
Fast Personalized PageRank on MapReduce

Bahman Bahmani
∗

Stanford University
bahman@stanford.edu

Kaushik Chakrabarti
Microsoft Research

kaushik@microsoft.com

Dong Xin
†

Google Inc.
dongxin@google.com

ABSTRACT
In this paper, we design a fast MapReduce algorithm for
Monte Carlo approximation of personalized PageRank vec-
tors of all the nodes in a graph. The basic idea is very
efficiently doing single random walks of a given length start-
ing at each node in the graph. More precisely, we design a
MapReduce algorithm, which given a graph G and a length
λ, outputs a single random walk of length λ starting at each
node in G. We will show that the number of MapReduce
iterations used by our algorithm is optimal among a broad
family of algorithms for the problem, and its I/O efficiency
is much better than the existing candidates. We will then
show how we can use this algorithm to very efficiently ap-
proximate all the personalized PageRank vectors. Our em-
pirical evaluation on real-life graph data and in production
MapReduce environment shows that our algorithm is signif-
icantly more efficient than all the existing algorithms in the
MapReduce setting.

Categories and Subject Descriptors
G.2.2 [Discrete Mathematics]: Graph Theory—Graph al-
gorithms; F.1.2 [Computation By Abstract Devices]:
Modes of Computation—Parallelism and concurrency

General Terms
Algorithms, Design, Performance, Experimentation

Keywords
Personalized PageRank, MapReduce

1. INTRODUCTION
Very large scale datasets and graphs are ubiquitous in

today’s world: world wide web, online social networks, and

∗Work done while visiting Microsoft Research.
†Work done while at Microsoft Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’11,June 12–16, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0661-4/11/06 ...$10.00.

huge search and query-click logs regularly collected and pro-
cessed by search engines. Because of the massive scale of
these datasets, doing analyses and computations on them
is infeasible for individual machines. Therefore, there is a
growing need for distributed ways of storing and processing
these datasets. MapReduce, a simple model of computation,
first introduced by Dean and Ghemawat [9], has recently
emerged as a very attractive way of doing such analyses.
Its effectiveness and simplicity has resulted in its implemen-
tation by different internet companies [9, 13, 5, 22], and
widespread adoption for a wide range of applications [19],
including large scale graph computations [15, 16].

One of the most well known graph computation problems
is computing personalized PageRanks (PPR) [12]. Personal-
ized PageRanks (and other personalized random walk based
measures) have proved to be very effective in a variety of ap-
plications, such as link prediction [17] and friend recommen-
dation [3] in social networks, and there are many algorithms
designed to approximate them in different computational
models [14, 3, 10, 25].

In this paper, we study the problem of Fully Personalized
PageRank (FPPR) approximation on MapReduce. Specifi-
cally, we study the problem of approximating the personal-
ized PageRank vectors of all nodes in a graph in the MapRe-
duce setting, and present a fast MapReduce algorithm for
Monte Carlo approximation of these vectors. Even though
some of the previously designed personalized PageRank ap-
proximation algorithms can be implemented in MapReduce,
we will show that our algorithm takes much better advan-
tage of the parallel computation model of MapReduce and
is hence significantly more efficient than the existing candi-
dates in this setting. We also note that our algorithm can be
used for computing other personalized random walk based
measures (such as personalized SALSA [3]) in MapReduce
as well.

In this introduction, we first provide some background on
personalized PageRank and MapReduce, and then give the
problem statements, and also outline our results.

1.1 Background
Here we review personalized PageRank, the Monte Carlo

approach for PageRank computation, and MapReduce. Here,
and throughout the paper, we assume to have a weighted
directed graph G = (V,E) with n nodes and m edges. We
denote the weight on an edge (u, v) ∈ E with αu,v and, for
the sake of simplifying the presentation of some of the for-
mulae, assume for the rest of the paper that the weights on
the outgoing edges of each node sum up to 1.

1.1.1 Personalized PageRank
PageRank is the stationary distribution of a random walk

that at each step, with a probability ǫ, usually called the tele-
port probability, jumps to a random node, and with proba-
bility 1− ǫ follows a random outgoing edge from the current
node. Personalized PageRank is the same as PageRank, ex-
cept all the random jumps are done back to the same node,
denoted as the “source” or “seed” node, for which we are
personalizing the PageRank.

One can easily see that the personalized PageRank of node
v, with respect to a source node u, denoted by πu(v), satis-
fies:

πu(v) = ǫδu(v) + (1 − ǫ)
∑

{w|(w,v)∈E}

πu(w)αw,v (1)

Where δu(v) = 1 if and only if u = v (and 0 otherwise).
The fully personalized PageRank computation problem is

to compute all the vectors −→π u for all u ∈ V . Of course,
most applications, such as friend recommendation or query
suggestion, only require the top-k values (and corresponding
nodes) in each PPR vector (for some suitable value of k).

1.1.2 Monte Carlo Approach
There are two broad approaches to computing Personal-

ized PageRank. The first approach is to use linear alge-
braic techniques, such as Power Iteration [23]. The other
approach is Monte Carlo, where the basic idea is to approx-
imate Personalized PageRanks by directly simulating the
corresponding random walks and then estimating the sta-
tionary distributions with the empirical distributions of the
performed walks. Based on this idea, Fogaras et al [10] and
later Avrachenkov et al [2] proposed the following method
for PPR approximation: Starting at each node u ∈ V , do
a number, R, of random walks starting at u, called “finger-
prints”, each having a length geometrically distributed as
Geom(ǫ). Then, the frequencies of visits to different nodes in
these fingerprints will approximate the personalized PageR-
anks. Our algorithm also belongs to the Monte Carlo family.

1.1.3 MapReduce
MapReduce [9] is a simple computation model for process-

ing huge amounts of data in massively parallel fashion, using
a large number of commodity machines. By automatically
handling the lower level issues, such as job distribution, data
storage and flow, and fault tolerance, it provides a simple
computational abstraction.

In MapReduce, computations are done in three phases.
The Map phase reads a collection of values or key/value
pairs from an input source, and by invoking a user defined
Mapper function on each input element independently and
in parallel, emits zero or more key/value pairs associated
with that input element. The Shuffle phase groups together
all the Mapper-emitted key/value pairs sharing the same
key, and outputs each distinct group to the next phase. The
Reduce phase invokes a user-defined Reducer function on
each distinct group, independently and in parallel, and emits
zero or more values to associate with the group’s key. The
emitted key/value pairs can then be written on the disk or
be the input of a Map phase in a following iteration.

1.2 Problem Statement
In this paper, we study the problem of FPPR approxi-

mation on MapReduce (FPPR-MapReduce): Design an
efficient MapReduce algorithm that given a weighted directed

graph G = (V,E), approximately computes the personalized
PageRank vectors −→πu of all nodes u ∈ V .

As stated earlier, we adopt the Monte Carlo approach,
which requires simulating a number, R, of random walks
(fingerprints) from each node. Therefore, we will need to
solve the following sub-problem, that we call the Single Ran-
dom Walk problem (SRW-MapReduce): Design a MapRe-
duce algorithm that given a graph G and a length λ, outputs
one random walk of length λ starting from each node in the
graph.

1.3 Our Contribution
Intuitively speaking, to fully leverage the power of par-

allel computation supported by MapReduce, a good algo-
rithm should have the following properties: (1) high par-
allelization and (2) small number of MapReduce iterations.
The Monte Carlo approach for FPPR approximation natu-
rally has the first property, as any fingerprint starting at any
source node can be computed in parallel with and indepen-
dently from all other fingerprints (for the same or different
source nodes). However, as pointed out in [10], some of
the fingerprints may be very long, and hence require a large
number of MapReduce iterations using the straightforward
implementation (e.g., one MapReduce iteration for each step
in the walk). For instance, with ǫ = 0.2, a fingerprint can be
longer than 10 steps with probability 0.11, and can be longer
than 20 steps with probability 0.012. These long walks will
become the bottleneck of the algorithm, blocking the entire
computation, and causing it to take too long to run.

In this paper, we develop an algorithm to compute single
random walks of a given length for all nodes in a graph, and
show that it is optimal in terms of the number of MapReduce
iterations among a broad class of algorithms. Based on that,
we then develop an efficient algorithm to approximate fully
personalized PageRanks on MapReduce, and also analyze its
I/O cost. Our empirical evaluation on real-life graph data
and in production MapReduce environment demonstrates
that our algorithm outperforms the state of the art FPPR
approximation algorithms, in terms of efficiency and approx-
imation error.

The rest of the paper is organized as follows. Section 2
gives the background for computing FPPR on MapReduce.
The single random walk algorithm is presented in section
3, and the FPPR approximation algorithm is presented in
section 4. We show experimental results in section 5, review
the related work in section 6, and finally conclude this paper
in section 7.

2. PRELIMINARIES
In this section, we first review the related programming

model on MapReduce, which consists of two high level prim-
itives, and then use these two operators to describe how ex-
isting PPR approximation algorithms can be implemented
on MapReduce.

2.1 Programming Model on MapReduce
The basic MapReduce abstraction can sometimes prove

highly restrictive, as it requires any computation to be trans-
lated into the rigid framework of one Map and one Reduce
operation. As the computations get logically more compli-
cated, this becomes increasingly more challenging. There-
fore, many models and system implementations have been
proposed to extend the basic MapReduce framework [1, 22,

5, 26]. These extensions provide higher level languages for
the programmers (such as PigLatin or SCOPE), which in-
clude higher level primitives such as joins.

In this paper, we will use two high level primitives: Re-
ducer and Combiner, where the Reducer is defined as:

〈output〉 = Reduce 〈input〉 On 〈key〉
Using ReducerUDF

and the Combiner is defined as:

〈output〉 = Combine 〈input1〉 With 〈input2〉
ON 〈input1.key1〉 = 〈input2.key2〉
Using CombinerUDF

Clearly, a Reducer groups data from an input by its key,
processes the data by a user defined function ReducerUDF,
and sends results to output. Note that here the Reducer is
a high level programming primitive, which is different from
the concept of the reducer in the reduce phase of the tradi-
tional MapReduce framework (as discussed in the previous
section). In the remaining of this paper, we will use the term
Reducer to refer to such a high level primitive.

Given a graph data which is represented by triples G =
〈u, v, weight〉 (i.e., edges), the task of computing a random
neighbor for each source node u can be implemented by a
Reducer using u as the key, grouping all 〈u, v, weight〉 triples
(for all v), and generating one random neighbor v for u and
outputting 〈u, v〉 in ReducerUDF.

A Combiner is essentially a join primitive, which joins
input1 and input2 by input1.key1 and input2.key2, and
processes the data by a user defined function CombinerUDF.
Suppose the random neighbor output in the above example
is N = 〈u, v〉. The task of further extending 〈u, v〉 to 〈u, v, t〉
by finding a random neighbor t of v can be implemented by
a Combiner by joining N and G on condition N.v = G.u,
and finding a random neighbor t of N.v from the graph G
and outputting 〈u, v, t〉 in CombinerUDF.

2.2 FPPR Algorithms
FPPR approximation is a very well-studied problem. So,

we start with briefly reviewing the existing algorithms, spe-
cially from a MapReduce perspective.

2.2.1 Power Iteration, Dynamic Programming, and
Rounding

The simplest method for computing Personalized PageR-

anks is Power Iteration [23]. It starts with initializing π
(0)
u (v)

= δu(v) (where u, v are arbitrary nodes in the graph), and
then it repeatedly performs the following update:

π(i)
u (v) = ǫδu(v) + (1 − ǫ)

∑

{w|(w,v)∈E}

π(i−1)
u (w)αw,v (2)

Similar to but subtly different from this method is the dy-
namic programming algorithm, first introduced by Jeh and
Widom [14]. This algorithm starts with the same initial-
ization as Power Iteration, but then performs the following
update iteratively:

−→πu
(i) = ǫ

−→
δu + (1 − ǫ)

∑

{v|(u,v)∈E}

αu,v
−→πv

(i−1) (3)

Both of these algorithms entail exponential reduction in the
approximation error, which is desirable. However, using

them for large scale FPPR approximation is not feasible, be-
cause the sizes (i.e., number of non-zero elements) of their
approximate PPR vectors grow very quickly as more iter-
ations are done, and the algorithms will need as much as
Θ(n2) space, which is far from feasible for the typical sizes
of today’s large scale graphs. Of course, it should be men-
tioned that if all one needs to compute is the PPR vectors
of a small subset of the nodes in the graph, then Power
Iteration can be used effectively.

Sarlos et al. [25] observed that even though the sizes of
the approximate PPR vectors of these algorithms grow very
quickly, many of the (non-zero) values in these vectors are
very small, and hence can be ignored (i.e., assumed to be
0), without causing a significant approximation error. Based
on a refinement of this observation, they proposed an algo-
rithm, that we denote as the Rounding algorithm, which
performs similar iterations to the simple dynamic program-
ming algorithm, but also rounds its approximate PPR vec-
tors at the end of each iteration. More precisely, defining

ri =
√

(1 − ǫ)i, and initializing −→πu
(0) = ψ0(ǫ

−→
δu), the algo-

rithm repeatedly performs the following iteration:

−→πu
(i) = ψi

ǫ−→δu + (1 − ǫ)
∑

{v|(u,v)∈E}

αu,v
−→πv

(i−1)

 (4)

where the function ψi, defined as ψi(x) = ri⌊x/ri⌋, rounds
down its input to an integer multiple of ri. Any value smaller
than ri gets rounded down to 0 by ψi, and this allows the al-
gorithm to control the growth of the sizes of its approximate
PPR vectors, and scale to full personalization.

Heuristics similar to the idea in the Rounding algorithm
have been used in some other algorithms as well [20, 4], but
they do not provide performance guarantees as Rounding
does, and moreover Rounding has been previously observed
to perform better in practice as well [25]. So, in this paper,
we will compare our FPPR approximation algorithm with
the Rounding algorithm, by analyzing their I/O efficiency
and also empirically.

The power iteration algorithm and its variants can be eas-
ily implemented on MapReduce [18]. Here, we briefly dis-
cuss how to implement them using the Reducer and Com-
biner primitives described in the last subsection. Given a
graph G = 〈u, v, αu,v〉, the initialization of −→πu

(0) is simply
a Reducer of graph G on key u. Each following iteration,
where −→πu

(i) is updated (i.e., Equation 2, 3, or 4) can be

implemented as a Combiner joining −→πu
(i−1) and G.

2.2.2 Monte Carlo Baseline
As we described in section 1.1.2, the Monte Carlo ap-

proach simulates R random walks from each source node
u. Here we outline a straightforward implementation of this
method on MapReduce. The algorithm consists of three
phases: an initial Reducer to initialize R random walks from
u, a sequence of Combiner iterations to extend each random
walk until it teleports to u, and a final Reducer to aggregate
the frequencies of visits to every node v in all R walks (for
each source node), and approximate the PPR values.

The initial Reducer and the Combiner are very similar to
the examples that we gave in subsection 2.1. The Combiner
will be invoked multiple times. At each iteration, every walk
which has not yet finished is extended by one randomly cho-
sen neighbor from its endpoint, and then it is decided if the
walk should teleport at this step. If a walk is finished, the

Combiner stores it on disk. After all walks are finished, we
call the final Reducer for each u, and compute the visiting
frequencies of all nodes v (w.r.t. the source node u).

We observe that the baseline implementation, which we
will refer to in the rest of the paper as MCBL, needs to exe-
cute the Combiner many times for long walks. To deal with
this issue, Fogaras et al [10] propose heuristic methods, such
as ignoring the tails of the longer walks, or approximating
them using the Global PageRanks. These methods decrease
the quality of approximations, and are after all only heuris-
tics, and don’t actually solve the problem. In this paper,
we present an algorithm to implement the Monte Carlo ap-
proach using a very small number of iterations, which elim-
inates the need for such heuristics. Even if one wants to cut
the longer walks, it will still be more efficient to implement
the resulting walks using our algorithm.

2.2.3 The SQRT Algorithm
Das Sarma et al. [8] present an algorithm to efficiently

compute a single random walk from a source node in the
graph in the streaming computation model. To do a walk
of length λ, it first samples one short segment of length θ
out of each node in a randomly sampled subset of the nodes,
and then tries to merge these segments to form the longer
walk. However, to keep the random walk truly random, it
cannot use the segment at each node more than once. So,
if it hits a node for the second time, it gets stuck, in which
case it samples (through one more pass over the data on
disk) a number of edges out of a properly defined set of
nodes, and brings them to the main memory to continue the
walk. But, this can not be done in MapReduce, as there is
no globally shared memory available. So, the algorithm can
not be easily implemented on MapReduce.

However, there are two easy ways out of this problem.
First, whenever hitting a stuck node, one can simply take
one random outgoing edge, and extend the walk only by that
edge. This removes the need for shared memory. But, then
the problem is that, it can reduce the algorithm essentially to
the MCBL algorithm (in the worst case). Second, one can
make sure there are no stuck nodes during the run of the
algorithm. This can be done by sampling more segments
per node. More precisely, if we sample λ/θ segments (of
length θ) per node, then no node is ever going to be stuck
(as we don’t use more than λ/θ segments in the whole walk
of length λ). We call this algorithm the SQRT algorithm.

Assuming, for simplicity of discussion, that λ/θ is an inte-
ger, SQRT(G,λ, θ), presented in Algorithm 2, first samples
λ/θ independent segments of length θ using edge-by-edge ex-
tension by GenSeg(G, λ, θ), presented in Algorithm 1. Each
segment is labeled by id i = 1, . . . , λ/θ. Then, it merges
these segments together, based on the order of their ids,
to make longer and longer segments and eventually end up
with one random walk of length λ starting at each node. We
reemphasize that SQRT is a simple modification of the algo-
rithm proposed by Das Sarma et al. [8] that we are introduc-
ing to make it possible to be implemented on MapReduce,
and hence, in the later parts of this paper, we will treat it as
prior work. An example using this algorithm is given below.

Example 1. Assume λ = 17, θ = 3. The algorithm first
generates η = ⌈17/3⌉ = 6 segments for each node u. Let
the 6 segments from u be S[u, i] (1 ≤ i ≤ 6). Denote the
walk starting from u as W [u]. Initially, we have W [u] = u.
Let W [u].LastNode be the last node of the current (partial)

Algorithm 1 GenSeg(G, λ, θ)

Input: A (weighted) graph G = (V, E), parameters λ and θ
Output: ⌈λ/θ⌉ independent random walk segments starting
at each node, each of length θ, except the last one which, if λ/θ
is not an integer, has length λ − θ⌊λ/θ⌋ (λ mod θ)

//Initial Reducer

Initialization: For each u ∈ V , and 1 ≤ i ≤ ⌈λ
θ
⌉, set S[u, i] = u

//θ iterations of Combiner
for j = 1 to θ do

for i = 1 to ⌈λ
θ
⌉ do

if (i = ⌈λ
θ
⌉ and 0 < λ − θ⌊λ

θ
⌋ < j) then

Break; //the last segment
end if

for each u ∈ V do

w = RandomNeighbor(S[u, i].LastNode);
S[u, i] = S[u, i].Append(w);

end for

end for

end for

Return S;

Algorithm 2 SQRT(G,λ, θ)

Input: A (weighted) graph G = (V, E), the desired length of
the walks λ, the length of initial segments θ
Output: A solution to the SRW problem, i.e., one random
walk of length λ starting at each graph node

Let S = GenSeg(G, λ, θ);
Define ∀u ∈ V : W [u] = u. //Initial Reducer
//⌈λ/θ⌉ iterations of Combiner
for i = 1 to ⌈λ/θ⌉ do

for each u ∈ V do
W [u] = W [u].Append(S[W [u].LastNode,i]);

end for

end for
Return W ;

walk W [u]. In the first iteration, W [u].LastNode is u, and
we append S[u, 1] to W [u]. Suppose the last node of S[u, 1] is
v (hence W [u].LastNode = v). In the second iteration, we
append S[v, 2] to W [u]. Suppose the last node of S[v, 2] is x
(hence W [u].LastNode = x). In the third iteration, we ap-
pend S[x, 3] to W [u]. Continue the process for 6 iterations,
and W [u] reaches length λ = 17.

The SQRT algorithm consists of two parts: segment gen-
eration, that needs θ iterations to generate the initial seg-
ments, and segment merge, that needs λ/θ iterations to
merge the segments. Hence, it does a total of θ + λ/θ it-

erations, which is optimized when θ =
√
λ, resulting in 2

√
λ

iterations. SQRT improves the number of required iterations
compared to the baseline algorithm (needing λ iterations).
However, for long walks, it can still need a large number
of iterations. In the next section, we show that one can
compute long random walks in the MapReduce framework,
using a very small number of iterations. We then show its
application for FPPR approximation in section 4.

3. SINGLE RANDOM WALK
Our MapReduce algorithm for FPPR approximation is

based on very efficiently doing single random walks of a
given length λ, starting at each node in the graph. Notice
that we do not require the random walks at different nodes
to be independent, but the random walk starting at each

node is required to be a true random walk. As mentioned
in section 1.2, we call this problem the SRW-MapReduce
problem. In this section, we first propose our new Doubling
algorithm, then prove it achieves the optimal number of iter-
ations among a large family of SRW algorithms, and finally
analyze and compare its I/O cost with other candidates.

3.1 The Doubling Algorithm
Similar to the SQRT algorithm, Doubling(G,λ, θ), shown

in Algorithm 3, starts (assuming λ/θ to be an integer and a
power of 2, for simplifying the discussion here) by generating
λ/θ independent segments of length θ out of each node (us-
ing the GenSeg subroutine as shown in line 1 of Algorithm
3). However, the subsequent iterations are completely differ-
ent: in contrast to SQRT which performs just one merge per
node (per iteration) and grows a single walk per node, Dou-
bling performs multiple merges and grows multiple walks per
node. In the first iteration, for each node, Doubling merges
pairs of segments generated by GenSeg (there are λ

2θ
such

pairs) to construct λ
2θ

walks of length 2θ; in the second it-

eration, it merges pairs of 2θ-step walks (there are λ
4θ

such

pairs) to construct λ
4θ

walks of length 4θ, and so on.
Doubling has two main advantages. First, it terminates

(i.e., obtains a single random walk of length λ for each node)
in much fewer iterations than SQRT (log λ

θ
iterations vs. λ

θ
iterations, after initial segments are generated). Second, by
performing more merges per node in parallel, Doubling takes
much better advantage of the parallel computation model of
MapReduce compared with SQRT. This results in a much
faster execution in terms of end-to-end time as confirmed by
our experiments.

The challenge is to ensure that the final walk starting at
each node is a true random walk. Depending on the graph
structure, the growing partial walks can have complicated
correlations, and if two correlated partial walks get merged,
the result is no longer a proper random walk. We address
this challenge by proposing a simple ID logic that, indepen-
dently of the graph structure, ensures that the same segment
is never used twice for any random walk. We prove this in
Theorem 3.

We now illustrate the algorithm using an example.

…

u

v1
v2

v6

…

vi

xi1
xi2

xi6

u

x16

(x1) x25

(x2)

x34

(x3)

xi

Yi1
Yi2

Yi3

u

x2
(Y2)

Y13

(Y1)

v1

x1

u

Y1

(a) (b) (c) (d)

S1

S6

S3

S4

S2

S5

Figure 1: Example for Doubling Algorithm

Example 2. Assume λ = 17, θ = 3. The algorithm first
generates η = ⌈17/3⌉ = 6 segments, S[u, i] (1 ≤ i ≤ 6) for
each node u ∈ V . Note each segment S[u, i] is labeled by
ID i. S[u, 6] is of length 2 while the other segments S[u, i]
(i < 6) are of length 3.

Unlike the SQRT algorithm, where only one walk W [u]
from u is defined at each iteration, the Doubling algorithm

maintains multiple walks W [u, i, η] at the same time, where
i is the ID of W [u, i, η], and η is the maximum ID at the
current iteration. In the beginning, η = 6, and W [u, i, η] =
S[u, i] for i = 1, . . . , 6. Then, the algorithm starts merg-
ing segments. It merges two segments W1 and W2 (i.e.,
appends W2 to W1) if W1.LastNode = W2.F irstNode,
W1.ID < W2.ID, and W1.ID + W2.ID = η + 1. This
seemingly simple ID logic ensures that each segment is a
proper random walk even when multiple segments are main-
tained for each node. After appending W2 to W1, we keep
W1.ID unchanged. Thus, one merging iteration will reduce
the maximum ID from η to ⌊ η+1

2
⌋. In this example, as shown

in Figure 1(a), for a node u, W [u, i, 6].LastNode = vi,
and for each vi, W [vi, j, 6].LastNode = xij . Therefore, we
merge W [u, i, 6] with W [vi, 7− i, 6] for i = 1, 2, 3, and get 3
new segments: W [u, 1, 3] that ends at x16 (simplified to x1),
W [u, 2, 3] that ends at x2, and W [u, 3, 3] that ends at x3,
as shown in Figure 1(b). Note that the multiple merges for
each node as well as the merges across different nodes can
be done independently of each other and hence in parallel.
Therefore, at each xi, there are also three merged segments
ending at yij.

Now η = 3, and we will merge W [u, 1, 3] with W [x1, 3, 3].
Since η is an odd number, W [u, 2, 3] does not have a match-
ing segment to merge, and we will keep W [u, 2, 3] as same.
The merging results are shown in Figure 1(c). For the node
u, we now have two segments W [u, 1, 2] that ends at y1
and W [u, 2, 2] that ends at y2 (originally x2). In the final
step, we merge W [u, 1, 2] with W [y1, 2, 2], and get W [u, 1, 1],
which has length λ = 17.

Notice that if we denote a generic initial segment S[u, i]
as S[i], by only referring to its ID, we have

W [u, 1, 1] =< S[1], S[6], S[3], S[4], S[2], S[5] >

(as shown in Figure 1(d)). The walk is clearly composed of
initial segments with different IDs (which are thus indepen-
dent, even if starting at the same node), and is hence a true
random walk of length 17. Also, notice how the algorithm
outputs a random walk of length 17 in just 6 iterations (i.e.,
3 iterations for GenSeg, and then 3 more iterations for Dou-
bling merges), while SQRT would need at least 8 iterations
(e.g., with θ = 4, 5, or 6) to do the same thing.

3.1.1 Correctness of The Doubling Algorithm
Here we prove that the algorithm works correctly, that is,

its output walk starting at each node is a true random walk
of the desired length. We first give a definition:

Definition 1. For any integer η ≥ 1, define the follow-
ing (finite) recursive sequence:

T η
0 = η; while(T η

j > 1) T η
j+1 = ⌊

T η
j + 1

2
⌋

Denote the set of these numbers by T η = {T η
j }j≥0.

With η = ⌈λ/θ⌉, T η is simply the set of all maximal IDs in
different merge iterations of Doubling(G,λ, θ). For instance,
in Example 2, T η = {6, 3, 2, 1}. Note that T η

i is also the
number of segments starting from each node after ith merge
iteration.

In order to prove the correctness of the algorithm, we
need to show that W [u, 1, 1] (the output walk) is a walk in
which every node (or edge) is chosen randomly, and that
the length of W [u, 1, 1] is λ. Since all segments (across all

Algorithm 3 Doubling(G,λ, θ)

Input: A (weighted) graph G = (V, E), the desired length of
the walks λ, the length of initial segments θ
Output: One random walk of length λ starting at each graph
node

Let S = GenSeg(G, λ, θ);
Define η = ⌈λ/θ⌉, and ∀u ∈ V, 1 ≤ i ≤ η : W [u, i, η] = S[u, i],
E[u, i, η] = S[u, i].LastNode; //Initial Reducer
//Combiner iterations
while η > 1 do

η′ = ⌊ η+1
2

⌋;

for i = 1 to η′ do

for each u ∈ V do
if i = η+1

2
then

W [u, i, η′] = W [u, i, η];
E[u, i, η′] = E[u, i, η];
Continue;

end if

v = E[u, i, η];
W [u, i, η′] = W [u, i, η].Append(W [v, η − i + 1, η]);
E[u, i, η′] = E[v, η − i + 1, η];

end for

end for
η = η′;

end while

For each u ∈ V , output W [u,1, 1]; //the computed random
walk

different nodes in the graph) are initialized randomly and
independently, and we generate a walk by merging segments,
to show W [u, 1, 1] is a random walk, we need to show that
W [u, 1, 1] does not use a same initial segment twice. As we
have seen in Example 2, the Doubling algorithm ensures that
only segments with different IDs will be merged. Therefore,
all segments in each walk are different. Formally, we have
the following lemma, proved in the Appendix:

Lemma 1. Given λ, θ, for any η ∈ T ⌈λ/θ⌉, u, v ∈ V , and
1 ≤ i, j ≤ η, i 6= j, we have:

1. W [u, i, η] is a proper random walk.
2. W [u, i, η] and W [v, j, η] are independent.

Now we show that the length of W [u, 1, 1] is λ. Denoting
the length of a segment W [u, i, η] by |W [u, i, η]|, we have the
following lemma, proved in the Appendix:

Lemma 2. Given λ, θ, for any η ∈ T ⌈λ/θ⌉ and u ∈ V :∑η
i=1 |W [u, i, η]| = λ

Given the above two lemmas, we have the following theo-
rem:

Theorem 3. The output of the Doubling algorithm is a
valid solution to the SRW problem.

Proof. After the last iteration, for any node u ∈ V , we
have only one segment, namely W [u, 1, 1]. From lemma 1,
we know that this segment is a proper random walk. Also,
from lemma 2, we have |W [u, 1, 1]| = λ.

So, Doubling is a correct SRW algorithm. Next, we ana-
lyze the number of its MapReduce iterations.

3.2 The Number of Iterations
After the generation of initial segments, the Doubling al-

gorithm merges them in a few iterations, until it has one

segment per node. We have the following lemma, proved in
the appendix, and theorem:

Lemma 4. For any integer η, T η
j is a monotone decreas-

ing sequence, and |T η| = 1 + ⌈log2 η⌉.
Theorem 5. The Doubling algorithm with parameters λ,

θ finishes in θ + ⌈log2⌈λ
θ
⌉⌉ MapReduce iterations.

Proof. GenSeg(G,λ, θ) needs θ iterations to produce the

initial segments, after which, we have T
⌈λ/θ⌉
0 segments per

node. Then, after j segment merge iterations, we have

T
⌈λ/θ⌉
j segments per node, and we continue merging the seg-

ments until we end up with one segment per node, that is

until T
⌈λ/θ⌉
j = 1. But, from the above lemma, we know this

requires ⌈log2⌈λ
θ
⌉⌉ iterations. Therefore, the total number

of iterations is θ + ⌈log2⌈λ
θ
⌉⌉.

For any λ, we have: argminθ∈[1,λ]{θ+⌈log2⌈λ
θ
⌉⌉} = 1. So,

the optimal number of iterations for the Doubling algorithm
is achieved with θ = 1, in which case the algorithm finishes
in 1+ ⌈log2 λ⌉ iterations. We now show that this is actually
the minimum number of iterations possible for a large family
of SRW algorithms.

3.2.1 Optimality of the Number of Iterations
We first define a family of algorithms for doing random

walks, that we call the Natural family of random walk al-
gorithms. A typical Natural algorithm takes as input a di-
rected weighted graph G = (V,E), and a family of length
sets {Lv}v∈V , and outputs a random walk of length λv start-
ing at v (∀ v ∈ V, λv ∈ Lv). The only operations that the
algorithm is allowed to use are:

1. Extend(R): takes a random walk R, possibly of length 0
(i.e., just a node), and extends it by taking a random edge
out of its last node.
2. Merge(R1,R2, λ): takes two random walks R1, of length
λ1 ≥ 1, and R2, of length λ2 ≥ 1, such that the last node of
R1 is the same as the first node of R2, as well as a length
λ, such that λ1 < λ ≤ λ1 + λ2, stitches R1 and R2 together
and truncates the resulting walk (of length λ1+λ2) at length
λ.

We do not require the output walks starting at different
nodes to be independent, but we do require the different
walks starting at the same node to be true and independent
random walks. One can easily see that GenSeg, SQRT, and
Doubling are all Natural. Intuitively speaking, the operators
allowed for Natural algorithms are all one can do when one
wants to make random walks, unless one has some non-local
structural information about the graph. For instance, if one
knows that the graph is a cycle of length, say, 4, denoted
as (u1, u2, u3, u4), then without doing anything further, one
already knows exactly what a random walk of a length λ
starting at a node v = ui is. Use of such structural informa-
tion is not allowed for Natural algorithms, but this is a very
reasonable restriction, as such information are usually (spe-
cially, for the massive scale graphs typical in the MapReduce
setting) not available in practice anyway.

Next, we give another definition and prove a simple claim.

Definition 2. A Natural Binary Tree is a labeled binary
tree such that for any leaf v, label(v) = 1, and for any non-
leaf node z with children x, y, we have label(x) + label(y) ≥
label(z).

Claim 1. The number of levels of a Natural binary tree
with root having label λ is at least 1 + ⌈log2 λ⌉.

Proof. Define D(λ) to be the minimum number of levels
of a Natural binary tree with λ as the label of the root. Then,
we prove the claim by induction. For λ = 1, the tree is just
a single node, so we have 1 level, and the claim is obviously
true. Now assume the claim is true for all numbers smaller
than λ > 1, and we will prove it for λ. Assume, the children
of the root have labels λ1, λ2. Then, λ1 +λ2 ≥ λ, and hence
max{λ1, λ2} ≥ ⌊λ+1

2
⌋. Therefore:

D(λ) ≥ 1 +D(⌊λ+ 1

2
⌋)

Then, a simple induction shows that D(T λ
j) ≥ |T λ| − j,

and hence D(λ) = D(T λ
0) ≥ |T λ| = 1 + ⌈log2 λ⌉.

Now, we show, by induction, that considering a node u
and a length λ ≥ 1, the operations used by a Natural algo-
rithm, ALG, to do a random walk of length λ starting at u
can be modeled by a Natural binary tree, T (u, λ). If λ = 1,
then algorithm can only use Extend(u) to generate a walk
of length 1 starting at u, and we model this using a single
node (leaf, with label 1). If λ > 1, then the last operation
done by ALG to generate the desired walk can be one of the
two following options:

1. extending a walk R′ of length λ − 1, starting at u and
ending at a node v, using Extend(R1)
2. merging a walk R1 of length 1 ≤ λ1 < λ starting at u and
ending at a node v, with a walk R2 of length λ−λ1 ≤ λ2 < λ
and starting at v, using Merge(R1,R2, λ)

In both cases T (u, λ) will be a tree with root having label
λ. In the first case, the root will have a child with label 1,
which is a leaf, and a child with label λ − 1 which is the
root of a copy of T (v, λ− 1) (which exists by the inductive
hypothesis). In the second case, the root will have a child
with label λ1 which is the root of a copy of T (v, λ1), and a
child with label λ2 which is the root of a copy of T (v, λ2).

From claim 1, it follows that the number of levels of T (u, λ)
is at least 1 + ⌈log2 λ⌉. But, if ALG is implemented in
MapReduce, each level in T (u, λ) will need at least one
MapReduce operation, and hence the depth of this tree will
be a lower bound for the number of MapReduce iterations
needed by ALG to make a random walk of length λ start-
ing at u. This shows that any MapReduce Natural random
walk algorithm needs at least 1 + ⌈log2 λ⌉ MapReduce iter-
ations to produce random walks of length λ. Specifically,
any Natural SRW algorithm needs 1 + ⌈log2 λ⌉ MapReduce
iterations to produce random walks of length λ. But, this
is exactly the number of iterations used by Doubling (with
parameter value θ = 1) to do random walks of length λ.
So, in terms of the number of iterations to produce random
walks of given lengths, Doubling is optimal among all Nat-
ural SRW algorithms.

3.3 I/O Cost Analysis
In this section, we analyze and compare the I/O efficiency

of the Doubling, SQRT, and GenSeg algorithms. Realistic
analysis of the efficiency of MapReduce algorithms is not
straightforward, as the algorithms’ efficiency in practice de-
pends on many complicated factors, such as the distribution
of data and computation by the job schedulers, proximity

of the communicating machines, etc. So, I/O cost analysis
is just a proxy to give an overall understanding of the ex-
pected performance of different algorithms. However, since
for many MapReduce algorithms, including the ones we are
considering in this section, the actual computational work
performed by the computing nodes is very simple, data I/O
is indeed a very important factor in the performance of the
algorithms. The exact I/O costs also depend on many details
such as the architecture of the network of Mappers and Re-
ducers (which may be directly decided by the job scheduler
and not be under the programmer’s control), the exact im-
plementation of the algorithms, the schemas and datatypes
used to represent the data, and so on. So, here we only
present asymptotic analyses of the I/O costs, by counting
the number of basic data items (such as node ids) that need
to be accessed for each operation. As stated earlier in the
paper, we assume that we use the two primitives Reducer
and Combiner, introduced in section 2.1, to implement the
algorithms. Denoting the number of basic data items in a
dataset R by |R|, we assume for these two primitives that:

• when an input dataset RI is Reduced to produce an out-
put dataset RO, the input and output costs are, respectively,
O(|RI |) and O(|RO |).
• when two input datasets R1 and R2 are Combined to pro-
duce and output dataset R3, the input and output costs are,
respectively, O(|R1| + |R2|) and O(|R3|).

We now start by analyzing GenSeg(G,λ, θ). In the ith

iteration of the algorithm (1 ≤ i ≤ θ), each node has λ/θ
segments of length i−1. The algorithm Combines the graph
table and the segments table, and extends each segment by
one edge, and gets the new segments (of length i). Recalling,
from section 1.1, that the number of nodes and edges in the
graph are, respectively, n and m, we get that the input and
output costs of iteration i are, respectively, O(m+n(i− 1))
and O(ni). Summing up all these costs for 1 ≤ i ≤ θ, we
get that the total I/O cost of GenSeg(G,λ, θ) is:

O((m+ nλ)θ) (5)

Next, we analyze the I/O cost of Doubling(G,λ, θ). After
generating the initial segments, the algorithm Combines the
current segment dataset with itself to make the new (longer)
segments, which then get output by the Combiner. From
lemma 2, we know that the total size of the segments start-
ing at each node in any iteration is equal to λ. Thus, the
input and output costs at each iteration are O(nλ). From
theorem 5, we know the number of segment merge itera-
tions is log2(λ/θ) (ignoring the ceilings). So, including the
I/O cost of GenSeg as computed above, the total I/O cost
of Doubling(G,λ, θ) is:

O((m+ nλ)θ + nλ log2

λ

θ
) (6)

A similar analysis shows the I/O cost of SQRT(G,λ, θ) is:

O((m+ nλ)θ + n
λ2

θ
) (7)

Now, comparing expressions 6 and 7, we clearly see that
for any λ, θ, Doubling(G,λ, θ) has better I/O efficiency than
SQRT(G,λ, θ). Also, note that the simple algorithm which
extends the random walks edge-by-edge can be seen as the
special case of GenSeg with θ = λ (i.e., GenSeg(G,λ, λ)),
which, from expression 5, has I/O cost O((m+nλ)λ), which
is again less efficient than Doubling. Finally, notice that no

SRW algorithm can have an I/O cost smaller than the size of
its final output, which is Ω(nλ). So, choosing θ to be a small
constant number, we see that for not very dense graphs (e.g.,
as long as m/n = O(λ log λ)), Doubling(G,λ, θ) is within a
logarithmic factor (in the length of the walk) from this lower
bound for all SRW algorithms.

4. FULLY PERSONALIZED PAGERANKS
In this section, we present our algorithm for the FPPR-

MapReduce problem. As discussed in section 1.1.2, Frogras
et al. [10] propose that to approximate the PPR vector of a
source node u, one can simulate a number, R, of PPR fin-
gerprints (with geometrically distributed lengths) starting at
u, and then use the empirical distribution of the performed
walk as the PPR estimation. To approximate FPPR, one
can do the same thing for every source node. We note two
simple points: (1) The lengths of the fingerprints can be the
same for different source nodes, and (2) the fingerprints at
different source nodes do not need to be independent. Based
on these two points, we can design the DoublingPPR algo-
rithm presented in Algorithm 4 for FPPR approximation.

The algorithm is based on our Doubling algorithm for do-
ing single random walks. It takes as input a (weighted)
graph G, the expected total length of the PPR walk to be
done, and the teleport probability ǫ. Then, it generates
R = ǫL random numbers λi from the distribution Geom(ǫ).

Note that in general, we only have E[
∑R

i=1 λi] = L, but a
simple application of Chernoff bound shows that if L is large

compared with 1/ǫ (e.g., L = Ω̃(1/ǫ)), then
∑R

i=1 λi is ac-
tually very close to L (i.e., L± o(L)) with high probability.
It then generates the set of parameters θi (1 ≤ i ≤ R) using
a call to the function ChooseTheta. We will further discuss
the details of this function later in this section. Then, the
algorithm uses Doubling(G,λi, θi) (∀ 1 ≤ i ≤ R) to generate
a walk, Wi[u], of length λi, starting at each node u in the
graph. Finally, it finds the aggregate count of the number of
visits, C(u, v), to each node v in the R walks of source node
u, and returns the visiting frequencies as PPR estimations.

Note that, in Algorithm 4, for the sake of simplicity of
presentation, we are making R separate calls to the Doubling
algorithm. But, each of these calls will first access the graph
a few times to generate its initial segments, and one can
share these graph accesses between all the different calls to
Doubling. In other words, with a single access to the graph,
we can extend all the unfinished initial segments (by one
edge). This clearly saves some data I/O, and it is what we
actually did in our implementation. One can analyze this
implementation in a completely similar way to the analyses
done in section 3.3 to obtain the following expression for its
I/O cost:

O(m max
1≤i≤R

{θi} + n

R∑

i=1

(λiθi + λi log2

λi

θi
)) (8)

This also provides a way for choosing the values of the pa-
rameters θi (1 ≤ i ≤ R). We note that θi’s should be in gen-
eral chosen to be small numbers, and that the performance
of the algorithm (as also observed in our experiments, whose
results are presented later in this paper), is robust to small
changes to these parameters. However, a heuristic that one
can use is to choose the values of θi’s to minimize the I/O
cost expression 8. Our experiments showed that this choice
of θi’s did actually provide some (though modest) improve-
ment to the performance of the algorithm (e.g., compared to

Algorithm 4 DoublingPPR(G, L, ǫ)

Input: A (weighted) graph G = (V, E), (expected) total PPR
walk length L, teleport probability ǫ
Output: Monte Carlo approximation π̂u(.) of the personalized
PageRank vector of any u ∈ V , obtained by doing PPR walks
of (expected) length L.

Let R = ǫL, and for 1 ≤ i ≤ R, let λi ∼ Geom(ǫ) be a random
number generated from the geometric distribution Geom(ǫ).

Also, let
−→
θ = ChooseTheta(G,

−→
λ), where

−→
θ = [θ1, . . . , θR]

and
−→
λ = [λ1, . . . , λR].

For 1 ≤ i ≤ R, let Wi = Doubling(G, λi, θi).
For any u, v ∈ V let C(u, v) = 0.
for i = 1 to R do

for u, v ∈ V do

C(u, v)+ = number of visits to v in Wi[u]
end for

end for

for u, v ∈ V do

π̂u(v) =
C(u,v)∑

R
i=1

λi

.

end for
Return π̂u(.) for all u ∈ V .

the simpler choices of all equal θi’s), so we suggest one can
use this heuristic to implement the function ChooseTheta.

We can also compare the I/O efficiency of DoublingPPR
to other FPPR approximation algorithms. Since we have al-
ready shown that Doubling is more I/O efficient than edge-
by-edge extension of random walks, it is clear that Dou-
blingPPR is also more efficient than the simple implementa-
tion of the Monte Carlo approach proposed in [10]. So, here
we provide a comparison with the other existing FPPR ap-
proximation method, namely the Rounding algorithm. One
can easily see that the I/O cost of the Rounding algorithm in
the MapReduce framework is the same as its computational
complexity analyzed in [25]. So, to guarantee a constant
error, the I/O cost of Rounding is:

O(
m+ n

ǫ2
) (9)

As shown in [10, 2], a simple application of Chernoff bound
shows that for the Monte Carlo approach to provide a con-
stant error with high probability, L = O(log n

ǫ
) steps are

enough. Now, as mentioned above, one can choose θi’s to
optimize the I/O cost 8, but even with the simplest choice
θi = 1 (∀ 1 ≤ i ≤ R), the I/O cost of DoublingPPR is

O(m + n
∑R

i=1 λi log2 λi). But, one can easily show (using
concavity of the log function, and the fact that λi’s are ge-
ometrically distributed) that:

∑R
i=1 λi log2 λi = O(L log 1

ǫ
).

So, the I/O cost of DoublingPPR to guarantee constant er-
ror with high probability is O(m+ n

ǫ
log n log 1

ǫ
). Therefore,

comparing with expression 9, we get that if the graph is
not very sparse, that is if m/n = ω(ǫ log 1

ǫ
log n) (which is

a reasonable bound for many real-world networks, such as
social networks, worldwide web, etc.), then DoublingPPR
has better I/O efficiency than Rounding as well.

5. EXPERIMENTS
In this section, we present the results of the experiments

that we did to test the performance of our methods. As
efficiency measures, we considered the total clock time and
total machine time of the algorithms, and as quality mea-
sure, we considered the approximation error for the top k

nodes (for suitable values of k). We will define and explain
these measures and also present our experimental results in
more detail in the following subsections. But, the main re-
sults of our experiments can be summarized as follows:

• In comparison to the MCBL method, Doubling not only
improves the machine time but also improves the clock time
by an order of magnitude.
• Doubling significantly outperforms Rounding not only in
both clock and machine times but also in quality of the ap-
proximations. Also, even though the efficiency of Rounding
decreases significantly (and non-linearly) as more iterations
are performed, Doubling’s performance linearly changes with
the total length of the PPR walk it performs.
• For doing a single random walk per node, Doubling per-
forms similarly to SQRT in terms of machine time but sig-
nificantly outperforms it in clock time. This shows Doubling
performs the same amount of work as SQRT but does it in
a more parallel fashion.
• The performance of Doubling is robust with respect to the
values of the parameters θi, and as long as they are chosen
to be small numbers, it gets similar performances. However,
choosing these values to minimize the I/O cost expression 8
improves the performance of the algorithm modestly.

5.1 Experimental Setup
Datasets: We used real world query-click data in our ex-
periments. Using random walks on query-click graphs has
been shown to be very successful in finding related queries
[7]. We sampled frequent <query, url click> pairs from a
web search engine. All distinct queries and clicked urls are
considered as nodes in the graph, and each query and each
of its clicked urls are connected by an edge, whose weight
is log2 f , where f is the number of clicks that the url re-
ceived for that query. The graph has more than 112M to-
tal nodes, and 256M (undirected) edges. We replaced each
edge with two directed edges between its endpoints, so the
final graph that we did our experiments on had more than
513M directed edges. We assigned each node in the graph
an integer id, and used these ids for all of our experiments.
The programming environment that we used was a stan-
dard, unmodified, production MapReduce environment. All
algorithms were executed concurrently with other produc-
tion jobs, at the normal cluster workload.
Algorithms: For single random walk, we compared our
Doubling algorithm with the SQRT algorithm. For fully
personalized PageRank, we compared our DoublingPPR al-
gorithm with the Rounding algorithm [25], which, to the
best of our knowledge, is the state-of-the-art approach in
the literature. We do not compare our algorithm with other
Power Iteration type algorithms, since, as mentioned in sec-
tion 2, they either do not scale to full personalization or do
not perform as well as Rounding. We also implemented the
MCBL algorithm. The high level MapReduce implementa-
tion ideas of Rounding and MCBL are described in section
2.2. For the Rounding algorithm, we used integers (instead
of floats) to store and manipulate the rounded probabilities.
For the MCBL implementation, since we were eventually
only interested (for PPR approximation) in the visiting fre-
quencies to different nodes, we only kept aggregate counts of
the number of times the walks had visited different nodes (as
well as the current last nodes of the walks). We did the same

thing for each of the partial walks in our own algorithm, dur-
ing its segment merge iterations. Also, in all experiments,
we used the (typical) value ǫ = 0.2 as our PageRank teleport
probability.
Efficiency Measures: To measure the efficiency of algo-
rithms, we considered two measures:

1. Total Clock Time: How long, in terms of wall clock time,
it took each job to run from the beginning to the end.
2. Total Machine Time:

∑
x τx where τx was the amount of

time a machine x was used during the job.

Quality Measure: To measure the quality of the results,
for a node u and a value k, we define Zk

u to be the set of
nodes with the k largest personalized PageRanks for u. In
most applications of personalized PageRanks, for a source
node u, only the nodes in Zk

u (for some appropriate value of
k) are of interest. For instance, in friend recommendation
(or query suggestion), only the users (queries) with highest
personalized PageRanks will get recommended (suggested).
Note that real applications such as query suggestion, or site
or friend recommendation often involve lots of factors. Per-
sonalized PageRank usually acts as one of the (important)
features for those tasks. So it is also important to measure
how well we are approximating the true numeric values of
the personalized PageRanks of the nodes in Zk

u . Therefore,
to measure the quality of the approximation of both Zk

u and
the actual numeric PPR values, we use:

Err(u, k) =

∑
v∈Zk

u

|πu(v) − π̂u(v)|
∑

v∈Zk
u

πu(v)
(10)

Where π̂u(v) is the approximate personalized PageRank
(e.g., by either the Rounding algorithm or our algorithm).
We sampled 100 source nodes from the graph, used 70 it-
erations of Power Iteration to compute the “ground-truth”
personalized PageRanks for each source node, and averaged
the above error measure over the sampled source nodes (at
different values of k) to measure the quality of the results
of different algorithms. Further details about our sampling
method and the results of these experiments are given later
in this section.
Choice of θi’s: The DoublingPPR algorithm has three
main parts: generating segments, merging segments, and
aggregating the walks (to compute the personalized PageR-
anks). The balance between the times spent on segment
generation and segment merge depends on the choices of
θi’s. As explained in section 4, we chose the values of θi’s
so as to minimize the I/O cost expression 8. We observed
that this is not a very crucial factor in the performance of
the algorithm, since the values of θi’s are all small numbers,
and the algorithm’s performance is robust with respect to
these parameters, so as long as θi’s are chosen to be small
constants, we get similar performances. However, as shown
in Figure 8, our way of choosing θi’s did modestly improve
the algorithm’s performance (in comparison to the simpler
choices of equal θi’s). So, for the rest of the experiments, we
just kept using these values of θi’s.

5.2 Experimental Results
We first compare the quality-efficiency tradeoff of Dou-

blingPPR with MCBL and Rounding, and then drill down
to the various issues which may relate to the performance of
the algorithms.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25

E
rr

o
r@

1
0

Clock Time (Hour)

Rounding Doubling

Figure 2: Err(., 10) vs. Clock Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0 200 400 600 800

E
rr

o
r@

1
0

Machine Time (Hour)

Rounding Doubling

Figure 3: Err(., 10) vs. Machine Time

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

1 2 3 4 5 6 7 8 9 10

E
rr

o
r@

1
0

log(Source Node Degree)

Rounding Doubling

Figure 4: Err(., 10) vs. Bucket

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25

E
rr

o
r@

1
0

0

Clock Time (Hour)

Rounding Doubling

Figure 5: Err(., 100) vs. Clock Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 200 400 600 800

E
rr

o
r@

1
0

0

Machine Time (Hour)

Rounding Doubling

Figure 6: Err(., 100) vs. Machine

Time

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6 7 8 9 10

E
rr

o
r@

1
0

0

log(Source Node Degree)

Rounding Doubling

Figure 7: Err(., 100) vs. Bucket

5.2.1 Quality-Efficiency Tradeoffs
We first present the results of the efficiency comparison

between DoublingPPR and MCBL. Note that since both al-
gorithms are based on the Monte Carlo approach, their qual-
ity is the same (modulo the randomness due to the actually
performed random walks). To compute FPPR on the ex-
perimental graph data using total walk length 500, MCBL
uses 22.03 hours in clock time, and 333.60 hours in ma-
chine time; while for the same task, DoublingPPR uses 2.21
hours in clock time, and 225.82 hours in machine time. The
Doubling algorithm improves the clock time by one order of
magnitude, while using 2/3 of the machine time.

We also compared the quality-efficiency tradeoff of Dou-
blingPPR and Rounding. The nodes in our graph had widely
different degrees. So, in order to observe the behavior of
the algorithms for different source degrees, we divided the
nodes in the graph into a number of buckets, with bucket
s (s ≥ 1) including all the nodes whose degree was in the
[2s−1, 2s) interval. There are a very small number of nodes
which belong to buckets s > 10. So, we only considered 10
different buckets (1 ≤ s ≤ 10). Then, we sampled 10 nodes
uniformly at random from each bucket, computed the error
measure defined in equation 10, at different values of k, for
each sampled source node, and averaged the results. Figures
2, 5, 3, 6 show the averaged errors for k = 10, 100 versus the
machine and clock times, for DoublingPPR and Rounding
algorithms. For DoublingPPR, we did three experiments
with walk lengths 500, 1000, and 2000. For Rounding, we
computed the average errors and machine and clock times
for 10, 20, 30, 40, 45, and 50 iterations. Our guiding heuristic
in choosing these lengths and iteration numbers was (rough)
measures of absolute error for the algorithms, set at 10−3,
suggesting the length of the Doubling walk to be in the order
of 103 and the number of iterations of Rounding to be in the
order of 101. As it is clear from the figures, DoublingPPR
consistently performs significantly better than Rounding in

average errors. We observe that even with walk length 500,
DoublingPPR achieves a better quality than 50 iterations of
Rounding.

We observe that the efficiency of the Rounding algorithm
decreases significantly as more iterations are done. This is
because in later iterations, the rounding threshold becomes
smaller, and more PPR values need to be carried over to
the next iteration. That introduces more I/O and compu-
tational costs. For instance, from iteration 45 to 50, the
Rounding algorithm uses about 200 machine hours, while
the first 45 iterations in total only took less than 400 ma-
chine hours. On the other hand, we clearly see that both
clock time and machine time of the DoublingPPR algorithm
grow linearly with the length of the walks.

Finally, we computed the average errors for source nodes
in different buckets. The results in Figures 4, 7, using length
1000 for DoublingPPR and 50 iterations for Rounding, show
that DoublingPPR consistently achieves lower error than
Rounding1. This, in accordance with the I/O cost com-
parison done in section 4, suggests that although we used
a relatively sparse query click graph (i.e., average degree is
low), DoublingPPR is also expected to outperform Round-
ing in dense graphs.

5.2.2 Performance Drill-Down
Here we drill down to several aspects of the algorithms to

better understand their computational performance.
Sensitivity to the choice of θi’s: To compute person-
alized PageRank, the Monte Carlo approach needs to com-
pute multiple random walks. For our algorithm, we can
adaptively choose different θ values for different walks, or

1The numbers 1000 and 50 were chosen, because, as can
be seen from Figures 2, 5, 3, 6, a 500-step walk already
gives a better quality than 50 iterations of Rounding, and a
1000-step Doubling walk is still significantly faster than 50
Rounding iterations.

uniformly assign a single θ value for all walks. As we men-
tioned earlier in this section, the DoublingPPR algorithm is
not very sensitive to the choice of θi’s, but carefully chosen
θ values, as explained in section 4, can modestly improve
the overall computational performance. Figure 8 shows the
machine time used to compute PPRs by walk length 1000,
using adaptive θ (i.e., a different θ value for each individual
walk), uniform θ = 1, and uniform θ = 3. We observe that
adaptive θ values try to balance the cost between segment
generation and segment merge, and achieve an overall better
performance.
Comparison with Rounding: To measure how well the
algorithms DoublingPPR and Rounding could benefit from
the parallelization capability in MapReduce, we varied the
resource allocation (i.e., the number of allocated machines)
for both algorithms by factors 2, 4, and 8 based on the de-
fault resource allocation provided by our execution engine,
and computed the corresponding machine times and clock
times. The result, given in Figure 10, and using 1000 steps
for DoublingPPR and 50 iterations for Rounding, shows
that with different resource allocations also DoublingPPR
is significantly more efficient than Rounding. It also shows
that machine time and clock time typically behave in oppo-
site ways: For the same computational task, smaller clock
times require higher machine times. This is often because
to achieve a smaller clock time, tasks are divided into finer
granularities, and then there are extra overheads in dis-
tributing the data and scheduling sub-tasks to more ma-
chines.
Comparison with SQRT: We measured the efficiency of
doing a single random walk using each of the Doubling and
SQRT algorithms. We performed three experiments with
walk lengths 4, 8, and 16. The machine times were very
close for all three experiments, but the clock times showed
that Doubling was much faster than SQRT. The result is
presented in Figure 9.

6. RELATED WORK
MapReduce algorithms have been designed and proposed

in the literature for a wide range of applications, such as
machine learning, text processing, and bioinformatics (refer
to [19, 18] and references therein). MapReduce provides an
excellent tool for large scale graph processing as well, and
graph algorithms have been designed for it in the literature
[15, 16, 6]. In this paper, we study one of the most well
known graph computation problems, i.e., computing per-
sonalized PageRanks [12, 11]. Our algorithms can also be
applied to other personalized random walk based measures,
such as personalized SALSA [21, 24].

We adopt the Monte Carlo approach, which has been pre-
viously used to design Personalized and Global PageRank
approximation algorithms in different computational mod-
els. We have discussed several of these algorithms from the
MapReduce perspective in section 2. We would like to also
point out that Bahmani et al. [3] propose Monte Carlo al-
gorithms for Personalized (and Global) PageRank approx-
imation in the random access model. Their algorithm is
designed to efficiently do a PPR random walk starting at
a single node in the graph, assuming random access to the
edges. This algorithm is however unsuitable for the MapRe-
duce framework, for a multitude of reasons: heavy use of
random access to the graph, complicated logic which is not

at all clear how to coordinate on MapReduce for FPPR, and
needing a lot of MapReduce iterations.

7. CONCLUSIONS
In this paper, we present a new algorithm for massive scale

fully personalized PageRank approximation on MapReduce.
The algorithm belongs to the Monte Carlo family of PageR-
ank approximation methods. The main contribution of this
paper is to propose a very efficient MapReduce algorithm
for computing single random walks starting from all nodes
in a graph. The number of MapReduce iterations needed
by this algorithm is optimal among a broad family of algo-
rithms for performing random walks. We use this algorithm
to design our PPR approximation algorithm, which outper-
forms the state-of-the-art algorithm in the literature. To
achieve a similar quality of approximation of personalized
PageRank values, our algorithm uses significantly less clock
time and machine time. We believe this algorithm will have
a high impact on many real-world massive scale personaliza-
tion problems, such as friend recommendation, query sug-
gestion, site suggestion, etc. In addition, our algorithm for
efficiently simulating random walks on MapReduce is appli-
cable to other applications using random walks (e.g., com-
putation of other personalized random walk based measures,
such as personalized SALSA) on massive graphs.

8. REFERENCES
[1] Pig. http://hadoop.apache.org/pig.

[2] K. Avrachenkov, N. Litvak, D. Nemirovsky, and N. Osipova.
Monte carlo methods in pagerank computation: When one
iteration is sufficient. SIAM J. Numer. Anal., 45(2):890–904,
2007.

[3] B. Bahmani, A. Chowdhury, and A. Goel. Fast incremental and
personalized PageRank. http://arxiv.org/abs/1006.2880, 2010.

[4] P. Berkhin. Bookmark-coloring algorithm for personalized
pagerank computing. Internet Math, 3, 2006.

[5] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib,
S. Weaver, and J. Zhou. Scope: easy and efficient parallel
processing of massive data sets. Proc. VLDB Endow.,
1(2):1265–1276, 2008.

[6] J. Cohen. Graph twiddling in a mapreduce world. Computing

in Science and Engg., 11(4):29–41, 2009.

[7] N. Craswell and M. Szummer. Random walks on the click
graph. In SIGIR, pages 239–246, 2007.

[8] A. Das Sarma, S. Gollapudi, and R. Panigrahy. Estimating
PageRank on graph streams. In PODS, pages 69–78, 2008.

[9] J. Dean and S. Ghemawat. Mapreduce: simplified data
processing on large clusters. In OSDI, pages 10–10, 2004.

[10] D. Fogaras and B. Rácz. Towards scaling fully personalized
PageRank. In WAW, pages 105–117, 2004.

[11] Z. Gyöngyi, H. Garcia-Molina, and J. Pedersen. Combating
web spam with trustrank. In VLDB, pages 576–587, 2004.

[12] T. H. Haveliwala. Topic-sensitive pagerank. In WWW, pages
517–526, 2002.

[13] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:
distributed data-parallel programs from sequential building
blocks. In EuroSys, pages 59–72, 2007.

[14] G. Jeh and J. Widom. Scaling personalized web search. In
WWW, number 1-58113-680-3, 2003.

[15] U. Kang, C. Tsourakakis, A. P. Appel, C. Faloutsos, and
J. Leskovec. Hadi: Fast diameter estimation and mining in
massive graphs with hadoop, 2008.

[16] U. Kang, C. E. Tsourakakis, and C. Faloutsos. Pegasus: A
peta-scale graph mining system. ICDM, 0:229–238, 2009.

[17] D. Liben-Nowell and J. Kleinberg. The link prediction problem
for social networks. In CIKM, pages 556–559, 2003.

[18] J. Lin and C. Dyer. Data-Intensive Text Processing with
MapReduce. Morgan & Claypool Publishers, 2010.

[19] J. Lin and M. Schatz. Design patterns for efficient graph
algorithms in mapreduce. In MLG, pages 78–85, 2010.

[20] F. McSherry. A uniform approach to accelerated pagerank
computation. In WWW, pages 575–582, 2005.

0

100

200

300

400

500

600

Adaptive Theta=1 Theta=3

M
a

ch
in

e
 T

im
e

 (
h

o
u

r)

Theta Assignment

AggWalk

MergeSeg

GenSeg

Figure 8: Machine Time vs. {θi}i

0

0.5

1

1.5

2

2.5

0 5 10 15 20

C
lo

ck
 T

im
e

 (
H

o
u

r)

lambda

Doubling SQRT

Figure 9: Clock Time vs. Walk

Length

0

5

10

15

20

25

0 500 1000 1500 2000 2500

C
lo

ck
 T

im
e

(H
o

u
r)

Machine Time (Hour)

Rounding Doubling

Figure 10: Clock Time vs. Machine

Time

[21] A. Y. Ng, A. X. Zheng, and M. I. Jordan. Stable algorithms for
link analysis. In SIGIR, pages 258–266, 2001.

[22] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins.
Pig latin: a not-so-foreign language for data processing. In
SIGMOD, pages 1099–1110, 2008.

[23] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank
citation ranking: Bringing order to the web. Technical report,
Stanford Digital Library Technologies Project, 1998.

[24] D. Rafiei and A. O. Mendelzon. What is this page known for?
computing web page reputations. Comput. Netw.,
33(1-6):823–835, 2000.

[25] T. Sarlós, A. A. Benczúr, K. Csalogány, D. Fogaras, and
B. Rácz. To randomize or not to randomize: space optimal
summaries for hyperlink analysis. In WWW, pages 297–306,
2006.

[26] H.-c. Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker.
Map-reduce-merge: simplified relational data processing on
large clusters. In SIGMOD, pages 1029–1040, Beijing, China,
2007. ACM.

9. APPENDIX

9.1 Proof of Lemma 1

Proof. η ∈ T ⌈λ/θ⌉, so η = T
⌈λ/θ⌉
x for some x ≥ 0. We

prove the lemma by induction on x. For x = 0, the lemma
follows from the definition of GenSeg(G,λ, θ). Now, we as-

sume the result for η = T
⌈λ/θ⌉
x and prove it for η′ = T

⌈λ/θ⌉
x+1 .

First, for u ∈ V and 1 ≤ i ≤ η′, we prove that W [u, i, η′]
is a proper random walk. If i = η+1

2
, then W [u, i, η′] =

W [u, i, η] which is, by the inductive hypothesis, a proper
random walk. So, assume i < η+1

2
. Then, W [u, i, η′] =

W [u, i, η].Append(W [v, η− i+1, η]) where v = E[u, i, η]. By
the inductive assumption, W [u, i, η] and W [v, η − i + 1, η]
are proper random walks. Furthermore, since i 6= η − i + 1
(because, by assumption, i < η+1

2
), these random walks

are independent. Therefore, W [u, i, η′] is composed of two
proper and independent random walks, and is hence a proper
random walk itself.

Next, we prove, for 1 ≤ i 6= j ≤ η′, W [u, i, η′] and
W [v, j, η′] are independent. We consider two cases:

1. max{i, j} = η+1
2

. Assume max{i, j} = i (the other case

is symmetric). Then W [u, i, η′] = W [u, i, η], j 6= η+1
2

(be-
cause, j 6= i), and hence

W [v, j, η′] = W [v, j, η].Append(W [x, η − j + 1, η])

where x = E[v, j, η]. However, from the inductive hypoth-
esis, since i 6= j and i 6= η − j + 1, we know W [u, i, η]
is independent from both W [v, j, η] and W [x, η − j + 1, η].
Thus, W [u, i, η′] is independent from W [v, j, η′], as desired.
2. i, j < η+1

2
. Assume i < j. Then,

W [u, i, η′] = W [u, i, η].Append(W [z, η − i+ 1, η])

W [v, i, η′] = W [v, i, η].Append(W [x, η − j + 1, η])

Where z = E[u, i, η], x = E[v, j, η]. But, since i < j <
η+1
2

< η−j+1 < η−i+1 bothW [u, i, η] andW [z, η−i+1, η]
are independent from both W [v, j, η] and W [x, η− j + 1, η].
Thus, W [u, i, η′] is independent from W [v, j, η′], as desired.

So, in either case, W [u, i, η′] is independent fromW [v, j, η′].
This finishes the inductive argument and hence the proof.

9.2 Proof of Lemma 2

Proof. We prove the result by induction on η. If η =

T
⌈λ/θ⌉
0 , then the claim is obvious, by the definition of the

GenSeg(G,λ, θ) algorithm. For the inductive step, assuming

the claim to be true for η = T
⌈λ/θ⌉
j , one can easily prove it for

η′ = T
⌈λ/θ⌉
j+1 , by separately considering the two cases of odd

and even η, and using the recurive definition of W [u, ·, η′] in
each case. We omit the details for the sake of space.

9.3 Proof of Lemma 4

Proof. For any z ∈ N, ⌊ z+1
2

⌋ ≤ z, so the sequence is

monotone decreasing. Assume 2κ ≤ η < 2κ+1, and that
the base 2 representation of η is η =

∑κ
r=0 br2

r. Then, one
can prove by induction that for j ≥ 0: T η

j = maxi<j{bi} +∑κ
r=j br2

r−j . Then, we consider two cases:

1. η = 2κ: then max0≤i≤κ−1{bi} = 0, and we get T η
κ = 1,

while T η
κ−1 = 2 > 1, which, together with the monotone

decreasing property of the sequence, gives |T η| = 1 + κ =
1 + ⌈log2 η⌉.
2. η > 2κ: then max0≤i≤κ−1{bi} = 1, and we get T η

κ+1 =
1, while T η

κ = 2 > 1, which, together with the monotone
decreasing property of the sequence, gives |T η| = κ + 2 =
1 + ⌈log2 η⌉

