
A RealTime Interactive MultiView Video System

JianGuang Lou, Hua Cai, and Jiang Li

Media Communication Group, Microsoft Research Asia,
5F, Sigma Building, 49 Zhichun Road, Beijing 100080, China

{jlou, huacai, jiangli}@microsoft.com

ABSTRACT

With the rapid development of electronic and computing
technology, multi-view video is attracting extensive interest
recently due to its greatly enhanced viewing experience. In
this paper, we present the system architecture for real-time
capturing, processing, and interactive delivery of multi-view
video. Unlike previous systems that mainly focus on multi-
view video capturing, our system is designed to provide
multi-view video service with high degree of interactivity in
real time, which is still challenging in the current state of the
technology. The proposed architecture tackles many prac-
tical problems in system calibration, object tracking, video
compression, interactive delivery, etc. With the proposed
system, users can interactively select their desired viewing
directions and enjoy many exciting visual experiences, such
as view switching, frozen moment and view sweeping, in
real-time and with great freedom.

Categories and Subject Descriptors: I.4.9 [Computing
Methodologies] Image Processing and Computer Vision –
Applications

General Terms: Performance, Design, Standardization

Keywords: multi-view video, video streaming system, video
coding, source coding, channel coding, calibration, object
tracking

1. INTRODUCTION
Video service now has largely changed our daily life. With

the technical advances in various areas, more and more flex-
ibility has been provided by various video services. For
example, upgrading from pre-captured movie to broadcast
television (TV) is the significant progress which allows con-
sumers to watch video at home. Live TV broadcast is an-
other big improvement that delivers real-time video to con-
sumers through the TV channel. The analog video signal
was then digitized and digital TV appeared, which gives
better quality, more programs, and more flexibility. Also,
many other applications, such as digital video disc (DVD),

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’05, November 6–11, 2005, Singapore.
Copyright 2005 ACM 1595930442/05/0011 ...$5.00.

video-on-demand (VoD), video streaming over the Internet,
etc., were invented to allow consumers to watch their favorite
video programs more easily. After the above significant and
exciting progress, the conventional video form (called single-
view video hereinafter) is good enough in many cases. How-
ever, for interactive or entertainment-oriented applications,
it still has several limitations. First, it only provides one
view direction for an event at any time instance while users
may want to watch the event from different directions. Sec-
ond, users are in a passive position. Even in a live video
service, users can only watch the pre-selected video con-
tents whereas there is no or little interactivity between the
users and the content capturing. Third, recording an event
from one fixed/dynamic view direction is not always the best
way, from both visual experience and event representation
criteria. For example, in a high action sports game or in
an exercise diagnosis, audience or instructors often want to
watch the video from comprehensive views, which gives them
better experience or helps them to make a correct judgment.

Thanks to the rapid development of electronic and com-
puting technology, multi-view video service is becoming more
and more feasible in practice. Different from the conven-
tional single-view video, multi-view video consists of a set of
video clips that are captured simultaneously from a group
of video cameras with different view directions. In conse-
quence, users can not only view a program from their desired
view direction, but also enjoy some special visual effects pro-
vided by the multi-view video. As a natural extension to
the single-view video, multi-view video can be widely used
in many applications, including advertisement, educational
program (such as surgical instructions), sports games, and
some important events.

Due to its promising features and a large number of poten-
tial applications, multi-view video has been attracting more
and more attention in recent years. For example, an ad hoc
committee on 3D audio and video (3DAV) was founded by
the MPEG community in 2001. Since then, some investiga-
tions and primitive activities have been made [1, 2]. Omni-
directional video, free view point video, stereoscopic video
and depth video have been primitively discussed in their
investigations. Meanwhile, some research efforts were also
made on the design of the capturing system. For instance,
a 33-camcorder system called EyeVision (www.ri.cmu.edu)
was employed to shoot Super-bowl 2001. The videos cap-
tured from the 33 camcorders are all input to a video routing
switcher and an edited video was broadcast to TV viewers.
In the EyeVision system, audience are still in a passive po-
sition, and no interaction of end users is involved. Later

161

Sync Unit

Server

Control PC

…

C

C

Sync Unit
C

C

Internet

Control PC

Sync Unit

Server

Control PC

…

C

C

Sync Unit
C

C

Internet

Control PC

Figure 1: System architecture.

systems such as Digital Air’s MoviaTM (www.movia.com)
and Wurmlin’s 3D Video Recorder [12] were proposed to
capture, store, and playback multi-view video. In the sys-
tem of MoviaTM , the designers use miniature high speed,
high definition, uncompressed digital cinema cameras that
can produce full frame synchronous images at variable frame
rates and variable shutter speeds. The uncompressed digital
images are directly saved to some specially designed digital
video recorders based on Intel and SGI powerful comput-
ers in real time. The recorded raw images will be further
processed using post-production tools. On the other hand,
based on the pre-captured multi-view video, a lot of post-
processing techniques such as view interpolation [16], depth-
based methods [9], and model-based methods [6] were widely
studied to enhance the viewing experience.

Despite the above work on multi-view video systems and
technology, the unique features of multi-view video have not
been exploited fully, especially in a real-time and interactive
scenario. In this paper, we propose a new system architec-
ture that is designed to provide real-time, interactive, and
reliable multi-view video service. This clearly differentiates
our system from other existing ones that only put efforts
on how to record multi-view video signals. The proposed
system has many advantages benefiting from its real-time
and interactive properties. It allows the audience to change
his/her view direction and enjoy some special visual effects
freely while watching the live video. Such a system could
largely enhance the user experience for interactive and/or
entertainment-orientated applications. Of course, there are
lots of practical challenges to build such a real-time interac-
tive system which will be addressed in this paper.

The rest of the paper is organized as follows. Section 2
outlines the hardware and software architecture of our sys-
tem. From Section 3.1 to 3.5, we describe system calibration,
object tracking, video capturing, multi-view video delivery,
and the video viewer respectively. Some experimental re-
sults are presented and discussed in Section 4. In Section
5, more discussions are included. Finally, we conclude our
work in Section 6.

2. SYSTEM ARCHITECTURE
To fully exploit the unique features of multi-view video,

we propose a system architecture in this paper. In order
to support users’ interactivities, our system is built upon
a computer network. The system can be used for both on-
demand delivery and live broadcast. As shown in Fig. 1, the
system mainly consists of N video cameras, N pan-tilt units,
a set of control PCs and synchronization units, a server, a
network backbone, and many receivers (clients). These com-
ponents can be classified into three parts: capturing part,
server part and client part.

The capturing part is composed of cameras, lenses, syn-
chronization units, pan-tilt units, and control PCs. Every
camera is put on a pan-tilt unit, which can be controlled by a
control PC. There are several types of spatial camera config-
uration for multi-view video, e.g. parallel view, convergent
view and divergent view. Each of them has its own appro-
priate applications. In order to capture a single dynamic
event from different view directions, we use the convergent
configuration by placing these cameras on an arc with equal
distance between them. Moreover, to make the cameras op-
erate simultaneously, we connect their synchronization units
to the control PCs. The generated synchronization signals
can make all the cameras trigger and shoot at the same time
instant. As a result, a dynamic event can be captured si-
multaneously by multiple cameras from different view direc-
tions. After that, the captured video signals are compressed
in the control PCs and then sent to the server through a
network backbone, e.g. a gigabit Ethernet.

The server part collects the N compressed video streams
from the control PCs and provides multi-view video service
to end users. In addition, the server also acts as a camera
manager. It generates control signals for cameras, changes
the cameras’ view directions, and sets the properties of the
cameras through sending commands to the control PCs.

The client part receives multi-view video bit streams from
the server. It then decodes bit stream and displays the video
for end users. By controlling the client part, users can en-
joy live interactive multi-view video. Besides the features
provided by traditional video services, with the proposed
system, users can enjoy many exciting visual experiences in
real-time and with great freedom as shown in Fig. 2:

View Switching : Users are able to switch flexibly
from one camera view direction to another as the video
continues along time.

Frozen Moment : In the frozen moment, time is frozen
and the camera view direction rotates about a given
point. One example is that, as shown in Fig. 2, a user
can view frames f1(i), f2(i), ..., fN (i) back and forth
at the ith frame of time instant.

View Sweeping : It involves sweeping through adja-
cent view directions while the time is still moving. It
allows the user to view the event from different view
directions. One example is that, as shown in Fig. 2, a
user can view frames f1(i), f2(i+1), ..., fN (i+N − 1)
starting at the ith frame of time instant.

3. SYSTEM MODULES
In this section, we focus on the major modules including

system calibration, object tracking, video capturing, video
delivery, and video viewer.

162

T
im

e View Sweeping

...

...

...

...

...

...

...

...

...

...

1
st
 View 2

nd
 View N

th
 View3

rd
 View ...

f1(i) f2(i) fN(i)f3(i)

...

Frozen Moment

Figure 2: Examples of visual effects provided by multi-

view video (fn(i) denotes the ith frame of the nth view).

The system calibration consists of geometrical calibration
and color normalization. In a multi-view video system, mul-
tiple cameras are deployed to capture videos simultaneously
at different viewing angles. Geometrical calibration tries to
estimate the geometrical relationships among multiple cam-
eras and their hand units. Based on this, the cameras can be
driven to shot at the same event. Meanwhile, color normal-
ization aims to make the color experience smoother during
view transition.

In a dynamic event space, the object that we are interested
in often moves around. In order to capture videos of the
moving object, we should rotate the cameras to track it.
This is implemented in the object tracking module.

Video capturing plays an important role in the whole sys-
tem. It collects, compresses, and protects the video signals
obtained from cameras. The main challenge for video cap-
turing is its heave computational cost. We proposed a com-
plexity scalable coding framework in our video capturing
module.

After video capturing, the captured video will be collected
by the server, and finally delivered to end users. According
to the unique using style of multi-view video observed from
the user study, we find a proper tradeoff among flexibility,
latency and bandwidth for the multi-view video delivery.

In addition, a client multi-view video viewer is designed
to support real-time viewing and off-line playback.

3.1 System Calibration

3.1.1 Geometrical Calibration

All video cameras have to look at the same central event
point in the event space very precisely. The difference be-
tween the positions of the central event point in two neigh-
boring images should be less than 2 pixels. The distance
between each pair of successive cameras should be constant,
and the poses of the cameras from the first to the last should
vary smoothly. Otherwise, users will observe an awkward
jittering during view transition. In our system, the view di-
rection of each camera can be changed by its pan-tilt unit.
After precisely adjusting the cameras’ heights, we can use
our object tracking module to drive all cameras to point to
the same central event point. Each camera’s intrinsic pa-
rameters, extrinsic parameters, and hand-eye relationship
are employed during the object tracking procedure. Before
the object tracking, the cameras should be carefully cali-
brated.

Camera calibration is a classical problem in computer vi-
sion. Many approaches have been proposed in the past

Master
Camera

Slave
Camera j

Feature
Detection

Feature
Detection

Inter-image Homograpy
Estimation

SVD Operation

Linear Solution of Extrinsic Parameters

Refine Extrinsic Parameters by Bundle Adjustment

Slave
Camera i

Feature
Detection

Inter-image Homograpy
Estimation

SVD Operation

Figure 3: The pattern free calibration.

decades. In our system, we use Zhang’s plane-based cal-
ibration [14] method to estimate the intrinsic parameters.
The major advantage of the plane-based method is that it
is much easier to make a planar pattern than a 3D reference
object.

After the calibration of intrinsic parameters, we then focus
on the calibration of extrinsic parameters. In general, multi-
camera calibration can be realized by a two-step scheme:
First, we calibrate each camera with a single camera cali-
bration process. Then, we study the relationship between
these cameras if we use the same reference object in the cal-
ibration of all these cameras. However, this method is only
suitable for close range applications. As the dimensions of
the view volume increase, setting up a precisely planar cali-
bration pattern also becomes difficult. Fortunately, in most
environments, e.g., a gymnasium, there is always a domi-
nating plane, e.g., the ground plane. We propose a cali-
bration method which can be used to calibrate the cameras
in a large scale scenario based on detected features on the
ground plane without a calibration pattern, thus, we call the
algorithm as pattern free calibration.

3.1.1.1 Pattern Free Calibration

We set one camera as the reference camera, for example,
the master camera that shares a large field of view with the
slave cameras. Fig. 3 provides a general flow diagram of the
pattern free calibration procedure of the interactive multi-
view video system. First, we extract the feature points in
each image of the master and slave cameras. Using these fea-
ture points, we estimate a set of inter-image homographies
that map the features in each image of the slave cameras to
the image of the master camera. By exploiting the proper-
ties of these inter-image homographies, we obtain a linear
solution of the extrinsic parameters. Supposing the matrix
H be a homography from the reference image to a slave
image, we define M as

M = A
T
H

T
A

−T
1 A

−1

1 HA (1)

where A and A1 are the intrinsic parameters of the master
and the slave camera respectively. According to the defi-
nition of H [7], we find the matrix M can be decomposed
to

M = λ(I + nt
T + tn

T + k
2
nn

T) (2)

where n is the unit normal vector of the ground plane, t is
the normalized translation from the master camera to the

163

slave camera, λ is a non-zero scale factor, and k is defined
by k2 = tT t.

On the other hand, we find that the matrix M is a 3 × 3
symmetric and nonnegative definite matrix which contains
three positive eigenvalues and eigenvectors. Supposing λ1,
λ2 and λ3 (λ1 < λ2 < λ3) to be three eigenvalues of the
matrix M, and their corresponding eigenvectors are v1, v2

and v3, we can find that the cameras’ extrinsic parameters
satisfy the following linear equations based on these eigen
components

vT
1 n = b1(a1p + 1)

vT
2 n = 0

vT
3 n = b3(a3p + 1)

(3)

where b1, b3, a1, a3 and p can be calculated from the eigen
components

p =
√

λ1λ3 − 1 (4)

k =
√

λ3 −
√

λ1 (5)

a1,3 =
±

√

k2 + 4p + 4 − k

2k(p + 1)
(6)

b1,3 =
1

√

a2
1,3k

2 + 2a1,3p + 1
(7)

Given more than 2 homographies, we can obtain a set of
linear equations, and the camera parameters n can be esti-
mated by a least squares minimization.

Then, we refine the extrinsic camera parameters by bun-
dle adjustment procedure based on a Levenberg-Marquardt
(LM) method.

Once the intrinsic and extrinsic parameters are calibrated,
the hand-eye parameters can be further calibrated based on
the extrinsic parameters with more than 2 pan-tilt position
changes. The hand-eye calibration method described in [11]
is adopted in our system.

3.1.2 Color Calibration

Color calibration is also a very important step in the
preparation of the system. The goal of color normalization is
to make the illumination change smoothly while users watch
the views from the first camera all the way to the last cam-
era. Without careful color calibration, users will notice an
annoying flicker in the frozen moment effect. Thus, the color
calibration largely influences the overall performance of the
system. Color calibration consists of white balancing and
intensity normalization. The objective of intensity normal-
ization is to make the captured images of different cameras
possess a similar intensity distribution.

By studying the captured images from the neighboring
cameras, we found that neighboring views often shared some
overlapped image regions. If we can find all overlapped re-
gions from all neighboring views (e.g., every 3 views) and
the correspondence among them, we can then know the re-
lationship of the color responses (BTF, brightness transform
function) in these cameras. In order to find the overlapped
regions from the neighboring views, we adopt a matching
process based on color segmentation. The robustness of
the color segmentation based matching algorithms has been
proven in the area of stereo matching [10]. After the match-
ing process, we can smooth the variation of color and bright-
ness from view to view. The approach is to minimize the
difference between the histograms of neighboring views. In-
stead of taking only one neighboring view as a reference

image [5], we use both the left and right neighbor views of
the current view as reference images.

From experiments, we find that there are some artifacts
if we directly apply the color histogram specification on the
images. This is because spatial continuity is not taken into
consideration in histogram specification. Artifacts usually
happen on the edges or in regions with rich texture. In
order to preserve the local detail and remove the artifacts,
we first apply the normalization to the original images, and
only record the color modification values as a 2D difference
fields. The value on each pixel position of the 2D difference
field is the changed value of the pixel under the normaliza-
tion. Because of the global effect of the histogram specifi-
cation, some isolated pixels or edges are mapped to wrong
intensities, while the neighboring pixels of these inaccurately
mapped pixels often remain correct. We can recover those
inaccurately mapped pixels by smoothing the difference field
with a median filter. In our system, a 3 × 3 median filter is
utilized.

The overall algorithm is described as:

Step 1 : Do meanshift segmentation for all view images;
Step 2 : Find the match between every two sequential

images Ii and Ii+1;
Step 3 : Find the BTFi using histograms;
Step 4 : Iteratively refine BTFs by smoothing the differ-

ence of sequential histograms;
Step 5 : Obtain the change fields by appling the BTFs

onto images;
Step 6 : Filter the change fields, and apply them onto the

images.

In the real world, lighting condition often varies with time.
Furthermore, the characteristics of CCD chips in cameras
can be influenced by temperature. We have to redo the
color calibration at certain time intervals.

3.2 Object Tracking
In our system, cameras are configured in a master-slave

way. That is, one of the cameras is selected as a master
camera, and all the others work as slave cameras. The mas-
ter camera is often controlled by a camera man. The slave
cameras can be driven to point to the same interest point of
the master camera. This is realized by a so-called master-
slave tracking process. Fig. 4 shows the idea of master-slave
tracking. In the system calibration step, we have obtained
the geometrical relationships between the world coordinate
w, the cameras C0, C1 and the pan-tilt units h0, h1. Given
these parameters and the position of the master pan-tilt
unit, we should determine the position of each slave pan-tilt
unit. In fact, only given the rotation parameters of the mas-
ter camera, we cannot determine the target event point. In
our system, we suppose that the position of the target point
is located at an event plane (the relationship is represented
by nT X = d) where most of interesting events happen. For
example, in a soccer game, the event plane can be approxi-
mated by half of the average heights of all players. Exper-
imental results show that a slight bias on the event plane
does not largely influence the performance.

To obtain the pan/tilt parameters of the slave cameras,
we firstly determine the target point in the 3D event space.
Given the rotation R of the master camera, we can deter-
mine the resulting projection matrix M by

M = M0YRY
−1 (8)

164

where M0 and Y are the original projection matrix and the
hand-eye relationship respectively. If we rewrite the matrix
as

M = [N v] (9)

where N is a 3×3 matrix and v is a 3-vector, the target point
X = [x, y, z]T can be determined by the following equations:

{

−N−1v + t1 det(N)NT
3 = X

nT X = d
(10)

where N3 is the third row of the matrix N, and t1 and X

are the unknown variables.
The next task is to determine the rotation parameters

of every slave camera based on the obtained target point.
For each slave camera, if we directly establish an equation
under the constraint that the optical axis of the camera must
go through the target point, we will obtain a trigonometric
equation of 8th order, which is quite difficult to be solved.
Our solution is to decouple the procedure into two steps.
In the first step, we calculate the intersection point p of
the optical axis and a sphere. The sphere is centered at
the origin of the coordinate system of the slave’s pan-tilt
unit, and the target point is located on the sphere. This
means both the point p and the target point are located on
the surface of the sphere. Now, the problem is converted to
finding rotating parameters that make the point p coincident
with the target point on the sphere. In general, there are
four pairs of solutions. We choose the one which requires
less change in pan-tilt angles.

slave master

Ground plane
w

c0c1

h1

h0

1

slave master

Ground plane
w

c0c1

h1

h0

1

Figure 4: Master-Slave Tracking. w is the world coordi-

nate system, h0 and h1 are the hand coordinate systems,

and C0 and C1 are the camera coordinate systems.

3.3 Video Capturing
Video capturing module collects, compresses, and pro-

tects the video signals obtained from cameras. Although
some special hardware like a video capturing card can com-
press video in real-time, they are often not flexible enough
to meet different requirements (such as different video res-
olutions, different frame rates, and different quality levels,
etc.). Thus, in our system, a pure software implementation
is adopted.

When designing the software implementation, computa-
tional complexity is the most challenging factor. This is be-
cause video capturing, especially for the video compression
module, consumes most of computing resources of a control
PC. Also, system scalability should be taken into account.
In the rest of this subsection, we will discuss how to design
video compression and channel coding modules in order to
well tackle the above challenges.

3.3.1 Complexity Scalable Video Coding

Real-time video coding faces a big challenge from compu-
tational complexity. It is not a cost-effective way to sim-
plify the algorithms to meet a specific scenario (e.g., a given
video resolution and bit rate for a certain device), since
there are so many different scenarios. To achieve better
complexity adaptation and system scalability, we propose a
computational-complexity scalable video encoder that can
offer a trade-off between the coding efficiency and the em-
bedded available computational performance.

It is known that motion estimation (ME) consumes most
of the computing time in real-time video coding systems
[3]. Although there are significant advances in fast ME
techniques [8, 15] in recent years for alleviating the heavy
computation load, ME still consumes the largest amount of
computational resources in real-time video encoding. Hence,
we put our efforts on the design of a novel ME framework
that offers fine-granular computational-complexity scalabil-
ity [13] 1. The key idea is to partition the ME process into
multiple search passes. A priority function is then used to
represent the distortion reduction efficiency of each pass.
According to the predicted priority of each macro block
(MB), computational resources are allocated effectively in a
progressive way. As a result, the ME process can be stopped
at any time with a progressively improved performance, and
thus scalability is achievable. Furthermore, the proposed
scheme can be easily integrated with many existing fast ME
algorithms, such as NTSS [8], DS [15], and etc.

3.3.2 Channel Coding

Although the compressed video could be transmitted to
the receivers’ end directly, the quality will often be hurt se-
riously due to the error-prone feature of the communication
channel. Automatic repeat request (ARQ) based methods
are often adopted to rescue packet losses. However, they
are usually not acceptable for real-time interactive applica-
tions because of the excessive end-to-end delay caused. On
the other hand, forward error correction (FEC) techniques
[4] can correct packet losses promptly without any further
intervention from the sender: when K data packets are pro-
tected with T parity packets, packet losses can be recovered
successfully if K out of K + T packets are received.

To improve system scalability, the channel coding pro-
cess is separated into two passes: parity packets creation
at the control PCs’ side and parity packets selection at the
server side. First, at the control PCs’ side, the video bit
stream is packetized into fixed length data packets. The
Reed Solomon code [5] is then used to create T parity pack-
ets for every K data packets. After that, both of the data
packets and parity packets are transmitted to the server side.
Next, when the video bit stream of a certain view direction
needs to be delivered from the server side, the server will
select and transmit T̂ (T̂ ≤ T) parity packets to the end
users according to the specific channel conditions. As a re-
sult, since most of computationally intensive calculation of
the channel coding process is distributed to each control PC,
good system scalability can be attained.

3.4 MultiView Video Delivery
Through the high speed LAN, the captured N video streams

1In addition to this new ME framework, complexity scal-
ability is also achieved through some other improvements
such as coding mode decision, etc. Due to space limitations,
we will only describe briefly the ME part in this paper.

165

are transmitted respectively from the control PCs to the
server. The server will then process these N streams and
provide real-time interactive multi-view video service to the
end users. The service includes not only conventional live
video, but the special visual effects mentioned in Section 1,
that is, view switching, frozen moment and view sweeping.

Ideally, users should be able to enjoy the special visual
effects at any time they want, and the effects should be
rendered immediately after users’ actions. Meanwhile, the
service should be provided with minimum bandwidth con-
sumption. However, these requirements are inconsistent.
For example, lower latency and more flexible action often
result in higher bandwidth cost. To find a proper tradeoff
among flexibility, latency, and bandwidth cost, we carried
out a user study at the beginning of our work. We found
three key observations from the study:

1. Users often stay in their favorite view directions for
a relatively long period, so they will not change their
view directions frequently.

2. When an exciting event happens, users will be more in-
terested in watching a frozen moment and view sweep-

ing. Moreover, users can get a more exciting experi-
ence from the frozen moment, whereas experience from
the view sweeping is not always attractive. This is be-
cause the experience of view sweeping is very similar
to the experience from an ordinary moving camera.

3. Users can tolerate a relatively long, e.g., 1 second, view
switching latency. This is similar to the consumers’ at-
titude on the program switching latency in digital TV.
On the other hand, lower latency should be provided
for the frozen moment and view sweeping.

Based on the above observations, we prepared two kinds
of video streams at the server side. The first one, denoted
by Vi (1 ≤ i ≤ N), is the conventional single-view video
stream that is captured individually at the control PC:

Vi = {fi(1), fi(2), fi(3), ...} (11)

where fi(n) stands for the nth frame of the ith view direc-
tion. As discussed in Section 3.3, each Vi is compressed
independently by the MPEG-liked encoder with a τv-second
key frame interval. This key frame interval determines the
view switching latency. Hence, according to our third ob-
servation, τv is set to 1 second in our system.

The other kind of streams are the frozen moment stream F

and the view-sweeping stream S, which provide respectively
the frozen moment effect and the view sweeping effect. Each
stream consists of many snapshots:

F = {F (1), F (2), F (3), ...}
S = {S(1), S(2), S(3), ...} (12)

while each snapshot is composed of N frames from different
view directions:

F (n) = {f1(n), f2(n), ..., fN (n)}
S(n) = {f1(n), f2(n + 1), ..., fN (n + N)}. (13)

Although the corresponding frames of F (n) and S(n) have
already been compressed in Vi, they cannot be used directly
to form F (n) and S(n). This is because, firstly, Vi is en-
coded in a temporally predictive manner, thus decoding a
certain P frame requires all of its dependent frames up to

the recent I frame. Secondly, even if all these frames are
encoded as I frames that do not depend on other frames,
the compression efficiency will be very low. Therefore, these
frames need to be re-encoded.

Since frames of F (n) or S(n) are captured from the same
event but with different view directions, they are highly cor-
related. To exploit the view correlation, we predictively en-
code frames of the same snapshot similar to the conventional
motion-compensated video encoding. The first frame, f1(n),
is encoded as an I frame, and the subsequent N − 1 frames
are encoded as P frames. Such a compression strategy
has three advantages: (1) A higher coding efficiency can be
achieved as the view correlation is utilized. (2) Each snap-
shot can be decoded independently without knowledge of
other snapshots, since it is encoded separately without pre-
diction from other frames of different snapshots. This not
only simplifies the implementation, but also reduces the de-
coding latency. (3) The decoder can treat the bitstream as
a single video stream of the same format, no matter what
kind of effect it provides. This is very important for com-
patibility with decoders in many end devices, such as the
set-top box.

As computation is required to re-encode snapshot F (n) or
S(n), it is difficult for the server to process every snapshot
due to its limited computing resources. On the other hand,
it is unnecessary to include every snapshot into stream F

or S, especially for events with slow motion. Because of the
above reasons, the snapshots should be sub-sampled first. In
our system, a snapshot will be generated every 15 frames.
That is, the practical sub-sampled F and S are:

F = {..., F (n − 15), F (n), F (n + 15), ...}
S = {..., S(n − 15), S(n), S(n + 15), ...}. (14)

On the other hand, before re-encoding frames in F (n) and
S(n), the server must call a decoding process since these
frames have already been encoded by the control PCs. To re-
duce decoding complexity, we should compress these frames
at the control PCs as I frames so that each frame can be
decoded independently. This can be done by performing I-
frame encoding at control PCs for these snapshot frames.
For example, in addition to generating Vi during the video
capturing, we must create an I frame every 15 frames for
each view direction in order to form the frozen moment
stream F.

The generated streams F and S are then channel coded at
the server with the same method used at the control PCs.
After that, multi-view video delivery will be performed ei-
ther in a streaming mode or in a broadcast mode.

3.4.1 Streaming Mode

In the streaming mode, all of the streams Vi, F, and S are
used for interactive delivery. In particular, the server will
buffer F and S for τB seconds in order to combat the net-
work latency. When a certain user subscribes to the server,
the multi-view video service will be provided. Usually, the
user will first see a default view direction, which might be
the most attractive one among the N view directions. The
user can then switch to other view directions, or enjoy the
frozen moment or view sweeping effect by controlling the
client player as shown in Fig. 5.

If a view switching command is received, the server will
continue sending video stream of the current view direction
until reaching the next I frame. After that, it will send

166

View Switching View Sweeping/Frozen MomentView Switching View Sweeping/Frozen Moment

Figure 5: The user interface of a remote client.

video stream of the new view direction starting from that I

frame. Thus, the maximum latency perceived by that user
is τn + τv, where τn is the network latency.

If a frozen moment or view sweeping command is received,
the server will look for the appropriate snapshot F (n) or
S(n) from the buffered F or S stream. Here the appropriate
snapshot means the one whose time stamp is close to the
command’s creation time. Then, the found snapshot will
be sent immediately. After sending the snapshot, the server
will send the video stream of the current view direction as
usual. Obviously, the maximum latency perceived by that
user is τn + τf or τn + τs, where τf and τs are the snapshot
interval for F and S respectively. In our system, both of
them are equal to 0.5 seconds as described before.

3.4.2 Broadcast Mode

The broadcast mode is proposed for users with fixed down-
link channel bandwidth, e.g., cable TV users. To reduce the
bandwidth cost, we only select N̂ view directions from the
original N views. These N̂ views will be delivered to end
users together with one special stream, either F or S. Users’
operations will be performed directly upon the received mul-
tiple streams, whereas no interactivity is required between
the end users and the server. In this case, the maximum la-
tency for view switching, frozen moment, and view sweeping

is equal to τv, τf , and τs, respectively.

3.5 Multiview Video Viewer
We developed a prototype of a multi-view video viewer

on a PC as software. This viewer connects to the server,
receives the video stream and renders it. In addition, it
also supports playing back a stored multi-view video file.
Fig. 5 shows our client player. Besides the traditional con-
trol commands of a media player, our viewer also supports
control interfaces for view selection and special effects. The
user can interact with the system, changes his/her view di-
rection, and enjoys the visual effects of frozen moment and
view sweeping with one click of the mouse on the control
buttons.

4. EXPERIMENTS AND DISCUSSIONS
The proposed system architecture is deployed for various

Figure 6: A deployment of our system.

tests. 32 video cameras are used to capture the dynamic
event from 32 view directions. A lens with a fixed 8mm
focal length is used for each camera. These 32 cameras are
located at equal interval along an arc. The radius of the arc
is about 6.5 meters. As our experiments indicate, a change
of view angle below 5 degrees can basically provide a smooth
viewing experience in the frozen moment, so the view angle
difference between two adjacent cameras is set to 3 degrees
in this implementation. As a result, an over 90-degree view
angle can be provided. Fig. 6 shows a typical deployment of
our system.

The position of each camera is controlled by the pan-tilt
unit via the RS232 interface. To guarantee control accuracy,
we specially designed the pan-tilt units which can be driven
by step motors precisely, i.e., 0.0127 degree per step.

Each camera is then connected to a control PC through
its 1394 interface. Due to the bandwidth limit of the 1394
bus and the processing capability of the control PC, every
two cameras are connected respectively to one control PC.
As a result, 16 control PCs are required. These control
PCs are synchronized by 16 synchronization units. After
that, each camera captures video signals simultaneously at
a 640 × 480 resolution with 30 fps. Next, the control PCs
are connected to a server through a gigabit Ethernet. In
this implementation, both the control PCs and the server
have the same hardware configuration: a Pentium-IV 2.8G
Hz CPU and a 512M RAM.

Fig. 7 shows some sample images of a frozen moment
and sweeping effect video snapshots that are captured by
this system. As can be seen from these images, the frozen-
moment and view sweeping effects really provide users a
brand new visual experience.

During the construction of the system, various tests have
been carried out. Before the overall test of the whole sys-
tem, we first examine the main system components, includ-
ing camera calibration, color normalization, video capturing,
multi-view video delivery, and the server’s load. Then, some
user studies are conducted.

4.1 System Performance Evaluation

4.1.1 Geometrical calibration

Our proposed pattern free calibration algorithm is used
for geometrical calibration. Firstly, as shown in Fig. 8(a),
we randomly place dozens of black patches on the ground

167

Figure 7: Sample image sequence. The upper row contains images from a frozen moment effect, while the lower row

contains images from a sweeping clip. From the left to the right one, the images are sequentially captured from view

0, 4, 8, 12, 16, 20, 24 and 28.

plane as seeds of feature points. After that, we set the image
from the master camera as the reference image. Geometrical
calibration is then carried out automatically. Re-project
error [7] is used for evaluating the calibration accuracy. The
average re-projection error of our method is 0.7 pixels, with
a standard variance of 0.34 pixels.

Moreover, the proposed method is also compared with
Zhang’s planar-based method [14], which can be used for
calibrating the extrinsic parameters in a small volume scene.
As shown in Fig. 8(b), a printed pattern plane with 2m×3m

is placed in the views of these cameras. Both our proposed
method and Zhang’s method are used respectively for ex-
trinsic parameters calibration. To compare the performance
of different methods, we project the feature points from the
slave images onto the reference image using the calibrated
results, and then measure the re-project errors. The aver-
age re-projection errors of both methods are quite similar,
i.e. 1.66 pixels for Zhang’s method and 1.68 pixels for our
method. It indicates that the accuracy of our method is
comparable to Zhang’s algorithm.

(a) (b)

Figure 8: (a) Ground plane with random distributed

black patches; (b) A planar pattern.

In our system, the master-slave tracking only depends on
the calibration results, and its accuracy is very similar to
that of the calibration algorithm.

4.1.2 Color Normalization

Color normalization largely smoothen the visual experi-
ence during view transition. In Fig. 4.1.2, the left two are
the images before color normalization, and the right two are
the corresponding images after normalization. Experimen-
tal results show that our color normalization module meets
the system requirement.

4.1.3 Video Capturing

With the proposed complexity scalable video encoder, a

Figure 9: Color normalization results.

P-frame encoding speed within a range of 200 fps to over
400 fps for the standard CIF (352× 288) test sequences can
be achieved on the control PC. This indicates that the new
encoder greatly improves the complexity adaptation and sys-
tem scalability.

When two video streams (640× 480 and 30 fps) are com-
pressed simultaneously on the control PC together with the
proposed channel coding strategy, the CPU usage keeps be-
low 70%.

4.1.4 MultiView Video Delivery

The multi-view video delivery, the network overhead is
an important aspect for the end-to-end performance. In
our system, the average bit rate of an individual view is
about 1.5M bps. The bit rate for the frozen-moment stream
and the view sweeping steam is a bit higher, as they are
usually more complex than the individual view. The average
peak-signal-to-noise-ratio (PSNR) value is around 35 dB.
Of course, the bit rate depends on a lot of practical factors
including the complexity of the background, the motion in
the video, the lighting condition in the event space and the
video quality we try to present. By using more efficient
video compression algorithms for both the individual view
and the special effect streams, the network overhead can be
further reduced.

The bandwidth cost during the interactive delivery is also
evaluated. As shown in Fig. 10, two users A (red curve) and
B (blue curve) connect to the server. At the beginning, both
of them watch the same view, which costs them an average
bit rate of 1.5M bps. Next, at time stamp 0.66s, user B
subscribes for a frozen-moment effect, then the bandwidth
cost increases to a peak value of 2.8M bps. After that, at
timestamp 1.66s, user B keeps watching the original view as
the frozen-moment effect has been finished. Then both of
them have the same bandwidth cost.

Finally, a real-time test was performed through a broad-
band network. The system was set up in Beijing, China,
while the interactive multi-view video service was provided
in the streaming mode to multiple users in Seattle, USA.
Users can enjoy view switching, frozen moment, and view

168

0 0.5 1 1.5 2 2.5 3
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Time stamp (sec)

B
a
n
d
w

id
th

 (
M

b
p
s
)

User A
User B

Figure 10: The network throughput of interactive de-

livery. Red curve is the network throughput of a single

view stream, and the blue curve is that of a clip contain-

ing a frozen moment effect.

sweeping effects with an about 2M bps bandwidth cost and
a latency of 0.2 ∼ 0.8 seconds.

4.1.5 Server Load

Two tests regarding the system performance were per-
formed. The first one studies the relationship between the
computational cost on the server side and the number of
cameras adopted. During the test, no users connected to
the server, thus most of the computing resource is consumed
by re-encoding the snapshots. As can be seen in Fig. 11(a),
the server’s CPU load increases approximately linearly when
the number of cameras increases. The CPU load increases
about 2% when a camera is added to the system.

The second test studies the relationship between the com-
putational cost on the server side and the number of users
served in the streaming mode. In the test, all of the 32
cameras are adopted and all clients are located in a local
area network. To simulate the interactivity between the
server and the users, we added a random command genera-
tor upon each client. As a result, a random view switching
command is sent by each client with a mean time interval
of 30 seconds. Meanwhile, a random frozen moment com-
mand is sent with a mean time interval of 10 seconds. In
other words, we assume that a user switches to a new view
direction approximately every 30 seconds and watches the
special effect every 10 seconds. As shown in Fig. 11(b), the
server’s CPU load increases approximately linearly when the
number of users increases. And the average CPU load for
one user is about 0.3% CPU power. On the other hand, in
the broadcast mode, the server will not be influenced by the
change of the number of users.

4.2 User Interaction Study
A user experience study has been carefully conducted to

find out how users perceive the system and when they use
the special effects. During the study, we record users’ inter-
actions when they use our system to watch some captured
sports videos. Four sports actions have been provided in the
experiment, including gymnastics and Chinese martial arts.

Fig. 12 shows some user study results where the frequency
of the users’ subscriptions of frozen moment are provided.
In the experiments, more than 10 users are invited to use
the system. From the results, we can find:

1. Users really enjoy the features provided by our system.

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

number of cameras

C
P

U
 l
o
a
d
 (

%
)

(a)

0 10 20 30 40 50 60 70
58

60

62

64

66

68

70

72

74

76

number of users

C
P

U
 l
o
a
d
 (

%
)

(b)

Figure 11: (a) Computational cost vs. number of cam-

eras. (b) Computational cost vs. number of users.

Particularly, they enjoy the frozen moment effect when
there is an exciting action in the video. For example,
in Fig. 12(a) and Fig. 12(d), the frequency of using the
frozen moment is very high when the player makes a
curvet.

2. Different users often have a similar judgment about
what is an exciting action. Correspondingly, their ac-
tions on the subscriptions of frozen-moment are also
similar. This can be seen from the peak values in
Fig. 12, especially for Fig. 12(a) and Fig. 12(d) where
there are several sudden and fancy actions.

3. Videos with different contents bring different using
styles of the system. The experiments show that the
user response is quite different between the martial
arts and the gymnastics. It is because that the gym-
nastics often are performed smoothly without sudden
and fancy actions as in martial arts.

5. DISCUSSION
Throughout the system design, we found several major

challenges that should be taken into consideration carefully.
Note that these challenges are often inter-dependent. When
a certain one is resolved or alleviated, others may become
more critical. Therefore, a careful tradeoff has to be made
among different challenges.

The first one is smooth view transition. The view-
ing experience of view switching, frozen moment and view
sweeping largely depends on the smoothness of view tran-
sition, which leads to three system requirements. First, all
cameras should be calibrated accurately to shoot at the same
event point. Secondly, the view direction should change rela-
tively slowly. Thirdly, the color responses of the neighboring
cameras should be as close as possible.

The second one is interactivity. A high degree of in-
teractivity not only means users can choose their desired
view directions and enjoy some special visual effects, but
also means the latency after their actions should be low. Al-
though the propagation delay of the communication channel
contributes part of the system latency, the dominating fac-
tor of the latency depends on the way how the multi-view
video contents are organized and delivered.

Then, the system should handle high computational

complexity. The whole system consists of many computa-
tionally intensive modules, such as camera calibration, ob-
ject tracking, video compression, channel coding, and multi-

169

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

Time stamp (sec)

N
u

m
b

e
r

o
f

s
u

b
s
c
ri
p

ti
o

n
s

(a)

0 10 20 30 40
0

2

4

6

8

10

12

14

16

18

Time stamp (sec)

N
u

m
b

e
r

o
f

s
u

b
s
c
ri
p

ti
o

n
s

(b)

0 20 40 60 80 100 120
0

2

4

6

8

10

12

14

Time stamp (sec)

N
u
m

b
e
r

o
f
s
u
b
s
c
ri
p
ti
o
n
s

(c)

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

Time stamp (sec)

N
u

m
b

e
r

o
f

s
u

b
s
c
ri
p

ti
o

n
s

(d)

Figure 12: Frozen moment requirement frequency (a)

frequency of martial art played by one player. (b) fre-

quency of gymnastics played by one player. (c) frequency

of gymnastics played by two players. (d) frequency of

martial art played by two players.

view image transcoding. Therefore, how to design and al-
locate these modules appropriately subject to the limited
computing resource constraint is an important issue.

Finally, system scalability is also an important require-
ment. From the system adaptation point of view, different
numbers of cameras may be required in different application
scenarios. Therefore, in addition to providing a given num-
ber of view directions, the system should allow easy addition
of more view directions when more cameras are adopted.
This also makes the above two challenges (interactivity and
computational complexity) even more critical.

6. CONCLUSIONS
As the use of cameras becomes more popular, computer

processing power becomes stronger and network bandwidth
becomes broader, users desire to leverage these advantages
to pursue a richer multimedia experience. In response to
the increasing requests from users, multi-view video brings
in many brand new viewing experiences.

However, it is still a major challenge to provide interac-
tive multi-view video service in real-time. In this paper,
we addressed this problem and proposed a system architec-
ture for providing real-time interactive multi-view video ser-
vice. The system is designed in a distributed way, where it
can be naturally classified into three parts: capturing part,
server part, and client part. To tackle the challenges of pro-
viding real-time interactive service, we designed the main
modules including system calibration, object tracking, video
capturing, and multi-view video delivery. To the best of our

knowledge, this is the first attempt at building a real-time
interactive system for multi-view video over IP streaming.
In addition, we believe that our work has four main con-
tributions: first, a pattern free calibration algorithm is pro-
posed to dramatically reduce the workload for calibration
in a large environment space. Second, a computational-
complexity scalable video encoder is proposed for real-time
video capturing with the ability of adjusting the encoding
speed according to the computing resources. Thus better
complexity adaptation and system scalability are achieved.
Third, the multi-view video contents are re-organized and
re-encoded into a frozen moment stream and a view sweep-
ing stream. Hence the most exciting viewing experience can
be provided with low bandwidth consumption. Fourth, a
streaming mode and a broadcast mode are proposed for de-
livering multi-view video in different application scenarios
while unique features of multi-view video are still preserved.
Future directions include standardizing the system architec-
ture and deploying this kind of systems in various environ-
ments.

7. ACKNOWLEDGMENTS
We thank the reviewers for their constructive comments

in improving this paper, and our colleague Steve Lin for his
proofreading of the paper.

8. REFERENCES
[1] Applications and requirements for 3dav. ISO/IEC

JTC1/SC29/WG11, N5877, July 2003.

[2] Report on 3dav exploration. ISO/IEC JTC1/SC29/WG11,
N5878, July 2003.

[3] V. Bhaskaran and K. Konstantinides. Image and video
compression standards – algorithms and architectures. Kluwer
Academic Publishers, second edition, 1997.

[4] R. Blahut. Theory and practice of error control codes.
Addison-Wesley, 1993.

[5] I. J. Cox, S. Roy, and S. L. Hingoruni. Dynamic histogram
warping of image pairs for constant image brightness. In
International Conference on Image Processing, pages
366–369. IEEE, 1995.

[6] P. Debevec, Y. Yu, and G. Borshukov. Efficient view-dependent
image-based rendering with projective texture mapping. ACM
SIGGRAPH.

[7] R. Hartley and A. Zisserman. Multiple View Geometry in
Computer Vision. Cambridge University Press, 2000.

[8] R. Li, B. Zeng, and M. Liou. A new three-step search algorithm
for block motion estimation. IEEE Transactions on Circuits
and Systems for Video Technology, 4(4):438–442, Aug. 1994.

[9] J.-R. Ohm and K. Muller. Incomplete 3d representation of
video objects for multiview applications. PC97.

[10] H. Tao, H. S. Sawhney, and R. Kumar. A global matching
framework for stereo computation. In International Conferece
of Computer Vision. IEEE, 2001.

[11] R. Y. Tsai. An efficient and accurate camera calibration
technique for 3d machine vision. In International Conferece of
Computer Vision and Pattern Recognition, pages 364–374.
IEEE, September 1986.

[12] S. Wurmlin, E. Lamboray, O. G. Staadt, and M. H. Gross. 3d
video recoder. In Proc. of Pacific Graphics ’02, pages 325–334.
ACM, October 2002.

[13] Z. Yang, H. Cai, and J. Li. A framework for fine-granular
computational-complexity scalable motion estimation. accepted
by ISCAS 2005, May 2005.

[14] Z. Zhang. A flexible new technique for camera calibration.
IEEE Transaction on Pattern Analysis and Machine
Intelligence, 22(11):1330–1334, November 2000.

[15] S. Zhu and K. Ma. A new diamond search algorithm for fast
block-matching motion estimation. IEEE Transactions on
Image Processing, 9(2):287–290, Feb. 2000.

[16] C. L. Zitinick, S. Kang, M. Uyttendaele, S. Winder, and
R. Szeliski. High-quality video view interpolation using a
layered representation. In SIGGRAPH, pages 600–608. ACM,
August 2004.

170

