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Abstract
A Bayesian model is based on a pair of probability distributions,
known as the prior and sampling distributions. A wide range of
fundamental machine learning tasks, including regression, classi-
fication, clustering, and many others, can all be seen as Bayesian
models. We propose a new probabilistic programming abstraction,
a typed Bayesian model, based on a pair of probabilistic expressions
for the prior and sampling distributions. A sampler for a model is
an algorithm to compute synthetic data from its sampling distribu-
tion, while a learner for a model is an algorithm for probabilis-
tic inference on the model. Models, samplers, and learners form a
generic programming pattern for model-based inference. They sup-
port the uniform expression of common tasks including model test-
ing, and generic compositions such as mixture models, evidence-
based model averaging, and mixtures of experts. A formal seman-
tics supports reasoning about model equivalence and implemen-
tation correctness. By developing a series of examples and three
learner implementations based on exact inference, factor graphs,
and Markov chain Monte Carlo, we demonstrate the broad applica-
bility of this new programming pattern.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Patterns

Keywords Bayesian reasoning, machine learning, model-learner
pattern, probabilistic programming

1. Introduction
Background: Bayesian Models and Inference We give the sim-
ple, general structure of a Bayesian model (see MacKay (2003) for
instance); many examples follow later in the paper. Let y be the
output of the model, such as the object to be predicted or observed,
and let x be any input information on which to condition, such as
the feature vector in classification or regression. Let w be the pa-
rameters of the model and let h be the hyperparameters. The key
ingredients of a Bayesian model are the two conditional probabil-
ity distributions:

• the prior distribution p(w|h) over the parameters;
• the sampling distribution p(y|x,w) over the output.
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The parameters w parameterize the sampling distribution over the
output, while the hyperparameters h parameterize the prior distri-
bution over the parameters.

Given training data d = (x,y), we obtain by Bayes’ rule expres-
sions for computing the following distributions:

• the posterior distribution p(w|d,h);
• the posterior predictive distribution p(y′|x′,d,h), assuming

that (x′,y′) are independent from and identically distributed
as (x,y).

This fundamental Bayesian model represents a wide variety
of machine learning tasks. There are also a great many machine
learning algorithms for probabilistic inference, that is, for comput-
ing exactly or approximately the posterior p(w|d,h), and for using
p(y′|x′,d,h) to make predictions.

Background: Probabilistic Programming for Inference Prob-
abilistic programming language systems allow automatic gener-
ation of bespoke machine-learning algorithms. Such systems in-
clude AutoBayes (Schumann et al. 2008), Alchemy (Domingos
et al. 2008), BUGS (Gilks et al. 1994), Church (Goodman et al.
2008), Csoft (Winn and Minka 2009), FACTORIE (McCallum
et al. 2009), Figaro (Pfeffer 2010), Fun (Borgström et al. 2011),
HANSEI (Kiselyov and Shan 2009), HBC (Daumé III 2008),
IBAL (Pfeffer 2001), Probabilistic cc (Gupta et al. 1999), PFP (Er-
wig and Kollmansberger 2006), and Probabilistic Scheme (Radul
2007), amongst others.

The user writes a short probabilistic program, often embedded
within a larger conventional program, and the system produces an
algorithm for learning distributions given by the probabilistic pro-
gram. Hence, probabilistic programming saves development costs
compared to the alternative of writing the inference algorithm from
scratch. Probabilistic programming is more flexible than the alter-
native of relying on a fixed algorithm for a particular task, as one
can easily compose, refactor, and write variations of models. On
the other hand, for some tasks a fixed algorithm may be more ef-
ficient, but much progress is being made on inference engines for
probabilistic programs.

Still, the current practice of probabilistic programming is low-
level, irregular, and unstructured. Probabilistic programs represent
Bayesian models, but simply intermingle the code for defining pa-
rameters, predicting outputs, observing data, and so on. The ab-
sence of such structure is a missed opportunity. For example, in our
own experience with Fun, we have over a dozen samples, but very
little code re-use even though each sample performs similar tasks
such as training, parameter learning, and prediction. We also dupli-
cate code for the task of testing a model by sampling parameters,
generating synthetic data from the predictive distribution, and then
comparing with the outcome of learning the parameters from the



synthetic data. Moreover, there is repetition of common probabilis-
tic patterns such as constructing mixture models. Other probabilis-
tic programming systems share these problems.

Our Proposal: The Model-Learner Pattern The central idea of
the paper is to add structure and code re-use to probabilistic pro-
gramming by representing a Bayesian model by a generic type
Model<TH,TW,TX,TY>. A value of this type is a record contain-
ing a hyperparameter together with probabilistic expressions for the
prior and sampling distributions. The type parameters correspond
to the constituents of a Bayesian model: hyperparameters h : TH,
parameters w : TW, inputs x : TX, and outputs y : TY. The aim of
the model-learner pattern is to make construction, use, and re-use of
models easier (rather than to make inference more efficient). We are
aware of no probabilistic system that encourages writing Bayesian
models in a generic format.

Common patterns of constructing Bayesian models can be writ-
ten as functions on these typed models. Given any model, we can
derive a sampler object, which has general methods to draw sam-
ples from the prior and sampling distributions, for test purposes.
Given any model and a suitable algorithm, we can derive a learner
object, which has general methods to train on data, and to compute
the posterior distribution and posterior predictive distributions.

Fun We evaluate the model-learner pattern by developing the
idea in detail using Fun (Borgström et al. 2011), a probabilistic lan-
guage embedded within F#, a dialect of ML for .NET. (The model-
learner pattern can be developed in other probabilistic languages
too, with or without types, but Fun has both a precise formal seman-
tics and an efficient implementation.) As background, Section 2 re-
calls the syntax, type system, and informal semantics of Fun.

Model-Learner Pattern, and a Reference Learner Section 3 de-
scribes our notions of models, samplers, and learners using Fun,
independently of any particular implementation of probabilistic in-
ference. Theorem 1 asserts that the reference learner does indeed
compute the posterior and posterior predictive distributions.

Learners based on Exact Inference and Factor Graphs We
present in Section 4 a learner for discrete models that uses Al-
gebraic Decision Diagrams (ADDs) as a compact representation of
joint distributions. Theorem 2 shows correctness of the ADD back-
end. We show by example that Bayesian networks can be presented
as models, and solved using ADDs, with performance comparable
to other systems. Section 5 describes inference using probabilistic
graphical models in Infer.NET (Minka et al. 2009). We describe
our typed API for inferring distributions using Infer.NET.

Theory We enhance the previous semantics of Fun. The original
version of Fun and its semantics (Borgström et al. 2011) did not
include sums or observations on composite types, did not describe
a semantics of Fun in the probability monad, and did not consider
how to compute a density function for a probabilistic expression.
In Section 6, we recall the measure-transformer semantics of Fun
from previous work (Borgström et al. 2011). We extend Fun and
the measure-transformer semantics with sum types, and give an in-
ductive definition for observations on composite types. We identify
a normal form with a single outermost observation, Theorem 3, en-
abling a semantics for many Fun expressions using the standard
probability monad. These results provide a firm foundation for our
semantics of the model-learner pattern.

Generic Mixtures Section 7 shows how generic compositions
such as mixture models, evidence-based model averaging, and mix-
tures of experts can be seen as model combinators, that is, F# func-
tions for producing models from models. Fun itself is first-order
in the sense that functions are not values, but our combinators are
higher-order functions in the host language F#. Theorem 4 shows

that we can compute the evidence for a model (a measure of how
well the model fits the observed data) using a simple if-expression,
enabling a simple definition of these combinators and setting us
apart from many other probabilistic languages.

Third Learner: via Markov chain Monte Carlo In Section 8,
we develop the theory and implementation of a learner based on
Markov chain Monte Carlo (MCMC) techniques. This learner is
built on Filzbach (Purves and Lyutsarev 2012), a generic MCMC
system. Given training data d = (x,y), Bayesian MCMC compu-
tations explore different values for parameter w, and for each w
require us to compute the density of the posterior function, that is,
p(w|d,h). Hence, to implement a learner, we need to compute the
density of a probabilistic expression. We present a algorithm based
on the direct symbolic evaluation of a probabilistic expression with
only deterministic let bindings, verify its correctness as Theorem 5,
and report our implementation. With our method, the user provides
only a model, and our system automatically computes the density
of the posterior; hence, we save the user effort compared to existing
practice with Filzbach (and other MCMC systems) where the user
provides code for both the sampling distribution and the density
calculation.

Table of Model Types Table 1 at the end of the paper summa-
rizes our collection of typed models. Our examples demonstrate
that a wide range of tasks, including regression, classification, topic
modelling, all fit the model-learner pattern. All our example models
have been tested via at least one of our three learner backends. Our
Infer.NET learner generates code of the same form as one would
execute directly, so there is no performance penality. Our initial
Filzbach learner used an interpretive log-posterior function, which
was much less efficient than typical log-posterior functions written
in C. Our current implementation now uses run-time code gener-
ation to compile the log-posterior function, yielding performance
competitive with the C-code; further gains may be achieved by run-
time specialization of this function to the data at hand. Our practical
examples are evidence that a wide range of machine learning tasks
are executable using the model-learning pattern, with no loss in
performance in principle. but with the advantage of automatic syn-
thesis of test data from the model, and in the case of MCMC-based
systems such as Filzbach, the automatic construction of the density
function.

Section 9 discusses related work and Section 10 concludes.

Contributions of the Paper The new conceptual insight is that
code-based machine learning can be structured around typed
Bayesian models, which are records containing a hyperparame-
ter together with probabilistic expressions for prior and sampling
distributions. Our specific technical contributions:

• Definition of a type of Bayesian models, with combinators for
compositionally constructing models, and operations to derive
samplers and learners from an arbitrary model.
• Many Bayesian examples expressed as such executable models.
• A formal semantics for models, learning, and prediction in

terms of Fun, and its semantics using measure transformers and
the probability monad.
• Learners based on Algebraic Decision Diagrams, message-

passing on factor graphs, and MCMC.

Our generic format for models, and generic learner and sampler
interfaces have several advantages over conventional probabilistic
programming. An end-user may assemble new models from pre-
existing models and combinators, without writing models from
scratch. Our API is accessible from other languages such as C#. It
is easy to add a new inference algorithm as a new learner. Finally,
we enable generic programming for code re-use.



Most of the listings in the paper are directly imported from our
F# code, and are a mixture of quoted probabilistic Fun code and
deterministic functions in full F#.

A full version with additional details and proofs is available
(Gordon et al. 2013).

2. Fun: Probabilistic Expressions (Review)
We recall the core calculus Fun (Borgström et al. 2011), enriched
here with sum types to support the normal form of Section 6.
Fun is a first-order functional language, without recursion. Our
implementation efficiently supports a richer language with arrays
and array comprehensions, and Vector and Matrix types, whose
semantics can be seen as shorthands for constructs in this core.

We let c range over constant data of base and unit type, n over
integers and r over real numbers. We write ty(c) = t to mean that
constant c has type t.

Values and Types of Fun:
U,V ::= x | c | (V,V ) | inl V | inr V value
a,b ::= int | real base type
t,u ::= unit | (t1 ∗ t2) | (t1 + t2) compound type

Let bool , unit+ unit. We let Vt be the set of closed values of
type t (real numbers, integers, and so on). Semantically we consider
real to be the reals, but our implementation uses double-precision
floats. We assume a collection of deterministic functions on these
types, including arithmetic and logical operators, and fst and snd
projections on pairs. Each function f of arity n has a signature of
the form val f : t1 ∗ · · · ∗ tn → tn+1. We assume standard families
of primitive probability distributions of type PDist〈t〉, such as the
following.

Distributions: Dist : (x1 : t1 ∗ · · · ∗ xn : tn)→ PDist〈t〉
Bernoulli : (bias : real)→ PDist〈bool〉
Beta : (a : real∗b : real)→ PDist〈real〉
Gaussian : (mean : real∗prec : real)→ PDist〈real〉
Gamma : (shape : real∗ scale : real)→ PDist〈real〉

A Bernoulli distribution is a biased coin flip; the bias lies in the unit
interval [0,1] and is the probability of true. A Beta distribution,
often used as a prior distribution on the bias of a Bernoulli distri-
bution, is a distribution on the unit interval; when a = 1 and b = 1,
it is the uniform distribution on the unit interval. A Gaussian dis-
tribution is parameterized by its mean and precision; the standard
deviation σ follows from the identity σ2 = 1/prec. A Gamma dis-
tribution, often used as a prior distribution on the precision of a
Gaussian distribution, is a distribution on the positive reals.

The expressions of Fun are in a syntax akin to administrative
normal form, with let-expressions for sequential composition.

Expressions of Fun:
M,N ::= expression

V value
f (V1, . . . ,Vn) deterministic application
let x = M in N let (scope of x is N)
match V with inl x : M

| inr y : N
matching (scope of x is M,

scope of y is N)
random(Dist(V )) primitive distribution
observe f (V1, . . . ,Vn) observation
fail failure

We rely on several standard syntactic conventions. We write if V
then M else N for match V with inl : M | inr : N. We write
M;N for let x = M in N when x is not free in N. Although formally

Fun uses administrative normal form, we often allow arbitrary
expressions M in places where values V are expected, assuming
the insertion of suitable let-expressions. We allow arbitrary length
tuples, formed by multiple pairings. We make use of records, and
arrays and array comprehensions, where the size of each array
is known statically; we consider operations on records and on
statically-sized arrays to be reducible to operations on tuples.

Observation and failure expressions represent conditioning. We
usually write observations in the form observe f (V ), where V is
short for V1, . . . ,Vn. Such an observation expresses (unnormalized)
conditioning on the event that the indicator function f (V ) yields
a zero, defined as a closed value where every instance of c is 0.
The primitive fail represents an impossible event. It has the same
meaning as an observation such as observe(1+1) whose indicator
function cannot yield zero. Note that observe is a no-op on bool,
since any Boolean is a zero according to the above definition. We
write observe (x = V ) for observe (x−V ) when V = (c1, . . . ,cn)
and x−V is the component-wise difference.

We write Γ ` M : t to mean that in type environment Γ = x1 :
t1, . . . ,xn : tn (xi distinct) the expression M has type t. We write
� for the empty type environment. Apart from the following, the
typing rules are standard.

Selected Typing Rules: Γ `M : t

(FUN OBSERVE)
Γ ` f (V ) : t

Γ ` observe f (V ) : unit

(FUN RANDOM)
Dist : (x1 : t1 ∗ · · · ∗ xn : tn)→ PDist〈t〉

Γ `V : (t1 ∗ · · · ∗ tn)

Γ ` random(Dist(V )) : t

Fun is designed as a subset of F#, so we represent Fun expressions
using F#’s features for reflection (Syme 2006): quotation, evalua-
tion, and antiquotation. We represent a closed term M of type t by
the F# quotation <@ M @> of F# type Expr<t>. More generally,
if �,x1 : t1, . . . ,xn : tn ` M : t we represent M by the F# quotation
<@ fun (x1, . . . ,xn)→ M @>. Suppose E is a quotation: E.Eval
evaluates E to its value, and inside a quotation, the % symbol de-
notes antiquotation—the expression (%E) embeds the expression
E within the quotation.

The semantics of Fun is detailed in Section 6; as usual, for pre-
cision concerning mixes of discrete and continuous probabilities,
we turn to measure theory. Formally, the semantics of a closed Fun
expression M is a finite measure M [[M]] over its return type. A sub-
tlety is that the semantics may or may not be a probability distribu-
tion, that is, one whose total measure is 1. Still, until Section 6, we
think simply of all Fun expressions as defining probability distri-
butions (implicitly normalising the measure), and use conventional
mathematical notations for probability (as in the start of Section 1).
We assume some familiarity with basic concepts such as joint dis-
tributions and marginalization.

Let an inference engine be an algorithm that given a quotation of
a closed Fun expression M of type t returns a possibly approximate
representation of the distribution M [[M]]. We can represent an
inference engine as a function Expr<t>→DistT where DistT is
the type of the representation.

3. Models, Samplers, and Learners
This section explains the central idea of the paper: that the prior
and sampling distributions constituting a Bayesian model may be
represented by a pair of typed Fun expressions. We introduce the
distributions using conventional mathematical notations, alongside
our formal notation using Fun expressions. We begin by explaining
the idea for a specific example, and then generalize.



3.1 A Specific Bayesian Model: Linear Regression in Fun
As outlined in the introduction, a Bayesian model consists of a
prior distribution p(w|h) over parameter w, given hyperparameter
h, together with a sampling distribution p(y|x,w) over output y,
given input information x and parameter w. Viewed as a function
of the parameters w, with y fixed, the sampling distribution is also
known as the likelihood function.

The prior distribution represents our uncertain beliefs about
the parameters, given hyperparameter h. The sampling distribution
represents our view of how output y is produced from input x given
parameter w.

We consider the problem of linear regression, that is, of finding
the best fitting line given a set of points. Our input data are d =
(x,y) where x = [|x1; . . . ;xn|] and y = [|y1; . . . ;yn|] are arrays of
coordinates. Intuitively, we fit a noisy line yi = Axi +B+ ε to the
data, where the noise ε is drawn from a Gaussian distribution with
mean 0 and precision Prec.

The expression prior h below expresses our initial uncertainty
about the parameters A, B, and Prec of the noisy line, where hyper-
parameter h provides parameters for these distributions. (A stan-
dard alternative to a constant hyperparameter is to consider a prior
over the hyperparameter, known as the hyperprior; we discuss hy-
perpriors in the full version.) The probabilistic expression gen(w,x)
defines how to generate each yi from xi and parameters w. (In the
Fun code below, we use record and array notations which are even-
tually treated as operations on tuples.)

The Prior and Sampling Distributions:
let prior h = { A = random (Gaussian(h.MeanA, h.PrecA))

B = random (Gaussian(h.MeanB, h.PrecB))
Prec = random (Gamma(h.Shape, h.Scale)) }

let gen (w,x) = [| for xi in x→
(w.A ∗ xi) + w.B + random(Gaussian(0.0, w.Prec)) |]

These expressions formalize the prior and sampling distributions.
The prior distribution p(w|h) is the density of M [[prior h]] at
w, while the sampling distribution p(y|x,w) is the density of
M [[gen(w,x)]] at y. We assemble the two components of our model
in the function predictive below, to obtain the prior predictive dis-
tribution p(y|x,h), the density of M [[predictive(h,x)]] at y.

The Prior Predictive Distribution:
let predictive (h,x) = let w = prior h in gen(w,x)

The semantics of the let-expression is obtained by forming the joint
distribution of M [[prior h]] and M [[gen(w,x)]], and marginalizing
with respect to M [[gen(w,x)]]. Formally, the semantics is obtained
as the following integral.

p(y|x,h) =
∫

p(y|x,w)p(w|h)dw (1)

We may sample from the prior predictive distribution by choosing
h and input x as shown by the following F# output.

val h = {MeanA=0.0; PrecA=1.0; MeanB=5.0; PrecB=0.3;
Shape=1.0; Scale=1.0}

val x = [|0.0; 1.0; 2.0; 3.0; 4.0; 5.0|]

We first sample w from the prior distribution w = prior h, and then
the output y = gen(w,x).

val w = {A = 0.70; B = 4.33; Prec = 0.58;} // sampled prior(h)
val y = [|4.85; 5.19; 7.36; 4.49; 8.10; 8.06|] // sampled gen(w,x)

We express the posterior and posterior predictive distributions as
Fun expressions, using observe to condition on the data (x,y).

The Posterior and Posterior Predictive Distributions:
let posterior (h,x,y) = let w = prior h in observe (y=gen(w,x)); w
let posterior predictive(h,x,y,x’) =

let w = posterior (h,x,y) in gen(w,x’)

Given observed data d = (x,y), via Bayes’ Rule we obtain a poste-
rior distribution, that is, the prior in light of the data.

p(w|d,h) = p(y|x,w)p(w|h)
p(d|h)

(2)

The normalization constant p(d|h)=
∫

p(y|x,w)p(w|h)dw is known
as the evidence or marginal likelihood. We also obtain the (poste-
rior) predictive distribution:

p(y′|x′,d,h) =
∫

p(y′|x′,w)p(w|d,h)dw (3)

Using a particular inference engine for Fun we may obtain concrete
representations of the normalized distributions. In the case of our
running example, we try to infer the parameters used to generate
our sample data y. By running our Infer.NET implementation of
Fun to compute the distribution posterior(h,x,y) we obtain the
following approximations.

{ A = Gaussian(0.5576, 0.05089); // actual A=0.70
B = Gaussian(4.936, 0.404); // actual B=4.33
Prec = Gamma(1.695, 0.46)[mean=0.78];} // actual Prec=0.58

Moreover, suppose we have new input x′ = [|6.0;7.0;8.0;9.0|].
By running our Infer.NET implementation of Fun to compute the
distribution posterior predictive(h,x,y,x′) we obtain the following.

[| Gaussian(8.282, 0.1858); Gaussian(8.839, 0.1654);
Gaussian(9.397, 0.1469); Gaussian(9.954, 0.1303); |]

To summarize, we modelled a noisy line by distributions written as
the Fun expressions prior h and gen(w,x). We ran these expressions
to draw samples from the predictive distribution, so as to create a
synthetic dataset d = (x,y). We wrote Fun expressions for the pos-
terior and posterior predictive distributions, and ran an inference
engine to learn the posterior and to make predictions given fresh
data. These tasks are the essence of Bayesian reasoning. The re-
mainder of this section proposes generic types and interfaces for
these tasks.

3.2 Typed Bayesian Models in General
In general, let a typed Bayesian model be a value of the record type
Model<TH,TW,TX,TY>, where the type parameters correspond
to the different data of a Bayesian model: hyperparameters h : TH,
parameters w : TW, inputs x : TX, and outputs y : TY.

Typed Bayesian Model:

type Model<’TH,’TW,’TX,’TY> =
{ HyperParameter: ’TH

Prior: Expr<’TH→ ’TW>
Gen: Expr<’TW ∗ ’TX→ ’TY> }

Given a model m, the Fun expression h = m.HyperParameter is
the hyperparameter, the Fun expression (%m.Prior) h is the prior
distribution p(w|h), and the Fun expression (%m.Gen)(w,x) is the
sampling distribution p(y|x,w). (We treat F# expressions such as
(%m.Prior) h as being closed Fun expressions, although strictly
speaking they are F# expressions that evaluate via antiquotation
and function application to closed Fun expressions.)

The following module packages our linear regression code as
a typed model M1. We use F# quotations <@. . . @> to treat the
bodies of prior and gen above as Fun expressions.



Linear Regression Model:

module LinearRegression =
type TH = {MeanA: real; PrecA: real; ... }
type TW<’TA,’TB,’TN> = {A:’TA; B:’TB; Prec:’TN}
type TX = real[]
type TY = real[]
let M1 = { HyperParameter = h

Prior = <@ fun h→prior h @>
Gen = <@ fun (w,x)→gen(w,x) @> }

: Model<TH,TW<real,real,real>,TX,TY>

3.3 Sampling Parameters and Data
Given any model m, with h = m.HyperParameter, we construct a
new sampler S by sampling w from p(w|h), and providing the
methods:

• S.Parameters : TW is w sampled from the prior p(w|h);
• S.Sample(x) : TY samples the sampling distribution p(y|x,w).

The Sampler Interface:

type ISampler<’TW,’TX,’TY> = interface
abstract Parameters: ’TW
abstract Sample: x:’TX→ ’TY

end

Hence, a sampler draws from the prior predictive distribution. We
omit our sampler code, which uses Eval to evaluate quotations.

3.4 Learning Parameters and Making Predictions
Given any model m, with h = m.HyperParameter, and an inference
engine, we may construct a new learner L with the following
interface.

The Learner Interface:

type ILearner<’TDistW,’TX,’TY,’TDistY> = interface
abstract Train: x:’TX ∗ y:’TY→unit
abstract Posterior: unit→ ’TDistW
abstract Predict: x:’TX→ ’TDistY

end

The type ’TDistW represents distributions over parameter ’TW,
while the type ’TDistY represents distributions over output ’TY.
Different learners may use different representations. Our ADD
learner exactly represents distributions over Booleans using an
ADD data structure, while our Infer.NET learner yields approxi-
mate parameters of the marginal distributions of each dimension of
the distribution and our MCMC learner represents a distribution as
an ensemble of samples.

We can think of a Fun quotation as an exact representation of
a conditional distribution on its return type, independent of any
inference engine. Using this idea, we present below our reference
learner, which captures the intended exact semantics of our API,
by assembling suitable quotations. The mutable variable d takes
as values Fun expressions that represent the current parameter
distribution, initially the posterior. Each call to Train updates d by
conditioning with the training data. Calls to Posterior and Predict
return suitable quotations for the posterior and posterior predictive
distributions. (Compare with the posterior and posterior predictive
functions in Section 3.1.)

Reference Learner L for Model m:

let h = m.HyperParameter
let d = ref <@ (%m.Prior) h @>
{ new ILearner<Expr<’TW>,’TX,’TY,Expr<’TY>> with

member l.Train(x:’TX,y:’TY) =
d := <@ let w = (% !d) in

observe(y = ((%m.Gen) (w,x)))
w @>

member l.Posterior():Expr<’TW> = (!d)
member l.Predict(x:’TX):Expr<’TY> =

<@ let w = (% !d) in (%m.Gen) (w,x) @> }

Theorem 1. After n calls to Train with arguments d = {(xi,yi)}n
i=1,

• L.Posterior represents the posterior distribution p(w|d,h);
• L.Predict(x′) represents the predictive distribution p(y′|x′,d,h).

Our reference learner code is in fact the basis of our exact
learner based on ADDs. Our other learners use numeric represen-
tations of intermediate distributions, rather than a quotation.

For example, a generic usage of our samplers and learners is
to test whether an inference algorithm can recover known param-
eters from synthetic data. Consider a learner L constructed from
a model m, hyperparameter h, and some inference engine. Given
some input x, we may test the effectiveness of L by constructing a
new sampler S for m and h, and running the following.

let w: TW = S.Parameters // fixed parameters
L.Train(x,S.Sample(x)) // train on synthetic data
let wD: TDistW = L.Posterior() // inferred distribution on w
... // test how probable w is according to wD

We abstract this pattern (as a function) in Section 3.6.

3.5 Generic Combinator for IID Models
If we assume that the data is a collection d = {(xi,yi)}n

i=1 of
identically and independently distributed (IID) observations, then
the sampling distribution factorizes according to:

p({yi}n
i=1|{xi}n

i=1,w) =
n

∏
i=1

p(yi|xi,w) (4)

Hence, we arrive at our first model combinator, IIDArray. Given a
model that sends TX to TY, IIDArray builds a new model with the
same prior, but which sends TX[] to TY[]. Learning with any model
built from this combinator is an instance of batch learning, where
multiple data items are processed simultaneously. (In the code
below, we use an F# quotation of a fun-abstraction to represent
a Fun expression with two free variables w and xs, as described in
Section 2.)

Combinator to Lift Model to Act on Arrays:

module IIDArray =
let M(m:Model<’TH,’TW,’TX,’TY>) =
{HyperParameter = m.HyperParameter
Prior = m.Prior
Gen = <@ fun (w,xs)→ [|for x in xs→ (%m.Gen)(w,x)|] @> }

: Model<’TH,’TW,’TX[],’TY[]>

For example, M2 below is linear regression on a single (x,y) point,
and M3, obtained by our combinator, is equivalent to our original
model M1. Models in the style of M2 are useful because we may
assemble them with other combinators before applying IIDArray, as
shown in Section 7.



Linear Regression, Again and Again:

let M2 =
{ HyperParameter = h

Prior = <@ fun h→prior h @> // as before
Gen = <@ fun(w,x)→
(w.A ∗ x) + w.B + random(Gaussian(0.0,w.Prec)) @>

}: Model<TH,TW<real,real,real>,real,real>
let M3 = IIDArray.M(M2)

3.6 Generic Loopback Testing
A common method to test the effectiveness of a learner on a par-
ticular model is to generate IID sample data for different xi for a
fixed w, and then evaluate the posterior distribution for w obtained
by training on that data. We here give a generic procedure for such
a loopback test.

Functions for loopback testing:

let test (toLearner: Model<’TH,’TW,’TX,’TY>→
ILearner<’DistW,’TX,’TY,’DistY>)

(m:Model<’TH,’TW,’TX,’TY>)
(x:’TX) : ’TW ∗ ’DistW =

let L = toLearner(m)
let S = Sampler.FromModel(m)
let y = S.Sample(x)
do L.Train(x,y)
(S.Parameters,L.Posterior())

let testMany l m xs = test l (IIDArray.M(m)) xs

Since the details of evaluating the inferred posterior depend on
its learner-specific representation, test simply returns the parame-
ters and posterior distribution to the caller. Notice how testMany
is constructed by a simple application of the model combinator
IIDArray.M.

Here is an application of testMany to our running example,
linear regression, using the Infer.NET learner we describe below:

Loopback testing of linear regression:

let toL m = InferNetLearner.LearnerFromModel(m,Marginalize)
let (w,dW) = testMany toL M2 [| −100.0 .. 1.0 .. 100.0 |]

On one test run, we obtained:

w= { A = 0.3477837603;
B = −27.13593566;
Prec = 2.103660906;}

dW={ A = Gaussian(0.3479, 1.467e06);
B = Gaussian(−27.09, 435.0);
Prec = Gamma(99.74, 0.02203)[mean=2.197];}

Here the learner has inferred close approximations to A, B and Prec,
with very high precision especially for A.

4. A Learner using Exact Inference
The exact learner uses symbolic evaluation of Boolean functions
representing discrete distributions in order to give an answer that
is either an exact marginal of each variable or the exact joint
distribution. Let Bernoulli Fun be the finite fragment of Fun where
the only sum type is bool = unit + unit, the only matches are
conditionals, there are no instances of observe, and every random
expression takes the form random (Bernoulli(c)) for some real
c ∈ (0,1). The semantics of a closed Bernoulli Fun program is a
sub-probability distribution over its discrete return type, that is, a
measure that may sum to less than 1.

4.1 Inference by Symbolic Evaluation of Programs
The procedure POST symbolically evaluates a Bernoulli Fun ex-
pression M, and computes the posterior sub-distribution over the
result of M given a valuation of its free variables. The algorithm
relies on the following notations. We write let x : t = N in M
for the corresponding untyped let-expression when Γ ` N : t. We
write ite(v =U,VT ,VF ) for the conditional statement that returns
VT when v = U and VF otherwise. A valuation σ is a finite map
from variables to closed values; A Γ-valuation σ is a finite map
x1 7→V1, . . . ,xn 7→Vn where each Vi ∈Vti . We let � denote the empty
valuation, and write S(Γ) for the set of Γ-valuations. If Γ `V : t and
σ is a Γ-valuation, V σ is the closed value resulting from substitut-
ing σ(x) for x in V for all x ∈ dom(Γ). Given an open expression
M, where Γ `M : t, POST is a function from valuations σ ∈ S(Γ)
to discrete sub-probability distributions over Vt . By uncurrying, the
semantics of M can also be expressed as a function from S(Γ)×Vt
to sub-probabilities [0,1]. The algorithm POST (M) computes this
function by structural recursion on M. The POST function is a for-
ward analysis that computes the posterior distribution, and is named
by analogy with the standard post-condition computation in pro-
gram analysis.

Post Calculation POST (M) : S(Γ)×Vt → real when Γ `M : t

POST(V ) = λσ ,v.ite(v =V σ ,1,0)

POST( f (V1, . . . ,Vn)) = λσ ,v.ite(v = f (V1σ , . . . ,Vnσ),1,0)

POST(Bernoulli(r)) = λσ ,v.ite(v = true,r,1− r)

POST(if V then N1 else N2) =
λσ ,v.POST(V )[σ , true] ·POST(N1)[σ ,v] +

POST(V )[σ , false] ·POST(N2)[σ ,v]

POST(let x : t = N1 in N2) =
λσ ,v.∑u∈Vt

POST(N1)[σ ,u] ·POST(N2)[(σ ,x 7→ u),v]

POST(fail) = λ (σ , ()).0

The POST computation uses four different types of operations on
functions: (1) pointwise product, (2) pointwise sum, (3) if-then-
else, (4) summation over a variable, or existential quantification.
The operations (1) and (2) are used, for example, in the case for if,
operation (3) is used in the cases for values, deterministic functions,
and Bernoulli, and operation (4) is used in the let case. Each of
these operations is directly supported by ADD packages such as
CUDD (Somenzi 2012) and takes time proportional to the product
of the sizes of the arguments in the worst case.

Theorem 2. Let M be a Bernoulli Fun program with � `M : t. For
all values V ∈ Vt , POST(M)[�,V ] = M [[M]] {V}.
The ADD learner builds on the reference learner, calling the POST
algorithm on the Fun expression returned from its Posterior and
Predict methods. An ADD learner has the following type, where
ADD<’T> is the type of a decision diagram that maps values of
type ’T to probabilities.

: ILearner<ADD<’TW>, ’TX, ’TY, ADD<’TY>>

In our experiments, the performance of the ADD learner is com-
petitive with algorithms implemented in SamIam (Darwiche 2009).
Claret et al. (2012) report performance in detail for symbolic eval-
uation of a related imperative probabilistic language.

4.2 Example: Bayes Net for Sprinkler
The sprinkler model is a classical example of a Bayes net (Pearl and
Shafer 1995). In our variant, the model describes the conditional
probabilities of rain having fallen and the sprinkler having been on,
given that the grass is observed to be wet. In detail, given prior
distributions for rain and sprinkling, and the view that rain has a



90% chance of wetting the grass, sprinkling an 80% chance, and
some other cause a 10% chance, what is the posterior distribution
for rain and sprinkling, given that the grass is wet. We perform
inference using the ADD learner described above, yielding an exact
posterior.

Sprinkler model

module Sprinkler =
type TH = {RainH: real; SprinklerH: real}
type TW<’b> = {Rain: ’b; Sprinkler: ’b}
type TX = IsGrassWet // a unit type
type TY = bool
let M:Model<TH,TW<bool>,TX,TY> =
{HyperParameter = {RainH=0.3; SprinklerH=0.5}
Prior = <@ fun h→
{Rain = random(Bernoulli(h.RainH))
Sprinkler = random(Bernoulli(h.SprinklerH))} @>

Gen = <@ fun (w,x)→
(random (Bernoulli(0.9)) && w.Rain) ||
(random (Bernoulli(0.8)) && w.Sprinkler) ||
random (Bernoulli(0.1)) @>}

Given an ADD learner L for this model, here is the outcome of
L.Train(IsGrassWet, true);L.Posterior.

[({Rain = false; Sprinkler = false;}, 0.05777484318);
({Rain = true; Sprinkler = false;}, 0.2253218884);
({Rain = false; Sprinkler = true;}, 0.4737537141);
({Rain = true; Sprinkler = true;}, 0.2431495543)];

5. A Learner based on Factor Graph Inference
Infer.NET is a probabilistic programming system which generates
efficient, scalable inference algorithms based on message-passing
on factor graphs. We compile a Fun expression to the input format
of Infer.NET, Csoft, and perform inference (Borgström et al. 2011).

Since the original description of Fun, we have made a series
of enhancements which make the present paper possible. These
include the API described next, support for arrays, and a compiler
based on multiple transformations of the Fun expression.

5.1 Learner for Message-Passing Algorithms in Infer.NET
We describe our interface for creating learners based on Infer.NET,
but omit the details of the implementation, which rely on the exist-
ing translation from Fun to Infer.NET.

Infer.NET computes marginal posterior distributions from joint
distributions involving observed and unobserved variables. For ex-
ample, given a probabilistic program defining a joint distribution on
pairs of type bool× real, Infer.NET computes the marginal of the
first projection as a value d1 say of the distribution type Bernoulli,
and computes the approximate marginal of the second projection
as a value d2 say of type Gaussian. (Bernoulli and Gaussian are In-
fer.NET types representing the distribution as a record of its pa-
rameters.) Infer.NET uses the distribution families of the priors
on these projections as (approximate) distribution types for the
marginals. Let a marginal type G be a nesting of tuples, records
and arrays, over distribution types such as Bernoulli and Gaussian.
Let joint(G) be G with each occurrence of an Infer.NET type re-
placed with its range; for instance, joint(Bernoulli) = bool and
joint(Gaussian) = real.

We perform inference using Infer.NET using the following
function, where CompoundDistribution is a dynamically typed
value representing the composite of the marginal distributions.

Core Inference for Infer.NET Fun:
val inferDynamic: Expr<’TA→ ’TB>→

’TA→CompoundDistribution

Next, we describe use of automatic coercions to achieve better
static typing than with inferDynamic. A compound distribution
for G is a value of CompoundDistribution representing a value of
type G. A G-coercion is a function CompoundDistribution→G that
coerces a compound distribution for G to the corresponding value.

To create a learner for m : Model<TH,TW,TX,TY> we ask the
user to supply F# marginal types GW and GY such that joint(GW) =
TW and joint(GY) = TY, plus a MarginalizeModel<GW,GY>,
which is a pair of a GW-coercion and a GY-coercion. (We have
helper functions to construct these coercions, but we omit the de-
tails.) The resulting learner does approximate inference on the
model m. After each call to Train, we run inference and record
the result at marginal type GW. Calling Posterior returns the current
distribution. Calling Predict runs inference, and we return the result
at marginal type GY.

Constructing an Infer.NET Learner:
type MarginalizeModel<’GW,’GY> =
{ MarginalizePrior: CompoundDistribution→ ’GW

MarginalizeGen: CompoundDistribution→ ’GY }

val Learner: (Model<’TH,’TW,’TX,’TY> ∗ ’TH
∗ MarginalizeModel<’GW,’GY>
→ ILearner<’GW,’TX,’TY,’GY>

5.2 Example: Gaussian
Here is the model for the ubiquitous Gaussian. The parameters
are its Mean and Precision. Their priors are a Gaussian and a
Gamma. In turn, the hyperparameter consists of the parameters
for the priors. The sampling distribution simply draws from the
Gaussian, ignoring the input of type TX = unit. (A model that
ignores its input is said to be unsupervised.)

Gaussian Model:

module GaussianModel =
type GammaW<’TA,’TB> = {Shape: ’TA; Scale: ’TB}
type TW<’TA,’TB> = {Mean:’TA; Precision:’TB}
type TH = { Gaussian: TW<real,real>

Gamma: GammaW<real,real> }
let M: Model<TH,TW<real,real>,unit,real> =
{HyperParameter = {Gaussian={Mean=0.0;Precision=1.0}

Gamma={Shape=1.1;Scale=2.0}}
Prior= <@ fun h→{Mean= let m = h.Gaussian.Mean

let p = h.Gaussian.Precision
random(Gaussian(m,p))

Precision=let sh = h.Gamma.Shape
let sc = h.Gamma.Scale
random(Gamma(sh,sc))}@>

Gen= <@ fun (w,x)→ let m,p = w.Mean,w.Precision
random(Gaussian(m,p)) @> }

We obtain a learner of the following type. The subject of the
marginal type for y, Gaussian, is real, while the subject of the
marginal type for w, TW<Gaussian,Gamma>, is TW<real,real>.
(We make TW generic so it can express both these types).

: ILearner<TW<Gaussian,Gamma>,unit,real,Gaussian>

After inference, we can inspect the parameters of the inferred
Gaussian and Gamma distributions to learn the inferred mean and
variance of the data, and the remaining uncertainty thereof.



Probit is a standard binary classifier built from a Gaussian.
Its model shares the same prior, and its output is a probabilistic
Boolean dependent on its input. We use this model in Section 7.

Probit Model:

let Probit : Model<TH,TW<real,real>,real,bool> =
{HyperParameter = M.HyperParameter
Prior = M.Prior
Gen = <@ fun (w,x)→

x < random(Gaussian(w.Mean,w.Precision)) @> }

We have a range of other models including multivariate linear
regression, the Bayes Point Machine classifier (Minka 2001), the
LDA (Latent Dirichlet Allocation) topic modelling (Blei et al.
2003), and TrueSkill (Herbrich et al. 2006), but we omit the details.

6. Semantics of Models: Measures and Monads
In this section, we review the measure-transformer semantics of
Fun (Borgström et al. 2011), and extend it with sum types and ob-
servations on composite types. Based on our experience with Fun
models, their structure often includes a single outermost observe
statement. Here, we show that given a certain compatibility con-
straint on its semantics, any Fun expression can be transformed
to one with a single outermost observe, preserving the seman-
tics. As part of the proof, we show that the measure-transformer
semantics of observe-free Fun models is closely related to their
semantics when considered as programs of the stochastic lambda-
calculus of Ramsey and Pfeffer (2002). This clarifies the relation-
ship between our measure-transformer semantics and the probabil-
ity monad, in particular for programs with none or only a single
outermost observation.

6.1 Measure Transformer Semantics for Fun Expressions
In this section, we recall the measure-transformers used in Borgström
et al. (2011), and augment these with operations on sum types and
failure. We also give an inductive definition of the semantics of
observations on composite types, and recall the compositional de-
notational semantics of a Fun expression as a measure transformer,
augmented with sum types. For more explanations and intuitions,
see (Borgström et al. 2011). We conclude by introducing the no-
tion of compatible measure, and show that it is sufficient (but not
necessary) for all observations to be well-defined.

We define the measurable sets of type t, written Mt , as the
Lebesgue-measurable subsets of Vt , which in particular contains
all closed sets. We write f : t → u to mean that f is a measurable
function from type t to type u, that is, that f−1(A) ∈Mt for all
A ∈Mu. Let M t be the set of finite measures on t, that is, additive
functions from Mt to the non-negative real numbers. Let the sub-
probability distributions S t be the finite measures whose range is
contained in [0,1]. Let t  u be the set of measure transformers
from t to u, defined as the partial functions M t ⇀ M u. If Γ = x1 :
t1, . . . ,xn : tn we let range(Γ) , t1 ∗ · · · ∗ tn. We make use of the
following constructions on measures.

• The Dirac δ measure is δV (A), 1 if V ∈ A, 0 otherwise.
• Given a function f : t → u and a measure µ ∈ M t, there is a

measure µ f−1 ∈ M u given by (µ f−1)(B) , µ( f−1(B)). We
can add two measures on the same set as (µ1 + µ2)(A) ,
µ1(A)+ µ2(A). The disjoint sum (µ1 ] µ2) of two measures is
defined as (µ1]µ2)(A]B) = µ1(A)+µ2(B).
• Given a measure µ on t, a measurable set A∈Mt and a function

f : t → real, we write
∫

A f dµ or equivalently
∫

A f (x)dµ(x)
for standard (Lebesgue) integration. This integration is always
well-defined if µ is finite and f is bounded.

• Given a measure µ on t, a function D µ : t→ real is a density for
µ iff µ(A) =

∫
A(D µ)dλ for all A, where λ is the completion of

the standard measure on t (which is built by taking products and
disjoint sums of the counting measure on int and the interval
(Borel) measure on real).

The semantics of a Fun program is given in terms of the follow-
ing measure transformers, which encapsulate standard theorems in
finite measure theory.

Measure Transformer Combinators:
pure ∈ (t→ u)→ (t u)
>>> ∈ (t1 t2)→ (t2 t3)→ (t1 t3)
extend ∈ (t→ S u)→ (t (t ∗u))
observe ∈ (t→ real)→ (t t)
||| ∈ (t1 u)→ (t2 u)→ ((t1 + t2) u)
fail ∈ (t t)

To lift a pure measurable function to a measure transformer, we
use the combinator pure. Given f : t → u, we let pure f µ A ,
µ f−1(A), where µ ∈ M t and A is a measurable set from u.

To sequentially compose two measure transformers we use stan-
dard function composition, defining T >>>U ,U ◦T .

The combinator extend extends the domain of a measure
using a function yielding sub-probability distributions. We let
extend m µ AB,

∫
Vt

m(x)({y | (x,y) ∈ AB})dµ(x).
The combinator observe computes the conditional density of a

measure µ over t on the event that an indicator function p of type
t → real is zero. Note that this conditioning is unnormalized. We
consider the family of events p(x) = r where r ranges over R. We
let Br

ε be the closed ball of radius ε around r (that is, [x−ε,r+ε]),
and define µ̇[A||p = r] ∈ R (the µ-density at p = r of A) by:

Conditional Density: µ̇[A||p = r]

µ̇[A||p = r], limε→0 µ(A∩ p−1(Br
ε ))/

∫
Br

ε
1dλ if the limit exists

We define observe p µ A , µ̇[A||p = 0]. As an example, if t =
u∗ real, p = λ (x,y).(y− c) and µ has continuous density D µ then

observe p µ A =
∫
{x|(x,c)∈A}

D µ(x,c) dλ (x) (5)

and
∫
R µ̇[A||p = x]dλ (x) = µ(A). Notice that observe p µ A is

greater than µ(A) if the density at p = 0 is greater than 1, so we
cannot consider only transforming (sub-)probability distributions.

Support for sum types (new) To add support for sum types, we in-
troduce a new measure transformer. We let (T1 ||| T2) µ A, T1(X 7→
µ(X ]∅))(A)+T2(X 7→ µ(∅]X))(A). We also let fail µ A, 0.

Observations on composite types (new) The Fun language of
Borgström et al. (2011) permits observations only on atomic types.
To achieve a normal form (Theorem 3) we here extend observations
to composite types. We write obs f @u if f : t → u; then the
measure transformer obs f has type t  t. Below we let 1b , 1,
1unit , (), 1t∗u , (1t ,1u) and 1t+u , 1t . We write split p =
pure λ s.if p(s) then inl s else inr s.

Observations on Composite Types: obs f @u

obs f @real, observe f
obs f @int, split (λ s. f (s) = 0)>>> (pure id ||| fail)
obs f @unit, pure id
obs f @(u1 ∗u2), obs (snd◦ f )@u2 >>> obs (fst◦ f )@u1

obs f @(u1 +u2), split f >>>
(obs (either id λ .1u1)◦ f @u1
||| obs (either λ .1u2 id)◦ f @u2)



Observation at real type is primitive; it is trivial at unit type.
At int we fail unless f returns 0. For products, we observe
each component in turn. For sum types, we split the set of states
depending on the branch of the sum picked by f , and run the
observation in each branch. Note that observations on discrete
types yield a series of splits where some branches fail, and that
obs λ .1@int = fail.

Measure transformer semantics We can then give a composi-
tional semantics of a Fun program as a measure transformer, tak-
ing a measure over assignments to its free variables and return-
ing a joint measure over variable assignments and return value. To
bind the values of a valuation to the corresponding variables we use
pat(�) = () and pat(xs,x) := (pat(xs),x) as patterns and in return
values. Below we define the measure transformer semantics of a
program as A [[M]]xs where xs are the free variables in the program.
We use an auxiliary definition A [[M]]

y
xs for the semantics of the

program M in the scope of y. For closed terms M we obtain M [[M]]
by transforming the trivial probability measure.

Each signature val f : t1 * · · · * tn→ tn+1 means that f is a total
function with f : Vt1∗···∗tn →Vtn+1 . If Dist : t→PDist〈u〉 and V ∈Vt ,
there is a corresponding measure µDist(V ) on Vu. This measure is
a probability measure for legal values of V , and otherwise, such as
in Bernoulli(3.0), it is the zero measure.

To apply ||| below we need to lift a sum to the top level of a type.
We do this with lift1 : t ∗ (u1+u2)→ (t ∗u1)+(t ∗u2) defined as
λx,y.match y with inl z : inl(x,z) | inr z : inr(x,z).

Measure Transformer Semantics of Fun: M [[M]], A [[M]]xs µ

M [[M]] A,A [[M]]� δ() {()}×A

A [[M]]
y
xs ,A [[M]]xs,y >>> pure λ (pat(xs,y),z).(pat(xs),z)

A [[V ]]xs , pure λ pat(xs).(pat(xs),V )
A [[ f (V1, . . . ,Vn)]]xs , pure λ pat(xs).(pat(xs), f (V ))

A [[match V with inl x : M | inr y : N]]xs ,
A [[V ]]xs >>> pure lift1>>> (A [[M]]xxs |||A [[N]]

y
xs)

A [[let x = M in N]]xs ,A [[M]]xs >>> A [[N]]xxs
A [[random(Dist(V ))]]xs , extend λ pat(xs).µDist(V )

A [[observe f (V )]]xs , obs λ pat(xs). f (V )>>> A [[()]]xs
A [[fail]]xs , fail>>> A [[()]]xs

Note that A [[observe 1+ 1]]xs = A [[fail]]xs. Indeed, fail suffices
to implement all observations on discrete types (by inlining obs,
implementing split using if).

Proposition 1 (Static Adequacy).
If Γ `M : t then A [[M]]dom(Γ) ∈ range(Γ) (range(Γ)× t).

As seen above, (observe p) µ might be undefined, if its defining
limit does not exist. We here give a sufficient condition for the
limit to exist. We inductively define compatibility of a measure
with respect to all the observations in a composition of measure
transformer combinators as follows. We write µ |= T for “µ is
compatible with respect to T ”.

Compatibility: µ |= T (T ∈ t u and µ ∈ M t)
µ |= pure f µ |= extend m µ |= fail

µ1]µ2 |= T1 ||| T2 iff µ1 |= T1 and µ2 |= T2
µ |= T >>>U iff µ |= T and (T µ) |= U

µ |= observe p iff p is an affine function,
and there is ε such that D µ is continuous on p−1(B0

ε )
and p is not constant on any open subset of p−1(B0

ε ).

Proposition 2. If µ |= T , then T µ is defined.

Compatibility is not necessary for T µ to be defined:
Hybrid Measure:
let hybrid1 = if random(Bernoulli(0.5)) then 1.0

else random(Gaussian(0.0,1.0))
let hybrid2 = (random(Gaussian(0.0,r)),hybrid1)

The measure µ = M [[hybrid2]] is the average of a two-dimensional
Gaussian distribution and a line mass at y = 1.0. Here µ |=
observe λ (x,y).y, but we do not have µ |= observe λ (x,y).x
because the line x = 0.0 crosses the line mass at y = 1.0, where the
density fails to exist. However, by the definition of observe we get
(observe λ (x,y).x) M [[hybrid2]] =

√
r ·φ(0.0) ·M [[(0.0,hybrid1)]]

where φ(0.0) ≈ 0.3989 is the probability density of the standard
normal distribution at 0.0. Note that as the precision r above grows,
the weight of the resulting distribution grows, with no upper bound.

6.2 Monadic Semantics for Fun with fail
If M does not contain any occurrence of observe or fail then M
is a term in the language of (Ramsey and Pfeffer 2002) which has
a semantics using the probability monad (Giry 1982). To treat fail
we work in the sub-probability monad (Panangaden 1999), where
the set of admissible distributions µ also admits |µ| < 1 (cf. the
semantics of Barthe et al. (2012)).

The valuation σ maps the free variables of M to closed values.

Monadic Semantics of Fun with fail: P[[M]] σ

(µ >>= f ) A,
∫

f (x)(A)dµ(x) Monadic bind
(return v) A, 1 if v ∈ A, else 0 Monadic return
zero A, 0 Monadic zero

P[[V ]] σ , return (V σ)
P[[ f (V1, . . . ,Vn)]] σ , return f (V1σ , . . . ,Vnσ)

P[[match V with inl x : M | inr y : N]] σ ,P[[V ]] σ >>=
either (λv.P[[M]] (σ ,x 7→ v)) (λv.P[[N]] (σ ,y 7→ v))

P[[let x = M in N]] σ ,P[[M]] σ >>= λv.P[[N]] (σ ,x 7→ v)
P[[random(Dist(V ))]] σ , µDist(V σ)

P[[fail]] σ , zero

Proposition 3. If x1 : t1, . . . ,xn : tn `M : t and xs = x1, . . . ,xn and
all observations in M are fail, then
A [[M]]xs = extend λ (v1, . . . ,vn).P[[M]] (x1 7→ v1, . . . ,xn 7→ vn).

In particular, if � `M : t we have M [[M]] = P[[M]] �.

6.3 A Normal Form for Fun Expressions
Observation Translation: O[[M]] (o does not appear in N)
O[[observe f (V )]], (), f (V )

O[[let x = M in N]],
let x,o = O[[M]] in let y,o′ = O[[N]] in y,(o′,o)

O[[match V with inl x : M1 | inr y : M2]],match V with
| inl x → let r,o = O[[M1]] in r, inl o
| inr y → let r,o = O[[M2]] in r, inr o

O[[M]],M, () otherwise

Proposition 4. If Γ`M : t then there is u such that Γ`O[[M]] : t ∗u.

Theorem 3. If Γ ` M : t and N = let r,o = O[[M]] in observe o;r
and µ |= A [[N]]dom(Γ) then A [[M]]dom(Γ) µ = A [[N]]dom(Γ) µ .

Corollary (Normal form for closed terms). If � `M : t and N is as
above and δ() |= A [[N]]� then M [[M]] = M [[N]].



The program M = observe (fst (hybrid2)) does not satisfy the
compatibility precondition of the normal form theorem. This can
be checked using static analyses (Bhat et al. 2012a) that can de-
termine if M [[O[[M]]]] is absolutely continuous and thus admits a
density. A more sensitive analysis could additionally determine the
discontinuities of the density function in many cases, allowing to
check compatibility statically.

The results of this section imply that observe-free models
(that is, generative ones), and models with discrete observations
only, have measure-transformer semantics that correspond to their
monadic semantics, so we can use the latter for its simplicity.

7. Generic Probabilistic Conditionals
Perhaps surprisingly, the lowly if expression gives rise to three use-
ful and interesting ways of composing Bayesian models: mixture
models, model averaging and a mixture of experts. We also show
how to use the if expression as a general means for computing
model evidence and evidence ratios.

7.1 Bayesian Mixture Models
Given a number of models mk with k = 1 . . .K with the same types
of inputs xi and IID data yi, we can create a mixture of these models
by introducing an indicator variable zi (conditionally independent
given w) for each sample yi that indicates which mixture compo-
nent mk it was generated by. This composition is helpful when the
data can be generated by one of several known models. Below, we
write wk and hk for the parameters and the hyperparameter associ-
ated with model k, and w for w1, . . . ,wK . The sampling distribution
is then given by:

p({yi}n
i=1|{xi}n

i=1,w,w) =
n

∏
i=1

K

∑
k=1

p(zi = k|w)p(yi|xi,mk,wk) (6)

We here give a generic combinator for creating a mixture of two
models, given a prior over the probability of choosing the first
distribution.

Mixture Model Combinator

let M (m1:Model<’TH1,’TW1,’TX,’TY>,
m2:Model<’TH2,’TW2,’TX,’TY>)
: Model<(BetaW ∗’TH1∗’TH2),

(real ∗ ’TW1∗’TW2),’TX,’TY> =
{HyperParameter = (uniformBeta,

m1.HyperParameter,m2.HyperParameter)
Prior = <@ fun (bw,h1,h2)→

(random(Beta(bw.trueCount,bw.falseCount)),
(%m1.Prior) h1, (%m2.Prior) h2) @>

Gen= <@ fun ((bias,w1,w2),x)→
if breakSymmetry(random(Bernoulli(bias)))
then (%m1.Gen) (w1,x)
else (%m2.Gen) (w2,x) @>}

(The call to breakSymmetry is a pragma for the Infer.NET back-
end—it avoids the pitfall of learning symmetric solutions.)

We can create a mixture of two Gaussian models, where we have
no prior knowledge of the probability of each model being used.

Mixture of two Gaussian models

let m = M(GaussianModel.M,GaussianModel.M)

Such a model is useful for fitting a scalar property of two popula-
tions of unknown sizes.

7.2 Model Evidence by a Conditional
An important concept in Bayesian machine learning is the notion
of model evidence, which intuitively is the likelihood of the model
given a particular set of observations. It is for instance used to
choose between different models of the same data (model selec-
tion (MacKay 2003, ch.22)), and as an objective function to maxi-
mize in certain inference techniques.

If M is a closed term we define E (M) , |M [[M]]|, that is, the
total measure of the semantics M [[M]]. Note that E (M) may be
different from 1 if M contains instances of observe or fail, as dis-
cussed in Section 6. More generally, if Γ `M : t we let E (M,µ),
|A [[M]]dom(Γ) µ|. When choosing between two (or more) different
models M and N (for the same data), we typically want to choose
the model that has the highest likelihood given the observations (of
the data).

The presence of arbitrary if-expressions in the language allows
to compute the evidence of a model in a uniform way. More gen-
erally, the ratio of the evidence of two models (also known as the
Bayes factor) can be computed as the ratio between the probabili-
ties of the two possible outcomes of a Boolean variable (compare
Minka and Winn (2008)), by inferring the posterior probability of
an a priori unbiased selector variable being true.

Evidence ratio by if-expression: E [[M,N]]

E [[M,N]], let x = random(Bernoulli(0.5)) in
if x then M; () else N; ()
x

Lemma 5. If Γ `M : t and Γ ` N : u and µ ∈ M (range(Γ)) then

E (M,µ)

E (N,µ)
=

A [[E [[M,N]]]]dom(Γ) µ {(s, true) | s ∈ Vrange(Γ)}
A [[E [[M,N]]]]dom(Γ) µ {(s, false) | s ∈ Vrange(Γ)}

.

Proof: By expanding A [[E [[M,N]]]]dom(Γ).

Given Lemma 5, we can compute the evidence of a model M from
its evidence ratio to the trivial model (), which has evidence 1.

Theorem 4. If � `M : t we have E (M) = 2 ·M [[E [[M, ()]]]] {true}.
For open terms, if Γ `M : t and µ ∈ M (range(Γ)) then E (M,µ) =
2 · (A [[E [[M, ()]]]]dom(Γ) µ {(s, true) | s ∈ Vrange(Γ)}).

For this way of computing model evidence to work, it is critical
that observe denotes unnormalized conditioning. It does not gen-
eralize to languages such as Church (Goodman et al. 2008), where
observations (queries) correspond to a renormalized distribution:
in such a language M [[E [[M,N]]]] {true} = 0.5 for all admissi-
ble M,N. The technique also does not work in languages where
the probability distribution of a program is the limit of its succes-
sive approximations, such as Probabilistic cc (Gupta et al. 1999).
In such a language M [[E [[M,()]]]]{true} ≤ 0.5 for all M. Frame-
works based on Gibbs sampling such as BUGS also fail, since if-
expressions “containing [random] variables require a facility for
computing the evidence of a submodel, which Gibbs sampling does
not provide” (Minka and Winn 2008).

7.3 Model averaging
In Section 7.1 we were combining models mk by choosing a model
for each data point. Another standard notion of composition is
model averaging (Hoeting et al. 1999), where we have some prior
belief p(mk|h) about how likely each model mk is to have generated
all of the data, that is then updated based on the evidence of each
model given the data, that we here assume to be IID.

p({yi}n
i=1|{xi}n

i=1,w,w) =
K

∑
k=1

p(z = k|w)
n

∏
i=1

p(yi|xi,mk,wk) (7)



We show below a combinator for the case K = 2. The parameter
of the combined model includes a random bool switch, which is
inspected to generate each output yi from the model mswitch.

Combinator for Model Averaging:

let M (m1:Model<’TH1,’TW1,’TX,’TY>,
m2:Model<’TH2,’TW2,’TX,’TY>)

: Model<(real∗’TH1∗’TH2),
(bool∗’TW1∗’TW2),’TX,’TY> =

{HyperParameter = (0.5,
m1.HyperParameter,m2.HyperParameter)

Prior = <@ fun (bias,h1,h2)→
(random(Bernoulli(bias)),
(%m1.Prior) h1, (%m2.Prior) h2) @>

Gen = <@ fun ((switch,w1,w2),x)→
if switch then (%m1.Gen) (w1,x)
else (%m2.Gen) (w2,x) @>}

The posterior distribution over the bias gives us the evidence ratio
between the two models m1 and m2 (cf. Lemma 5), multiplied with
the prior odds.

p(z = 1|d,h)
p(z = 2|d,h)

=
p(d|m1,h1)

p(d|m2,h2)

p(z = 1|h)
p(z = 2|h)

(8)

7.4 Mixture of Experts
A powerful supervised counterpart to the unsupervised mixture
models discussed in 7.1 is the Mixture of Experts model (Jacobs
et al. 1991), and its hierarchical variants (Bishop and Svensén 2003;
Jordan and Jacobs 1994). The idea is to use a so-called gating
model p(zi|xi,w) to decide for each input xi which model to use for
generating the corresponding output yi. We consider a mixture of
K models with conditional sampling distributions p(yi|xi,mk,wk),
priors p(wk|hk) and a gating model p(zi|xi,w) with prior p(w|h)
resulting in the combined sampling distribution

p({yi}n
i=1|{xi}n

i=1,w,w) =
n

∏
i=1

K

∑
k=1

p(z = k|xi,w)p(yi|xi,mk,wk)

(9)
As before, we here implement the binary case with two data models
mk with k∈ {T,F}, with independent priors given their parameters:
p(w,wF ,wT |h,hT ,hF ) = p(w|h)p(wT |hT )p(wF |hF ).

Combinator for Mixture of Experts:

let M(mc:Model<’TH,’TW,’TX,bool>,
m1:Model<’TH1,’TW1,’TX,’TY>,
m2:Model<’TH2,’TW2,’TX,’TY>)

: Model<’TH∗’TH1∗’TH2,’TW∗’TW1∗’TW2,’TX,’TY> =
{HyperParameter = (mc.HyperParameter,

m1.HyperParameter,m2.HyperParameter)
Prior = <@ fun (hc,h1,h2)→

(%mc.Prior) hc, (%m1.Prior) h1, (%m2.Prior) h2 @>
Gen = <@ fun ((wc,w1,w2),x)→

if (%mc.Gen) (wc,x) then (%m1.Gen) (w1,x)
else (%m2.Gen) (w2,x) @>}

The hierarchical Mixture of Experts model (Bishop and Svensén
2003; Jordan and Jacobs 1994) can easily be obtained by a tree of
calls to the above combinator. It is also straightforward to build an
n-ary version of this combinator from the above construction, or
a variation that operates on arrays of models with identical type
parameters.

Some Examples of Hierarchical Mixtures of Experts

let m = ExpertMixture.M(Probit,M2,M2)
let n = IIDArray.M(ExpertMixture.M(Probit,m,m))

The model M2 fits a line to the data. The model m above attempts
to fit two different lines l1 and l2, and to find a point x0 where the
data gradually shifts from being fitted to l1 (for x� x0) and being
fitted to l2 (for x� x0). The model n attempts to fit four lines with
three separating points, and operates on arrays of IID data.

8. A Learner based on Monte Carlo Inference
Markov chain Monte Carlo (MCMC) methods are an important
class of inference algorithms for Bayesian models because they
make it possible to obtain samples from the posterior for a wide
variety of models, even if that posterior is not in a simple fam-
ily of parametric probability distributions or densities. The idea of
MCMC is to construct a Markov chain in the parameter space of
the model whose equilibrium distribution is the posterior distribu-
tion over model parameters. Neal (1993) provides an excellent re-
view of MCMC methods. As an example implementation, we con-
sider Filzbach (Purves and Lyutsarev 2012), an implementation of
an adaptive MCMC sampler based on the Metropolis-Hastings al-
gorithm (Hastings 1970; Metropolis et al. 1953). All that is required
to apply an MCMC algorithm to a particular model is the ability to
calculate posterior probabilities for a given set of parameters. The
algorithm then generates an ensemble of samples from the poste-
rior. This ensemble serves as a representation of the posterior, or to
calculate desired marginal distributions of individual parameters or
other integrals under the posterior distribution.

8.1 Direct Calculation of Log-Posterior
Bhat et al. (2012a) report an algorithm (but not an implementation),
for computing the densities of the distribution computed by a prob-
abilistic program, and a type system that guarantees their existence.
Their algorithm uses integration at every let-expression; we here
implement a simplified version without integrals but instead limited
to deterministic let-bound variables only. This pattern is common
in the real-world models we have studied, for greater efficiency and
simplicity. (In unpublished work, Bhat et al. (2012b) implement a
more general algorithm for calculating densities of Fun programs.)

We describe a recursive function PRE, which is an effective
partial algorithm for calculating the log-density for the parameters
of a generative model written in Fun. (It is standard to compute logs
to avoid underflow when dealing with very small probabilities.)
The PRE function is a backward analysis that computes the density
function, and is named by analogy with the standard pre-condition
computation in program analysis.

Log-density calculation PRE(V,σ ,M) ∈ R∪{−∞,⊥}
PRE(V,σ ,U) = log(1.0) if Uσ =V else log(0.0)

PRE(V,σ , f (V1, . . . ,Vn)) = log(1.0) if f (V1σ , . . . ,Vnσ) =V
log(0.0) otherwise

PRE(V,σ ,random(Dist(U))) = log(D(µDist(Uσ)(V )))

PRE(V,σ ,match U with inl x : M | inr y : N) =
PRE(V,(σ ,x 7→U ′),M) if Uσ = inl U ′
PRE(V,(σ ,y 7→U ′),N) if Uσ = inr U ′

PRE(V,σ , let x = M in N) = PRE(V,(σ ,x 7→U),N)
if M is deterministic and Mσ evaluates to U
⊥ otherwise

PRE(V,σ , fail) = log(0.0)

PRE(V,σ ,observe f (V )) =⊥



When defined (that is, not ⊥), the PRE(V,σ ,M) function computes
the log-posterior density of the parameters (in σ ) given the data V .

Theorem 5. If Γ ` M : t and σ is a Γ-valuation and V ∈ Vt and
PRE(V,σ ,M) 6=⊥ then PRE(V,σ ,M) = log((D(P[[M]] σ))(V )).

The log-posterior of the parameters Vw is then obtained by adding
the log-density of the prior at Vw, which is obtained by calling
PRE(Vw,h 7→Vh,Prior), where Vh is the hyperparameter, to the log-
posterior density PRE(Vy,w 7→Vw,M).

Here is the actual log-posterior function we pass to Filzbach
from our MCMC learner (space precludes more detail):

let (Lambda(vh,p)) = m.Prior
let (Lambda(vw,e)) =

<@ fun w→ [|for x in xs→ (%m.Gen) (w,x)|] @>
let likelihood : ’TW→real =

(∗ fun w→PRE(ys,[vw,w],e) + PRE(w,[vh,h],p) ∗)
Compile(fun w→<@ (%PRE(<@ ys @>,[vw,w],e)) +

(%PRE(w,[vh,<@ h @>],p)) @>)

Here, (xs,ys) is the observed data (from training) and m is the orig-
inal model. Though not shown here, the MCMC learner represents
distributions simply as an ensemble (an array) of samples.

8.2 Example: Purves’ PlantGrowth
As a typical example, we present a simplified model of plant
growth, adapted from a Filzbach example. Given an array of (de-
terministic) temperature data, temps, the model generates the mass
of a plant on harvest day x, assuming that 0≤ x < |temps|.

The parameter of the model is a record of numbers: the plant’s
initial mass (imass), daily growth rate (alpha), optimum temperature
for growth (topt), temperature sensitivity (trho) and the deviation of
some noise (sigma). Each field is given a Gaussian prior.

The harvest mass is calculated by iterating a daily growth func-
tion (the argument of Array.Fold below) on the initial mass. This de-
terministic computation is finally perturbed by some noise, drawn
from a Gaussian of unknown precision (prec obtained from sigma).

PlantGrowth Model (Prior omitted due to lack of space) :
<@ fun (w,x)→// first grow plant deterministically...

let prec = 1.0/(w.sigma ∗ w.sigma)
let mass = // compute the mass after x days

Array.fold // compute next mass in a time series
(fun mass i airtemp i→
let r = (airtemp i−w.topt)/w.trho
mass i + (w.alpha ∗ mass i) ∗ exp (−1.0∗(r∗r)))

w.imass (Array.sub temps 0 x)
random(Gaussian(mass,prec)) @> // ... finally add noise

To perform inference on this model, a Filzbach user must also pro-
vide a function computing the log-posterior of the model’s param-
eters given some observed data (here, pairs of harvest days and
masses). It is this function that Filzbach’s MCMC algorithm at-
tempts to maximize over the parameter space. Moreover, the user
typically also needs to write an explicit generative model for pro-
ducing predictions, based either on the mean of the obtained poste-
rior parameter distribution or, better yet, by error propagation using
an ensemble of parameters drawn from this posterior. Instead, we
use the PRE algorithm described above to automatically compute
the log-posterior function from the generative model.

(Adaptation of our learner to related methods (such as the com-
putation of either the maximum likelihood (MLE) or the maximum
a posteriori probability (MAP) estimate) appears straightforward
but is beyond the scope of the paper.)

9. Related Work
Formal Semantics of Probabilistic Languages There is a long
history of formal semantics for probabilistic languages with sam-
pling primitives, often with recursive computation. One of the first
semantics is for Probabilistic LCF (Saheb-Djahromi 1978), which
augments the core functional language LCF with weighted binary
choice, for discrete distributions. Kozen (1981) develops a proba-
bilistic semantics for while-programs with random assignment. He
develops two equivalent semantics; one more operational, and the
other denotational. McIver and Morgan (2005) develop a theory of
abstraction and refinement for probabilistic while programs with
real-valued variables, based on weakest preconditions.

Jones and Plotkin (1989) investigate the probability monad, and
apply it to languages with discrete probabilistic choice. Ramsey
and Pfeffer (2002) give a stochastic λ -calculus with a measure-
theoretic semantics in the probability monad, and provide an em-
bedding within Haskell; they also do not consider observations.

Several languages (such as PFP (Erwig and Kollmansberger
2006)), IBAL (Pfeffer 2007), HANSEI (Kiselyov and Shan 2009),
CertiPriv (Barthe et al. 2012) and the informal sampling semantics
of Csoft (Minka et al. 2009)) have Boolean assertions or fail state-
ments that give rise to sub-probabilities. Such languages support
the mixture operations and evidence calculations of Section 7, for
discrete observations only.

The concurrent constraint programming language PCC of Gupta
et al. (1999) allows describing continuous probability distributions
using independent sampling and constraints. However, their seman-
tics of constraints is different than that of Fun observations. This
makes PCC less suitable for compositional Bayesian modelling,
since computation of model evidence using an if statement (Theo-
rem 4) does not work: the program choose X from {0,1} in if X =
1 then [b,P] yields probability at most 0.5 of b being true.

In contrast, the measure-transformer semantics of Fun allows
computing E (M) > 1 for well-fitted models with continuous ob-
servations using the one-sided if statement of Theorem 4, as do the
direct factor graph semantics of Csoft (Minka et al. 2009) using
gates (Minka and Winn 2008).

Probabilistic Languages for Machine Learning Previous pro-
gramming models for machine learning mainly represent particular
implementation strategies, rather than general Bayesian models.

An exception is Church (Goodman et al. 2008), which repre-
sents probability distributions over Lisp terms as Lisp programs,
and uses various inference techniques. However, since every ad-
missible term denotes a probability distribution, E [[M,()]] always
yields true with probability 0.5.

Early work includes that of Koller et al. (1997) where a prob-
abilistic model is represented as a functional program with prob-
abilistic choice. FACTORIE (McCallum et al. 2009) is a library
for imperatively constructing factor graphs. BUGS (Gilks et al.
1994) uses Gibbs sampling for Bayesian inference on Bayesian net-
works, represented as imperative probabilistic programs. IBAL (Pf-
effer 2007) integrates Bayesian parameter estimation and decision-
theoretic utility maximisation, but only works with discrete data-
types. Alchemy (Domingos et al. 2008) represents Markov logic
networks, which are inherently discrete. Park et al. (2005) also de-
fine a probabilistic functional language, where as in Church terms
always denote probability distributions.

PMML (Guazzelli et al. 2009) is an XML format for represent-
ing trained instances of a range of models, including association
rules, neural networks, decision trees, support vector machines, etc.
PMML does not represent arbitrary graphical or generative mod-
els. In our terms, a PMML model corresponds roughly to a trained
learner. We have not developed any format for persisting trained
learners; a format based on PMML may be suitable.



Example / Learner TH TW TDistW TX TY TDistY

Sprinkler / A SP.TH SP.TW<bool> ADD<SP.TW<bool>> SP.TX bool ADD<bool>
TwoCoins / A TC.TH TC.TW<bool> ADD<TC.TW<bool>> TC.TX bool ADD<bool>
Two Coins / IN TC.TH TC.TW<bool> TC.TW<Bernoulli> TC.TX bool Bernoulli
Friends / A bool[][] bool list list ADD<bool list list> int ∗ int ∗ int bool ADD<bool>
Students / A int ∗ int bool list list ADD<bool list list> int ∗ int ∗ int bool ADD<bool>
Gaussian / IN GM.TH GM.TW<R,R> GM.TW<N ,Γ> unit real N
Gaussian Mix/ IN MX1.TH R∗ GaussW∗GaussW β∗ GM.TW<N ,Γ>∗GM.TW<N ,Γ> unit real N
Gaussian Mix / F MX2.TH (GaussW∗GaussW) (GaussW∗GaussW)[] unit real R[]
PlantGrowth / F unit PG.TW PG.TW[] int real R[]
TrueSkill / IN TS.TH TS.TW<R> TS.TW<N > TrueSkill.TX bool Bernoulli
Lin. Reg. / IN LR.TH LR.TW<R,R,R> LR.TW<N ,N ,Γ> real real N

MV Gaussian / IN MVG.TH MVG.TW< ~R,M> MVG.TW< ~N ,W > unit ~R ~N

R= real N = Gaussian β= Beta Γ= Gamma
~R= Vector M = PositiveDefiniteMatrix
W = Wishart // generalizes Γ to multiple dimensions
~N = VectorGaussian // multivariate Gaussian distribution

GaussW= {Mean:R; Precision:R}
BetaW = {trueCount: R; falseCount: R}
SP.TH = {RainH: R; SprinklerH: R}
SP.TW<’TB> = {Rain: ’TB; Sprinkler: ’TB}
SP.TX = IsGrassWet // a unit type
TC.TH = {Bias1: R; Bias2: R}
TC.TW<’TB> = {Heads1: ’TB; Heads2: ’TB}
TC.TX = AreEitherHeads // a unit type
GM.TW<’TM,’TP> = {Mean:’TM; Precision:’TP}
GM.TH ={ Gaussian: GaussW, Gamma: GammaW }

MX1.TH = BetaW ∗ GM.TH ∗ GM.TH
MX2.TH = GM.TH ∗ GM.TH
PG.TW = {alpha:R;topt:R;trho:R;imass:R;sigma:R}
TS.TH = { Players: int; G: GaussW; P: GammaW }
TS.TW<’TA> = { Skills: ’TA[]}
TS.TX = { P1:int; P2: int }
LR.TH = {MeanA: R; PrecA: R; MeanB: R; PrecB: R;

Shape: R; Scale: R}
LR.TW<’TA,’TB,’TN> = {A:’TA; B:’TB; Prec:’TN}
MVG.TH = {NCols:int; MeanVectorPrecisionCount:R;

WishartShapeConstant:R; WishartScaleConstant:R}
MVG.TW<’TM,’TC> = {Mean:’TM; Covariance:’TC}

Table 1. Rows show types for L : ILearner(TDistW,TX,TY,TDistY) for m : Model<TH,TW,TX,TY> (A=ADD, IN=Infer.NET, F=Filzbach)

Inference using ADDs The idea of using ADDs for probabilis-
tic inference has been explored before. Sanner and McAllester
(2005) define Affine Algebraic Decision Diagrams to perform in-
ference over Bayesian networks and Markov Decision Processes.
Kwiatkowska et al. (2006) have used a variants of ADDs to perform
probabilistic model checking in the PRISM project. Bozga and
Maler (1999) have used ADDs to symbolically simulate Markov
chains. Chavira and Darwiche (2007) use ADDs to compactly rep-
resent factors in a Bayesian network and thereby perform efficient
inference via variable elimination. In contrast, the ADD backend
described in this paper avoids factor graphs altogether and uses
ADDs to represent symbolic program states (which are distribu-
tions) at every program point, much like a data-flow analysis or an
abstract interpreter (Cousot and Cousot 1977).

Mardziel et al. (2011) develop an approximate representation
for discrete distributions based on abstract interpretations, with
application to knowledge-based security policies.

10. Conclusions
We proposed typed programming abstractions, models and learn-
ers, for packaging, composing, and training and predicting with
Bayesian models. We are aware of no prior generic abstractions
for Bayesian models.

Future work includes adding functions over recursive types, and
general recursion to the Fun language. We will also investigate the
possibility of relaxing the condition of compatibility of a measure
with respect to a model.
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