
 1

Microtasks: A Platform for Task Centered Collaboration
Mohit Gupta, Joseph Joy, Krishna Mehra, Gopal Srinivasa

Microsoft Research India

ABSTRACT

We consider the class of applications that involve users

working asynchronously or synchronously in small groups

to complete a set of tasks. Despite wide applicability, broad

adoption of these applications remains largely unrealized,

due to the high cost of development and deployment. We

introduce an abstraction for these applications that enables a

substantial portion of application complexity to be factored

out into a common infrastructure we call the Microtasks

Environment. We describe the environment and its

simplified programming model, and share our experiences

in developing and deploying applications that are in actual

use.

Author Keywords

Collaboration platform, human-centered computing.

INTRODUCTION

The Internet has enabled a class of applications where

people collaborate towards completing tasks , having a

variety of motivations to participate and without necessarily

knowing each other. For example, the Distributed

Proofreaders (DP) project[1] enables volunteers to sign up

to help with correction, formatting and proofreading tasks

associated with getting books online as part of Project

Gutenberg[2]. Other applications go beyond farming out

pieces of work to individuals working independently,

leveraging instead the synchronous interactions among

people. For example, the ESP Game [3] is a 2-person

synchronous image tagging game that cleverly leverages

competiveness to both motivate people to both contribute,

and help cross-verify contributions., The motivation for the

Internet community to participate can be monetary, as is the

case with Amazon’s Mechanical Turk (MTurk) service [4],

and Microsoft’s Task Market [5], or it can be entertainment,

as is the case with the ESP game and the other games on the

―Games with a purpose‖ portal [6][7]. At other times, users

have worked on such tasks motivated by altruistic goals, as

the search for Jim Gray demonstrates [8]. Some companies

are using such games for business functions like improving

product quality [9], while others have incorporated such

applications into their business plans.[10][11].

By leveraging interactions, the Internet becomes a source of

collective, cross-validated wisdom that can be tapped to

create, transform, and annotate digital information [12].

Today, an individual without significant engineering

resources has limited options to tap into this pool of human

resources, either within an organization or across the

Internet, in the manner the DP pro ject or the ESP game

does. While the MTurk service [4] supports a fixed set of

single-user task templates, it does not natively support tasks

with customized orchestrations (as in DP) or tasks requiring

synchronous collaboration among multip le parties (as in

ESP). MTurk also requires a separate web service to be

setup for tasks with nontrivial UIs.

One could build a distributed application or service, but it

takes significant engineering resources to build and deploy

such applications due to the need for user management, data

management, concurrency, messaging, application health

monitoring and other reasons we elaborate on in later

sections. This is in stark contrast to standalone applications:

script-driven desktop applications, high-level languages and

frameworks have empowered people from broad range of

disciplines, including non-IT disciplines, to either build a

standalone application from scratch or to customize existing

applications for specific needs.

The main goal of the work described in this paper is to

significantly lower the technological entry barrier for the

development and deployment of a broad class of

collaborative applicat ions, which we call Task Centered

Collaboration applicat ions, defined below:

A second, longer term goal o f our work is to build a

platform for the study of computer mediated

communicat ion and human-computer interactions for this

class of applications.

In this paper, we describe a system, called the Microtasks

Environment, fo r the development and deployment of

TCC applications. To our knowledge, this is the first system

that enables ease of development and deployment ,

combined with extensibility, for th is class of applications.

The key contributions of our work are:

 A vocabulary that enables application authors to clearly

specify and design TCC applications.

 An abstraction, applicable to the broad class of TCC

applications, which enables the factoring out of

Task Centered Collaboration (TCC) applications

facilitate the processing of a large number of work

items, or Tasks , by people working independently or in

small, synchronously collaborating groups.

MSR-TR-2009-20

significant portions of the application into common

infrastructure.

 A programming model that enables a developer to focus

on the UI and logic associated with operations on a single

task, without being exposed to issues such as security,

authentication, synchronization, concurrency, persisting

data, and binding users to activities . The model includes a

serialized, typed message passing model to facilitate

synchronous collaboration when working on a task.

 An implementation of the system on which we have

developed and deployed a diverse set of applications that

include: tagging portions of images with text,

multilingual annotation of geographic points of interests

and collaborative video annotation. This sys tem is in

actual use and is providing value to ongoing projects in

the area of video annotation for education, multilingual

corpora collection, and a machine learning research

project [13].

Figure 1 shows a screenshot of SMA, a collaborative media

annotation application built and deployed using our system.

SMA enables a pool of (potentially geographically

distributed) volunteers to collaboratively annotate existing

video or audio content. Each media clip is worked on by a

transient, ad-hoc group, automatically put together by the

Microtasks Environment, and consisting (typically) of one

to three users, who contribute timeline annotations while

reviewing the clip. Contributed annotations are shared in

real t ime, and the collective annotated results are check-

pointed to persistent storage maintained by the Microtasks

Environment. The application includes a group chat

window that facilitates discussions amongst the group.

SMA, which is in actual use for the annotation of

educational videos, is used as an example throughout this

paper to illustrate the various concepts and the

programming model we introduce.

 Figure 1: Two instances of SMA, a collaborative media

annotation application

CHARACTERIZING TCC APPLICATIONS

A unifying characteristic of the class of collaborative

applications we consider is that collaboration revolves

around independent chunks of data that are operated upon

by the users of these applications. During the course of one

or more user interactions, the data chunks get transformed

or annotated with additional data. We call this data chunk

that changes state and accumulates content, a Task. Note

that our definition of Task is focused on the data, not the

user interaction activities that may operate on it. We use

this definition consistently.

Some examples of applications that operate on Tasks are:

1. Surveys (the simplest form of a TCC application).

2. Crowd-sourcing applications at various scales, ranging

from sending out informat ion to be annotated by a

targeted group of people, to large scale tagging

applications such as HotOrNot [14]. Tags can also be

collected asynchronously over time, with each user

adding new tags to the images that provide sufficient

permissions as in the case of Flickr [15].

3. Synchronous collaboration by small sets of people on

small, data-driven shared tasks (such as the SMA media

annotation application). This includes one- and two-

person games with data collect ion intent such as the ESP

Game [3].

Tasks can be operated on in mult iple stages, and involve

some amount of workflow, such as distributed proofreading

(see for example [1]). Another example of this is seen in

Peek-a-boom [16] where two users synchronously

collaborate to annotate sections of an image, based on tags

earlier submitted in the ESP game.

Building TCC applicat ions is not easy despite the

availability of a plethora of frameworks. This is not only

due to the domain-specific functionality required by TCC

applications (for instance, matching users with certain

qualifications to appropriate tasks) but also the need to

synchronize the modificat ions to shared data by multip le

people with varying roles, capabilit ies and trust levels. The

authors have built several TCC applications from ground

up, and can speak from firsthand experience. The difficulty

of building collaborative, d istributed applications is also

highlighted in [17].

One can lower the barrier to the development and

deployment of TCC applications by sufficiently

constraining the problem and this is effectively done in a

number of cases. For example MTurk enables non-technical

users to create template-based Human Intelligence Tasks

(HITs) for some common scenarios such as editing

documents or image tagging. However, adding the slightest

sophistication to the interaction such as the marking-out

parts of an image demands one to create a complete web

application (as in GIS Image Tagging App [18] on MTurk).

Even lightweight applications on the Internet require

components to be well engineered before they can be

published – these components include authentication, data

 3

storage, security, and monitoring. Using web application

frameworks such as Ruby on Rails, ASP.NET and others

reduces this burden, but they in turn require significant

technical knowledge.

When synchronous collaboration is involved (as in games),

the situation gets considerably more complex, as there

would need to be communication and synchronization

amongst the users working on the same Task. The

developer would need to be well versed with distributed

programming techniques. The dynamic mapping of specific

Tasks and user interaction activit ies to users, given

application-specific constraints, is also non-trivial.

Scalability and robustness also need to be addressed, given

that a large number of Tasks (especially if they involve

lightweight interactions) can be in execution

simultaneously. The computer gaming community has

worked on various abstractions [19], but there is a

significant learning curve and the environment is highly

specialized to the gaming experience.

Deploying such applications is non-trivial and there are

significant operational and administrative overheads. For an

application that works at Internet scale, one may have to

interface with replicated databases and clusters of servers,

all of which requires specialized technical knowledge.

THE CASE FOR A COMMON INFRASTRUCTURE

Most of the TCC application examples in the previous

section are fairly large and successful Internet applications.

We believe that the opportunity for such applications within

an organization (or informal workgroup) is huge. Every

instance of work being partitioned amongst people and

eventually collated is an opportunity for a TCC application.

Some examples are listed below:

1. A User Interface designer wanting to send out

versions of her UI fo r A-B testing.

2. A teacher wanting to compose exercises in the form

of casual games, as motivated by the MIT Games -

to-Teach project [20].

3. An individual may want to get her media file

tagging and annotating ―outsourced.‖

However, we believe the potential is largely untapped due

to the difficu lty of building and deploying these

applications.

Despite the varied interaction modalities of a user (or users)

working on a specific task there are many commonalit ies in

these applications that can be factored out into a single

infrastructure, such as:

 User authentication and management

 Database management and access

 Synchronization for mult i-user collaborative tasks

 Managing task lifecycles

 Monitoring and evaluation framework

 Administrative interface for managing Tasks and

analyzing usage statistics.

 Security and protection from malicious user behavior.

Our goal has been to move beyond building a set of

common libraries and sophisticated design guidelines

(thereby leaving the application author to compose and

deploy the application), and get to a world where the

author’s burden is greatly min imized, so that she can focus

on the specifics of the application (which is primarily the

details of how users interact with a Task in the context of

specific User Interaction activit ies , as well as the ability to

upload and download aggregate data).

This goal has led us to compose an abstraction that

encompasses the class of TCC applications, and the

creation of the Microtasks Environment, described in the

next section.

THE MICROTASKS ENVIRONMENT

The Microtasks Environment is guided by the following

design goals:

1. Present a simple programming model to the application

author that supports the full class of TCC applications .

All concepts and components that are not specific to the

particular application should be factored out into a

common infrastructure.

2. Provide a hosting environment for these applications.

3. Provide multiple points of extensibility. For example,

the application author should have control over the user

interface, and should be able to run arbitrary ―business

intelligence‖ logic.

4. Provide persistent storage. Persisted data should be

query-able by the business logic.

5. Support complex Task workflows.

6. Ensure that the choice of platform for the end-client

interaction component is not constrained by the

framework. Common platfo rms could include desktop

applications, web browsers and popular social

networking plat forms.

7. Support an evaluation framework that authors can tap

into to introspect on the running of the application.

Overview

The Microtasks Environment implements the Microtasks

abstraction, which is the model of the system presented to

the application author (Author). The semantics and

terminology of the entities in the abstraction have been

designed to closely follow the informal characterizat ion of

the full swathe of TCC applicat ions presented earlier, while

being as concise as possible.

The core entities in the abstraction are presented in Table 1.

Table 1: Microtasks Nomenclature

Author A person or organization who builds and

deploys a Microtasks application.

Actor A user who interacts with a Task.

Task Data representing a unit of work, composed of

Task Input, Task Constraints and a list of

submitted Solutions

Task Input Initial Task data submitted by the Author

MSR-TR-2009-20

Activity Code that enables a specific kind of interaction

between actors and tasks. Contains Logic and

the UserInteraction components.

Solution Data appended to a Task by one or more

Actors participating in an Activity .

Constraints Metadata used to match Tasks, Actors and

Activities

Project Top level container used for establishing

scope. Contains Activities, and Tasks

Room A nexus of collaboration, consisting of an

Activity, a Task list and an Actor list.

The relat ionships among the entities are illustrated in Figure

2. Note that this is a logical model (the implementation can

run on multiple machines).

Figure 2: The Microtasks Abstraction

The Author models the data required for the work that

needs to be done as a set of Tasks, which are uploaded

using an Author admin istration interface into persistent

storage maintained by the environment. Each distinct type

of user interaction is called an Activity. The Microtasks

Service in the figure contains the runtime state of the

system.

Actors work (or more generally, interact) with Tasks,

appending Solutions to the tasks they work on. To facilitate

this, the environment dynamically spawns a Microtasks

abstraction called a Room. At any point the Actors in a

Room interact with a single Task. The Room is a

fundamental abstraction, as it enables a simple

programming model for co llaboration on a particular

Activity by a set of Actors on a set of tasks. This is a

unified model for single- and multi-user Activities.

Actors in a Room collaborate by exchanging messages with

an Author provided, Activity-specific, Logic component

that runs within the context o f a Room. The Logic

component may also maintain its own transient state. We

provide more details about the internal structure of a Room

later in this section. Solutions are persisted (appended to the

Task record in the persistent database maintained by the

environment) as they complete.

Tasks can flow through multiple Activ ities, where each

Activity represents a specific kind of interaction between a

Task and one or more Actors . All solutions are appended to

the Task. The flow of Tasks through Activities is explained

in more detail in section “Li fe Cycle of a Task”.

 We shall illustrate these concepts using the SMA

application from the Introduction. Recall that with SMA,

the overall objective is to annotate and segment media clips.

Each Task represents a video or audio clip. SMA has two

Activities, an ―annotate‖ activity and a ―review‖ activity. In

the annotate Activity, two or more Actors collaborate

synchronously, using the message dispatch facilit ies in a

room, to create annotations. These annotations are

accumulated as Solutions. The review Activity enables an

Actor to approve the quality of a particular set of

annotations. This decision is also appended to the Task as a

solution.

Tasks, Activities and Actors have a set of properties (name

value pairs), and constraints on these properties . Constraints

express compatibility requirements amongst Tasks, Actors

and Activities. A Room instantiator, described later, is

responsible for dynamically matching up all the Actors,

Tasks and Activities in a project, spawning a Room

whenever there is a critical mass of compatible Actors and

Tasks for a particular Activity.

To design an application using Microtasks, the author needs

to break it down into two components: the User Interaction

(UI) component and the Logic Engine (LE) component. The

Actors interact with the UI and their actions are

encapsulated as messages and sent to the LE by messaging

services provided by Microtasks. Conversely, the LE can

generate output messages, which are sent to the UI. All

interactions are scoped by a particular Room.

NOTE: The programming model presented in this paper,

while already providing a greatly simplified and structured

way to implement TCC applicat ions, does not preclude

even simpler higher-level declarat ive or template-based

ways to program TCC applicat ions. In fact, we expect that

there is a lot of value in developing a simple design surface

for TCC applicat ions which, along with a stable of UI

modules or ―gadgets‖, will enable even non-programmers

to author full-fledged TCC applications! Such a design

surface would generate or synthesize applications based on

the programming model described in this paper. This is a

highly promising area for future work.

Lifecycle of a Task

Conceptually, the life cycle is similar to that of an assembly

line as illustrated in Figure 3.

 5

Figure 3: Lifecycle of a Task

Once created, a Task is placed on the assembly line that

circulates it through various stages defined for working on

it. Each stage constitutes an Activity that is performed on

the Task by one or more Actors, who add solutions to it.

These solutions are also added to the state of the Task and

can be accessed during the subsequent stages. In any

particular stage, the Task is the combination of the original

Task, and the solutions added to it by the activities

preceding the current Activity. More formally, Tn, the state

of Task T at the start of the n
th

 stage to have operated on T,

is given by the recurrence:

 Tn = Tn – 1 U Sn – 1

 T0 = {I, C}

where I is the Task Input, C is the Task constraints, and Sk

is a solution added to the Task in stage k. For example, state

of the Task in the ―review‖ Activity of SMA consists of the

video clip and the annotations added in the preceding

―annotate‖ Activity.

Authors can access tasks and solutions at any stage in the

activity chain, and introduce new activities and tasks

dynamically.

Rooms

The Microtasks Room scopes all interactions concerning a

specific set of Actors bound to an Activity and working on

a set of Tasks. The mechanis m for room instantiation is

described later. Figure 4 shows the conceptual structure of a

room.

Figure 4: A Room

The ―active‖ part of the Room is the Author-provided Logic

Engine, which is invoked periodically by the Microtasks

environment. Each Room has an input and output message

queue that facilitate message passing between the user

interaction component and the logic engine component.

Current program state (for instance, variables used by the

code running in the logic engine) is stored in the Room as

Transient state which is isolated from other Rooms of the

same Activity. The Logic Engine performs actions in

response to messages sent by the Actors in the room. These

actions include modifying the transient state, sending

messages to the user interaction components, and

submitting solutions to the environment.

Rooms interact with the Microtasks Environment through a

set of status codes which are used to drive a finite state

machine. This interaction model is described in more detail

in the next section.

The Microtasks Environment manages the transmission of

messages, and thus Author code does not have to concern

itself with binding and transport mechanisms . Many rooms

are in execution simultaneously and each of them is

provided a completely isolated environment. The system

manages all these Rooms, their states and the queues for

messages. The system infrastructure is also responsible for

a scalable implementation and all this happens in a

concurrent fashion, with thread and lock management being

done by the system. Authors are only expected to write

simple sequential code as we describe in the ―Programming

with Microtasks‖ section. The model is identical for single -

and multi-user activities and greatly simplifies the process

of developing applications.

Dynamic Room Instantiation Based on Constraints

The Room instantiation mechanism is designed to enable

flexib le, constraint-based rules for matching up Actors,

Activities and Tasks.

MSR-TR-2009-20

 A Room is instantiated for an Activity whenever there is a

critical mass of mutually compatible Actors and Tasks for

the Activity. Compatibility is computed from Activity

constraints that can refer to fields within both Actor

qualifications and Task state. For single user activities,

Rooms are instantiated whenever a new Actor arrives and

there are Tasks compatib le with that Actor. Rooms for

multi-user activities are instantiated after the minimum

number of actors can be matched to a Task. Additional

constraints can be added. For example, in the annotate

Activity of the SMA application, Actors who share a

common language can be paired up with specific kinds of

video content, and a minimum number of Actors to actively

work on a particular video can also be specified through

appropriate Constraints.

Figure 5 illustrates how Rooms are instantiated, given an

input stream of Actors and Tasks. This mechanism is

designed for responsive instantiation of Rooms given a

constant influx of Actors and Tasks. The instantiator

maintains a dynamic list of ―Proto Rooms‖, containing

collections of compatible Tasks and Actors for a particular

Activity. Each time an Actor a becomes available for an

Activity, or an Activity on a Task t is completed, they are

added to all the Proto Rooms that they are compatible with.

If no Proto Rooms are available, a new one is instantiated

and a (or t), is added to it. When there are enough Actors

and Tasks in a Proto Room to form a Room, a Room is

instantiated (and the Actors and Tasks are removed from

any other Proto Rooms they had registered with).

Multistage Task Orchestration

Multi-stage Task orchestration is emergent behavior that

stems from the way new Rooms are instantiated; one can

control the Activities that successively work on a Task by

setting up appropriate Activity constraints. This is best

illustrated by an example. The constraint for the 2
nd

(review) stage of the SMA application is that the Task must

have a solution added by the earlier annotate stage. We

have found this constraint-based, data-driven orchestration

to be flexib le and simple to program, after considering other

alternatives, such as defining and executing an orchestration

graph.

PROGRAMMING WITH MICROTASKS

The Microtasks programming model presented in this

section focuses on core concepts and is simplified for the

sake of clarity of exposition.

Authors follow th is application development process:

1. Define data structures to represent Task and Solution

data for each Activity,

2. For each Activity:

a. Partit ion the application into Logic Engine(LE) and

User Interaction(UI) components

b. Define data structures and messages for

communicat ion

c. Code up the LE and the UI

3. Deploy the application and add tasks

We will illustrate these with the example of the SMA

application.

Declaring Types

The first step in creating a Microtasks application is to

define types used by the application. These include data

structures for the Task Input, for the Transient State, for the

Solution, and for the Message. The data structures can be

arbitrarily complex, with the only constraint being that they

be serializab le.

For example, in the SMA application, the Task Input

contains the URL for the video and the Solution for the

annotate activity is a list of annotations for the video. The

Transient State is the running list of annotations for the

video. Messages are of five types – three of them define the

actions that can be performed on the annotations – creation,

deletion, and modification, one of them indicates that the

message is a chat message and one more is reserved for

indicating that the task is complete. For the review activity,

the Task Input is the URL and the annotations added in the

annotate activity. The Solution is the set of annotations

from the Task Input, along with flags added by Actors

indicating whether an annotation is useful. The message for

this Activity is an annotation, flag pair, with the flag

indicating if the annotation is useful.

Programming the Logic Engine

The Logic Engine(LE) code executes within the context of

a Room, and is essentially a finite state machine which

advances each time a message is received or optionally at

periodic intervals. User actions are delivered to the Logic

Engine as messages from the UI via the Room. Based on

the messages, the LE can update its state and communicate

back with messages to the UI. The UI will update itself

based on the messages sent by the LE. For instance, the LE

can send a message indicating that a session is concluded,

and the UI will show the status accordingly. During each

invocation of the LE, the Microtasks Environment passes to

it a Context object that contains the input and output queues

of the Room, and the transient state of the Activity. The LE

can read the input queue, interpret the messages and take

actions based on the messages received. This sequence is

shown in Figure 6. The LE may also send messages back to

Proto-Rooms

T

A A

T T

T

A

New

Room

TIME

T T T

A A

A

Figure 5: Dynamic Room Instantiation

 7

the user interaction component, update the transient state,

check the quality of solutions, and add solutions to the

persistent store.

Messages between UI and LE include both event-handling

messages that request some action from the logic engine

(for instance, SkipCurrentTaskMessage), and data

messages (like the SolutionAddedMessage).

The LE communicates with the Microtasks Environment by

returning status codes that drive a state machine, which has

four states: INIT, RUNNING, COMPLETED and ERROR .

In the INIT state, the task list of the Room is populated and

a current task selected, and then the state is set to

RUNNING. After this, the LE controls the state of the

Room it is running in. Th is is done by returning one of the

appropriate symbols: RUNNING, COMPLETED, or

ERROR after each invocation. The symbol, RUNNING

must be returned by the LE when it determines that the

current Activity isn’t complete and additional invocations

of the Logic Engine are required. If an LE returns the

COMPLETED or ERROR symbols, the Microtasks

environment will terminate the current Activity and return

the Actor(s) and Task to the Room instantiator.

Figure 6: Pseudo-code for the logic engine

Programming the User Interaction

The User Interaction component interacts with the Logic

Engine through messages, and is closely tied to the Logic

Engine in terms of the messages it consumes and generates.

The component itself can be embedded in any environment

that can exchange messages with the Microtasks services,

for example, in a website, mobile client or desktop

application.

The pseudo-code for a typical UI component is given in

Figure 7. At a high level, the user interaction component

consists of two steps: First, it sets up the user interface for

the Actor to work on the task data. This involves registering

the actor, waiting for the Actor to be assigned to a Room,

and the actual setup of the user interface using information

retrieved from the Room. The in formation obtained

includes task data, other actors in the room, and metadata

like task constraints, activity constraints and Actor

qualifications.

In the second step, the component responds to actor actions

and sends messages (solutions, event handling messages) to

the LE. Results from the LE (successful solution

submission, or solutions failing validation checks) are

retrieved as messages and appropriate actions taken.

The SMA application’s user interaction component is a rich

client front-end as shown in Figure 1. First the UI is setup,

and then the video starts playing when the room starts. User

actions (add/modify/delete) are intercepted by the client and

encapsulated into a message and sent to the LE. The UI is

updated based on messages from the LE – e.g., in case of a

chat message, it is shown in the chat box, and the UI

indicates completion on receiving the TaskComplete

message.

Deploying and administering the application

The application can be compiled and the resulting library

can be submitted to the Microtasks service for deployment.

The admin istration interface is used to add tasks to the

project and retrieve solutions. For ins tance, in case of the

SMA application, we would need to submit URLs for each

of the videos that are to be annotated. The user interface can

be hosted on a web server (also provided by the Microtasks

Service) or d istributed as desktop applications.

Discussion

Our programming model is designed to allow simplicity

and extensibility while developing the applications.

Application logic can be written as though a single instance

of the application is running. Application state can therefore

be stored as part of the logic, and can be accessed without

Procedure SetupUI
begin

registerUserForActivity(activity);
<wait till game room started>
info = getRoomInfo();

 <setup UI and show the task>
end

Procedure ProcessUserInput
begin

<interpret User input and create msg>
sendMessageToLogicEngine(msg);
r = retrieveResponseFromLogicEngine();
<process response and update UI>

begin

Procedure ExecuteLogicEngine
Input: Context c
Output: GameRoomStatusSymbol
begin
 state = c.getTransientState()
 messages = c.getInputMessages()
 outputs = new list
 statusSymbol = RUNNING;
 …
 <modify state and populate outputs>
 …
 c.enqueueMessagesforUsers(outputs);
 c.updateTransientState(state);
 return statusSymbol;
end

Figure 7: Pseudo-code for the user interaction component

MSR-TR-2009-20

the fear of race conditions. Programming the logic engine is

therefore simpler. Since the author can plug-in her own data

structures and custom logic, the system is very extensible,

and a diverse group of activities can be developed.

Since the application logic runs in the same environment

during both development and deployment, applications can

be developed and tested completely on development

machines before being deployed on hosting servers, without

the fear of unexpected bugs caused by differing

environments. Issues of scaling the application to large

numbers of instances are now handled by the platform.

Isolating parallel instances of an application, as well as

instances of other applications from one another is also

managed by the platform. Finally, security is tightened

because the logic server can be configured to disallow

certain API calls, by either loading the applicat ion logic in

custom runtimes, or by configuring the runtime to disallow

certain API calls. This prevents hacked applications from

running amok.

ARCHITECTURE, DESIGN AND IMPLEMENTATION

In this section, we delve deeper into the architecture of

some of the components of the Microtasks system. The

Microtasks system is designed with helper libraries and

various services that interact with each other to provide

functionalities to the user. The system is implemented in C#

using the .NET platfo rm and technologies such as Windows

Communicat ion Foundation and Language Integrated

Query.

Architecture

The overall arch itecture is described in Figure 8. The

Author and the Actors communicate to the Microtasks

system through the Microtasks Service layer which

provides a single Facade design pattern for interacting with

the system. The service can be accessed over multip le

transports, such as HTTP web services and .NET Remoting.

This ensures flexibility and allows both browser-based and

desktop clients to connect to it.

The Persistence layer abstracts database storage and query,

and is used internally by all the layers above it, including

the management of Author data. It also checks data for

consistency before adding it to the database.

Figure 8: Microtasks Architecture

The Session Management Service is responsible for access

control and unified session management for both desktop

and browser-based applications. It supports multip le

authentication mechanisms. Authors can also choose to

allow anonymous access to certain Activities . Timed

sessions are assigned to users after authentication for a

specific ro le (Author or different Actor roles). All entit ies in

the Microtasks Environment (Sessions, Authors, Actors,

Activities and Tasks) are allocated a Token, which

encapsulates their globally-unique id. Tokens contain

discriminators for identifying the type of parent entity and

are used at various levels to check for access privileges

based on user role. Tokens are also used for tracking

relationships between entities, as part of a monitoring

framework.

Figure 9: The Logic Server Architecture

Once the session is created, the Logic Server (Figure 9)

manages the actual activities being executed. This is central

to the system and manages user-allocation, Rooms,

message queues and the scheduling of the various Logic

Engines. The various components of the Logic Server are

listed below:

 9

 Allocator: Enables matching of Actors with Tasks, based

on the constraints as described in ―Dynamic Room

Instantiation Based on Constraints.”

 Queue Manager: Maintains message queues for actors

and rooms. Message queues for Actors get cleared when

the Actor retrieves messages, and for rooms when the

context is set up.

 State Manager: The state manager behaves as a store

that maintains the transient state of all the activities in

execution. When a room is created, the state is initialized

to the default state provided by the Author, and thereon,

the state is retrieved from the store and handed to the

Logic Engine during execution and deposited back when

execution completes.

 Finite State Machine (FS M) Manager: As we described

in the programming model, the state of the rooms (Init,

Running, Exit and Checkpoint) is maintained as a finite

state machine. The FSM Manager finds state transitions,

and also schedules bookkeeping activities like cleanup,

check-pointing etc. This design allows us to extend the

control-state management easily by modify ing the

automaton.

 Logic Engine Executor: This component executes the

logic engines provided by the Authors. Before running

the Activity Logic Engine (LE), the Executor prepares a

context populating it with the currently queued messages,

the transient state, and information about the room.

The Queue-Manager and the State-Manager need to

maintain states for all the players under the protection of

proper locks. The Logic Server is designed to be highly

concurrent and executes many LEs simultaneously in

different threads. The Scheduler manages the thread pools

and queues up the Logic Engines to be executed as per the

specified tick-time, and the availability of the worker

threads. The Co-ordinator ties all these modules together.

Note that this infrastructure is common to all the games and

can be well-engineered. All the multi-threading and lock

management complexity is hidden within this layer so that

the Author of the application can write sequential code.

The Author’s logic is run within the context of the

Microtasks Service allowing the service to ensure that the

environment is sand-boxed and failure of Author’s code

does not affect the rest of the system. Since the operational

semantics of the LE are restricted to message passing and

does not need to store private transient state, static

verification that the LE does not contain malicious code is

viable.

EXPERIENCE WITH MICROTASKS APPLICATIONS

In this section we describe the benefits of developing

applications with the concepts and environment described

earlier in the paper. An implementation of the Microtasks

environment is currently deployed in our organization and

is being used for the development of applications internally.

Our team has developed several applications motivated by

real scenarios for annotation, data collection and

collaborative tasks. The Image Annotation application

collects training and verification data for computer v ision

systems. The Multilingual Map (MLMap) Annotation

project, described later, was developed to collect

transliteration data for improving mult i-lingual map search,

and the SMA Shared Media Annotation project, to help

annotate educational videos .

Table 2: Application Code Sizes (LOC)

 App
Image

Annotation

SMA ML Map Stress

UI 609 398 310+ 70

Data Structures 93 50 30 48

Logic Engine

and Messages

93 160 68 45

Admin 210 26 151 22

Through these examples of applications built using

Microtasks we aim to draw attention to the minimal code

size required to implement various components. As

mentioned in Table 2, this is true both for applications

designed to be used by Actors individually as well as those

which require synchronous collaboration. Based on our

experience, comparab le featured applications would easily

be in excess of 4000 LOC, and far more complex in

structure.

We now qualitatively describe our experiences with these

applications.

Multilingual Map Transliteration

The Multilingual Map Transliteration application has been

developed to get human transliterations of place names in

various languages. The Activity, as shown in Figure 10, is

deployed as a web-based mashup. The activity accesses

various online services to render the transliteration task

(that is the name of a specific p lace) on the map and d isplay

images from nearby areas.

The use of Microtasks allowed us to incrementally add

features to the user interaction and Logic Engine

components, without losing out on already existing

solutions submitted by Actors. We have experimented with

more than a couple of user interaction components that

interact with the same Logic Engine without the need for

investing in the design and development of our own web

services. This was possible as the Microtasks server is

easily accessible over HTTP web services . Since the Logic

Engine of any particular activity can be updated easily we

have been able to add new features such as a transliteration

engine that pre-populates the Task with a machine

transliteration that an Actor can correct.

MSR-TR-2009-20

Figure 10: Multilingual Map Transliteration Website

Image Annotation

The availability of appropriately tagged and annotated

images is an important requirement for most machine

learning based computer vision approaches . Researchers

require annotated data for both training and testing of their

algorithms, many times on very specific image sets.

Our implementation of the Image Annotation Project

contains one browser-based Activity, shown in Figure 11,

which allows an Actor to annotate specific parts of the

image with text. This single-user activity is developed

using the Microsoft Silverlight platform and hosted in the

enterprise domain. On visiting the website, the Actor is

automatically authenticated and assigned an untagged

image. Also, the Author can review annotations submitted

by Actors at any time using the reviewing applicat ion.

Session management and authentication for participating

Actors is handled by the Microtasks client libraries and the

Session Services layer and greatly simplifies the

development of the web client. Building this web

application using Microtasks also eliminated the need for

any database setup or persistence related iss ues, further

helping us to rapidly prototype and experiment with the

client interaction components.

Shared Media Annotation (S MA)

The Shared Media Annotation application is the example

we have been using throughout our paper. It is a viable

option for the annotation and segmentation of educational

videos to support educators [21] and also improve search

over a media repository. Annotations created by the actors

in the same Room are shared live. This particular project

strongly demonstrates the effort saving benefits of the

environment as the entire application required less than 40

person-hours for completion, and is now a fully functional

application in active use. In this short time, we have been

able to achieve many of the design requirements for

Collaborative Video Annotation tools designed from

scratch such as FilmEd[22] which involved significant

effort fo r design and development.

Figure 11: The Image Annotation Activity

The application was init ially developed and tested as a

single user application, and was seamlessly extended to

work with multip le users working on a Task synchronously.

The Logic Engine for SMA is completely linear as the

Logic Server isolates Rooms and also handles message

queuing. As part of the Logic Engine, traces of user activity

are extremely trivial to persist (as Messages) and we are

hoping to leverage the same to understand the limits and

dynamics of collaborative annotation.

Using the framework has another advantage in increasing

security. Work done at the USC Center for Software

Engineering [23] has estimated a lower bound increase of

30% in software construction costs, and 24% in elaboration

(design) costs for writing secure applications. We believe a

significant percentage of these costs are reduced while

deploying applications using the Microtasks environment,

as a large number of security features like session

management, authentication and access control are

provided by it.

In practice, Microtasks reduces effort in analysis, design

and development. Development and testing effort is

reduced both by the functionality offered and by the

programming model. The Logic Server enables developers

to write applications with very little concern for

concurrency issues, nearly eliminating a large class of

(synchronization-related) bugs. Performance concerns,

particularly the ability of the infrastructure to handle large

loads are now a concern of the framework developers and

are no longer a burden on the application developer.

Finally, testing effort is reduced because the platform

supports a what-you-debug-is-what-you-deploy

environment in which business logic runs in the same

environment during development and deployment.

CONCLUSION

We have formulated the category of TCC applications,

called out common features of such applications, and

provided an abstraction for specifying, designing and

developing them. The abstraction identifies common

services used by this class of applications, abstracts them

into a framework, and in addit ion provides a programming

 11

model that is well-suited for the development of these

applications. Our implementation of the abstraction has

allowed us to significantly lower the barrier for developing

these applications and develop and deploy many real and

diverse applications for internal organizational use. The

ability to track and monitor actor behavior with the ability

to rapidly make changes to these applications are helping us

better understand the nuances of collaborative application

design and user motivation. Our future work includes

building a design surface with back-end code generation

that would enable even non-programmers to build and

deploy TCC applications.

REFERENCES

1. Distributed Proofreaders. Project Gutenberg. [Online]

http://www.pgdp.net/.

2. Project Gutenberg. [Online]

http://www.gutenberg.org/wiki/Main_Page.

3. Labeling Images with a Computer Game. Ahn, Luis von

and Dabbish, Laura. Vienna, Austria : ACM, 2004.

Conference on Human Factors in Computing Systems. pp.

319 - 326. ISBN:1-58113-702-8.

4. Barr, Jeff and Caberera, Luis Felipe. AI Gets a Brain.

Queue. May 2006, Vol. 4, 4, pp. 24 - 29.

5. Microsoft Task Market. [Online]

http://www.taskmarket.com.

6. Ahn, Luis von. Games with a purpose. Games with a

purpose. [Online] http://www.gwap.com/gwap/.

7. —. Games with a Purpose. IEEE Computer Magazine.

June 2006, pp. pp 96-98.

8. Douglis, Fred. From the Editor in Chief: The Search for

Jim, and the Search for Altruis m. Internet Computing,

IEEE. May-June, 2007, Vol. 11, 3.

9. Julian Birkinshaw, Stuart Crainer. Game on: Theory

Y meets Generat ion Y. Business Strategy Review. Winter

2008, pp. 4-10.

10. Dolores Labs. [Online] http://doloreslabs.com.

11. Seriosity. [Online] http://www.seriosity.com.

12. Howe, Jeff. The Rise of Crowdsourcing. Wired. June

2006.

13. Character recognition in natural images. T. E. de

Campos, B. R. Babu, and M.Varma. Lisbon, Portugal :

s.n., February 2009. International Conference on Computer

Vision Theory and Applications.

14. Hot Or Not. [Online] http://www.hotornot.com.

15. Flickr. [Online] http://www.flickr.com/.

16. Peekaboom: A Game for Locating Objects in Images.

Ahn, Luis von, Liu, Ruoran and Blum, Manuel.

Montréal, Québec, Canada : ACM, 2006. Conference on

Human Factors in Computing Systems. pp. 55 - 64.

17. Phillips, William Greg. Architectures for Synchronous

Groupware. Department of Computing and Information

Science, Queen's University. Kingston, Ontario : s.n., 1999.

Technical Report. 0836-0227-1999-425.

18. Yotta DCL. Yotta Geo Spatial Vision. [Online]

http://www.yotta.tv/contact/.

19. S weeney, Tim. Unreal Networking Architecture.

[Online] August 21, 1999.

http://unreal.epicgames.com/Network.htm.

20. Entering the Education Arcade. Jenkins, Henry, et al.

1, s.l. : ACM, 2003, Vol. 1. 1544-3574.

21. Team, DS H. The Digital StudyHall. s.l. : Department of

Computer Science and Engineering, University of

Washington, August 2007. Technical Report UW-CSE-07-

08-01.

22. FilmEd - collaborative video indexing, annotation, and

discussion tools over broadband networks. Schroeter, R,

Hunter, J. and Kosovic, D. s.l. : IEEE, 2004, Vols.

Multimedia Modelling Conference, 2004. Proceedings. 10th

International. 0-7695-2084-7.

23. Edward Colbert, Murali Gangadharan, Donald

Reifer, and Barry Boehm. Extending COCOMO II to

estimate the cost of developing secure software. USC

Center for Software Engineering. [Online]

http://sunset.usc.edu/GSAW/gsaw2003/s5/colbert.pdf.

	blah

