Proc. ACM Workshop on Multimedia Information Retrieval, 2005

Inferring Similarity Between Music Objects with
Application to Playlist Generation

R. Ragno, C.J.C. Burges and C. Herley

ABSTRACT

The growing libraries of multimedia objects have in-
creased the need for applications that facilitate search,
browsing, discovery, recommendation and playlist con-
struction. Many of these applications in turn require
some notion of distance between, or similarity of, such
objects. The lack of a reliable proxy for similarity of
entities is a serious obstacle in many multimedia appli-
cations.

In this paper we describe a simple way to automat-
ically infer similarities between objects based on their
occurrences in an authored stream. The method works
both for audio and video. This allows us to generate
playlists by emulating a particular stream or combina-
tion of streams, recommend objects that are similar to a
chosen seed, and derive measures of similarity between
associated entities, such as artists.

1. INTRODUCTION

The increased ease with which multimedia objects can
be authored and distributed has led to individual users
having access to very large and varied collections of mul-
timedia objects. A few years ago a typical consumer
might have possessed several tens or hundreds of music
CDs, and several favorite movies on tape. Today an av-
erage consumer may have ripped his music collection,
but may also have music from electronic marketplaces
such as iTunes, peer-to-peer swapping networks such
as Napster and BitTorrent, and mixer CDs created by
friends. In addition Internet Radio stations generally
play a far more varied collection than their terrestrial
broadcast counterparts, and entirely new distribution
channels such as PodCasts serve to introduce users to
a vastly more varied experience than before.

This increase in the quantity and variety of multi-
media available to consumers has in turn engendered
new needs and new applications. For example, the new
freedom and larger collections make generating music
playlists a lot more challenging. Discovery and recom-
mendation has become increasingly important as users
need help in finding content that matches their personal
tastes. Browsing, indexing and retrieval have also be-

come far more complicated operations. Many of these
multimedia applications face the difficulty of determin-
ing when one object is “like” another. For example, to
choose an audio example, a human listener has little dif-
ficulty in determining that “Salisbury Hill” by Genesis
is closer to “With or Without You” by U2 than it is to
“Highway to Hell” by AC/DC. Yet, it is very difficult to
determine this automatically by computer. This lack of
a simple objective measure of “likeness” between multi-
media objects has greatly complicated many multime-
dia applications. Clearly traditional signal processing
measures such as Mean Squared Error or even percep-
tual measures are not useful as a measure of similarity
of multimedia objects. There is no expectation, for ex-
ample, that stretches of audio from two U2 songs will
be any closer in, an MSE sense, than either of them
will be to a stretch of music by ABBA. Thus, methods
based on examining signal processing metrics alone to
determine “likeness” appear so far to be unsuccessful.

Many of the growing list of multimedia applications
require such a measure. For example:

e Given a seed song, how do we construct a playlist
of songs?

e Given a media object that a user likes, how do we
recommend or discover others that are like it?

e Given an artist, how do we find similar artists?

The approaches that have been explored to approxi-
mating similarity! between songs fall into three distinct
groups: audio content analysis, metadata similarity and
collaborative filtering. Audio content analysis relies on
comparing features such as pitch, rhythm and timbre.
Metadata similarity relies on comparing metadata fields
such as genre or sub-genre. Collaborative filtering re-
lies on comparing records such as purchasing patterns
among customers. We will review this related work in
Section 2.

This paper describes a novel approach for inferring
similarity between objects which have no natural idea

IWhen we use the term “similarity” it is to be understood to
mean suitability to appear in a playlist together.

Proc.

AN r oYYr o1 RN LR L. -~ .

of distance between them. We do this by using what we
believe to be a previously unexploited source of infor-
mation: the expertise and knowledge about “likeness”
implicit in authored streams. For example the play or-
der of a broadcast music station contains valuable infor-
mation about the songs contained in the list: their joint
membership of a particular genre, their relative popu-
larity, and their pairwise suitability to appear in close
proximity in playlists. Our method works by exploiting
this information for a large number of authored streams.
We will refer to any audio stream that has been gen-
erated by a professional DJ as an Expertly Authored
Stream (EAS). We will discuss in Section 3.1 sources of
such data.

Our method is very simple: we construct an undi-
rected graph where every song is a node, and song ad-
jacency contributes to the weight of an arc connecting
two nodes. Suppose for example the play order of one
of our EAS’s is that of a station that plays 1980’s pop
hits. A labeled section of the EAS might look like:

2:37 Salisbury Hill Genesis

2:41 With or Without You U2

2:45 Every Move You Make The Police

2:48 Summer of 69 Bryan Adams
2:51 Born in the USA Bruce Springsteen

In fact, we require only a label that identifies each
song uniquely. If we represent the individual songs by
symbols our ordered list might take the form:

ABGDEABDWFGSEWJKE (1)

where we use "W?” to denote a break, or a time gap
larger than a threshold T In the work reported here we
chose T' to be 5 minutes. This indicates a break for com-
mercials, news, traffic updates or another discontinuity
in the EAS. From this we produce a graph by drawing
an undirected arc between all adjacent objects; for ex-
ample B is adjacent to A, G and D in the list. We denote
the arc joining nodes X and Y by the unordered pair
(X,Y). Thus here, the arcs (B,G) and (B, D) would
have weight one, while the arc (B, A) would have weight
two. This is shown in Figure 1.

This is repeated for all objects until we have repre-
sented all adjacencies by links on the graph. The graph
we construct in Section 4 will have tens of thousands of
nodes. A simple way to estimate similarities then flows
from techniques to determine distances on graphs. The
distance can be modeled as being inversely related to
the weights on the graph. Thus A in Figure 1 will be
closer to E than to other nodes on the graph.

A very simple way to produce a playlist also follows.
Start with a seed node, say, A. Choose the next objects
from the set of objects that have arcs to A of weight at
least one: S4 = {B, E'}. For example, a subsequent ob-
ject may be chosen with likelihood proportional to the
weight of the arc. Repeat this procedure on the newly

1 Aann-

J

Figure 1: Graph representing the labeled stream in
(1). Songs represent nodes and adjacency increases the
weight of the link between two nodes.

chosen object. We will describe the actual algorithm
used below.

The contribution of this paper is to draw attention to
a previously unexploited source of information: namely
the order information in expertly authored streams. We
show how this may be used to infer “likeness” between
songs based on actual play patterns, rather than on any
articulated rules or preferences or manually determined
genre labelings. We show how to use this for an auto-
matic playlist generation algorithm that scales to collec-
tions of millions of songs without difficulty. Compared
to previous playlist generation methods our scheme has
the advantage that it explicitly produces a measure of
similarity between songs; it does not require access to a
(human-generated) genre metadata database; the simi-
larity measures improve automatically without human
intervention as more data becomes available, and the
scheme can handle very large collections easily.

2. RELATED WORK

There has been significant recent growth in the re-
search activity in the areas of multimedia content index-
ing and retrieval. We can give no more than a sampling
of recent work in this area. Since our focus is primarily
on song objects we will concentrate on recently reported
work on playlist generation and music discovery.

2.1 Collaborative filtering

Collaborative filtering is often used to establish simi-
larity and predict events when there is no natural idea
of distance between objects. For example Amazon book
recommendations compares users’ purchasing habits to
recommend books to an individual based on purchases
made by others with similar tastes. Generally this re-
quires access to a large database of user data. Since for
music this gives information at the album level rather
than the track level it does not appear to have been
applied successfully to playlist generation.

Proc. ACM Workshop on Multimedia Information Retrieval, 2005

2.2 Audio content analysis

Several recently reported algorithms allow identifica-
tion of music from a stream [6, 9]. These audio finger-
printing algorithms as they are known, enable identifi-
cation of songs even after they have been compressed,
companded or otherwise distorted over noisy channels.
While they measure “similarity” in one sense they are
not useful in determining that one song is “like” an-
other. For example there is no expectation that the
fingerprint of a particular song will be any closer to fin-
gerprints of songs by the same artist, by similar artists,
or of songs from the same genre than to a randomly
selected song [6].

The question of genre detection from the audio con-
tent is expressly addressed by Tzanetakis and Perry in
[15]. Using a combination of spectral and audio features
the authors classify a collection into ten different genres.
While the approach appears very promising for classi-
fication, a far finer selection of genres is necessary to
make useful playlists or give a reliable measure of sim-
ilarity. It is unclear whether audio genre classification
techniques would be able to accurately classify hundreds
of different sub-genres over a collection of tens of thou-
sands of songs. A hierarchical approach for analysis and
retrieval is presented by Zhang and Kuo [16]. Music is
classified using such features as timbre and rhythm, and
non-music sounds are classified at a higher stage. An
excellent review of content-based genre classification al-
gorithms is given by Li et al. [10].

2.3 Automatic Playlist Generators

There have been a number of recently reported ap-
proaches to the automatic playlist generation problem.

Alghoniemy and Tewfik [4] describe a playlist gen-
eration system by posing it as a linear programming
constraint satisfaction problem. Their system requires
metadata on each of the songs in the collection indi-
cating membership of various constraint sets. Pauws
and Eggen [12] describe a system that employs dynamic
clustering to group songs by metadata attribute similar-
ity. Different weights for the various attributes are used
to carefully balance the relative importance of various
pieces of metadata. Platt et al. [13] employ a Gaussian
Process kernel to predict likely user playlists. This ker-
nel is learned from a large set of album contents, which
are used as sample playlists.

Logan by contrast [11] generates playlists based on
audio similarity measures. Audio information alone was
reported to perform well on a database of size 8000
songs. One of Logan’s findings was that adding some
metadata, such as genre information, considerably im-
proved the performance of the system.

The issue of scalability is directly addressed by Au-
couturier and Pachet [5]. The authors point out that
many playlist generation methods that work well for

collections of a few hundred songs cannot be used as
the collections grow to tens of thousands and beyond.
By assigning various costs to the desired constraints
they demonstrate generating playlists from a collection
of 200000 songs. Onme of the significant advantages of
our method is its scalability (see Section 4).

The approaches of [4, 12, 13] use meta-data such as
is available in the All Music Guide database; that of
[11] uses a combination of audio data and metadata. A
completely different source of data is explored by Hau-
ver and French in [8]. They use the history of requests
being made to various internet radio stations. This re-
quest history is used to infer both artist popularity and
pairwise similarities between artists. The next chosen
song in a playlist is that by an artist that is both pop-
ular among the requesting audience, and similar to the
artist of the last played song. Our approach is close in
spirit to [8]; while we use an entirely different source
of information our scheme also seeks to infer similarity
from actual observed behavior on real streams rather
than from genre information.

Several of the playlists generation techniques [13, 11,
5, 4, 12] depend on a manually labeled database. While
co-membership of such categories can be extremely use-
ful, several of the classifications can be somewhat arbi-
trary, and the quantization into categories can be coarse
and error-prone. By contrast our method depends only
on what is actually played on real stations. It requires
no manual labeling, and the estimates of “likeness” con-
stantly improve as more data arrives. Thus any noise
caused by capricious decisions by a DJ on a particular
station quickly become averaged out in the stream of
data.

3. METHOD

We now describe our method for exploiting the sim-
ilarity information that is implicit in an EAS. First, of
course, we assume availability of a labeled summary of
an EAS. We will discuss various sources in Section 3.1.

The key assumption of our scheme is that songs that
have appeared in close proximity in an EAS are more
likely to be similar than those that have not. To take a
concrete example, songs that appear on a Top 40 pop
radio station will appear somewhat alike: within this
set those that have appeared adjacent will be judged
closer together than those that have not. Most of the
songs from the Top 40 pop station will be judged very
unlike songs from a Jazz station, since most of them
have never appeared in any proximity to the songs that
play there. Songs that play on both the Top 40 pop
and the Jazz station (such as some songs by “cross-
over” artists such as Sade, or Norah Jones) may appear
close to several categories.

3.1 Sources of data

Proc. ACM Workshop on Multimedia Information Retrieval, 2005

The heart of our method requires a summary of the
EAS in labeled form. Having the song title and artist
name is the simplest example, but all that matters is
that we have an identifier that is unique to each song,
the actual play order, and a method to identify gaps
in the playlist (such as those generated, for example,
by advertisements). For our experiments we used the
Nielsen Broadcast Data Service (BDS) data; we briefly
review other possible sources for those who might wish
to replicate our approach and do not have access to that
dataset.

3.1.1 Labeling provided from RDS

The Radio Data System is a protocol to provide meta-
data on the station and content over the FM broadcast
channel. Tt is not universally used (e.g. it is not widely
available in North America). Where it is available, a
special decoder is needed to access the data.

3.1.2 Labeling obtained from station web-sites

The majority of terrestrial broadcast radio stations do
not provide an accurate labeled list of the songs that
they play. Most internet radio stations do, however.
See for example the playlist tab on KEXP’s web-site
[1], where they give access to all songs played in an
archive that contains five years’ worth of music. Other
stations such as RadioParadise [2] make available meta-
data lists for the last several hours of music.

Thus, in principle, meta-data lists are available for
several internet radio stations. In practice however screen
scraping may violate the Terms of Use of a web-site,
rendering the data unavailable for this purpose?.

3.1.3 Labeling the EAS using audio fingerprinting

A very powerful set of audio finger printing algorithms
allow identification of audio (or video) clips [6, 9]. These
algorithms allow identification of a clip from a stream
with audio objects in a labeled database. Thus, for
example, they can listen to an FM over-the-air radio
broadcast and output a list of the songs played together
with timestamps. The successful algorithms can scale to
databases of millions of objects and still run in realtime
on a desktop PC. A commercial service that identifies
songs is available [3]. Training these schemes requires a
labeled database.

3.1.4 Nielson Broadcasting Data

The BDS data monitors more than 1300 radio sta-
tions in the US and logs their entire playlists. For our
experiments we used 36 days worth of the play order
data from the BDS database. This consists of 1360 in-
dividual feeds, each of which contains the play order
data from an individual broadcast radio station. Most

2Readers are cautioned to always respect an internet radio sta-
tion’s Terms of Use.

Artist Num. stations
Patsy Cline 120
Sade 238
ABBA 220
The Beatles 326
Shania Twain 403

Table 1: Sample artists and the number of stations on
which they were played at least once.

of these are music stations that play predominantly pop
music. Many of the stations play specialized mixes such
as Top 40, Classic Rock, Oldies etc. while others play a
mix. The feeds are a reasonably representative sampling
of the radio stations broadcasting in North America.

Some stations play as many as 2500 distinct songs,
some play as few as 200. A total of 469,797 songs were
played on all of the stations, of which 60,499 were dis-
tinct. Combining all of the EAS we thus get a graph
that contains 60,499 nodes. Of these 33,251 appeared
more than once.

Table 1 gives a glimpse of the station coverage, listing
several well-known artists and the number of stations
(of the 1360 examined) that each of them appeared on
at least once. Observe that cross-over artists appear on
more stations than those confined to a single genre, even
though this is not necessarily reflective of the amount
of airtime they receive.

3.2 Building a Graph from an Ordered List

We now address the question of building a graph from
an EAS. The labeled stream will be an ordered list of
indices (cf. Figure (1)). We use this list to construct
an undirected graph as follows: each object is a node
in our graph. All weights are initialized to zero. When,
for example, song B follows song A in the sequence, we
increment the weight of the arc between them: Wyp «
Wap+13. Thus for the simple example sequence in (1)
we would get the graph shown in Figure 1. Call S4 the
set of all songs that have been adjacent to A at least
once:

Sa= {X|WXA > O}.

Observe that the graph need not be fully connected.
This is so since a time gap of greater than T (= 5
minutes, for example) between two objects does not
count as adjacency. Thus a sequence of songs brack-
eted by such gaps might form a sub-graph disconnected
from the rest if none of the songs appeared again. In
general, however, the graph gets denser and more richly
connected as time goes by, and more and more elements
appear in the sequence. For the sequence generated
from a single EAS we observe that the graph is almost
always fully connected. It is often the case, however,
that some objects occur infrequently in a certain stream
and thus they are only weakly connected to the rest of

3Note that since the graph is undirected, Wap = Wg4.

Proc. ACM Workshop on Multimedia Information Retrieval, 2005

the graph. We will give example statistics in Section 4.

3.2.1 Merging graphs from various different streams

For each of the EAS we form an undirected graph
using the approach above. Since these streams tend to
be specialized we must in general expect that no labeled
stream covers more than a narrow subset of objects. For
example a Pop 80’s station won’t include Country and
Western. However as we include data from more EAS’s,
the graphs will become more connected.

We treat all EAS’s equally and every adjacency event
in any of the labeled streams increases the weight by
one. (There might be reasons why we would want to
weight the contributions from different EAS differently;
for example, the adjacency information from a less in-
fluential or popular station might be weighted lower
than that of a very popular station.) Thus in our sim-
plest model the overall graph formed using many la-
beled EAS’s would be the same as the one generated
by concatenating them separated by time gaps greater
than T.

3.3 Distances on graphs

The number of nodes in the graph is the number of
unique objects that have occurred over the union of our
labeled EASs. Some objects occur very often and some
only once. Since our key assumption is that objects
that occur in proximity to each other are more likely to
be similar than those that do not, we desire a measure
of “likeness” that decreases as the number of adjacency
events between two objects increases. This is accom-
plished by mapping our undirected graph to a (directed)
Markov random field, as follows. Consider some node
A. Take all arcs terminating on A, sum their weights,
and construct new directed arcs, all leaving A, with at-
tached probabilities, which are just the original weights
of the corresponding undirected arcs, divided by the
sum of weights. Those probabilities are now transition
probabilities, and the net probability of leaving node
A is one. Do this for each node. Finally discard the
undirected arcs. Notice that this procedure results in
each undirected arc (A, B) generating two correspond-
ing directed arcs, one from A to B and one from B to
A, and that due to the normalization procedure, the
pair of arcs between a given pair of nodes may have dif-
ferent associated transition probabilities. The resulting
graph is a Markov random field. In order to generate
playlists, we simply perform a random walk, starting at
the start node (song), and using the Markov transition
probabilities. Now, we can map the probabilities to dis-
tances by replacing them by their negative logs. Thus,
adding the distances of the arcs along a path amounts
to computing a negative log likelihood for that path.
To compute similarity between two songs, we then use
the Dijksta algorithm [7] to compute the shortest path

between those two songs. The similarity measure itself
could then be, for example, the negative of the shortest
distance (i.e. the log likelihood). If there is no path
between a given pair of nodes (in the case of a non-
connected graph) we can define the distance to be some
maximum value, larger than the diameter of the graph.

The astute reader may at this point be asking, why
not start with a directed graph? After all, the sequence
of the songs as they are played defines a directional
ordering; each transition from song A to song B would
increment the weight of a directed arc from A to B. The
problem is that such a scheme is more sensitive to asym-
metry in playlists, which with limited data will occur by
chance. For example, a given song B may directly fol-
low another given song A several times, whereas A never
follows B directly. In this case, using a directed graph
computed directly from the original sequence will give a
non zero probability of B following A, but a zero proba-
bility of A following B. In contrast, using our scheme de-
scribed above, which constructs an intermediate undi-
rected graph, encapsulates our belief that a sequence of
two songs (A, B) in a playlist is more informative about
the (symmetric) similarity of songs A and B than it is
a statement that song B should always follow song A
in any playlist.

3.4 Playlist Drift

Depending on the data set used to generate the graph,
“drift” can be a problem for generated playlists. This
occurs when successive steps in a walk of the song tran-
sitions result in an overall transition between two very
unrelated areas. This is particularly prevelant at any
steps that center on a song that crosses genres or audi-
ences. Without additional information, that song can-
not represent the aspect of the music that led to it.

There are several ways to mitigate this. If the cur-
rent state is extended to include the previous song, the
degreee of drift introduced by a highly-connected song
can be reduced. The distribution of songs contained in
sequential playlist triplets that also contain the current
song and the previous song is much tighter in style. This
can be extended indefinitely, of course, but it eventually
degrades to matching only a particular radio station,
approximately.

The distribution of songs following the songs can also
be a mix of that following the current song and that
following the previous song, with some discount factor
on the previous song. This simpler approach still miti-
gates the effects of choosing unlikely steps, and can also
be extended as far as desired.

A penalty function can directly bias a generated playlist
towards the original seed or given list (such as a partic-
ular radio station). This minimizes overall drift. Local
low-probability choices for individual songs can be elim-
inated by a cutoff on the number of times an arc must

Proc. ACM Workshop on Multimedia Information Retrieval, 2005

be observed in the source data in order to be present
in the graph (although that will bias heavily towards
songs that are frequently played).

4. EXPERIMENTS

4.1 Examples Playlists

We now present a few sample playlists to illustrate
the scheme. Each playlist is seeded by a single song,
which is the starting point. The accompanying num-
bers represent the distance from the seed. Our first
example starts with “Paperback Writer” by the Beatles:

Paperback Writer [Beatles] 0.0
Breakfast In America [Supertramp] 8.607
We’re An American Band [Grand Funk Rrd] 8.607
In The Dark [Billy Squier] 17.244
I Shot The Sheriff [Eric Clapton] 12 .192
Fat Bottomed Girls [Queen)] 16.335
Jumpin’ Jack Flash [Rolling Stones] 13.723
Working For The Weekend [Loverboy] 15.251
Dream Weaver [Gary Wright] 15.520
Smells Like Teen Spirit! [Nirvanal 15.735

Note that the list stays within the broad category of mu-
sic that could be considered close: for example it never
strays into Jazz, Country, Hip Hop or Punk. Our next
example is a Country song “Stand by Your Man” by
Tammy Wynette:

Stand By Your Man [Tammy Wynette] 0.0

Chrome [Trace Adkins] 8.607
Stay With Me (Brass Bed) [Josh Gracin] 8.607
Whiskey Girl [Toby Keith] 14.162
Class Reunion [Lonestar] 13.965
My Sister [Reba McEntire] 12.650
Could Have Fooled Me [Adam Gregory] 12.777
Nothin’ To Lose [Josh Gracin] 8.607
Who’s Your Daddy [Toby Keith] 13.695
Want Fries With That [Tim McGraw] 8.607

Again observe that the list stays entirely within the
genre of Country music. Finally, starting with a Nir-
vana song:

Lithium [Nirvana] : 0.0

Fall To Pieces [Velvet Revolver] 7.668
Tonight, Tonight [Smashing Pumpkins] 12.712
Slow Hands [Interpol] 12.712
Renegades Of Funk [Rage Against...] 10.127
Before I Forget [Slipknot] 7.355
The Kids Aren’t Alright [Offspring] 11.712
All These Things That I've Done [Killers] 9.542
Weapon [Matthew Good] 18.914
Kryptonite [3 Doors Down] 11.127

4.2 Music Similarities

Our random walk playlist generation induces a desir-
able variety and unpredictability. However to evaluate
our similarity measure, we also list the shortest path
songs for a number of different seed songs. Note that
the resulting playlists adhere much more closely to the
seed song than the random walk playlists given above:

Hey Jude [Beatles] 0.000
Lady Madonna [Beatles] 7.515
Lucy In The Sky With Diamonds [Beatles] 7.515
Peace Of Mind [Boston] 7.737
(Just Like) Starting Over [John Lennon] 7.737
Saturday In The Park [Chicago] 8.000
Shine It All Around [Robert Plant] 8.000
Holiday [Green Day] 8.000
Highway To Hell [AC/DC] 0.000
Best Of You [Foo Fighters] 6.252
Remedy [Seether] 6.362
Right Here [Staind] 6.362
Holiday [Green Day] 6.362
Be Yourself [Audioslave] 6.5 58
The Hand That Feeds [Nine Inch Nail s] 6.584
B.Y.O.B. [System Of A Down)] 6.754
Happy? [Mudvayne] 6.847
Shine It All Around [Robert Plant] 6.982

Stand By Your Man [Tammy Wynette] 0.000

You’ll Be There [George Strait] 5.800
Highwayman [Highwaymen] 5.800
Making Memories Of Us [Keith Urban] 6.022
Play Something Country [Brooks and Dunn] 6.022
If T Said [Bellamy Brothers] 6.022
Alcohol [Brad Paisley] 6.022

Table 2 shows the similarity distances that our graph
produces for a sampling of different songs chosen from
across the spectrum of genres. Observe that songs by
the same artist are much closer together than either are
to those from other genres. Also note that the similarity
matrix is not symmetric, since the graph is directed (see
Section 3.3).

4.3 Artist Similarities

The generality of this graph-based method allows for
other connections to be draw between the entities. An
interesting application is determining similar artists.
This can be performed by simply considering artists to
be similar when their songs are frequently played next
to each other. The song graph is transformed into one
where there are edges between artists, annotated with
weights of the number of times the artists at the end-
points have and instance of a song from each occuring
adjacently. This can then be used as before to generate

Proc. ACM Workshop on Multimedia Information Retrieval, 2005

Stand Achy Paper- I Wanna Straight
By Your | Breaky | Hey back | Highway Be Inter- | Just A Outta
Man Heart | Jude Writer | To Hell | Lithium | Sedated | galactic | Lil Bit | Compton
Stand By Your
Man (Wynette) 0 14.737 | 18.917 | 18.515 | 17.509 19.316 21.214 23.681 | 18.145 | 29.095
Achy Breaky
Heart (Cyrus) 14.012 0 17.696 | 19.896 | 16.893 17.656 18.741 20.843 | 13.686 | 23.808
Hey Jude
(Beatles) 20.631 20.136 | 0 10.322 | 15.552 15.492 17.077 17.98 14.845 | 27.263
Paperback
Writer
(Beatles) 18.515 20.621 | 8.607 |0 14.982 15.955 15.982 17.136 | 14.452 | 24.962
Highway To
Hell (AC/DC) 21.241 21.349 | 17.569 | 18.714 | 0 9.532 12.339 12.339 | 13.207 | 27.312
Lithium
(Nirvana) 23.421 22.485 | 17.882 | 20.06 | 9.905 0 10.712 11.127 | 12.815 | 26.317
I Wanna Be
Sedated
(Ramones) 23.985 22.236 | 18.133 | 18.753 | 11.378 9.378 0 9.793 13.468 | 21.51
Intergalactic
(Beastie Boys) 26.055 23.942 | 18.64 | 19.51 10.982 9.397 9.397 0 12.522 | 23.698
Just A Lil
Bit (50 Cent) 26.441 22.707 | 21.426 | 22.748 | 17.771 17.007 18.994 18.444 | 0 15.319
Straight Outta
Compton (NWA) | 27.216 22.654 | 23.669 | 23.082 | 21.7 20.332 16.86 19.444 | 5.143 |0

Table 2: Similarities between sampled songs from the dataset.

transition probabilities and distances between artists.

In practice, it is useful when computing the artist
edges to ignore songs that only occurred once (or very
few times), since they will add noise. This procedure
will also weigh heavily towards popular artists. If this
is not the desired behavior, the weight contributions
can be normalized by dividing by the number of total
ocurrences of the adjacent song. This produces lists of
similar artists such as:

Tammy Wynette 0.00
Don Williams 2.00
Prairie Oyster 4.34
Gatlin Brothers 4.36
50 Cent 0.00
Eminem 6.03
Jay-Z 6.25
2Pac 6.73
Ludacris 6.93

The similarity distances for the artists of the songs
used as examples earlier are shown in Table 3. Note that
artists of similar genres and styles are closer together.

5. CONCLUSION

We have proposed a scheme to infer similarities between
songs, and to generate playlists automatically. Like
other methods, our process relies on the availability of

human-generated metadata. However, while gathering
such data is normally an expensive proposition, the data
we use is already readily available, for a very large num-
ber of songs, in the form of radio station playlists. Fur-
thermore, explicitly authored metadata for songs can
be very noisy (for example, opinions can differ widely
as to which sub-sub-genre a given song should belong).
Playlists, on the other hand, are carefully designed by
experts with a strong economic incentive to retain lis-
teners. We have demonstrated that such data can eas-
ily be used to form a Markov random field. This can
then be used to generate new playlists, by executing
a random walk from the seed song. A corresponding
graph where probabilities have been mapped to nega-
tive log likelihoods can be used to compute the simi-
larity of any pair of songs, by computing the shortest
distance between their corresponding nodes. Such paths
can also be used to generate playlists with given start
and end songs, which gives the user control over how the
playlists changes over time (for example, from upbeat,
fast music to slow music).

Our proposed scheme is very general. It can be used
to generate playlists in the style of a given radio sta-
tion, by constructing a graph from only that station’s
playlists. It can also be used for a music recommenda-
tion system by constructing the graph from all available
data and using the songs/artists in a given user’s library
as starting nodes.

The method we have proposed is very fast to com-

Proc. ACM Workshop on Multimedia Information Retrieval, 2005

Billy
Tammy Ray Beastie
Wynette | Cyrus | Beatles | AC/DC | Nirvana | Ramones | Boys | 50 Cent | NWA
Tammy
Wynette | 0.00 14.56 | 13.55 18.00 17.99 16.62 17.78 23.33 26.59
Billy
Ray
Cyrus 11.77 0.00 13.13 19.33 20.49 19.94 22.32 21.38 25.46
Beatles 14.94 19.37 | 0.00 8.87 14.67 11.75 15.75 18.82 19.52
AC/DC | 17.98 18.36 | 6.74 0.00 7.75 12.53 10.49 16.06 16.56
Nirvana | 18.31 21.39 | 11.60 6.61 0.00 9.09 7.83 16.44 13.70
Ramones | 15.61 19.13 | 10.50 9.42 7.63 0.00 7.16 17.35 16.95
Beastie
Boys 18.72 21.50 | 12.28 9.33 7.7 10.72 0.00 10.19 9.79
50 Cent 19.16 21.98 | 14.29 15.71 16.23 17.72 13.27 0.00 9.22
NWA 21.34 24.72] 16.05 16.27 11.42 17.64 12.95 10.80 0.00

Table 3: Similarities between sampled artists from the dataset.

pute. Updating the system as new data becomes avail-
able is also very cheap, as it amounts to simply adjust-
ing counts on the arcs. The only human intervention
required is the original construction of the radio station
playlists, so the system can improve automatically over
time (in both coverage, and in the estimates of similar-
ities) as more playlist data becomes available. Playlist
data can either be obtained directly from the content
providers or by using automated monitoring systems,
such as audio fingerprinting systems. Similar schemes
could equally well be used for other media which occurs
in authored streams, such as music videos.

6. REFERENCES
[1] http://www.kexp.org.
2]
[3] http://www.shazam.com.
[4] M. Alghoniemy and A. H. Tewfik. A network flow
model for playlist generation. Proc. ICME, 2001.

[5] J. J. Aucouturier and F. Pachet. Scaling up
playlist generation systems. Proc. I[CME, 2002.

[6] C.J. C. Burges, J. C. Platt and S. Jana.
Distortion descriminant analysis for audio
fingerprinting. IEEE Trans. on Speech and Audio
Processing, 11:165-174, 2003.

[7] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.
Introduction to Algorithms. McGraw Hill, 1990.

[8] D. B. Hauver and J. C. French. Flycasting: using
collaborative filtering to generate a playlist for
online radio. Proc. Int. Conf. Web Delivering of
Music, 2001.

[9] J. Haitsma and T. Kalker. A highly robust audio
fingerprinting system. Proc. Intl Conf on Music
Information Retrieval, 2002.

[10] T. Li, M. Ogihara, and Q. Li. A comparative
study on content-based music genre classification.
SIGIR, 2003.

http://www.radioparadise.com.

[11] B. Logan. Content-based playlist generation:
Exploratory experiments. Proc. Third Inter. Conf.
on Music Information Retrieval, 2002.

[12] S. Pauws and B. Eggen. PATS: Realization and
Evaluation of an Automatic Playlist Generator.
Proc. 3rd International Simposium on Music
Information Retrieval, 2002.

[13] J. C. Platt, C. J. C. Burges, S. Swenson,

C. Weare, and A. Zheng. Learning a gaussian
process prior for automatically generating music
playlists. NIPS, 2001.

[14] B.-T. Truong, S. Venkatesh, and C. Dorai.
Automatic genre identification for content-based
video categorization. International Conference on
Pattern Recognition (ICPR’00)-Volume 4, 2000.

[15] G. Tzanetakis and P. Cook. Musical genre
classification of audio signals. IEEE Trans. on
Speech and Audio Processing, 10(5):293-302, July
2002.

[16] T. Zhang and C.-C. Jay Kuo. Hierarchical
classification of audio data for archiving and
retrieving. Proc. IEEE ICASSP, 1999.

