
Proceedings ACM Multimedia 2005

Accurate Repeat Finding and Object Skipping Using
Fingerprints

Cormac Herley
Microsoft Research, One Microsoft Way, Redmond, WA

Abstract
This paper introduces a novel and very accurate seg-
mentation algorithm. It is very efficient and consumes
less than 10% of CPU on a simple desktop PC to seg-
ment a stream in real-time. It operates on an audio
stream, or on the audio portion of a audio-visual stream.
It is very accurate: it accurately detects the positions
and durations of objects on an over-the-air broadcast
television signal, and songs on both FM and internet
radio stations (as checked against labeled ground truth
streams). The algorithm does not require any prior in-
formation or training. We detail the system design and
present results of segmenting broadcast streams.

Keywords
Repeat finding, Segmentation

1. INTRODUCTION
Segmentation is far from being a new problem. Many

applications in the multimedia research literature de-
pend on it, and it has been well studied. However, we
believe our algorithm to be a considerable departure
from previous approaches. Rather than seeking seman-
tic structure, visual, acoustic or other features we seek
to explicitly identify repeating segments of the stream.
We demonstrate how this may be done very efficiently
using recent advances in audio fingerprinting, even on
high rate streams. Object skipping is one of the obvi-
ous applications enabled by this algorithm, but it has
implications in many other areas.

Previous approaches to segmentation of course de-
pend on the type of content and on the application.
A system that attempts to automatically identify pe-
riods of interesting activity in a soccer game will be
very different from one that attempts to identify news
sequences on a broadcast television stream. A commer-
cial skipping system might have little in common with
a method to build an ontology based on scene similari-
ties. Nonetheless the somewhat loosely defined task of
segmenting streams occurs in a wide variety of applica-
tions.

In addition to applications where segmentation is the

end result, there are numerous applications where it is
a component of a larger system. Content indexing and
retrieval systems for example must identify segments
that correspond to user expectations of coherent scenes
or units. A system that attempts to find clips similar
to a given clip, or allows browsing based on some mea-
sure of similarity falls into this category. Variations also
arise in automatic summarization, content indexing and
retrieval. A large fraction of the segmentation systems
in wide use today have dedicated algorithms that are
particular to the type of segment being sought, and the
application at hand.

In the next section we explore related and previous
work. In Section 3 we present the algorithm and show
how repeating objects may be located and segmented,
and explore the complexity. In Section 4 we present the
results and statistics of segmenting several real broad-
cast streams.

2. RELATED WORK

2.1 Video Segmentation Systems
Since stream segmentation is such a large area we can

give no more than a sampling of recent related work.
Breaking broadcast video streams into different classes
of objects, has been addressed by numerous authors.
Jiang et al., for example, demonstrate segmenting and
classifying scenes on a news channel into categories such
as news-anchor scenes, live report scenes, weather re-
ports and so on [16]. Theirs is one successful example
of an approach that seeks particular features that are
trained to classify certain types of content. Sundaram
and Chang [25] employ separate audio and video seg-
mentation algorithms that model scenes as semantically
consistent chunks, and then integrate the results. Rui
et al. [24], describe a system that automatically extracts
segments of greatest activity from sports events such as
baseball games.

Considerable effort has addressed the question of iden-
tifying objects based on a set of known features. Ham-
papur and Bolle [11], for example, describe a feature
based indexing system that allows real-time similarity

1

Proceedings ACM Multimedia 2005

operations on streams. This allows tracking and search
to be performed on broadcast video. Many of the ap-
proaches to video stream analysis make use of the grow-
ing body of work on audio analysis, querying and re-
trieval. Wold et al. [26], for example, describe a sys-
tem of audio content classification and search by reduc-
ing audio to a set of perceptual and acoustic features.
Pfeiffer et al., [22] describe content-based segmentation
of an audio stream, music analysis and a method to de-
tect violent scenes based on the audio channel. Each of
these approaches can be used in systems that attempt
to segment based on audio alone, or in combination with
video cues. Muramoto and Sugiyama [20], for example,
follow such an approach using a system of audio and
visual cues. Pass et al. use coherence vectors defined
over the color information in a frame to derive a vector
to compare frames based solely on the visual informa-
tion [21]. One advantage of the algorithms that can
segment based on audio data alone [22, 26] is that seg-
mentation can be done on a compressed format video
stream without having to decode the whole stream; i.e.
the segment boundaries can be calculated without a full
decode operation.

The Scene Transition Graph developed by Yeung et al
[27] identifies related scenes in a stream. Distinct scenes
are identified by detecting shot boundaries and build-
ing a graph based on scene similarities. In [27] related
scenes are clustered (e.g. closeups of the same person in
a dialog scene). This differs from our work in that we
are interested only in identifying segments of streams
that are identical (other than channel deformations).

2.2 Commercial Skipping Systems
The application of commercial skipping has attracted

considerable attention, both in the multimedia litera-
ture and in consumer electronic products. The goal is
to identify the location and boundaries of commercials
and allow the viewer to skip them at will. Among com-
mercial offerings TiVo [1] is possibly the best known,
which offers its users the ability to skip commercials
when they are watching a recorded show. The technol-
ogy appears to make use of the fact that commercials
are preceded by two blank frames in most television
and cable broadcasts. These blank frames are inserted
as a marker by the broadcasters, and of course make
identifying and skipping the commercials simple. An-
other consumer electronics offering is that of ReplayTV
[2] which has a 30 seconds advance button. This relies
on the even simpler observation that commercial adver-
tisement slots on television are typically 15, 30 or 60
seconds in length. While both of these systems work,
the solutions are somewhat heuristic and fragile: it is
clear that they will cease to work altogether if broad-
casters alter their commercial format.

Thus there continues to be research in this area. Bimbo

et al. [4] report considerable success in distinguishing
commercials from regular programming content by us-
ing an efficient vector based on the evolving color in-
formation. Alternatively, Lienhart et al. [19] show how
a library of known objects such as commercials may
be detected and segmented efficiently. Our work dif-
fers from [19] in that we do not require a known col-
lection before beginning; in fact our system bootstraps
to learn the collection of objects that are repeating in
the stream. Kashino et al. describe another interest-
ing approach along these lines [18], which explores a
histogram pruning method to search for known objects
in long streams or libraries. Both [19] and [18] have
in common with our work that they are explicitly in-
terested in finding objects in very long sequences (i.e.
days or weeks); the point of difference is that they take
the set of sought objects to be known.

2.3 Repeat Finding Systems
The subject of repeat finding in noise-free streams

has a rich history. Using dedicated algorithms and ef-
ficient data structures such as suffix trees or tries it is
possible to find all repeating subsequences of a finite
alphabet stream. These algorithms are the basis of the
renowned Lempel-Ziv compression, for example. For a
length m string over an alphabet of size Z all patterns
of length L can be found in O(L) time, but in general
the tree requires O(mZ) space [9]. The text by Gus-
feld [9] is a good reference on the numerous variations
on the theme, but string matching algorithms become
impractical as the alphabet size increases. In addition
to the memory problems, most multimedia streams are
distorted by compression and channel noise, so that ex-
act matches do not occur. There do not appear to be
successful applications of string matching ideas to re-
peat finding in multimedia streams.

An interesting example of searching for unknown re-
peating objects in a music stream is by Hsu et al. [14].
Here, however, the authors work on MIDI data rather
than a raw audio format. So, in this sense the stream is
noise-free, and there is no clear generalization to video
streams. An approach by Johnson and Woodland [17]
describe a direct audio search method. In common with
[19, 13] and our approach the authors seek exact re-
peats. They describe an efficient algorithm for finding
repeats of given pieces of cue audio (such as station call
signs). They do not address the problem posed here;
i.e. automatically extracting the unknown repeating ob-
jects in a stream. Cooper and Foote [8] describe an el-
egant approach to video summarization by establishing
similarity between scenes. They establish a matrix of
relative similarities between scenes and choose as sum-
mary the scene with the highest average similarity to
its companions. Our approach by contrast is to extract
exactly repeating objects. Rather than seek clusters of

2

Proceedings ACM Multimedia 2005

objects that are similar, we seek repetitions of objects
that are precisely the same. The only errors we deal
with are erasures, compression and channel errors, so
repetitions are unambiguous.

Herley [13, 12] directly tackles the question of iden-
tifying repeats in multimedia streams. There, cross-
correlations are used to identify repeats, and dimension
reduction techniques make the computation manage-
able. While we address essentially the same problem as
[13], our algorithm is far more computationally efficient
(as analyzed in Section 3.5). The segmentation is also a
great deal more accurate; since we rely on fingerprints
which are known to have very low error rates, while
[13] relies on a somewhat heuristically derived Bark-
Band method.

2.4 Audio Fingerprinting Algorithms
A set of highly performant algorithms based on link-

ing unlabeled audio to a database entry have been re-
ported recently by Haitsma and Kalker and [15] and by
Burges et al. [6]. While we in no way overlap with these
contributions we actually use a fingerprint algorithm as
a component of our algorithm, and hence briefly review
them here. Depending on the application area these are
variously known as audio fingerprinting, Content Based
Identification, or audio hashing algorithms. There is
even a successful web service that allows users to iden-
tify music played over a cellphone [3]. The idea is that a
perceptual signature of a segment of audio is calculated
and this signature can be compared with the signatures
in a labeled database. In many ways the signature is
analagous to a software hash such as CRC. Like their
software counterparts audio hashes are generally much
smaller than the audio segments they represent, are ef-
ficiently calculated, have very low instances of collision
(i.e. two different audio segments having the same sig-
nature), and (ideally) can be compared against a large
database in better than linear time. In addition audio
hashes have a requirement that their software cousins
do not: they should be robust to noise and deforma-
tions. Cano et al. give an excellent review of audio
fingerprinting algorithms in [7].

It is beyond the scope of this paper to detail the inner
workings of fingerprint algorithms; interested readers
are referred to [15, 7, 6] and to experiment with the web
service [3]. Since the fingerprint forms a vital block of
our algorithm it is important that readers understand
how performant these algorithms are. In our imple-
mentation we have used the fingerprint described in [6].
By way of benchmarks on this algorithm Burges et al.
document in [6] that performing searches every 0.186
seconds in a database of 240000 fingerprints consumed
less than 5% of CPU on a 1.2GHz PC. This system was
demonstrated at ACM MM 2003 [5]. In addition they
document robustness to various distortions such as FM

transmission, amplitude distortion, considerable noise
addition and time alignment. The fact that the service
offered by [3] allows identification of music played over
a cell phone also can be taken as demonstration of the
considerable noise robustness of current fingerprinting
schemes. In the rest of the paper we will refer to h[s(n)]
as the audio fingerprint of a stream at time n. Follow-
ing [6] this will be a 256 byte record similar to a hash.
We will use the notation h[s(n)] ≈ h[s(n−k)] to denote
that the fingerprints at times n and n − k match, and
this the content at those locations is the same.

3. FINDING AND SEGMENTING OBJECTS

3.1 Problem Setup
Commercials are perhaps the most obvious example

of objects that repeat in a multimedia stream. Since
the system we describe is not limited to commercials we
first clarify our definition and give examples of typical
repeats in various multimedia streams.

First, when an object repeats we mean that a seg-
ment repeats exactly except for noise caused by channel
distortion or compression. For example: commercials
that repeat without variation, taped news items that
are replayed every hour, and the signature sequence at
the beginning of a broadcast television show would all
be repeats under this definition. We should also clarify
certain objects that are not repeats. On a video stream
a commercial that appears once with English audio and
once with Spanish audio would not be a repeat; these
are distinct objects under our definition. In an audio
stream two different recordings of the same song would
not be considered repeats of the same object: generally
the difference between two recordings of a song, even
when recorded by the same artist, is far greater than is
typically introduced by channel or compression distor-
tions.

We should make clear that we expect our system to
be robust to the various channel errors that occur. Just
as important as the channel distortions introduced by
the physical transport mechanism are the intentional
distortions introduced by broadcasters in editing their
content. The fingerprinting systems [15, 6] that we em-
ploy were carefully designed to be robust to these dis-
tortions. In fact detailed analyses of their ability to
withstand, for example, time axis compression and com-
panding are among the distortions measured in [10, 6]
and [3].

3.2 Production model for multimedia streams
Our model of a multimedia stream is that it contains

a mixture of repeating objects and non-repeating con-
tent. Without loss of generality we say it is synthe-
sized by choosing objects from a library of K objects
O0(n),O1(n), · · · ,OK−1(n). Denote by Li the length

3

Proceedings ACM Multimedia 2005

of Oi in seconds, so that the object is LiR samples long,
where R is the sampling rate. Observe that Oi can
be one-dimensional or multi-dimensional, in the case of
video. We stress that Li can vary from a few seconds
to several minutes, depending on the stream, and that
K might be as small as a few hundred or range into the
tens of thousands (we give examples in Section 3.2.1
and measurements in Section 4). Since a stream may
not consist entirely of repeating content we will also say
that only a fraction r of the stream consists of repeat-
ing objects. For example r = 0.9 would imply that one
tenth of the stream was non-repeating content that sep-
arated repeating objects from each other. This model
is not at all restrictive, and is sufficiently general to
capture most broadcast streams.

Call the overall stream s(n). An example of such stream
might be written

s(n) = {· · · |O495(n)|id(n)|O4(n)|O343(n)|O17(n)| · · · },
where the symbol | denotes concatenation of objects,
and id(n) denotes a non-repeating segment of duration
d. Clearly, if an object Oi(n) is repeated at times n0

and n1 in the stream we will have

s(n0 + k) = s(n1 + k), for 0 ≤ k ≤ LiR. (1)

The synthesized stream is generally carried over a
channel before being consumed by the user. This may
consist of a terrestrial broadcast, the internet, cable or
other distribution network, and the transport mecha-
nism may be either analog or digital. In any of these
cases we make the assumption that what is received is
corrupted by noise:

r(n) = s(n) + n(n).

The noise can have any of the characteristics typical of
real communication systems (we enumerate some exam-
ples in Section 3.2.1), we merely assume that the signal
strength is much greater than the noise: ‖ s ‖À‖ n ‖ .
Thus, following (1), when a repeat occurs, we will have
for the received signal:

r(n0 + k) = r(n1 + k) + n(n1 + k), for 0 < k < LiR.

This in turn implies that the fingerprints at these loca-
tions match:

h[r(n0 + k)] ≈ h[r(n1 + k)], for 0 < k < LiR. (2)

Finally we stress that this model is valid both for audio
and video streams. For fixed n, thus s(n) would be a
pair of 16-bit numbers in the case of stereo audio, and
R might be 44100 samples per second. In the case of
NTSC video s(n) might be a 640 × 480 image, and R
might be 50 (though an accompanying audio stream
would be sampled at a higher rate).

3.2.1 Example streams

Terrestrial FM music broadcast: the Oi con-
sist of songs, generally with lengths between 150 and
240 seconds, commercials that are either 15, 30 or 60
seconds in length, and the jingles and signature tunes
(of variable length) that separate program elements. A
commercial pop music station generally plays on the or-
der of 200-500 songs, and a collection of 200 or so com-
mercials. Alternative, or college radio stations can play
from libraries of thousands of songs. Of course K will be
the sum of all of the song, commercial, jingle libraries on
a station. Noise is determined by the terrestrial broad-
cast, so there can be fading components and additive
components. The sampling rate R is determined by the
acquisition system rather than the transmitter. r(n) is
one dimensional.

Internet radio: the Oi consist of songs, generally
with lengths between 150 and 240 seconds, there may
or may not be commercials, and the jingles and signa-
ture tunes that separate program elements (of variable
length). The dominant source of noise is erasures that
occur in sending a UDP stream, and compression errors
due to mp3 or similar coding. The sampling rate R is
generally determined by the transmitter. r(n) is one
dimensional.

Analog Cable Network News: the Oi consist of
news stories with lengths between 30 seconds and 10
minutes, commercials that are either 15, 30 or 60 sec-
onds in length, and the jingles and signature tunes that
separate program elements (of variable length). The
dominant source of noise is channel noise. The sampling
rate R is generally determined by the transmitter. r(n)
is three dimensional.

3.3 Finding Unknown Repeating Objects

3.3.1 Brute Force Algorithm

As pointed out in [13] searching for repeating patterns
in streams is trivially simple if memory and computa-
tion are not constrained. We can simply compare a
chunk of the current stream with previous chunks up to
some maximum time Dmax seconds in the past. That
is, check if

Chunk[r(n)] ≈ Chunk[r(n−k)] for k = LminR, · · · , DmaxR.

When equality occurs for some kx we have found a re-
peat at locations n and n− kx.

Rather than compare stream segments directly we can
compare their fingerprints, which is considerably more
efficient and also more noise robust. Relying on the fact
that false positives are extremely rare, we can compare
the fingerprint at some time instant with that at all
other instants. Thus let h[r(n)] be the fingerprint at
instant n. To determine if the current stretch is a repeat,
for example, we might compare a fingerprint of the most
recent sample with a fingerprint at every sample in a

4

Proceedings ACM Multimedia 2005

finite buffer of length Dmax by exhaustive search. That
is check

h[r(n)] ≈ h[r(n− k)] for k = LminR, · · · , DmaxR.

As before: when a match occurs for some kx we have
found a repeat at locations n and n − kx. For large
enough Dmax every repeating object can be found in
this way.

The problem with this approach, of course, is that it
is computationally infeasible: we have to store DmaxR
fingerprints of the stream, and have to search that store
R times per second. Let’s assume a buffer of length a
week, so Dmax = 60 · 60 · 24 · 7, and (following the im-
plementation in [6]) assume that each fingerprint con-
sumes 64 floats or 256 bytes. Thus the buffer would
require DmaxR × 256 = 6.8 terrabytes, and a total of
DmaxR2 = 1.2e15 fingerprint comparisons per second
would be required. This is several orders of magnitude
beyond the capacity of even the fastest computers.

Clearly, this brute force algorithm is overkill: there
is no need to check the fingerprint against the entire
buffer at every single time sample. To address the stor-
age and computation requirements we seek an approach
that operates only on samples of the stream.

3.3.2 Sampled Algorithm

Consider a new algorithm that consists of two threads
that run infinitely.

• Thread 1: at time pMw calculate h[r(pMw)], and
deposit in a database.

• Thread 2: at time qMr calculate h[r(qMr)], and
check whether it matches any fingerprint in the
database.

Since we wish to search only a distance Dmax into the
past we will say the database is full when there are a
total of DmaxR/Mw fingerprints entered; and at this
point the database acts as a FIFO. This database is
checked R/Mr times a second. So there are a total of
DmaxR2/(MwMr) fingerprints comparisons per second.
Hence, in writing fingerprints only at intervals Mw, we
reduce the database size and the computation by a fac-
tor of Mw. In checking the database only at intervals
Mr we reduce the computations by a further factor Mr.

Recall now one of the important properties of the fin-
gerprint algorithms mentioned earlier was alignment ro-
bustness. That is suppose that Oi repeats at n0 and n1.
We would thus expect that

h[r(n0 + k)] ≈ h[r(n1 + k)] for any 0 ≤ k ≤ LiR.

That is, fingerprints in two copies of Oi at n0 and n1

match so long as the relative offset, k, from the be-
ginning is the same. Actually, at least using the fin-
gerprints in [15, 6], something stronger is true. The
relative offsets don’t have to be exactly equal. So long

as they are within δT of each other the fingerprints still
match:

h[r(n0 + k)] ≈ h[r(n1 + k + δk)]

for 0 ≤ k+δk ≤ LiR and |δk| < δT R. Under experimen-
tal conditions [6] the alignment tolerance of the finger-
print algorithm we use was determined to be δT = 0.186
seconds (or δT R = 8202 samples). This leads the way to
a huge computational and buffering simplification over
the brute force algorithm.

3.3.3 Choosing the write and check ratesMw andMr

It remains to find the conditions on the write rate,
Mw, and the check rate, Mr, such that all repeating ob-
jects are found. Suppose Oi occurs in the stream at n0,
and that Thread 1 writes a fingerprint to the database
at some time pMw ≥ n0. Next suppose Oi recurs at time
n1. To match the written fingerprint Thread 2 must
check the database at some time in the range

n1 + pMw − n0 − δT R ≤ qMr ≤ n1 + pMw − n0 + δT R.

This requires Mr ≤ 2δT R. Observe, however, that we
do not have to match a particular fingerprint. If several
fingerprints were written by Thread 1 for Oi we merely
require that one of the fingerprint checks from Thread
2 matches one of the fingerprints written by Thread 1.

Some solution pairs Mw,Mr are easily found. For
example, suppose we choose Mw = LminR. This guar-
antees that even the shortest repeating object encoun-
tered will contain at least a single fingerprint entry in
the database. Then if we choose Mr = 2δT R, there will
always be a fingerprint check within 2δT R of it on any
subsequent repeat copies of this object. This strategy
involves making Mw as large as it can be, but still guar-
antee at least one fingerprint per object, and then check
the buffer frequently enough to ensure this fingerprint
is never missed. This is shown in Figure 1 (a).

At the opposite extreme we can choose Mw = 2δT R
and Mr = LminR as shown in Figure 1 (b). This strat-
egy involves checking the buffer only once per object
on average, but we place enough fingerprints in the
database to ensure that each object has many. Observe
that the computation in both of these cases is the same,
DmaxR2/(MwMr) fingerprints comparisons per second.

These are by no means the only choices however. We
will see in Section 3.4 why small values of Mw are advan-
tageous for the segmentation. If fingerprints are written
with spacing Mw, then there will be LiR/Mw entered
for object Oi. Thus, there is a subset of total length
δT R · Li/Mw of the length Li, and if one of the fin-
gerprint checks falls within this subset a match will be
found. Actually, with some restrictions, we can choose:

Mr ≤ LminR

Mw
· 2δT R. (3)

The main restriction is that Mw and Mr be incommen-

5

Proceedings ACM Multimedia 2005

Figure 1: Examples of choices of the write and check rates for fingerprints Mw and Mr. (a) A very coarse write rate
Mw = LminR requires a very fine check rate Mr ≤ 2δT R. (b) A very fine write rate Mw = 2δT R allows a very coarse
check rate Mr ≤ LminR. Our ability to estimate the start position n1 is determined by how tightly it is bracketed by
fingerprints in the database. Hence, the smaller Mw the more accurate the segmentation can be.

surate, i.e. gcd(Mw,Mr) = 1. The proof, which is some-
what technical is given elsewhere.

This shows however, that in addition to the solu-
tion we have already seen, Mw = LminR and Mr =
2δT R there is a whole range of possible solutions. Ob-
serve that the computation will remain unchanged at
DmaxR2/(MwMr) fingerprints comparisons per second.
However, the database contains DmaxR/Mw fingerprints.
Clearly smaller values of Mw will ensure that the database
has more entries. We will see next why this can be ad-
vantageous.

3.4 Segmentation
Using the sampled algorithm we find a repeating ob-

ject when Thread 2 finds a match in the database:

h[r(pMw)] ≈ h[r(qMr)], pMw 6= qMr

for some integers p and q. That is, a fingerprint at one
section of the stream matches one from a previous sec-
tion. Once Thread 2 finds a match we know that a
repeat has occurred. However we we do not yet know
the starting position of each of the copies. We know
merely that there’s a copy of an object before pMw; i.e.
at some location n0 where pMw−LmaxR ≤ n0 ≤ pMw.
And we know that there’s another copy before qMr; i.e.
at some location n1 where qMr − LmaxR ≤ n1 ≤ qMr.
Equally we do not know the length of the object.

However, since this match represents two copies of
an object Oi(n) of length Li the current and previous
streams will match not just at the locations of the fin-

gerprints found (i.e., pMw and qMr) but also at loca-
tions on either side of these instants for a total length
of LiR. Thus we ought to be able to determine, the be-
ginning position of the two copies of Oi, and its length
by tracing fingerprints backwards and forwards. That
is we know that (2) holds, not just at the particular
positions just found by Thread 2, but over a range of
values of length LiR.

We can’t evaluate (2) at every value in this range
however, since we do not have access to fingerprints at
arbitrary locations in the past. We merely have the
fingerprints placed in the database by Thread 1, which
are spaced Mw apart. Thus, we can compare:

h[r(pMw + kMw)] ≈ h[r(qMr + kMw)]. (4)

Clearly the boundaries of the object can be approxi-
mately found by choosing

n0 = pMw + kleftMw,

LiR = pMw + krightMw − n0,

where kleft is the smallest k and kright is the largest k
for which (4) holds.

Observe that in order to evaluate kleft and kright we
need only fingerprints spaced Mw apart in the vicinity
of n0 so everything needed is available in the database
of fingerprints. Observe also however, that we can de-
termine the endpoints only to within a tolerance of Mw.
That is, if

h[r(pMw + kMw)] ≈ h[r(qMr + kMw)],

6

Proceedings ACM Multimedia 2005

but

h[r(pMw + (k − 1)Mw)] 6≈ h[r(qMr + (k − 1)Mw)]

we then know that

pMw + (k − 1)Mw ≤ n0 ≤ pMw + kMw,

but cannot determine n0 and n1 more accurately than
that. So Mw gives the expected error in the segmenta-
tion. This then gives us a good reason to choose Mw

to be small. If we choose Mw = R for example we will
have a maximum error of one second in determining the
object boundaries.

So the boundaries of an object are easily calculated
once a match is found. Since we compared the two
copies of the stream in increments spaced Mw apart,
the worst case error in determining both the left and
right boundaries of Oi(n) will be Mw samples.

3.5 Complexity and comparison with [13]
Let’s compare the complexity of the sampled algo-

rithm given above with the approach described in [13].
First, our approach requires searching a database of

DmaxR/Mw fingerprints every Mr/R seconds. We have
not thus far addressed the structure of the database,
and how it may be searched efficiently. Assume the
worst case: we do a linear search by comparing the cur-
rent fingerprint with every fingerprint in the database
every time. Using (3) this gives a total of

DmaxR2

MwMr
=

Dmax

Lmin2δT

fingerprint comparisons per second. Each comparison
merely involves comparing the difference between two
64 element vectors with a threshold.

Now consider the complexity of the scheme in [13],
which involves comparing correlations of blocks of data
to find repeats. The schemes are not directly compara-
ble, but [13] also uses block sizes determined by Lmin.
It divides the desired search window (of length Dmax)
into 2Dmax/Lmin windows of length Lmin with over-
lap of 50 %. A search for correlations is done every
Lmin/2 seconds, and it involves comparing the current
block with each of the blocks in the buffer. Thus there
are 4Dmax/L2

min correlation comparisons per second.
However the comparisons involve taking the FFT of the
current block, multiplying against one of the buffered
blocks, taking the inverse FFT, and then searching for
a peak. Thus each correlation comparison can be ex-
pected to take computation proportional to
2Lmin(log Lmin + 4). Hence the overall, best case com-
putation is

8Dmax · Lmin log Lmin

L2
min

=
8Dmax log Lmin

Lmin

operations per second.

0 5 10 15 20
0

10

20

30

40

50

60

70

Time in hours

U
ni

qu
e

O
bj

ec
ts

 F
ou

nd

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100

Object index

O
cc

ur
en

ce
s

Figure 2: Commercials and other repeats found on CNN
headline news. (a) Number of unique repeats found as a
function of time. (b) Number of times each object was
found.

Hence the worst case complexity for our scheme is al-
most an order of magnitude better than the best case
complexity for [13] when Lmin is small; and the com-
plexity advantage increases as Lmin increases. Fur-
ther, we assumed that the database in our scheme was
searched linearly, as this was the case in our current im-
plementation. Clearly, using any of the efficient strate-
gies for searching databases will improve the complexity
advantage even further.

4. ARCHITECTURE AND RESULTS

4.1 Architecture
We have used an implementation of the fingerprinting

algorithm of [6] as the basis of our algorithm. A video
acquisition card on the PC receives the video input, and
audio is input to “line-in” on the soundcard. All of the
writing and checking of fingerprints is done only on the
audio portion of the signal. Whether the signal is video
or audio alone we always capture the audio portion at
44100 samples per second, and this (along with Lmin)
determines the read and check rates of the algorithm.
The database created by Thread 1 stores fingerprints
every Mw samples and contains DmaxR/Mw entries. A
separate thread does all of the checking as described in
Section 3.3.2.

7

Proceedings ACM Multimedia 2005

In order to skip objects obviously the system must be
buffered. The length of the buffer must be at least as
long as the sum of all the objects that will be skipped.
Since our implementation is for proof of concept rather
than actual use we buffer only 20 minutes of the raw
stream. Thus, when the input is an audio signal, the
user listens to the audio with a 20 minute delay. If the
user skips objects the read and write edges of the buffer
get closer together; when they are too close together
skipping is no longer possible. When an object is found
the boundaries are determined using the method in Sec-
tion 3.4. If the object has not been previously found a
single copy is kept for verification purposes. This is
done by cutting the segment from the 20 minute buffer
of the raw stream. On all subsequent occurrences of
that object we merely record the occurrence in a log.
Thus after listening to a stream for a period of time we
will have a library of all of the repeats found, and a log
of the times when they occurred.

Parameter settings: we always assume CD qual-
ity audio acquisition (i.e., R = 44100) if we seek songs
of length at least Lmin = 150 seconds and will toler-
ate a segmentation error of one second we can choose
Mw = 44099, and Mr = 1476501 < LminδT /Mw. Note
that gcd(Mw,Mr) = 1. Thus the database of 60× 60×
24 × 7 = 6e5 entries must be searched every Mr/R ≈
33.4 seconds. This actually consumes less than 2% of
CPU on a 2.8GHz PC. If instead we seek commercials
and choose Lmin = 15 the numbers change somewhat.
Tolerating again a maximum segmentation error of one
second we find Mw is unchanged, while Mr = 123041; so
that now the database must be checked every Mr/R =
2.79 seconds. This consumes approximately 3.5% of the
same CPU.

4.2 Results
For consistency, in all of our experiments we use database

that contains a week worth of fingerprints; i.e. Dmax =
60×60×24×7. We will present results on various kinds
of streams, such as listed in Section 3.2.1. We will es-
timate the fraction of repeating content in each of the
experiments as

r =
1
L

∑

i

Lifi, (5)

where L is the duration of the experiment and fi is the
number of times Oi was found.

4.2.1 CNN Cable Network News

We set our system to listen to the CNN Headline
News cable channel. The channel plays headline news
with brief news stories repeated every 15 minutes. Typ-
ical stories can be from 45 to 120 seconds in length. To
be safe we set Lmin = 20 seconds for this experiment.
The results are summarized in Figure 2. Figure 2 (a)
shows the number of unique objects found as a func-

tion of time over a 24 hour period. Clearly, objects are
found almost at the outset, as the first repeats begin
after 15 minutes. Figure 2 (b) shows the number of
times fi that object Oi was found during the interval.
Using (5) we estimate rCNN = 0.91 meaning that the
channel plays almost entirely repeating content. The
remaining fraction can be accounted for by objects that
played only once (and hence were not found) or were
shorter than Lmin.

4.2.2 NBC Cable Affiliate

We set our system to listen to the NBC cable affiliate
for a period of five days. The channel plays mixed con-
tent and commercials, which are typically 30 seconds
long. We set Lmin = 20 for this experiment. The sys-
tem found a total of 218 commercials. Common com-
mercials were found mostly at the outset. Using (5) we
estimate rNBC = 0.21. Clearly this is far lower than
the news channel; other than commercials, most of the
content appears to be non-repeating.

4.2.3 Terrestrial FM music broadcast

We set our system to segment the stream from the
Seattle FM pop music station KISW. An FM tuner was
connected to the soundcard of the PC. the quality of
the FM reception was good. The station plays a mix
described as “Today’s hottest music,” along with com-
mercials. We classified all repeating objects found as
songs if they were greater than 150 seconds in length,
and commercials or other if they were less. In a listening
period of seven days our system segmented a total of 273
unique songs, 87 commercials and 11 other objects. The
other objects were call signs, jingles and one instance
of a repeat of the FCC mandated emergency broadcast
system signal. The data is summarized in Figure 3 (a)
which shows the number of unique songs found by the
system as a function of time. Observe that no songs are
found at first, since the fingerprint database is empty,
but repeats begin to arrive rapidly after one day or so.
The entire collection of songs appears to be captured in
less than seven days. We estimate rpop = 0.87, indicat-
ing again that repeating content dominates the channel.

4.2.4 Internet Radio Station

We set our system to listen to www.kexp.com for a
period of three weeks. It is a very varied college station.
It does not play commercials. To be safe we set Lmin =
100 for this experiment. Our system found a total of 546
objects of 100s or longer that repeated. We estimate
rinternet = 0.182 indicating a lower repeat rate. The
results are summarized in Figure 4. In all likelihood a
longer listening period would have yielded more repeats,
since new repeats continued to be found even after three
weeks.

4.3 Evaluation of Results

8

Proceedings ACM Multimedia 2005

0 1 2 3 4 5 6 7

50

100

150

200

250

300

Time in Days

U
ni

qu
e

So
ng

s
Fo

un
d

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

160

Object index

O
cc

ur
en

ce
s

Figure 3: Songs found on an FM pop radio station. (a)
Number of unique songs found as a function of time. (b)
Number of times each object was found.

4.3.1 False Positive Rate

The false positive rate is the percent of erroneous seg-
ments identified by the system. For each of the exper-
iments performed this can be estimated by examining
a sampling of the actually segmented objects. A false
positive of our segmentation algorithm requires a series
of consecutive false positives from the fingerprint algo-
rithm (i.e. (4) must hold over a series of values). In
sampling our segmented objects we failed to find false
positives, which is unsurprising.

4.3.2 False Negative Rate

The false negative rate is the percent of actual repeats
that were not found by our algorithm. To estimate this
we examined a 24 hour stretch of the FM station broad-
cast and labeled by hand the songs played. A total of
137 songs played during that time. We then checked
whether these were present in the list compiled by our
algorithm. There were two false negatives present in
the list. We also examined several commercial breaks
on the NBC affiliate channel. Here there were 12 false
negatives among 97 hand checked commercials. In all
cases the false negatives were 15 seconds in length, and
thus missed since we chose Lmin = 20.

4.3.3 Accuracy of Segmentation

By listening to a sampling of the songs, and watching

0 2 4 6 8 10 12 14 16 18 20
0

100

200

300

400

500

600

Time in Days

U
ni

qu
e

So
ng

s
Fo

un
d

Figure 4: Number of unique songs found on internet
radio station www.kexp.org as a function of time.

a sampling of the commercials segmented in the various
experiments we verify manually that the segmentations
are quite accurate. Recall, our choice of Mw = R − 1
guaranteed an error of about one second. For a more
systematic verification we plot in Figure 5 the frequency
of segment lengths found in the NBC affiliate broadcast.
The cluster 30 seconds represent the most common com-
mercial lengths played on this channel. Assuming that
all of these were indeed 30 second commercials, we can
see that the segmentations are indeed quite accurate,
with average error of 2.3 seconds.

5. CONCLUSION
We have presented a new algorithm that accurately

and efficiently segments repeating objects in streams.
We have demonstrated that it takes a small fraction of
the resources of a desktop PC to identify in real-time,
for example, all commercials on a broadcast signal. We
have verified the accuracy against ground truth. In ad-
dition to object skipping numerous other applications
exist: libraries of commercials or songs can be compiled
for any stream. Similarities between song objects can
be inferred based on an adjacency graph [23]. The ad-
vantages of our algorithm are:

• It is efficient: using the worst case exhaustive search
of the database it is an order of magnitude faster
than the algorithm of [13] (see Section 3.5.

• Since the segmentation is performed on audio, it
is possible to segment a compressed video stream
without having to decode the whole stream.

• We have measured and verified the segmentations
to be accurate (see Section 4.3).

While we believe this algorithm holds great promise
for a number of applications where segmentation is im-
portant, we also wish to communicate its limitations:
the algorithm only finds repeating objects. We believe
it outperforms previously reported work for commercial
detection, songs segmentation or parsing news streams

9

Proceedings ACM Multimedia 2005

so long as we can listen long enough for repeat patterns
to become evident. If listening to a stream for long
enough to spot repeats is not possible then the algo-
rithm simply does not work. Equally, for segmenting
scenes or content that do not repeat it simply is not
applicable.

Acknowledgements: the author gratefully acknowl-
edges discussions and assistance from Chris Burges and
John Platt.

0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

7

8

9

10

Object Length

Oc
cu

re
nc

es

Figure 5: Lengths of commercials found on NBC cable
affiliate. Observe the extremely tight clustering about 30
seconds. The variation is a measure of the segmentation
error of the algorithm.

6. REFERENCES
[1] http://www.tivo.com.
[2] http://www.replaytv.com.
[3] http://www.shazam.com.
[4] A. Del Bimbo, P. Pala, and L. Tanganelli.

Retrieval by content of commercials based on
dynamics of color flows. Proc. ICME, pages
479–482, 2000.

[5] Chris J. C. Burges, John C. Platt, and Jonathan
Goldstein. Identifying audio clips with rare. Proc.
ACM MM Demonstration Session II, 2003.

[6] C. J. C. Burges, J. C. Platt and S. Jana.
Distortion descriminant analysis for audio
fingerprinting. IEEE Trans. on Speech and Audio
Processing, 11:165–174, 2003.

[7] P. Cano, E. Batlle, T. Kalker, and J. Haitsma. A
review of algorithms for audio fingerprinting.
IEEE Workshop on Multimedia Signal Processing,
2002.

[8] M. Cooper and J. Foote. Summarizing video using
non-negative similarity matrix factorization. Proc.
IEEE Multimedia Signal Processing Workshop,
2002.

[9] D. Gusfield. Algorithms on Strings, Trees, and
Sequences. Cambridge, 1997.

[10] J. Haitsma, T. Kalker, and J. Oostveen. An
efficient database search strategy for audio
fingerprinting.

[11] A. Hampapur and R. Bolle. Feature based
indexing for media tracking. Proc. ICME, 2000.

[12] C. Herley. ARGOS: Automatically Extracting
Repeating Objects from Multimedia Streams.
IEEE Trans. Multimedia.

[13] C. Herley. Extracting repeats from streams. Proc.
ICASSP, 2004.

[14] J.-L. Hsu, C.-C. Liu, and A. L. P. Chen.
Discovering nontrivial repeating patterns in music
data. IEEE Trans. on Multimedia, 3(3):311–325,
2001.

[15] J. Haitsma and T. Kalker. A highly robust audio
fingerprinting system. Proc. Intl Conf on Music
Information Retrieval, 2002.

[16] H. Jiang, T. Lin, and H.-J. Zhang. Video
segmentation with the assistance of audio content
analysis. ICME, 2000.

[17] S. E. Johnson and P. C. Woodland. A method for
direct audio search with applications to indexing
and retrieval. ICASSP, 2000.

[18] K. Kashino, T. Kurozumi, and H. Murase. A
quick search method for audio and video signals
based on histogram pruning. IEEE Trans. on
Multimedia, 5(4):348–357, June 2003.

[19] R. Lienhart, C. Kuhmuench, and W. Effelsberg.
On the detection and recognition of television
commercials. Proc. Intl. Conf. on Multimedia
Computing and Systems, pages 509–516, June
1997.

[20] T. Muramoto and M. Sugiyama. Visual and audio
segmentation for video streams. Proc. ICME,
pages 1547–1550, 2000.

[21] G. Pass, R. Zabih, and J. Miller. Comparing
images using color coherence vectors. Proc. ACM
Multimedia, pages 65–73, Nov. 1996.

[22] S. Pfeiffer, S. Fischer, and W. Effelsberg.
Automatic audio content analysis. Proc. ACM
Multimedia Conf., pages 21–30, 1996.

[23] R. Ragno, C. J. C. Burges, and C. Herley.
Inferring Similarity Between Music Objects with
Application to Playlist Generation. ACM
Multimedia Information Retrieval, 2005.

[24] Y. Rui, A. Gupta, and A. Acero. Automatically
extracting highlights for tv baseball programs.
Proc. ACM MM, 2000.

[25] H. Sundaram and S.-F. Chang. Video scene
segmentation using video and audio features.
ICME, 2000.

[26] E. Wold, T. Blum, D. Keislar, and J. Wheaton.
Content-based classification, search and retrieval
of audio. IEEE Multimedia, 3(3):27–36, 1996.

[27] M. Yeung, B.-L. Yeo, and B. Liu. Extracting
story units from long programs for video browsing
and navigation. Proc. IEEE Conf. on Multimedia
Computing and Systems, pages 296–305, June
1996.

10

