [13], Grossglauser and Tse introduce mobility into the

model presented in [16], and show that the average long-term
throughput per source-destination pair can be kept constant
even as the number of nodes per unit area increases, pro-
vided we allow for delays of the order of the time-scale of
mobility. This is achieved by exploiting mobility to keep
data transfers local, and transmitting only when the trans-
mitter and receiver are close to each other, at a distance of
O( 1p

n
), thereby reducing total resource usage and interfer-

ence. While this is encouraging, in many practical situations
(such as community wireless networks), mobility may be too
infrequent (or even non-existent) to be exploitable.
Gastpar and Vetterli [12] extend the work of Gupta and

Kumar [16] in a di�erent direction. Instead of the simple
point-to-point coding assumption made in [16] (which basi-
cally treats each transmitter-receiver pair as being indepen-
dent of other pairs), they consider a network coding model
where nodes could cooperate in arbitrary ways (for instance,
to boost the transmit power). Further, they assume that
there is a single source and single destination picked at ran-
dom, and that the rest of the nodes act as relays. They show
that the throughout capacity of the network under these
conditions is O(log n) (compared to O(1) for the point-to-
point coding model of [16]). While the use of network coding
in this context is a promising line of research, we note that
the point-to-point coding model corresponds to current ra-
dio technology such as 802.11.
The recent work of De Couto et al. [9], based on two exper-

iments in a 802.11b-based multi-hop wireless testbeds shows
that minimizing the hop count of an end-to-end path is not
suÆcient for achieving good performance. The reason they
point out is that link quality can vary widely and that the



long hops that may be included in \short" paths may in-
cur a high packet error rate. In our work, we also reach
the same conclusion regarding the limitations of the hop
count metric, but for a somewhat di�erent reason | be-
cause of wireless interference limits capacity, a circuitous
but less interference-prone route, say along the periphery of
a network, may perform better than the shortest hop count
route.
Finally, Yang and Vaidya [25] introduce the notion of

a \conict graph" in the context of their work on prior-
ity scheduling in wireless ad hoc networks. However, the
conict graph is de�ned on ows rather than links, and is
used only to interpret experimental results showing that the
802.11 MAC causes ows with a high degree of conict to
su�er disproportionately compared to ows with a low de-
gree of conict. There is no attempt to analyze the conict
graph derive throughput bounds.
In summary, there is a large body of work on the wireless

capacity problem, much of it focused on asymptotic bounds
under assumptions such as node homogeneity and random
communication patterns. In contrast, our work focuses on
computing throughput bounds for a given wireless network
and traÆc workload, using a conict graph to model the
constraints imposed by wireless interference. We do not
consider how factors such as mobility [13] or coding [12].
And like [16], we do not compute the information theoretic
capacity of the network.

3. COMPUTING BOUNDS ON OPTIMAL
THROUGHPUT

We now present our framework for incorporating the con-
straints imposed by interference in a multi-hop wireless net-
work and then present methods for computing bounds on
the optimal throughput that a give network can support for
a given traÆc workload. We begin with some background
and terminology.

3.1 Background and Terminology
Consider a wireless network with N nodes arbitrarily lo-

cated in a plane. Let ni; 1 � i � N denote the nodes, and dij
denote the distance between nodes ni and nj . Each node,
ni, is equipped with a radio with communication range Ri

and a potentially larger interference range R0
i. For ease of

exposition, we assume that there is a single wireless channel.
We consider two models, the Protocol Model and the Physi-
cal Model , to de�ne the conditions for a successful wireless
transmission. These models are similar to those introduced
in [16].
Protocol Model: In the protocol model, if there is a single
wireless channel, a transmission is successful if both of the
following conditions are satis�ed:

1. dij � Ri

2. Any node nk, such that dkj � R0
k, is not transmitting

Note that the second requirement implies that a node may
not send and receive at the same time nor transmit to more
than one other node at the same time. Note also that this
model di�ers from the popular 802.11 MAC in an important
way | it requires only the receiver to be free of interference,
instead of requiring that both the sender and the receiver
be free of interference. We discuss how to adapt the model
for an 802.11-style MAC in Section 3.5.

Physical Model: Suppose node ni wants to transmit to
node nj . We can calculate the signal strength, SSij , of
ni's transmission as received at nj . The transmission is
successful if SNRij � SNRthresh, where SNRij denotes
the signal-to-noise ratio at the node nj for transmissions
received from node ni. The total noise, Nj , at nj consists
of the ambient noise, Na, plus the interference due to other
ongoing transmissions in the network. Note again that there
is no requirement that the noise level at the sender also be
low.
Our goal is to model wireless interference using a general

framework that would then enable us to compute the opti-
mum throughput that the wireless network can support for
a given traÆc workload. We assume that packet transmis-
sions at the individual nodes can be �nely controlled and
carefully scheduled by an omniscient and omnipotent cen-
tral entity. So here we do not concern ourselves with issues
such as MAC contention that may be unavoidable in a dis-
tributed network; such real-world issues are considered in
the ns-2 simulation results presented in Section 4. In our
problem formulation here, we focus on maximizing the total
throughput between source-destination pairs assuming that
the sources always have data to send and the destination
nodes are always ready to accept data. Our framework car-
ries over easily to a di�erent objective function such that one
tries to maximize the minimum throughput across all source-
destination pairs and thereby achieves a degree of fairness.
Moreover, we can also accommodate the case where the rate
at which nodes generate data or are willing to accept data
is bounded simply by creating a virtual source or sink node
and connecting it to the real source or sink via a virtual
link of speed equal to the source or sink rate. The virtual
link is special in that it is assumed not to interfere with any
other link in the network. The virtual link is just convenient
construct to help us model the bound on the source or sink
rate.
The communication between the sources and destinations

can be either direct or be routed via intermediate nodes. We
say that a network throughput D is feasible if there exists a
schedule of transmissions such that no two interfering links
are active simultaneously, and the total throughput for the
given source-destination pairs is D.
In the rest of this section, we consider the following three

scenarios in detail: (i) multipath routing under the protocol
interference model, (ii) multipath routing under the phys-
ical interference model, and (iii) single-path routing under
both models. We end the section by discussing several other
generalizations, and provide a summary description of our
framework.

3.2 Multipath Routing under the Protocol In-
terference Model

Given a wireless network with N nodes, we �rst derive
a connectivity graph C as follows. The vertices of C corre-
spond to the wireless nodes (NC) and the edges correspond
to the wireless links (LC) between the nodes. There is a di-
rected link lij from node ni to nj if dij � Ri and i 6= j. We
use the terms \node" and \link" in reference to the connec-
tivity graph while reserving the terms \vertex" and \edge"
for the conict graph presented in Section 3.2.1.
Let us �rst consider communication between a single source,

ns, and a single destination, nd. In the absence of wireless
interference (e.g., on a wired network), �nding the maxi-



mum achievable ow between the source and the destina-
tion, given the exibility of using multiple paths, can be
formulated as a linear program corresponding to a max-ow
problem, as shown in Figure 1. Here, fij denotes the amount
of ow on link lij , Capij denote the capacity of link lij , and
LC is a set of all links in the connectivity graph.

max
X

lsi2LC

fsi

subject toX
lij2LC

fij =
X

lji2LC

fji 8ni 2 NC n fns; ndg < 1 >

X
lis2LC

fis = 0 < 2 >

X
ldi2LC

fdi = 0 < 3 >

fij � Capij 8lij 2 LC < 4 >

fij � 0 8lij 2 LC < 5 >

Figure 1: LP formulation to optimize the through-

put for a single source-destination pair.

The maximization states that we wish to maximize the
sum of ow out of the source. The �rst constraint represents
ow-conservation, i.e., at every node, except the source and
the destination, the amount of incoming ow is equal to
the amount of outgoing ow. The second constraint states
that the incoming ow to the source node is 0. The third
constraint states that the outgoing ow from the destination
node is 0. The fourth constraint indicates the amount of
ow on a link cannot exceed the capacity of the link. The
�nal constraint restricts the amount of ow on each link to
be non-negative. The above formulation does not take into
account wireless interference, which may impose additional
constraints on when the individual wireless links may be
active. We turn to this issue next.

3.2.1 Conflict Graph
To incorporate wireless interference into our problem for-

mulation, we de�ne a conict graph, F , whose vertices cor-
respond to the links in the connectivity graph, C. There is
an edge between the vertices lij and lpq in F if the links lij
and lpq may not be active simultaneously. Based on the pro-
tocol interference model described in Section 3.1, we draw
such an edge if any of the following is true: diq � R0

i or
dpj � R0

p. This encompasses the case where a conict arises
because links lij and lpq have a node in common (i.e., i == p
or i == q or j == p or j == q). Note, however, that we
do not draw an edge from a vertex to itself in the conict
graph.

3.2.2 Hardness Result
Next, we present a hardness result for computing the opti-

mal throughput under the protocol interference model. We
begin with a few de�nitions, Given a graph H (with ver-
tex set VH), an independent set is a set of vertices, such
that there is no edge between any two of the vertices. The
independence number of graph H is the size of the largest
independent set in H. Then, we have the following hardness
result.

Theorem 1. Given a network and a set of source and
destination nodes, it is NP-hard to �nd the optimal through-
put under the protocol interference model. Moreover, it is
NP-hard to approximate the optimal throughput.

It can be shown that the problem of �nding the inde-
pendence number of a graph (a known hard problem even
to approximate) can be reduced to the optimal throughput
problem. Moreover, this reduction is approximation pre-
serving. Hence the above hardness result. We discuss the
reduction briey in the Appendix.
Since it is NP-hard to approximate the optimal through-

put, we now look at heuristics for obtaining lower and upper
bounds on the throughput. For this, we need to de�ne some
more terms. An independent set of a graph H can be char-
acterized using an independence vector, which is a vector of
size jVH j. This vector is denoted by xI , where I is an in-
dependent set. The jth element of this vector is set to 1 if
and only if the vertex vj is a member of the independent
set I, otherwise it is zero. We can think of xI as a point in
an jVH j-dimensional space. The polytope de�ned by convex
combination of independence vectors is called the indepen-
dent set polytope (also known as the stable set polytope).

3.2.3 Lower Bound
The problem of deriving a lower bound is equivalent to

the problem of �nding a network throughput D that has a
feasible schedule to achieve it. We make the following ob-
servation. Links belonging to a given independent set in
conict graph F can be scheduled simultaneously. Suppose
there are a total of K maximal independent sets in graph F .
(A maximal independent set is one that cannot be grown fur-
ther.) Let I1; I2; : : : IK denote these maximal independent
sets, and �i; 0 � �i � 1 denote the fraction of time allo-
cated to the independent set Ii (i.e., the time during which
the links in Ii can be active). If we add the schedule restric-
tions imposed by the independent sets to the original linear
program (Figure 1), the resulting throughput always has a
feasible schedule, and therefore constitutes a lower bound
on the maximum achievable throughput.
We formalize our above observation as follows. Given a

conict graph F , we de�ne a usage vector, U , of size jVF j,
where Ui denotes the fraction of time that the link i can be
active. A usage vector is schedulable if the corresponding
links can be scheduled, conict free, for the fraction of the
time indicated in the usage vector. If we think of the usage
vector as a point in an jVF j-dimensional space, we have the
following theorem, the proof for which is not included due
to space constraints.

Theorem 2. A usage vector is schedulable if and only
if it lies within the independent set polytope of the conict
graph.

Theorem 2 implies that the optimal network throughput
problem is a linear program, no matter how many sender-
receiver pairs we have. In fact, the problem is one of max-
imizing a linear objective function over a feasible polytope.
This feasible polytope can be described as the intersection
of two polytopes | the ow polytope and the independent
set polytope of the conict graph. The ow polytope is the
collection of feasible points described by the ow constraints
(Figure 1), ignoring wireless conicts. The ow polytope is
a simple structure on which a linear objective function can



easily be optimized. Independent set polytope, on the other
hand, is a diÆcult structure and no characterization of it is
known (because there may be exponentially many indepen-
dent sets).
Theorem 2 implies that any convex combination of in-

dependence vectors is schedulable. In general, however, an
arbitrary point inside the independent set polytope will be a
convex combination of an exponentially many independence
vectors. To get around this computational problem, we only
want to pick \easy" points in the independent set polytope.
An obvious notion of \easy" is that the point picked should
be a convex combination of a small number of (i.e., polyno-
mially many) independence vectors. We will be using this
notion explicitly in the algorithm as follows. We derive a
lower bound on the optimal throughput by �nding K0 in-
dependence vectors in the conict graph F , and adding the
following constraints to the LP formulation shown in Fig-
ure 1.

� PK0

i=1
�i � 1 (because only one maximal independent

set can be active at a time)

� fij �
P

lij2Ii �iCapij (because the fraction of time for

which a link may be active is constrained by the sum
of the activity periods of the independent sets it is a
member of).

Note the solution produced by solving this linear program
is always feasible (i.e., schedulable). This is due to the fact
that all links belonging to independent set Ii can be simulta-
neously active for �i fraction of time, and we have required

that the
PK0

i=1
�i � 1. Moreover, theorem 2 assures us that

when we include all independent sets, the solution will be ex-
act, i.e., this will be the maximum value of D that is feasible.
To help tighten the lower bound more quickly, we should
consider using maximal independence sets. While �nding
all maximal independent sets is also NP-complete [11], the
lower bound obtained by considering a subset of the (max-
imal) independent sets has the nice property that as we
add more constraints, the bound becomes tighter, eventu-
ally converging to the optimal (i.e., the maximum feasible
bound) when we add all the constraints.

3.2.4 Upper Bound
In this section, we derive an upper bound on the network

throughput. Consider the conict graph. A clique in the
conict graph is a set of vertices that mutually conict with
each other. Theorem 2 implies that the total usage of the
links in a clique is at most 1. This gives us a constraint on
the usage vector. We can �nd many cliques and write cor-
responding constraints to de�ne a polytope. We can then
maximize the throughput over the intersection of this poly-
tope with ow polytope. This will give us an upper bound
on the throughput.
Unfortunately, it is computationally expensive to �nd all

the cliques, and even if we could �nd them all, there is still
no guarantee that our upper bound will be tight. This can
be illustrated by the following example. Suppose the conict
graph is the pentagon depicted in Figure 2. As we can see,
the only cliques in the graph are formed by the adjacent
pairs of nodes. Adding the clique constraints alone to the
LP would suggest that a sum of link utilization equal to 2.5
is achievable. But actually at most 2 links can be active
at a time. This suggests that we need to add constraints

1

2

34

5

1

2

34

5

Figure 2: A pentagon and its complement

graph. The former is an odd hole, and the

latter is an odd anti-hole.

 

Figure 3: An example that shows it is

not suÆcient even if we add all clique,

hole, anti-hole constraints.

corresponding to odd holes and odd anti-holes. An odd hole
is a circle (i.e., loop) formed by an odd number of edges,
without a chord in between. (The pentagon in Figure 2 is
an odd hole.) The sum of the link utilization in an odd hole
containing k vertices can be no more than b k

2
c. An odd anti-

hole is the complementary graph of an odd hole. Figure 2
shows an example of an anti-hole with 5 nodes. The sum of
link utilizations in an odd anti-hole can be no more than 2.
Unfortunately, even if we consider the constraints imposed

by the odd holes and odd anti-holes (in addition to those
imposed by the cliques), we are not guaranteed to have a
feasible solution. For example, consider the conict graph,
as shown in Figure 3. We can assign a utilization of 0.4
to all the vertices on the pentagon and 0.2 to the center of
the pentagon, while satisfying all clique, hole, and anti-hole
constraints. But there is no feasible schedule to achieve this,
because this solution does not lie in the stable-set polytope.
In fact, the upper bound based only on clique constraints is
tight only for a special class of conict graphs called perfect
graphs. Perfect graphs are the graphs without any odd holes
or odd anti-holes. Thus, in our present formulation, the
upper bounds may not always be tight. We will discuss this
further in Section 5.

3.3 Multipath Routing under the Physical In-
terference Model

As before, we begin by creating a connectivity graph C,
whose vertices correspond to the nodes in the network. Based
on the physical interference model, there exists a link, lij ,
from ni to nj if and only if SSij=Na � SNRthresh (i.e., the
SNR exceeds the threshold at least in the presence of just
the ambient noise).
Using the connectivity graph, we can write an LP formu-

lation to optimize network throughput for a wired network.
As discussed before, the solution to the linear program, as
shown in Figure 1, provides an upper bound on network
throughput. However, this bound is not very useful since it
does not take interference e�ects into account.
To take interference e�ects into account, we construct a



conict graph F . Unlike in the protocol model, conicts in
the physical model are not binary. Rather, the interference
gradually increases as more neighboring nodes transmit, and
becomes intolerable when the noise level reaches a thresh-
old. This gradual increase in interference suggests that we
should have a weighted conict graph, where the weight of
a directed edge from vertices lpq to vertices lij (denoted by
wpq
ij ) indicates what fraction of the maximum permissible

noise at node nj (for link lij to still be operational) is con-
tributed by activity on link lpq (i.e., node np's transmission
to node nq). Speci�cally, we have

wpq
ij =

SSpj
SSij

SNRthresh
�Na

where SSpj and SSij denote the signal strength at node
nj of transmissions from nodes p and i, respectively, and

SSij
SNRthresh

� Na is the maximum permissible interference

noise at node nj that would still allow successful reception
of node ni's transmissions. The edges of the conict graph
are directed, and in general wpq

ij may not be equal to wij
pq .

3.3.1 Lower Bound
In the protocol model, we derive a lower bound on the net-

work throughput by �nding independent sets in the conict
graph F , and adding the constraints associated with the in-
dependent sets to the LP for the wired network. Analogous
to independent sets, we introduce the notion of schedulable
sets in the physical model. A schedulable set Hx is de�ned
as a set of vertices such that for every vertex lij 2 Hx,P

lpq2Hx
wpq
ij � 1. It follows that all links in a schedulable

set can be active simultaneously. Suppose we schedule the
links belonging to Hx for time �x; 0 � �x � 1. We now
take the original LP for the wired network (in Figure 1),
and include the following constraints:

� PK0

x=1
�x � 1, where K0 is the number of schedulable

sets found

� fij �
P

lij2Hx
�xCapij

To tighten the bound, we should consider using maximal
schedulable sets in graph F (i.e., a schedulable set such that
adding additional vertices to the set will violate the schedu-
lable property). We have the following theorem, which is
similar to the Theorem 2 in the protocol model.

Theorem 3. A usage vector is schedulable if and only if
it lies in the schedulable set polytope of the conict graph.

3.3.2 Upper Bound
To derive an upper bound, we consider maximal sets of

vertices in F such that for any pair of vertices lpq and lij ,
wpq
ij � 1. These correspond to the cliques in the protocol

interference model. Therefore for each such set, we add a
constraint that the sum of their utilization has to be no more
than 1.
These constraints may result in a loose bound since there

may not be very many cliques. To tighten the upper bound,
we further augment the linear program with the following
additional constraints. After we �nd a maximal schedula-
ble set, say vertices v1, v2, ..., vt, adding any additional
vertex, denoted as va, to the set will make the set un-
schedulable. Therefore we have the following constraint:

U1 + U2 + :::Ut + Ua � t, where as before Ui denotes the
fraction of time for which physical link li (corresponding
to vertex vi in the conict graph) is active. By adding as
many such constraints as possible, we can tighten the upper
bound. Still, the bound is not guaranteed to converge to the
optimal even if we include all such sets.

3.4 Single-path Routing
So far we have considered multipath routing. As many

existing routing algorithms [18, 24, 23, 22] are con�ned to
single-path routing, it is useful to derive a throughput bound
for single-path so that we can compare how much the current
protocols deviate from the theoretical achievable throughput
under the same routing restriction. The way we enforce the
single-path restriction for the ow from a source to a desti-
nation is by adding the following additional constraints to
the LP problem for the wired network (shown in Figure 1):

� For each link lij , fij � Capij � zij , where zi;j 2 f0; 1g
� At each node ni,

P
zij � 1

Here zij is a 0{1 variable that indicates whether or not
link lij is used for transmissions, and fij is the amount of
ow on the link. The basic intuition for these constraints is
that in a single-path routing, at any node in the network,
there is at most one out-going edge that has a non-zero ow.
The �rst and the third condition ensure that at node ni at
most one zij will have a value of 1.
In theory, solving integer linear program is a NP-hard [11],

but in practice, programs such as lp solve [7] and CPLEX [5]
can solve mixed-integer problems.

3.5 Other Generalization
The basic conict graph model is quite exible, and can

be generalized in many ways.
Multiple Source-Destination Pairs: We can extend our
formulations in the previous sections from a single source-
destination pair to multiple source-destination pairs using a
multi-commodity ow formulation [8] augmented with con-
straints derived from the conict graph. We assign a connec-
tion identi�er to each source-destination pair. Instead of the
ow variables fij , we introduce the variable fijk to denote
the amount of ow for connection k on link lij . Referring
to Figure 1, the ow conservation constraints at each node
apply on a per-connection basis (constraint <1>); the total
incoming ow into a source node is zero only for the connec-
tion(s) originating at that node (constraint <2>); likewise,
the total outgoing ow from a sink node is zero only for the
connection(s) terminating at that node (constraint <3>);
and the capacity constraints apply to the sum of the ow
levels of all connections traversing a link (constraint <4>).
This generalization is applicable to all variants of the

problem.
Multiple wireless channels: It may be the case that in-
stead of just one channel, each node can tune to one of M
channels,M � 1. This can be easily modeled by introducing
M links between nodes i and j, instead of just 1. In gen-
eral, links corresponding to di�erent channels do not conict
with each other, reecting the fact that the channels do not
mutually interfere. However, the links emanating from the
same node do conict, reecting the constraint that the sin-
gle radio at each node can transmit only on one channel at
a time.



Multiple radios per node: Each wireless node may be
equipped with more than one radio. If each node has M
radios, this can be modeled by introducing M links between
each pairs of nodes. If we assume that each of these radios
is tuned to a separate channel, and that a node can commu-
nicate on multiple radios simultaneously, then the conict
graph will show no conict among the M links between a
pair of nodes.
Directional antennas: We can combine the use of direc-
tional antennas with the basic protocol model of communica-
tion. Instead of specifying a range for each node, we simply
specify a list of nodes (or points in space) where transmis-
sions or interference from this node can be perceived. The
connectivity graph and the conict graph are modi�ed to
take this into account.
Other models of interference: In the simple example,
we considered an optimistic model of interference that did
not require the sender to be free of interference. But a more
realistic model, which more closely reects the situation in
802:11, would require both the sender and the receiver to
be free of interference. This reect the fact that 802:11 may
perform virtual carrier sensing using an RTS{CTS exchange,
and that for successful communication, the sender must be
able to hear the link layer acknowledgment transmitted by
the receiver. Therefore, we draw an edge in the conict
graph between vertices lij and lpq if dab � R0

a for ab =
iq; qi; ip; pi; jp; pj; jq; or qj.

3.6 Summary
In this section, we presented the concept of a conict

graph, and discussed how it could be used to derive upper
and lower bounds on the optimal throughput that a wireless
network can support, for a given set of sources and destina-
tions. We also generalize the conict graph to handle a wide
range of scenarios. We have shown that the lower bound de-
rived from our framework is always schedulable, and will be
optimal once all the independent sets are found. If the up-
per and lower bounds are equal, then these correspond to
the optimal solution.

4. RESULTS
This section presents several results based on our model.

The section is organized as follows. In Section 4.1, we
present illustrative results that demonstrate the exibility of
our model. In Section 4.2, we use our model to provide in-
sights into the tradeo� between the richer connectivity pro-
vided by increasing the size of a wireless mesh network, and
the increase in cumulative traÆc load due to the new mesh
participants. In Section 4.3, we illustrate how optimal rout-
ing can bring bene�ts even in absence of optimal scheduling
(i.e., in the presence of MAC contention and other ineÆ-
ciencies). In Section 4.4, we discuss the issue of convergence
of the upper and lower bounds on the optimal throughput.
Finally, in Section 4.5, we present a discussion of the com-
putational costs of our model.

4.1 Illustrative results
In this section, we present several illustrative results to

demonstrate the capabilities of our model. We begin by
de�ning a metric for computational e�ort. In Section 3, we
have described the procedure for �nding upper and lower
bounds on throughput. Let us consider the protocol model
of interference, and let us focus on the lower bound. We have
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Figure 4: 3x3 Grid

shown that as we include more distinct independent sets, the
lower bound becomes progressively tighter. In other words,
the more e�ort we spend looking for independent sets in our
conict graph, the better the bound will be. Since we can
not always hope to �nd optimal solutions, any upper or lower
bounds discovered by our model need to be presented along
with the amount of e�ort required to �nd those bounds.
Thus we require a metric to measure this e�ort. We use the
following simple algorithm to �nd distinct independent sets:

1. Start with an empty independent set IS.

2. Consider a random ordering of vertices in the conict
graph.

3. Consider the vertices of the graph in that order. Al-
ways add the �rst vertex to IS.

4. Add a new vertex if and only if it does not have an
edge to any of the vertices added to IS so far (i.e., if
it does not conict with any of the existing vertices).
Once we consider all the vertices, IS will be of size at
least one.

5. We check to see if we have previously discovered this
independent set, and if not, we add constraints based
on this independent set to our linear program. Other-
wise we discard the set.

We consider this entire sequence as one unit of e�ort. Note
that one unit of e�ort does not always result in addition of
a constraint or variable to the linear program. Moreover,
there is a complex relationship between the number of vari-
ables and constraints in a linear program, and the amount
of time required to solve it. Thus, the metric is only a rough
guide for amount of actual time (or CPU cycles) spent while
�nding the bound. In Section 4.5, we will provide further
discussion about the relationship between the e�ort metric,
and actual time spent in computation. The e�ort metric is
de�ned in a similar manner by considering cliques in case of
searching for the upper bound, and by considering schedu-
lable sets in case of the physical model.
We consider the topology shown in Figure 4. The net-

work consists of 9 nodes, placed in a 3x3 grid. We make no
claims that this topology is representative of typical wire-
less networks. We have deliberately chosen a small, simple
topology, to facilitate detailed discussion of the results.



link 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 0 0 0
1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0
2 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 0 0 0
3 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 1 0 0 1 0
4 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 0 0 1 0 0 1 0
6 1 0 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 0 0 1 0 1 1 1
7 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0
8 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9 1 1 1 0 1 0 0 1 1 0 1 1 1 1 0 1 0 1 1 1 1 1 0 1
10 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1
11 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
12 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1
13 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
14 1 0 1 1 1 1 1 0 1 0 1 1 1 1 0 1 1 0 0 1 0 1 1 1
15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
16 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1
17 1 1 1 0 1 0 0 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 0 1
18 0 1 0 0 1 0 0 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1
19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
20 0 1 0 0 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1
21 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
22 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0 1 1 1 1 0 1
23 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Table 1: Conict Graph in matrix form
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We start with several simplifying assumptions. We will
relax these assumptions as we proceed through the section.
We assume that the range of each node is one unit, i.e., just
enough to reach its lateral neighbors, but not the diagonal
ones. We also assume that the interference range is equal
to the communication range. We assume an 802.11-like pro-
tocol model of interference described in Section 3.5. This
model requires both the sender and the receiver to be free
of interference for successful communication. We term this
a bidirectional MAC. The resulting conict graph for this
scenario is shown in the matrix form in Table 1. A 0 indi-
cates that the links are not in conict with each other, while
1 indicates otherwise. For example, when node 0 is trans-
mitting to node 3, node 1 can hear these transmissions, and
hence can not transmit to node 2. Thus, links 1 (0 ! 1)
and 3 (1! 2) are in conict.
We allow multipath routing. We assume that all wireless

links have an identical capacity (i.e., speed) of 1 unit and
that all nodes have in�nite bu�ers. We designate node 0 to
be the sender, and node 8 to be the receiver. The sender
always has data to send, and the receiver is always willing
to consume the data.
In this scenario, it is easy to see that the optimal through-
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put is 0.5. A convenient way to visualize the optimal trans-
mission schedule is to imagine that time is divided into slots
of equal size, and in each slot we can transmit one packet be-
tween neighboring nodes, subject to constraints imposed by
the conict graph. Then, the following transmission sched-
ule will achieve optimal throughput: (i) 0 ! 1 (ii) 1 ! 2
(iii) 0 ! 3 and 2 ! 5 (iv) 3 ! 6 and 5 ! 8 (v) 0 ! 1
and 6 ! 7 (vi) : : : We can continue in this manner inde�-
nitely. It is easy to see that in alternate timeslots, node 0
gets to transmit to either node 1 or 3. Hence the optimal
throughput is 0.5.
In Figure 5, we show the upper and lower bound on through-

put calculated by our model, as we devote increasing amount
of e�ort. As shown, the upper bound quickly converges to
the stable value of 0.667, which is somewhat higher than
the optimal value. This is a clear indication of the fact that
clique constraints alone are not suÆcient to guarantee opti-
mality, even in such small graphs (as noted in Section 3.2.4).
The lower bound, on the other hand, steadily converges to
the optimal value of 0.5. We have veri�ed that our pro-
gram has discovered all independent sets and cliques with
100 units of e�orts.
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Our model can also incorporate single path routing, mul-
tiple source-destination pairs, multiple channels as well as
multiple radios. We demonstrate this exibility with a com-
munity mesh networking scenario, in which multiple users
share an Internet connection, using a multi-hop wireless net-
work. We consider a map of a real suburban neighborhood
shown in Figure 4.1. There are 252 houses in an area of 1
square kilometer. We select 35 of these houses at random,
and assume that these houses are equipped with hardware
that enables them to participate in a wireless mesh network.
We assume that communication range of the wireless tech-
nology is 200 meters, while the interference range is 400
meters. In Figure 4.1, we show the resulting network (i.e.,
the connectivity graph). We select a node that is roughly
at the center of the area and designate it as the Internet ac-
cess point. We assume that there are four senders, located
as shown in the Figure. All the senders communicate with
the Internet access point, and the metric of interest is the
cumulative throughput of these senders. We assume that all
wireless links are of unit capacity.
We begin with a baseline case, for which we assume a

bidirectional MAC and single path routing. Our linear pro-
gram is set to optimize the sum of the throughputs of the
four ows, with no consideration for fairness. In this case,
with about 5000 units of e�ort, upper and lower bounds con-
verge, and our model indicates that the maximum possible
cumulative throughput is 0.5.
We may now ask what we can do to improve the cumula-

tive throughput. We consider four possibilities: (I) Employ
multi-path routing (II) Double the range of each radio. We
also double the interference range. (III) Leave the radio
range unchanged, but use two non-overlapping channels in-
stead of one. A node may communicate on only one of the
two channels at any given time, but may switch between
channels as often as necessary. (IV) Use two radios instead
of one at each node. The radios are assumed to be tuned to
two �xed, non-overlapping channels, so a node may commu-
nicate on the two channels simultaneously. The throughput
bounds in each of the four scenarios are shown in Table 2.
In each case, the upper and the lower bounds converge to
the same value, which indicates that the solution is optimal.

Scenario Optimal Throughput
I 0.5
II 0.5
III 1
IV 1

Table 2: Throughputs for neighborhood mesh in

various scenarios

The results indicate that neither multipath routing nor
doubling the range of the radio increases cumulative through-
put in the scenario we considered. On the other hand, by
using two channels instead of one, the network may achieve
the maximum possible throughput of 1. The maximum pos-
sible throughput is 1 because the Internet access point has
only one radio. On the other hand, even if we use two radios,
the throughput remains at one. It is not hard to see why.
The situation is equivalent to having two separate copies of
the baseline network, and then adding up their throughputs.
These scenarios illustrate that the model we have developed
could be a useful, albeit rudimentary, tool for analysis and
capacity planning in wireless multi-hop networks.

4.2 Tradeoff between connectivity and through-
put

In Section 3, we discussed how our model can accommo-
date nodes which do not send data in a greedy fashion, i.e.
they have a lower send rate. In [17, 20], the authors have
shown that the per node capacity in the network decreases
as the number of nodes in the network goes up. These re-
sults, however, were derived under the assumption that each
node sends data as fast as it can. In other words, the desired
sending rate of the node is assumed to be 1. However, if each
node has a lower desired sending rate, the richer connectivity
provided by additional nodes might help increase per node
throughput, by allowing better routes to be discovered. We
now explore this hypothesis using our model.
We consider a 7x7 grid, whose nodes are 200 meters apart

horizontally, and vertically. We assume that the communi-
cation range is 250 meters, and the interference range is 500
meters. We set the link capacity to 1. We assume a bidirec-
tional MAC, similar to the one used to plot Figure 5. We
use single-path routing.
We pick N nodes from the 49 available nodes, at random,

and without replacement. Half of these nodes are designated
as senders, and the other half are designated as receivers.
The senders and the receivers form N=2 ows in the net-
work. Each sender is paired with only one receiver. We
�rst calculate the fraction of ows for which the source and
the destination lie in the same connected component of the
topology. We call this fraction the connectivity ratio. The
connectivity ratio for various values of N is shown in Fig-
ure 8. The results show that after 24 nodes (i.e. 12 ows)
are selected, the connectivity ratio becomes 1.
We then assign a sending rate of D to each sender. Then,

using our model, we calculate the optimal throughput using
single-path routing. We divide the cumulative throughput
by the number of ows (i.e. N=2) to obtain average per-ow
throughput, and normalize it further by dividing it by D.
The resulting normalized per-ow throughput for various
values of N and D is plotted in Figure 9.
Note that when the sending rate is 0.01, the normalized
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per-ow throughput continues to rise even after the connec-
tivity has reached 1. This means that the richer connectivity
provided by additional nodes allows for newer routes, and
allows extra traÆc to be sent through the network. How-
ever, if each node sends at rate 1, the node might have little
capacity left to forward traÆc from other nodes. Thus, the
average per-ow throughput peaks early (i.e the network is
saturated), and then declines slowly, as new nodes join the
network, but fail to transmit most of their desired traÆc.
For sending rate of 0.1, the results are between these two
cases.
We stress that these results have been derived by assuming

optimal routing, as well as optimal scheduling of packets.
In the next section, we further discuss the impact of these
two assumptions. We also note that we have used a simple
grid topology in this example, and more experiments with
complex topologies are needed to verify the generality of this
result.

4.3 Benefits of optimal routing in absence of
optimal scheduling

As shown in the previous sections, the optimal through-
put is achieved by selecting optimal routes and scheduling
the links on the routes appropriately. A natural question
to ask is how much performance improvement is due to the
optimal route selection, and how much is due to the opti-
mal scheduling. Motivated by this question, we empirically
examine four scenarios shown in Figure 10. They corre-
spond to (i) optimal routing with optimal scheduling, (ii)
shortest-path routing with optimal scheduling, (iii) optimal
routing under 802.11 MAC, and (iv) shortest-path routing
under 802.11 MAC. We �rst briey describe the approach
we use to derive throughput for each case, and then present
the results.
Given a network topology, we apply the algorithm de-

scribed in Section 3 to compute the optimal throughput un-
der single-path routing. This corresponds to scenario (i).
To derive the performance of optimal routing under 802.11,

we run ns-2 [4] simulations. To ensure that the packets
follow the optimal routes, we specify the optimal routes
obtained in Scenario (i) as the static routes in ns-2. The
throughput numbers from these simulations correspond to
scenario (iii).
We then repeat our simulation using AODV [24], a stan-

dard shortest path routing protocol. The resulting through-
put corresponds to the performance of the scenario (iv).



To minimize the impact of AODV routing overhead, all
nodes are static and simulations are run for 50 seconds, long
enough to make the initial route setup overhead negligible.
Based on the AODV simulation results, we obtain a set

of links that are used in the shortest paths between sources
and destinations. We then modify the LP formulation (from
Section 3) used to compute bounds on the optimal through-
put by excluding all but those links that lie on one or more
of the shortest paths. (We do so by setting the capacity of
such links to zero.) We solve the resulting LP, and obtain
the throughput for scenario (ii).
Our aim is to compare throughput in scenario (i) to through-

put in scenario (ii). Similarly, we compare scenarios (iii)
and (iv) against each other. Note that we do not compare
the throughput obtained by solving the LP model with the
throughput obtained from ns-2 simulations.
We consider these four scenarios in a 7x7 grid (49 nodes).

The horizontal and vertical separation between adjacent nodes
is 200 meters. We assume the communication range to be
250 meters, and the interference range to be 500 meters. All
other parameters are at their default settings in ns-2. For
each simulation run, we randomly pick a few pairs of nodes
as sources and destinations; the source sends packets to the
corresponding destination at a constant bit rate equal to the
wireless link capacity.
Table 3 and Table 4 show the throughput ratios between

optimal routing and shortest path routing, under optimal
scheduling (based on our LP model) and under the 802.11
MAC (based on ns-2 simulations), respectively. In all cases,
optimal routing yields comparable or better throughput than
the shortest path routing when optimal scheduling is used.
The bene�t of optimal routing varies with the number of
ows, as well as with the locations of communicating nodes.
For instance, when the two ows are far apart and do not
interfere with each other, the optimal path achieves the
same throughput as the shortest path (e.g., numFlow=2 and
run=1, 5); when the two ows interfere with each other, the
optimal path takes a detour, which results in reduced inter-
ference and hence higher throughput (e.g., the case of num-
Flow=2 and run= 2, 3, 4). For similar reasons, the optimal
path outperforms the shortest path even under the 802.11
MAC (as evident from the numbers for the corresponding
runs in Table 4).
On the other hand, the optimal path routing does not

always outperform the shortest path routing under 802.11
MAC; this is increasingly common when the number of ows
is higher. This occurs because as network load increases, it
is harder to �nd paths that do not interfere with other ows
in the absence of optimal scheduling.
The above results are encouraging, and suggest that there

is a potential to improve throughput by making route selec-
tion interference-aware. In ongoing work, we are continuing
to investigate the bene�ts of interference-aware routing un-
der a wider range of scenarios.

4.4 Convergence of upper and lower bounds
In most of the previous results in this section, the upper

and the lower bounds converged, assuring us of the opti-
mality of the solution. When they did not converge, e.g.,
Figure 5, we were able to assure ourselves of optimality of
the lower bound by manual veri�cation. In general, how-
ever, the bounds may not converge, as there is no guarantee
that even after adding all the clique constraints the upper

numFlow run 1 run 2 run 3 run4 run 5
2 1.00 1.25 1.6 1.3812 1.00
4 1.4092 1.0001 1.4369 1.4333 1.1429
8 2.1023 1.0000 1.0451 1.1131 1.1194

Table 3: Throughput ratios between optimal rout-

ing and shortest path routing, both under optimal

scheduling in a 7x7 grid.

numFlow run 1 run 2 run 3 run4 run 5
2 1.0768 2.4323 1.5278 1.7974 1.1863
4 1.0662 1.5374 0.7854 1.0181 1.5475
8 3.5474 1.2239 0.5011 1.1389 0.3905

Table 4: Throughput ratios between \optimal"

path routing and shortest path routing, both under

802.11 MAC in a 7x7 grid.

bound will be schedulable. This leads to the question: how
do we decide when to stop looking for even tighter bounds?
Given that the conict graph may have an arbitrarily com-
plex structure, we cannot wait until the upper and lower
bounds are within a small percentage of each other for this
may never happen. Even after all the cliques are found, the
upper bound may stay well above the optimal feasible so-
lution. Thus, there is no easy way to decide when to stop
the calculations. The data we present next does indicate,
however, that convergence is quite good in many scenarios.

4.5 Computational Costs
In Section 4.1, we mentioned that the e�ort metric pro-

vides only a rough indication of the computational costs of
�nding the bounds. We now provide more data in this re-
gard. Note that much of the data provided is for the MAT-
LAB [2] solver to which we had ready access; as noted below,
the CPLEX [5] solver o�ered a a speedup of about 7X, al-
beit on a somewhat faster CPU. Unfortunately, we only had
limited access to the CPLEX resource. So there is the po-
tential for signi�cant improvements over the computational
costs reported here.
In Table 5, we consider the relationship between the size

of the network and the amount of time required to compute
upper and lower bounds. The table shows the bounds com-
puted after 150,000 units of e�orts for several grid sizes, and
the time required to compute them. In each case, there is
a single ow in the network, with its source and destination
nodes at diagonally opposite corners of the grid. The rest
of the parameters are similar to those used to plot Figure 5.
Note that the upper and lower bounds are not equal in all
cases, which indicates that we might not have found the

Grid Size Upper Bound Lower Bound Time (minutes)
3x3 0.25 0.25 2
5x5 0.5 0.5 2
7x7 0.495 0.5 25
9x9 0.474 0.5 35

11x11 0.479 0.5 40

Table 5: Upper and lower bounds after 150,000 units

of e�ort



E�ort Upper Bound Lower Bound Time (minutes)
10000 0.443 0.5 2
50000 0.48 0.5 5
100000 0.49 0.5 13
150000 0.495 0.5 25
200000 0.5 0.5 41

Table 6: Upper and lower bounds after varying ef-

fort for a 7x7 grid

Flows Upper Bound Lower Bound Time (minutes)
2 0.578 0.583 34
3 0.707 0.75 31
4 0.758 0.833 29
5 0.799 0.875 31
6 0.849 0.925 34
7 0.861 1.00 36

Table 7: 7x7 grid, multiple ows, 150,000 units of

e�ort

optimal solution in all cases. The computations were done
using MATLAB 6.1 [2], on a machine with 1.7Ghz Penti-
mum processor, and 1.7GB of RAM.
In Table 6, we consider the relationship between the amount

of e�ort, and the closeness of upper and lower bounds, as
well as the time required to compute those bounds. The
results are based on the 7x7 grid, with rest of the param-
eters similar to those used for Table 5. As we discussed
in Section 4.1, with more e�ort, we are likely to add more
variables as well as more restrictive constraints in the linear
program. So the bounds become tighter.
In Table 7, we consider the relationship between the num-

ber of ows in the network, and the amount of time required
to compute bounds for a given amount of e�ort. The results
are based on a 7x7 grid, with multiple ows. For each ow,
the source is in the bottom row of the grid, and it commu-
nicates with a destination located in the same column, but
in the top row. All other parameters are same as Table 5.
The software used to solve the linear program is also a

signi�cant factor in the amount of time required to �nd
the optimal solution. In Table 8, we show the amount of
time taken by CPLEX [5] to solve the 7x7 grid case, with 6
and 7 ows on a 2.7GHz Pentium machine, with 3.7GB of
RAM. While we can not compare these entries directly with
the corresponding entries in Table 8, as the machines used
to run MATLAB and CPLEX are di�erent, the speedup is
still quite signi�cant: a reduction by a factor of 7, from
34-36 minutes down to 5 minutes. Moreover, MATLAB
cannot solve the Mixed Integer Programs that result when
single-path routing is used. We could only solve these using
CPLEX. Unfortunately, we only had limited access to the
CPLEX software, so we are unable to report the full set of

Flows Upper Bound Lower Bound Time (minutes)
6 0.849 0.925 5
7 0.861 1.00 5

Table 8: 7x7 grid, multiple ows, 150,000 units of

e�ort, with CPLEX

numbers for CPLEX1.
Since these numbers are based on a single run, and are

based only on grid graphs, which have a regular connectiv-
ity pattern, we cannot draw general conclusions from them.
However, some trends are useful to note. We observe that
for grid networks, the amount of time required to solve the
problem increases with the number of nodes. We also see
that for a given e�ort level, the time required to compute
the bounds does not depend signi�cantly on the number of
ows in the network. However, the di�erence between the
upper and lower bounds for a given amount of e�ort tends
to increase with increase in number of ows.
In case of irregular graphs, such as the neighborhood graph

shown in Figure 4.1, we have observed that the amount of
time required to solve the depends signi�cantly on connec-
tivity and interference patterns.
Finally, we note that we have not included any results

involving physical model of communication in this section.
We have also not included results that demonstrate the use
of links of di�erent capacities. While we have solved such
networks (physical models of interference, links of di�erent
capacities etc.), we could not do a detailed study due to
resource constraints. Therefore, we have chosen to focus on
the protocol model of interference in this paper.

5. CONCLUSION AND FUTURE WORK
In this paper we have presented a model and methodology

for computing bounds on the optimal throughput that can
be supported by a multi-hop wireless network. A key dis-
tinction compared to previous work is that we work with any
given wireless network con�guration and workload speci�ed
as inputs. No assumptions are made on the homogeneity
of nodes with regard to radio range or other characteristics,
or regularity in communication pattern. We use a conict
graph to model wireless interference under various conditions
(multiple radios, multiple channels, etc.). We view the gen-
erality of our methodology and the conict graph framework
as a key contribution of our work.
Although the bounds that we compute on the optimal

throughput assume the ability to �nely control and carefully
schedule packet transmissions, the optimal routes yielded by
our analysis often outperform shortest path routes even un-
der \real-world" conditions such as uncoordinated schedul-
ing and MAC contention. In ns-2 simulations, we have ob-
served a throughput improvement of over a factor of 2 in
some cases. The reason for this signi�cant improvement is
that the optimal routes often tend to be less interference-
prone than the default shortest path routes.
We have also considered the impact of new nodes on the

per-node throughput in multi-hop wireless networks. Con-
trary to previous results, we have found that the addition
of new nodes can be bene�cial for all nodes, under the
(realistic) assumption that each node is active for only a
small fraction of the time. The richer connectivity (and
hence increased opportunities for routing around interfer-
ence \hotspots" in the network) contributed by new nodes
more than o�set the increase in traÆc load they cause.
In ongoing work, we are continuing to investigate the ben-

e�ts of interference-aware routing under a wide range of sce-
narios. Our next step after that would be to design a prac-

1Although we expect to be able to do so for the �nal version
of this paper should it be accepted for publication.



tical interference-aware routing protocol, which presents in-
teresting challenges such as constructing the conict graph
and computing optimal routes in a distributed manner.
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APPENDIX
.1 Proof of Theorem 1
Suppose we are given a graph G and we want to compute

the cardinality of its maximum independent set. We now
construct a wireless network such that the optimal through-
put it can support under the protocol interference model is
same as the cardinality of the maximum independent set of
G. Create two wireless nodes, a source s and a receiver r.
For every vertex in G add a wireless link of unit capacity
between s and r. For every edge between two nodes in G,
assume a conict between the corresponding wireless links
in the network. (Such a network may arise, for instance, if
nodes s and r are each equipped with multiple radios set
either to the same (i.e., interfering) channel or to separate
(i.e., non-interfering) channels.) It is not hard to see that
that the optimal throughput is achieved if and only if a max-
imum independent set in G is scheduled. Thus �nding the
optimal capacity of the wireless network is equivalent to to
�nding the cardinality of the maximum independent set of
graph G, which is known to be a hard problem.
The above proof may come across as contrived since the

wireless network we constructed is unlikely to arise in prac-
tice. This raises an interesting question of whether realistic
wireless networks could give rise to complex conict graphs?
Our answer is both yes and no. Our answer is "yes" be-
cause the maximum independent set problem is hard due to
the existence of odd holes and odd anti-holes in the given
graph2. As shown in Figure 11, very realistic and simple
grid graphs could have conict graphs with many odd holes
and odd anti-holes. On the other hand, our answer is "no"
because realistic conict graphs may have some special prop-
erty or structure that could make the problem of �nding the
maximum independent set easy. We have been unable to
identify any such property, but our failure does not mean
that no such property exists (though the complex conict
graphs arising from the simple grid graphs, as in Figure 11,
diminish our optimism). In view of this, we believe that the
heuristic approach presented in Section 3 may be reasonable.

2If a graph does not have any odd holes or anti-holes then
the graph is termed perfect [21], and for perfect graphs there
are polynomial time algorithms to solve the maximum inde-
pendent set problem [14].
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Figure 11: A 6x6 grid connectivity graph. ABCDE

and VWXYZ are examples of odd holes in the cor-

responding conict graph, assuming an 802.11-style

MAC, communication range equal to the lateral spac-

ing between neighbors, and interference range equal to

twice the communication range. These odd holes also

happen to be odd anti-holes.

.2 Polynomial Time Algorithm in Special Case
Even in special cases where polynomial time algorithms

may exist, they may be too expensive to be of practical in-
terest. One such special case arises in the context of grid
graphs when the conict radius is zero. By zero conict ra-
dius we mean that two links conict if and only if they share
an endpoint. In this simple and somewhat unrealistic set-
ting, the conict graph is nothing but the line graph of the
underlying grid network. (The line graph, L(G), of a graph,
G, is a graph on the edges of G, i.e., the vertices of L(G)
correspond to the edges of G. There is an edge between
two vertices of L(G) if the corresponding edges in G have a
vertex in common.) Our network in this case is a grid. A
grid is a bipartite graph, and bipartite graphs are perfect.
The line graph of a perfect graph is perfect too. Hence the
conict graph of a grid graph with a zero conict radius is a
perfect graph. A perfect graph has the property that its set
of clique constraints de�ne its independent set polytope. So
if we write a linear program with all the clique constraints
together with the ow constraints then we can �nd the opti-
mal network throughput. The problem, however, is that the
number of cliques could still be exponentially many. (Al-
though this does not happen with grid graphs, it could very
well happen with other perfect graphs.) A solution is to
use the ellipsoid algorithm [19] to optimize linear functions
over a polytope. This algorithm does not require all the
constraints in an explicit form to optimize a linear function
over a polytope, hence we do not have to enumerate the
exponentially many clique constraints. The ellipsoid algo-
rithm only needs a subroutine that given a potential solu-
tion indicates whether the constraints are satis�ed or not,
and if not identi�es at least one constraint which is not sat-
is�ed. Such a subroutine is called separation oracle. The
separation oracle for our problem would be one that �nds a
violated clique constraint given a usage vector. This can be
accomplished using the Grotschel semide�nite programming

algorithm for �nding the heaviest clique [15]. However, both
the ellipsoid algorithm and the semide�nite algorithm have
a running time of O(n3), so in combination their running
time is O(n6). Thus this polynomial time algorithm is not
very practical, which makes our heuristic approach attrac-
tive even in this special case.

.3 Finding Violated Odd Hole Constraints
Now we present a separation oracle that given a conict

graph G and a candidate solution � �nds a violated odd hole
constraint, if any. Such an oracle could be used to improve
the convergence rate of the algorithm presented in Section
3. Note that this separation oracle is applicable to general
graphs; for the perfect conict graph considered in Section .2
above, there are no odd holes anyway.
Consider an odd hole, H, of the given conict graph G.

Any vector � inside the independent set polytope of G must
satisfy the following:

P
i2H �i � (jHj � 1)=2. A violated

odd hole is one for which this constraint is not satis�ed.
Before attempting to �nd a violated odd hole, we may as-
sume that the given � satis�es all the edge constraints, i.e.,
�i + �j � 1 for every edge in G, because if it does not then
we can include the violated edge constraint to shrink the
upperbounding polytope. After making this assumption we
de�ne a weight function on the edges. For every edge ij of
the graph G, we de�ne its weight to be 1 � �i � �j , which
is guaranteed to be non-negative. With this weight func-
tion we �nd the lightest (i.e., least-weight) odd cycle in the
graph. The lightest odd cycle can be found using a bipartite
graph construct as explained in the next paragraph. Let C
be the lightest odd cycle.

P
ij2C(1� �i � �j) < 1 is equiv-

alent to
P

i2C �i >
jCj�1

2
. So, if the weight of the lightest

odd cycle is less than 1 then the cycle is a violated odd hole.
If the weight of the lightest odd cycle is 1 or more then there
is no violated odd hole.
Now we come to the question of eÆciently �nding the

lightest odd cycle. Let G be the graph in which we need to
�nd the lightest odd cycle. We construct a bipartite graph,
B, as follows. For every vertex v in G we put two vertices
vl and vr in B (the subscripts l and r can conceptually be
thought of as representing the left and right \halves" of the
the bipartite graph B). For every edge uv in G we put two
edges ulvr and urvl in B. Now an odd cycle in G becomes
an odd length path in B e.g., uvwu becomes ulvrwlur. So
for every vertex u in G we �nd the shortest path from ul to
ur in B. The shortest such path in B yields the lightest odd
cycle in G.


