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Abstract

As Cloud Computing is taking off, the presence of high performance interactive Internet applications is exploding.

By nature, these applications require responsive client-server data exchange and lossless, in-order delivery. Previous

work has shown that by using forward error correction (FEC),it is possible to reduce the data streaming latency

caused by retransmissions of lost packets. However, the prior schemes only send FEC packets when there are no

original packets pending transmission. In this paper, we further expand the hybrid FEC-ARQ protocol and show that

sometimes, the transmission latency can be further reducedby preempting original data packets with FEC packets.

We have formulated the decision of whether to send new original data packets, FEC packets, or resend original data

packets as a transmission policy. An optimal transmission policy is selected to minimize the delay experienced by the

application subject to a constraint on the amount of overhead. By using this optimal policy, we significantly improve

the delay performance over straightforward FEC schemes while controlling the amount of overhead due to FEC.
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I. I NTRODUCTION

With the rapid penetration of broadband networks and the rise of Cloud Computing, online interactive applications

are flourishing. Web-based applications, which use the browser as a thin client, are proliferating as the software can

be installed and maintained on centralized servers as opposed to distributing the software on potentially millions of

client computers. Some examples of web applications are wikis, online auctions, web-mail, and online retail sales.

Software as a service (SAAS) is projected to grow to $15 billion by 2012 [1], increasing its share in the enterprise

software market from 10.7% in 2007 to 18.2% in 2012. As another example, multi-player online games are seeing

rapid adoption as well. Many online games have associated online communities, making them a form of social

activity beyond single player games. Also, the rising popularity of Flash/Silverlight/HTML5 and Java has led to an

Internet revolution providing a unified platform to deliverstreaming audio, video, and other forms of interactivity

to the client.

One crucial aspect that affects the user experience of an interactive software application is its responsiveness.

Whenever the client sends an input (e.g keyboard/mouse commands), the requests must be sent to the server in a

distant data center, which processes the incoming commands, and then sends updated data, audio, or video back to

the client for rendering. The responsiveness of the application is directly related to the timely interchange of the

request and the response between the client and the server.

Unlike interactive multimedia applications, such as VoIP and video conferencing, most interactive software

applications operate as a state machine. Therefore, the data has to be delivered losslessly and in-order so that

the client and server state are in sync. TCP (Transmission Control Protocol) provides reliable and ordered delivery

of content over the network and thus is commonly used. However, TCP and its variants (such as [2]–[4]) were

designed from the start to handle bulk data transfer (file download / static web page download), and therefore

optimizes throughput, while making no attempt to minimize the delay experienced by individual packets. Its use

of packet retransmission upon loss (ARQ) leads to higher delay on individual packets when loss is present. This

can lead to poor performance for interactive applications.

A. Related Work

There has been a lot of previous work on improving the qualityof real-time media (audio/video) applications.

However, we note that there are different delay and reliability requirements when dealing with interactive software
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TABLE I

MEDIA STREAMING VS INTERACTIVE APP VSFILE DELIVERY

Media streaming Interactive App File delivery

Strict deadline Delay sensitive No deadline

Best effort Reliable delivery Reliable delivery

No ordering In-order In-order

Low delay Delay-aware Delay agnostic

applications. We summarize the differences of the quality of service requirements between interactive software

applications vs. that of file delivery and media streaming inTable I-A.

Note that many semi-interactive media applications with anend-to-end (E2E) delay tolerance of multiple-seconds,

such as video on demand (VOD) or internet TV, actually belongto the same category as file delivery. As these

applications can typically build up a client buffer of several seconds worth of content and simply use retransmissions

to combat packet losses, the traditional TCP algorithms work fine. In addition modern streaming solutions such as

Smooth Streaming start with small initial buffers [5], [6] and avoid initial startup latencies. However, interactive

applications, such as online game, remote desktop, and web applications, have a end-to-end delay requirement of

only hundreds of milliseconds. With such stringent E2E delay requirements, the increased latency caused by a

retransmission becomes significant.

Although we can attempt to use delay sensitive congestion control strategies such as [7] to minimize congestion

induced packet loss, non congestion-induced packet loss isstill fairly prevalent in the internet, especially on wireless

links where the signal-to-noise ratio (SNR) may be sometimes low, or in long distance, cross continent Internet

links [8], [9]. In addition, when the interactive application is sharing a bottleneck with a flow using a loss based

congestion control such as TCP, it may experience congestion induced packet loss as well [10], [11].

An effective technology to reduce the delay caused by packetloss is Forward Error Correction (FEC), that is,

sending additional encoded packets to protect the data packets. In congestion induced packet loss cases, sending

FEC packets will result in the reduction of the rate that can be used to send source (innovative data) packets since

the overall rate into the network has to be held constant in order to avoid further congestion induced loss. However,

a lower source rate with lower delay may still be preferable for many interactive cases where the source has some

level of rate control.

FEC has been promoted widely in media (audio and video) streaming applications, e.g., in [12]–[16], and has been

used in practice in interactive (VoIP/conferencing scenarios) and in multicast / broadcast media distribution. There

has also been work in optimizing proactive retransmissionsfor media transmission so as to minimize distortion

subject to a rate constraint, where distortion is caused by lost packets as well as packets which exceed their deadline

[17]. However, the use of proactive retransmissions or FEC in protecting reliable lossless data (such as in interactive

software or web applications) has been less common.

In [18], Rizzo and Vicisano have used FEC to support reliablemulticast thereby reducing the bandwidth usage
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needed. In [19], Sundararajanet. al. describe how to modify TCP by using random linear codes to protect against

packet loss over the network. The idea is to retain all existing TCP mechanisms for congestion control and triggering

of retransmission, but apply FEC (more specifically, randomlinear codes across all data in the window) at the sender

and receiver, thereby masking loss in the network and improving responsiveness. In [20], we have optimized FEC

transmission strategy but forlossy online game data with a deadline constraint. However, none of the previous

work has concentrated on finding an optimal transmission strategy for delay minimization for real-time lossless

interactive data.

B. Contributions

This paper combines and extends a series of our previous works, such as [21] and [22], in which we have

developed a hybrid FEC-ARQ protocol for optimized sequential (in-order) delivery. Our protocol is functionally

compatible with TCP, though it is not packet-level compatible. Whenever a transmission opportunity arises, the

protocol will either retransmit a lost packet, send a new packet (if present), or send a FEC packet. The naive

approach, adopted in the earlier work [21], is to simply opportunistically send FEC packets whenever there is a

“free” transmission opportunity. Moreover, the FEC packetin this work is simply a linear combinations of all

unacknowledged source packets. However, in the later work [22], we showed that only sending FEC packets when

there are “free” transmission opportunities is not an optimal solution. In certain situations, e.g., in networks with

high packet loss ratio, or when the traffic is bursty, or in congested cases (when the maximum application rate is

higher than the network capacity), it sometimes makes senseto preempt sending a new source packet with a FEC

packet of previously sent source packets. Although the source packets waiting in the sender queue get delayed, the

overall delay experienced by the application can be reduced. We also showed that sometimes it makes sense to

only create an FEC packet of the first few packets rather than all the unacknowledged packets. We formulated the

problem of figuring which packet to send as an optimized transmission policy problem, where for each transmission

opportunity, we can choose to send one of three types of packets: 1) a new source packet, 2) a FEC packet, or 3)

a resent packet.

Though some of this paper covers similar material as discussed in [21] and [22], this paper is able to explain the

algorithm in greater detail and discuss more corner cases ofthe algorithm. Moreover, this paper also presents new

results which validate that the proposed algorithm runs well under real network conditions by using data from a

real network trace as opposed to just a simulated network channel with random loss and fixed delay. We also show

more detailed experiments that evaluate how the performance of our protocol (delay, overhead, and application

bitrate) are affected as a function of channel loss rate as well as burstiness of the application traffic.

The rest of the paper is organized as follows. In Sec. II, we goover the transmission strategy in detail, explaining

the definitions of overhead and choice of packets and policies. The cost function is explained in Sec. II-B and

the definition of overhead and computation of the overhead packets is discussed in Sec III. In Sec. IV, we show

detailed simulation results to demonstrate the effectiveness of the proposed scheme.
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Fig. 1. Block Diagram.

II. T RANSMISSION STRATEGY

Fig. 1 shows a block diagram of a typical network setup of an interactive application that uses our proposed

protocol. Since our protocol is functionally compatible with TCP, it may be used by any application that is currently

using TCP but demands responsiveness and low delay. The sender application produces original source packets to

send to the receiver. These packets typically come in a burstand consist of data which the receiver will process in

order. The packets are sent to the transport module. The transport module typically has a buffer to temporarily hold

the packets. The packets leave the buffer only when they havebeen acknowledged by the receiver. If the sending

buffer is full, the sending application receives feedback of this event from the transport module and reduces its

sending rate. For example, for an application that is sending audio/video, it can re-compress the audio/video at

a lower bit rate. For game applications, it can reduce the game status update interval to reduce the sending rate.

However, once the packets enter the transport module’s buffer, they must be delivered losslessly to the receiver.

The transport module consists of two components. One is the congestion control module which estimates the

available bandwidth in the communications channel, determines the current sending rate, and backs off (reduces

sending rate) when congestion is detected. It tries to find a fair share of the bandwidth for the sending application

while trying to minimize self congestion induced loss and queuing delay. The hybrid FEC-ARQ protocol developed

in this paper can work with many existing congestion controlmodules, e.g., TFRC rate control. The second module

is a transmission strategy module. It determines which typeof packet to send at each transmission opportunity.

Since delay is the most important factor in determining the perceived user performance of interactive applications,

the overarching goal for the transport module is to minimizethe expecteddelay incurred by each packet while

ensuring reliable in-order delivery. The delay incurred bythe packets has several components – e.g., waiting time in

the sender’s queue, propagation delay, network queuing delay, retransmission delay, and decoding delay if a coding

scheme is used. The requirement of in-order delivery can also cause additional delay as a packet may need to wait

for prior missing packets to be delivered or decoded.

For the following discussion, we defineoriginal packetsas the data packets which the application wishes to

send from the sender to the receiver. For a stream with an in-order reliable delivery requirement, original packet

i is defined to besequentially decodable(i.e. usable) if and only if it and all prior packetsj ≤ i are delivered or

decoded. Letsequential decodability delay(SDD) refer to the time span between when a packet enters the sender

queue (from the application) to the time it becomes sequentially decodable. This delay is important for interactive
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Fig. 2. Timeline - First three packets have been sent, but notnecessarily decodable. Last three have not yet been sent. Attime τ [n], the nth

coded packet is generated which reaches the receiver after∆[n] time.

applications.

Let coded packetsrefer to the packets that actually enter the network. These packets can be original, FEC packets,

or resent packets. Lettransmission delaybe the delay sending these coded packets from the sender to the receiver.

This delay consists of the network propagation delay and queuing delay. The SDD on the original packets is a

function of transmission delay incurred by the coded packets as well as loss rate suffered by the coded packets and

the coding strategy being used.

A. Choice of packets and policies

The transmission strategy can send one of three types of packets: original packet, FEC packet, or resent packet.

The FEC packets consist of linear combinations (over a Galois field) of existing unacknowledged (undecodable)

packets in the sender queue. Letx[l] be thelth original source packet which is represented as a vector ofbytes,

each of which is an element inGF (28). Then, ify[k] is thekth packet sent from the sender to the receiver, it can

be written asy[k] =
∑e[k]

l=b[k] fk,lx[l] = f∗kx, wherefk,l are coefficients fromGF (28). If an original packet is sent,

theny[k] = x[b[k]], for someb[k] and e[k] = b[k]. Because of the in-order requirement, it can be shown that for

FEC packets, without loss of optimality,b[k] can be assumed to be the index of the first undecoded original packet

in the sender queue. The transmission strategy chooses fromamongst the following three transmission policies.

• Sending a new source packet without coding.

• Sending a FEC packet of only the first certain number of undecoded packets.

• Resending an already sent packet which has timed out or been negatively acknowledged.

B. Cost function used to decide amongst policies

At any given transmission opportunity, the cost that we use to decide amongst the various policies is to minimize

the expected SDD. For our discussion, we define the followingterms, which are shown in the timeline in Fig. 2.

• n is the current transmission opportunity.

• B[n] is the index of the first unacknowledged packet in the sender queue prior to transmissionn.

• E[n] is the index of the last packet in the sender’s queue.

• D[n] ≤ E[n] is the index of the first packet which has not yet been sent.

• τ [k] is the time when coded packetk leaves the sender.

• ∆[k] is the transmission delay experienced by coded packetk (propagation delay plus queuing delay).
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• γl is the time original packetl enters the sender queue.

The expected SDD for original packetl can be written asDl =
∑

δ∈D
δ Prob(SDD = δ), whereD is the set of

possible values for SDD given byτ [k]+∆[k]−γl overk. The probability of achieving this SDD ispl[k]−pl[k−1],

wherepl[k] is the probability that all original packets up to and including l are decodable (i.e. packetl is sequentially

decodable) using transmissions up to and including transmissionk. This probability can be computed exactly with

reasonable complexity as shown in [21]. This gives

Dl =

∞∑

k=0

(pl[k]− pl[k − 1])(τ [k] + ∆[k]− γl). (1)

The SDD is affected by the transmission delay through the term ∆[k], the time spent in the sender queue by

τ [k]− γl, and the network loss and coding strategy bypl[k].

We assume that the congestion control module is able to achieve a smooth transmission rate and queuing delay

[7], Thus τ [k + 1] − τ [k] = T (the time between successive transmission opportunities is relatively constant)

and ∆[k] = ∆ (transmission delay is stable and approaches the network propagation plus queuing delay). Then,

rearranging terms in (1), we get

Dl = (τ [sl] + ∆− γl) +

∞∑

k=sl

(1− pl[k])T, (2)

wheresl is the first packet transmission opportunity that comes after packetl enters the queue, that issl = min{j :

τ [j] ≥ γl}. We can view this expected delay in terms of waiting times. With probability 1, packetl waits until

the first transmission opportunity that comes after it enters the queue plus the network transmission delay. With

probability1− pl[k] it waits an additional time ofT for the next transmission opportunity. At a given transmission

opportunityn for M original packets,γl andτ [sl] are the same for all transmission policies. We can remove these

common terms to obtain the cost function to be optimized as

C =

M−1∑

l=0

∞∑

k=max(sl,n)

(1 − pl[k]). (3)

To simplify further, we only consider source packets starting from l = B[n] (all other packets have already been

decoded) and ending atE[n] which is the last packet entering the sender queue. We could also consider other

packets pastE[n] that will enter the sender’s queue, but this will be application-specific. For each packetn, we

only consider certain terms in the summation overk. For packets which currently have non-zero probability of

decodability (pl[n− 1] 6= 0), we only consider the first term in the summation, and for original packets which have

pl[n− 1] = 0, we look at the firstLl terms which is defined to be the expected time tillpl becomes non-zero. This

gives,

C ≈

D[n]−1∑

l=B[n]

(1− pl[n]) +

E[n]∑

l=D[n]

n+Ll−1∑

k=n

1. (4)

Ll can also be estimated as the expected number of transmissionopportunities needed to successfully deliver all

packets prior to original packetl. Ll can be computed using the current expected number of missingpacketsQn
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and the current loss estimateǫ as

Ll =
Qn + l −D[n]

1− ǫ
. (5)

The expected number of missing packets can easily be computed from the probabilitiespl. If we remove common

terms and simplify, we get the following cost functions for sending a FEC and an original packet respectively

CFEC =

D[n]−1∑

l=B[n]

(1− pl[n]) +
(E[n]−D[n] + 1)(Qn + 1)

1− ǫ
,

CORIG =

D[n]∑

l=B[n]

(1 − pl[n]) +
(E[n]−D[n])Qn

1− ǫ
. (6)

pl[n] is the new probability of sequential decodability if that packet is sent andQn is the new value for the

expected number of missing packets up to the last packet sent– if an FEC packet is sent, the last packet sent

stays atD[n] and if an original packet is sent, it increases toD[n] + 1. Using (6), we compute the cost for each

possible FEC packet (each value ofe[k] = B[n], B[n] + 1, . . . , D[n] − 1, with b[k] = B[n]) and for an original

packet (b[k] = e[k] = D[n]) and send the one with minimum cost. The case whenb[k] = e[k] = B[n] is evaluating

the benefit of retransmitting the first packet in the sent queue, and in cases when packets in the sent queue have

timed out, the algorithm will choose such a strategy.

C. Estimating Loss Rate

The value forǫ used by (6) is estimated using a sliding window of certain number of packets into the past. The

loss for this window is computed (ǫW ) and the overall loss rate is updated usingǫ← ηǫ + (1− η)ǫW using some

weight η.

D. Example of cost computation

As an example, considerǫ = 0.1, B[n] = 1, D[n] = 4, E[n] = 6. That is, there are six packets in the burst, out

of which four have been sent but not yet acknowledged as beingdecodable. The values forpl[n− 1] would be the

following.

l 1 2 3 4 5 6

pl 0.9000 0.8100 0.7290 0.6561 0 0

Then, depending on whether we send a FEC packet which encompasses all the original source packets or whether

we send a new original packet (packet 5),pl would become

FEC 0.9656 0.9412 0.9258 0.9185 0 0

ORIG 0.9000 0.8100 0.7290 0.6561 0.5905 0.

For FEC, the expected number of missing packets with index≤ 4 would becomeQn = 0.0905, and for an original

packet the expected number of missing packets with index≤ 5 would beQn = 0.5000. Using (6), we would get

CFEC = 3.8838, andCORIG = 2.4255. Thus, in this case between the two, we should send the original packet.

As another example, suppose the loss rate is still0.1, but nowB[n] = 1, D[n] = 10, andE[n] = 11. That is,
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almost the entire burst has been sent, but no packets have yetbeen acknowledged. Using the same computations

as above, the costs areCFEC = 5.3622 andCORIG = 6.0465, and thus here we preempt a source packet to send

a FEC packet. In general, the advantage of sending a FEC packet increases as loss rate increases and as the ratio

of unacknowledged packets (in-flight) to waiting packets (in sender queue) increases.

III. OVERHEAD

The optimization presented in the previous section was simply to minimize the average packet delay subject to

the current buffer conditions presented (packets waiting in the sender queue). The current buffer conditions are a

function of both the application traffic pattern as well as the transmission rate. In this section, we analyze additional

constraints which relate to the amount of “overhead” which we are allowed to use.

The normalized overhead (referred to as just “overhead”) isdefined as the number of actual packets sent on the

network minus the minimum number of packets that need to be sent divided by the minimum number of packets.

Since we require lossless transmission, the minimum numberof packets that need to be sent is simply the number

of original packets plus the number of lost packets. For example, if we wish to send 95 packets in a network with

5% packet loss, then sending 100 packets is zero overhead (since 5 out of 100 packets will be lost). If we send 110

packets corresponding to the 95 original source packets, then we say that the overhead is 0.10 (10/(95+5)), that is

10 additional packets are sent for the minimum 100 packets that need to be sent.

If the feedback on whether a packet is received or lost is accurate, we note that only using retransmissions has

a overhead of zero since only those packets which are actually lost are retransmitted. For example if the client

has sufficient buffer relative to the network round-trip time (RTT) (say 5 seconds of buffer with 200ms RTT),

then it can simply re-request (using ARQ) the missing packets. For any reasonable loss probability, the packet will

arrive within the buffered time period. For unicast scenarios with sufficient client buffer and where the server is

not overloaded, this is actually the best way to deliver content.

For interactive scenarios, where the client cannot afford asignificant buffer, hybrid FEC-ARQ is used to improve

performance. Since there is no way to know which packets are actually lost, the use of FEC packets will result in

some overhead.

In the above scenario, if the source wishes to send 95 packetsin a certain unit of time (say 1 second), and if the

channel allows for 110 packets, then the overhead can be at least 10% (with no reduction in source rate) and can

even be higher if we allow it (at the expense of source rate). However, if the overhead constraint is set to 10%,

then the allocation is fairly straightforward (simply let the application transmit at full rate and use 15 packets for

FEC and ARQ). If the channel rate is reduced to 105 packets / sec, then we can achieve an overhead of at least

5%. If the constraint allows for up to 10%, then we can achieveany overhead between 5%-10%, by sacrificing

source rate to achieve better delay performance. If the channel rate is further reduced (say to 90 packets/sec), and

if our constraint is still up to 10% overhead, then we can use anywhere between 0-10% overhead – in this case,

we have to reduce source rate even without FEC.

If we don’t consider source characteristics, it may seem that simply maximizing the overhead (and minimizing
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the rate) may result in minimal delay. However, this resultsin a low application source rate. Here we consider

applications which wish to maximize their source rate by giving them a buffer (the sender queue). That is the

application simply pushes as many packets as it can into a buffer of a certain size. The goal of the optimization

strategy is to try to minimize the delay for all packets currently in the buffer.

A. Computing FEC Overhead

An overhead constraint is needed to ensure that the percentage of non-innovative packets (overhead) does not

take more than a certain amount. This constraint is met by simply looking at estimated overhead that any given

FEC packet will give. If sending that particular FEC packet results in a the constraint being violated, it is simply

removed from consideration.

The overhead can be computed using a deterministic term (based upon feedback) and a probabilistic term for the

in-flight coded packets (those which have not been acknowledged or timed out). At a given transmission opportunity

n, let w be the number of packets that are known to the sender to have been useless by the receiver (from feedback),

and lett be the total number of packets received (from feedback). We can compute the expected fraction of packets

which are overhead (more than the needed amount defined as FECpackets minus lost packets) as

u =
w +

∑
k∈F

pe[k][k − 1]

(t + |F|)− (w +
∑

k∈F
pe[k][k − 1])

, (7)

whereF is the set of in-flight coded packets, and|F| is the number of such packets. The probabilitype[k][k − 1]

is the probability that we were already able to decode up toe[k] given transmissions up tok − 1, and thus is the

probability that thekth coded packet with ending positione[k] was useless.

For any given packet that we are considering on transmittingat n, we can update the setF , and can calculate

an updated value ofu. We control the amount of overheadu to below a certain thresholdUMAX . If sending a

particular FEC packet causesu to be above this threshold, we do not consider it for transmission. We note that

sending original packets for the first time and resending lost packets cannot increaseu.

We believe that this definition of overhead – as a fraction of overhead packets to needed packets – is more useful

than the typical definition of redundancy which is the fraction of FEC packets to source packets. For example, if

the loss rate is 5% and if 5% of the total packets are FEC, then most of the FEC packets are actually used to

recover lost packets, and thus there is no overhead.

IV. EXPERIMENTAL RESULTS

In this section, we show the performance of the proposed hybrid FEC-ARQ protocol and transmission policy

optimization. We simulate the setup as shown in Fig. 1. The notation used in the experiments is as follows.

The application producesP packets of sizeB bits with an inter-burst gap ofG seconds. This gives a maximum

application source rate ofS = PB/G bits/sec. We assume that if the source rate exceeds network bandwidth and

the sending buffer is full, the application rate control module will kick in, and excess packets will be dropped. The

sending buffer size isQ bits. The congestion control module provides a transmission opportunity to send a single
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TABLE II

SDD PERCENTILES(90%, 95%, 99%)FORQ = 16 PACKETS, UMAX = 10, S = 500KBPS, R = 400KBPS. L IS THE LOSS RATE, D IS

THE ROUND TRIP DELAY IN SEC. TYPE SHOWS THE STRATEGY BEING USED, “N O COST” REFERS TO THE OPPORTUNISTICFECSTRATEGY

IN [21], “COST” REFERS TOFECWITH USE OF COST FUNCTION, AND “ARQ” REFERS TO RETRANSMISSION ONLY. “LB” IS THE LOWER

BOUND OBTAINED FROM AN “ ORACLE” WHICH HAS INFORMATION ON EXACTLY WHICH PACKETS WILL BE LOST, AND THUS THEY ARE

IMMEDIATELY RETRANSMITTED . U IS THE ACTUAL FRACTION OF OVERHEAD PACKETS.

L D Type 90% 95% 99% U

0.05 0.15 ARQ 0.47 0.51 0.63 0.00

0.05 0.15 No Cost 0.43 0.47 0.51 0.11

0.05 0.15 Cost 0.37 0.41 0.51 0.11

0.05 0.15 LB 0.33 0.33 0.37 0.00

0.15 0.15 ARQ 0.63 0.71 1.01 0.00

0.15 0.15 No Cost 0.53 0.59 0.67 0.11

0.15 0.15 Cost 0.47 0.53 0.63 0.22

0.15 0.15 LB 0.37 0.39 0.43 0.00

0.15 0.40 ARQ 1.64 1.79 2.55 0.00

0.15 0.40 No Cost 0.76 0.80 1.46 0.29

0.15 0.40 Cost 0.56 0.58 0.68 0.39

0.15 0.40 LB 0.52 0.54 0.58 0.00

B-bit packet everyT seconds giving a network transmission rate ofR = B/T bits/sec. We assume that the channel

has a delay ofD seconds (round trip time) and a loss rate ofL. UMAX is the maximum amount of overhead that

is allowed.

For all the experiments, we show two figures, one is the cumulative density function (CDF) of the sequential

decodability delay (SDD), and the other is the CDF of the instantaneous application bit rate defined as the number

of packets from the burst that are sent divided by the spacingbetween the bursts. We compare the following four

transmission strategies.

• The best achievable bound. This is the performance if the sender has immediate knowledge of which packets

will be lost and retransmits them immediately at the next transmission opportunity.

• The strategy using only retransmission (ARQ).

• The strategy adopted in [21]. This is referred to as the “no cost” FEC or opportunistic FEC. In this strategy,

an FEC packet of all unacknowledged source packets is sent whenever the sender queue is empty. Otherwise

an original packet is sent.

• The cost based transmission strategy developed in this paper.

For all simulations, we setB = 8000 bits (1KB) andP = 10 packets (the burst length). We first show the

achievable performance if we are allowed to send as much FEC as the network allows (set the overhead constraint

UMAX = 10) in a congested network, whenS = 500Kbps, R = 400Kbps, D = 0.15sec, L = 0.05, and

Q = 16packets. We note that the total sending rate is constrained by the network bandwidth, and the source
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TABLE III

SDD PERCENTILES AND FRACTION OF OVERHEAD PACKETS FORQ = 16 PACKETS, UMAX = 10, S = 300KBPS, R = 400KBPS.

L D Type 90% 95% 99% U

0.05 0.15 ARQ 0.46 0.58 0.68 0.00

0.05 0.15 No Cost 0.36 0.38 0.40 0.28

0.05 0.15 Cost 0.36 0.38 0.41 0.30

0.05 0.15 LB 0.34 0.35 0.38 0.00

0.15 0.15 ARQ 0.70 0.86 1.15 0.00

0.15 0.15 No Cost 0.41 0.54 0.66 0.18

0.15 0.15 Cost 0.46 0.50 0.62 0.24

0.15 0.15 LB 0.37 0.40 0.44 0.00

0.15 0.40 ARQ 1.67 1.77 3.10 0.00

0.15 0.40 No Cost 0.65 0.66 0.83 0.33

0.15 0.40 Cost 0.62 0.65 0.75 0.54

0.15 0.40 LB 0.58 0.61 0.66 0.00

TABLE IV

SDD PERCENTILES AND FRACTION OF OVERHEAD PACKETS FORQ = 16 PACKETS, UMAX = 10, S = 300KBPS, R = 400KBPS, USING

REAL COLLECTED NETWORK TRACES. THIS PARTICULAR TRACE FROMNORTH AMERICA TO EUROPE HAD AN AVERAGE LOSS RATE OF5%

AND RTT=200MS.

L D Type 90% 95% 99% U

0.05 0.20 ARQ 0.34 0.40 0.57 0.02

0.05 0.20 No Cost 0.32 0.35 0.48 0.10

0.05 0.20 Cost 0.31 0.34 0.39 0.09

0.05 0.20 LB 0.26 0.28 0.31 0.00

application will reduce its sending rate through notification of the sending buffer being full. The results are shown

in Fig. 3 and summarized in Table IV. The 90th percentile of SDD reduces by over 14% when using the cost

function vs. not using the cost function, the 95th percentile by over 12%, and the 99th percentile is about the same.

The actual percentage of overhead packets is 11.2%. We also see that the application bit rate is smoother, with the

application capable of delivering a bit rate of at least 300Kbps 90% of the time, rather that 70% of the time if the

cost function is not used. This is due to the fact that lowering SDD results in the sender queue being emptier.

Keeping other parameters the same, if we increaseQ to 32 packets, we observe that few FEC packets are sent

(regardless of whether we use the cost function or not). The reason is that sinceS > T , the buffer is almost always

full, and sinceQ is relatively large, the penalty for sending FEC packets is high sinceE[n]−D[n] in Eqn. (6) is

large.

In the second experiment, we increase the loss rate toL = 0.15 (see Fig. 4 and Table IV). From Table IV, we

observe that cost based transmission policy reduces 90th percentile SDD by 11%, 95th percentile SDD by 10%,
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Fig. 3. Results withQ = 16packets,L = 5%, D = 0.15sec. (a) CDF of SDD, (b) CDF of application bitrate.

and 99th percentile SDD by 6%. The application sending bit rate is also much smoother with the cost function

than without. However, both of the schemes reach a median (50th percentile) bit rate of about 250 kbps.

In the third experiment, we further increase delay toD = 0.4seconds. From Fig. 5, we see that by using the

cost function, we are able to achieve a result very close to the lower bound (in terms of SDD and application bit

rate). From Table IV, we can see that this comes at the expenseof increasing the percentage of overhead packets

to close to 40%.

In the fourth experiment, we consider the case when the network is not congested (S < R). We reduce the the

maximum source rateS to below capacity (300 kbps) and keep other parameters the same. We observe that the

cost function based transmission policy gains no advantageover the opportunistic FEC (see Fig. 6 and Table IV).

Opportunistic FEC is able to achieve a result close to the lower bound especially in the high-loss, high-delay case

where we have spare capacity. This confirms the results presented in [21]. This is basically a case where even

without any additional constraints, we can use up to 12% overhead.

Finally, in Fig. 8, we show the effect of modifying the fraction of overhead packets allowed,UMAX , in the

L = 0.15, D = 0.4sec case. We see that the SDD performance keeps getting better asUMAX is increased (at the

expense of reducing application rate). We note that although the UMAX = 10 case is intended to show the best
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Fig. 4. Results withQ = 16packets,L = 15%, D = 0.15sec. (a) CDF of SDD, (b) CDF of application bitrate.

case, the actual overhead for this is onlyU = 0.39.

A. Results using real network trace

In Fig. 7 and in Table IV, we show the performance using real packet trace to drive the simulation. In the trace

collection, we connect from one machine in North America to one in Europe, and measure RTT for each packet

sent, and whether the packet is received or not. The average loss rate for this trace was 5% and the RTT was

approximately 200ms. However, the losses were not necessarily random, and there were some periods of burst

loss. We see that if we use this trace, the results are similarand we still see gains in the SDD. The SDD reduces

from 600ms in pure ARQ case to 500ms in opportunistic FEC to 400ms when using the cost based optimization

presented here.

B. Function of loss rate

In Fig. 9, we show how the overhead, the 99% SDD, and application bitrate are affected by loss rate (all other

parameters are same as in the original experiment) for the cost based scheme and the opportunistic FEC scheme.

We see that in as the loss rate increases, so does the overheadto minimize delay. This comes of course at the
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Fig. 5. Results withQ = 16packets,L = 15%, D = 0.40sec. (a) CDF of SDD, (b) CDF of application bitrate.

expense of application bitrate. The opportunistic FEC reverts back to a pure ARQ scheme as loss rate increases

as there are very few free opportunities to send FEC packets (maximum source rate is much larger than capacity).

Thus, we also see that the improvement in SDD from using the cost function increases as loss rate increases.

C. Function of burst length

In Fig. 10, we show how the overhead, the 99% SDD, and application bitrate are affected by burst length for

the cost based scheme and the opportunistic FEC scheme. We note that as burst length increases, the advantage of

the cost based scheme over the opportunistic scheme also increases. This is because the cost based scheme will

periodically insert FEC packets into the burst whereas the opportunistic FEC will wait for the entire burst to finish.

V. CONCLUSION

We have presented a hybrid FEC-ARQ protocol that is functionally compatible with TCP but optimized for low-

delay data delivery. The protocol uses a cost based transmission strategy to optimally choose amongst transmission

policies of sending 1) a source packet, 2) a FEC packet of the first certain number of undecoded packets, and 3) a

resent packet which has timed out or been negatively acknowledged. Through extensive experimental results, we have
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Fig. 6. Results withQ = 16packets,L = 15%, D = 0.40sec, but source rate lowered to below capacity (300Kbps).

shown that the proposed scheme achieves better delay performance than the opportunistic FEC scheme especially

for cases when the application traffic is bursty, the maximumsource rate exceeds that of the network capacity, the

network packet loss rate is high, and/or the network delay ishigh. We have also examined the performance of the

scheme as a function of loss rate and burstiness of the application traffic.
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Fig. 9. (a) Overhead, (b) 99% SDD, and (c) Application bitrate as function of loss rate.
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Fig. 10. (a) Overhead, (b) 99% SDD, and (c) Application bitrate as function of burst length.
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