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Abstract. In computer networks and social networks, the betweenness centrality of a node measures the amount
of information passing through the node when all pairs are conducting shortest-path exchanges. In this paper, we
introduce a strategic network-formation game based on the betweenness centrality. In this game, nodes are selfish
players, each of which has some budget to build connections. The goal of each player is to fully utilize her budget
to strategically build connections so that her betweenness centrality is as large as possible. We refer to this game as
the bounded budget betweenness centrality game or the B3C game.

We present both theoretical and experimental results about this game. Theoretically, we show that a general B3C
game may not have any nontransient Nash equilibrium and it is in fact NP-hard to determine whether nontransient
Nash equilibria exist. Experimentally, we studied the family of uniform B3C games, in which there is an equal
amount of information exchange between every pair of nodes, every connection has the same construction cost and
every node has enough budget to build k connections. We have discovered several interesting Nash equilibria when
k = 2. Our experiments have also inspired us to establish some theoretical results about uniform B3C games. For
example, we show that, when k is a variable, it is NP-hard to compute a best response of a node in uniform B3C
games; we also prove that a family of symmetric graphs called Abelian Cayley graphs cannot be Nash equilibria
for k = 2 when the graph is large enough, but there is a unique nontransient Nash equilibrium when k = 1. We
conjecture, based on our experiments, that every uniform B3C game has a Nash equilibrium, and more strongly, has
a Nash equilibrium that is Eulerian.

1 Introduction

Many network structures in real life are not designed by central authorities. Instead, they are formed by
autonomous agents who often have selfish motives [12]. Some typical examples of such networks include
the Internet where autonomous systems linked together to achieve global connection, peer-to-peer networks
where peers connect to one another for online file sharing (e.g. [2, 14]), and social networks where individu-
als connect to one another for information exchange and other social functions [13]. Since these autonomous
agents have their selfish motives and are not under any centralized control, they often act strategically in
deciding whom to connect to in order to improve their own benefits. This gives rise to the field of network
formation games, which studies the game-theoretic properties of the networks formed by these selfish agents
as well as the process in which all agents dynamically adjust their strategies [4, 1, 10, 9, 8].

A key measure of importance of a node is its betweenness centrality. The betweenness centrality (or
betweenness for short) is introduced originally from social network analysis as one of the measures on how
central an individual is in a social network [6, 11]. If we view a network as a graph G = (V,E) (directed or
undirected), the betweenness of a node (or vertex) i in G is

btwi(G) =
∑

u6=v 6=i∈V, m(u,v)>0

w(u, v)
mi(u, v)
m(u, v)

(1)

? Supported by NSF grants CCR-0635102 and ITR CCR-0325630. Part of this work was done while visiting ITCS at Tsinghua
University and Microsoft Research Asia Lab.



2 Wei Chen, Shang-Hua Teng, and Jiajie Zhu

wherem(u, v) is the number of shortest paths from u to v inG,mi(u, v) is the number of shortest paths from
u to v that passes i in G, and w(u, v) is the weight on pair (u, v). Intuitively, if the amount of information
from u to v is w(u, v), and the information is passed along the shortest paths from u to v (which is often the
case in computer networks with optimal routing algorithms) and all shortest paths split the traffic equally,
then the betweenness of node i measures the amount of information passing through i incurred by all pair-
wise exchanges.

In a decentralized network with autonomous agents, each agent may have incentive to maximize its
betweenness in the network. For example, in computer networks and peer-to-peer networks, a node in the
network may be able to charge on the traffic that it helps relaying, in which case the revenue of the node
is proportional to its betweenness in the network. So the maximization of revenue is consistent with the
maximization of the betweenness. In a social network, an individual may want to gain or control the most
amount of information travelling in the network by maximizing her betweenness.

In this paper, we introduce a network formation game in which agents’ objectives are to maximize their
betweenness centrality. In this game, nodes are selfish players, each of which has some budget to build
connections. The goal of each player is to fully utilize her budget to strategically build connections so that
her betweenness centrality is as large as possible. We refer this game to as the bounded budget betweenness
centrality game or the B3C game. In particular, we focus on one variant of such games, while other variants
are subjects of future research. We consider that links in the network are directed and nodes can establish
outgoing links to other nodes. This is suitable for computer networks and peer-to-peer networks that relay
traffics, and some type of social networks where information flows between connected pairs are often one-
directional. Each link has a cost to be established, and each node has a bounded budget such that the total
cost of establishing the outgoing links it selects cannot exceed its budget. This reflects the practical situation
in computer and peer-to-peer networks where the number of connections are often restricted due to resource
constraint, and in social networks where each individual only has a finite amount of time and energy to
create and maintain relationships.

We focus on the existence and the properties of Nash equilibria in B3C games. In an equilibrium config-
uration, no player can improves her betweenness by unilaterally changing her connections, i.e., her current
connection is the best response to the connections of others. Since the game allows some trivial Nash equi-
libria (such as a network with no links at all), we study a stronger form of Nash equilibria called nontran-
sient Nash equilibria. Informally, a Nash equilibrium is nontransient if after any finite sequence of strategy
changes in which each change keeps the changer’s utility unmodified, the resulting configuration is still a
Nash equilibrium.

We present both theoretical and experimental results about this game. We first show that a general
B3C game may not have any nontransient Nash equilibria. A general B3C game is specified by several
parameters concerning the node budgets, link costs, and pair-wise exchange weights (see Section 2 for a
formal definition). Moreover, given these parameters as input, we show that it is NP-hard to determine
whether the game has a nontransient Nash equilibrium. This indicates that finding Nash equilibria in general
B3C games is a difficult task.

Next, we turn our attention to uniform B3C games where all pair weights are 1, all link costs are 1, and
all node budgets are given as an integer k, that is, each node is allowed to create at most k outgoing links.
By experiments, we have discovered several interesting Nash equilibria when k = 2. Our experiments have
also inspired us to establish some theoretical results about uniform B3C games. For example, we show that,
when k is a variable, it is NP-hard to compute a best response of a node in uniform B3C games (similar to a
result in [4]). This result indicates that large-scale computer simulations of the game dynamics is infeasible.
We investigate a class of symmetric graphs call Abelian Cayley graphs, where nodes are from an Abelian
group and edges are determined by a generating set of size k. We prove that, when k = 2 and the number
of nodes is large enough, no Abelian Cayley graph is a Nash equilibrium, but there is a unique nontransient
Nash equilibrium when k = 1. Like the result of [9], this is an indication that Nash equilibria for uniform
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B3C games may also have some symmetry breaking properties, and we conjecture that the result is also true
for k > 2.

Finally, based on our experiments, we conjecture that every uniform B3C game has a Nash equilibrium,
and more strongly, has a Nash equilibrium that is Eulerian.

Related work. There are a number of studies on network formation games with Nash equilibrium as the
solution concept [4, 1, 10, 9, 8]. However, to the best of our knowledge, we are not aware of any work that
uses betweenness centrality as the objective function in network formation games. Most of the above work
belong to a class of games in which nodes try to minimize their average shortest distances to other nodes in
the network [4, 1, 10, 9], which is call closeness centrality in social network analysis [6]. The game in [4]
considers undirected edges and the cost of links in the network are part of the objective function to minimize.
It focuses on the study of price of anarchy of the game and also presents results on the structure of Nash
equilibria. In [1], Albers et al. extend the research of [4] by disproving a conjecture made in [4] that all Nash
equilibria have a tree structure, and studying other variants of the game including the cost of an edge being
shared by two end nodes. The game in [10] instead considers minimizing the average stretch of each node,
where stretch is defined as the ratio between the shortest path distance of two nodes in the graph versus the
geometric distance in the underlying space.

Our game is inspired by the BBC game of Laoutaris et al [9]. This game considers directed links
and bounded budgets on nodes, using minimization of average shortest distances to others as the objective
for each node. It shows hardness results in determining the existence of Nash equilibria in general games,
and provides tree-like structures as Nash equilibria for the uniform version of the game. It also shows that
Abelian Cayley graphs cannot be Nash equilibria in large networks, similar to the result in our paper.

In [8], Kleinberg et al. study a different type of network formation games related to the concept of
structural holes in organizational social network research. In this game, each node tries to bridge other pairs
of nodes that are not directed connected. In a sense, this is a restricted type of betweenness where only
length-two shortest paths are considered. There are also a number of other differences between their work
and our paper. They consider undirected links, they do not consider bounded budget but include link costs
as part of the objective function, and they also include the number of direct neighbors as part of the benefit
in the objective function. They show the structures of Nash equilibria in their game, and also show that
polynomial-time algorithm exists for computing a best response for a node, in contrast to the hardness result
in our paper.

Solution concept other than Nash equilibrium is also used in the study of network formation games.
Authors in [7, 3] consider games in which two endpoints of a link have to jointly agree on adding the link,
and they use pairwise stability as an alternative to Nash equilibrium.

Paper organization. Section 2 provides the detailed definition of the B3C game and the related concepts.
Section 3 studies the nonuniform games, while Section 4 studies uniform games. We conclude the paper and
list open problems and future directions in Section 5. Due to space constraints, proofs not fitting into the
main text are included in the appendix.

2 Problem definition

A Bounded-Budget Betweenness Centrality game (or B3C game for short) is one class of network formation
games defined as follows. We consider a set of n players V = {1, 2, . . . , n}, which are also nodes in a
network. Function b : V → N specifies the budget b(i) for each node i ∈ V (N is the set of natural
numbers). Function c : V × V → N specifies the cost c(i, j) for the node i to establish a link to node j, for
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i, j ∈ V . Function w : V × V → N specifies the weight w(i, j) from node i to node j for i, j ∈ V , which
can be interpreted as the amount of traffic i sends to j, or the importance of the communication from i to j.1

The strategy space of player i in B3C game is Si = {si ⊆ V \ {i} |
∑

j∈si
c(i, j) ≤ b(i)}, i.e., all

possible subsets of outgoing links of node i within i’s budget. The combination of all players’ strategies
s = (s1, s2, . . . , sn) ∈ S1 × S2 × . . . × Sn is a configuration. The graph induced by configuration s is
denoted as Gs = (V,E), where E = {(i, j) | i ∈ V, j ∈ si}. For convenience, we will also refer Gs as a
configuration.

The utility function that each node wants to maximize is defined by the betweenness centrality of the
graph. The betweenness centrality of node i in configuration s (or in graph Gs) is

btwi(s) = btwi(Gs) =
∑

u6=v 6=i∈V, m(u,v)>0

w(u, v)
mi(u, v)
m(u, v)

(2)

where m(u, v) is the number of shortest paths from u to v in Gs and mi(u, v) is the number of shortest
paths from u to v that passes i in Gs.

In a configuration s, if no node can increase its own utility by changing its own strategy unilaterally, we
say that s is a (pure) Nash equilibrium, and we also say that s is stable. A Nash equilibrium is a transient
Nash equilibrium if there exists a finite sequence of single-player strategy changes such that the last strategy
change strictly increases the changer’s utility while each of the rest changes leaves the changer’s utility
unchanged. A nontransient Nash equilibrium is a Nash equilibrium that is not transient.

A B3C game is uniform if b(i) = k for all i ∈ V and some parameter k ∈ N, and c(i, j) = w(i, j) = 1
for all i, j ∈ V . As a contrast, the general form is called nonuniform games. Therefore, a uniform B3C game
is determined by parameters (n, k), while a nonuniform B3C game is determined by parameters (n, b, c, w).

3 Nonuniform games

In this section, we study the existence of Nash equilibria in nonuniform B3C games. We first show through
the following lemma that the game allows some trivial transient Nash equilibria.

Lemma 1. In any nonuniform B3C game, the following configurations are all Nash equilibria: (i) the empty
graph with no edges; and (ii) any Hamiltonian cycle, i.e., any cycle that passes through every node exactly
once, provided that the budget constraint allows such configurations. Moreover, they are transient Nash
equilibria under the following conditions: (a) for the empty graph, if there exist nodes i, j, and k such that
{j} ∈ Si, {k} ∈ Sj and w(i, k) > 0; (b) for a Hamiltonian cycle, if there exist nodes i, j and k such that
(b.1) j is on the shortest path from i to k, (b.2) the length of the shortest path from k to i is at least 2, (b.3)
k is allowed to add an edge to j, (b.4) j is allowed to add an edge to i, and (b.5) w(k, i) > 0.

The above lemma shows that many trivial Nash equilibria may exist for a B3C game because a node
can only change its own outgoing edges, which may not directly make it sitting on more shortest paths.
However, these trivial Nash equilibria are usually transient, since when several nodes add more edges, some
node may start to receive benefit by adding new edges. Therefore, for B3C games, it is more meaningful to
study nontransient Nash equilibria, which is our focus from now on.

3.1 Nonexistence of nontransient Nash equilibrium

In this section, we show that nontransient Nash equilibria may not exist in some version of B3C games
where edge costs are not uniform. We first show that adding edges can only increase the betweenness of a
node.

1 We may also define a distance function specifying distances between every pair of nodes, but it is not needed throughout our
paper.
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Fig. 1. Main structure of the gadget that has no nontransient Nash Equilibrium.

Lemma 2. Adding an outgoing edge to a node i does not decrease i’s betweenness. That is, for any graph
G = (V,E) with i ∈ V and (i, j) 6∈ E for some j ∈ V . Let G′ = (V,E ∪ {(i, j)}). Then btwi(G) ≤
btwi(G′).

Given a nonuniform B3C game with parameters (n, b, c, w), we say that a graph (configuration) is
maximal if no node can add any edges to the graph without exceeding its budget. We say that a graph
G1 = (V,E1) is a subgraph of graph G2 = (V,E2) if E1 ⊆ E2. The above lemma implies that when
studying nontransient Nash equilibria, we only need to look at maximal graphs, which is formalized by the
following lemma.

Lemma 3. Given a nonuniform B3C game with parameters (n, b, c, w), if a maximal graph G of the game
is not stable, then any subgraph of G cannot be a nontransient Nash equilibrium. If none of the maximal
graphs of the game is stable, then the game does not have any nontransient Nash equilibrium.

We now construct a family of graphs, which we refer to as the gadget, and show that B3C games based
on the gadget do not have any nontransient Nash equilibrium. The gadget is shown in Figure 1. There are
5 + 3t + r nodes in the gadget, where t ∈ N and r = 1, 2, 3. The values of t and r allow us to construct a
graph of any size great than 5. There are r nodes, denoted as A,A′, A′′ in the figure, which establish edges
to B and C. Both B,C can establish at most one edge to a node in {D,E, F} respectively. Each node in
{D,E, F} connects to a cluster of size t each (not shown in the figure). The only requirement for each
cluster is that it is strongly connected so D,E, F can reach all nodes in their corresponding clusters. Nodes
in the three clusters do not establish edges to the other clusters or to A,A′, A′′, B,C,D,E, F .

We classify nodes and edges as follows. Nodes B and C are flexible nodes since they can choose to
connect one node in {D,E, F}. Nodes D,E, F are triangle nodes, nodes in the clusters are cluster nodes,
and nodes A,A′, A′′, are additional nodes. Edges (i, j) with i ∈ {B,C} and j ∈ {D,E, F} flexible edges.
Other edges shown in the figure plus the edges in the clusters are fixed edges. The remaining pairs with no
edge connected (e.g. (A,D), (A,E), etc.) are referred to as forbidden edges.

We use the parameters (n, b, c, w) of a B3C game to realize the gadget. In particular, (a) n = 5 + 3t+ r;
(b) b(i) = 1 for all i ∈ V ; (c) c(i, j) = 0 if (i, j) is a fixed edge, c(i, j) = 1 if (i, j) is a flexible edge,
c(i, j) = M > 1 if (i, j) is a forbidden edge; and (d) w(i, j) = 1 for all i, j ∈ V .

With the above construction, we can show the following theorem.
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Theorem 1. The B3C game based on the gadget of Figure 1 does not have any nontransient Nash equilib-
rium. This implies that for any n ≥ 6, there is an instance of B3C game with n players that does not have
any nontransient Nash equilibrium, and in the game only the edge costs are nonuniform.

Proof. By Lemma 3, we only need to show that none of the maximal graphs of the game is stable. Note that
in a maximal graph all fixed edges are included, and nodes B and C each selects one edge to connect to
one node in {D,E, F}. Consider one maximal graph G in which B connects to D and C connects to E (as
in Figure 1). Node B is on all shortest paths from nodes in {A,A′, A′′} to D and the cluster D points to,
but it is not on any shortest paths from nodes in {A,A′, A′′} to E and F and the two clusters they point to
(these shortest paths all pass through C). Thus btwB(G) = r(t+ 1). In this case, B can change its strategy
to connect to F instead of D, so that it will be on all shortest paths from those additional nodes to F and
D and their clusters, and thus its betweenness is increased to 2r(t+ 1). Therefore, maximal graph G is not
stable.

The second case to consider is that both B and C connect to the same node, say E. In this case, they
split equally among all shortest paths from the additional nodes to the triangle nodes and the clusters nodes,
giving each of them a betweenness 3r(t+ 1)/2. In this case, each of them could improve their betweenness
to 2r(t+ 1) by connecting to F instead of E. Hence, this maximal graph is not stable either.

All other maximal graphs are rotationally equivalent to one of the above two graphs. Therefore, we know
that none of the maximal graphs is stable, and the theorem holds. �

3.2 Complexity of determining the existence of nontransient Nash equilibrium

In this section we use the gadget given in Figure 1 as a building block to show that determining the existence
of nontransient Nash equilibrium given a nonuniform B3C game is NP-hard.

Theorem 2. It is NP-hard to determine whether there is a nontransient Nash equilibrium in a nonuniform
B3C game nonuniform weights, and edge costs.

Proof. We reduce the problem from the 3-SAT problem. Each 3-SAT instance has ` variables
{x1, x2, . . . , x`} and m clauses {C1, C2, . . . , Cm}. Each variable x has two literals x and x̄. Each clause
has three literals from three different variables. We use the following construction to obtain an instance of a
B3C game with parameters (n, b, c, w) from the 3-SAT instance, which is illustrated by Figure 2.

Each clause Cj is mapped to the core of gadget of Figure 1, which is the substructure of the gadget
excluding the additional nodes and the cluster nodes. We use Bj and Cj to represent the flexible nodes in
the gadget and Dj , Ej and Fj to represent the triangle nodes in the gadget, all corresponding to the clause
Cj . This leads to 5m nodes in the graph. There is a sepcial node A called the assignment node, with fixed
edges pointing to all flexible nodes Bj and Cj in all gadgets corresponding to all clauses.

Each variable xi is mapped to a structure with four nodes Pi, Qi, Li, and L̄i. Node Pi has two fixed
edges pointing to Li and L̄i. Node Li and L̄i, called literal nodes, each may have one flexible edge pointing
to either Qi or the assignment node A. For each clause Cj with three variables xi1 , xi2 and xi3 , we add one
fixed edge from Dj to each of Pi1 , Pi2 and Pi3 respectively.

To realize the above structure, we set the parameters (n, b, c, w) of the B3C game as follows. First,
n = 1 + 4` + 5m and b(i) = 1 for all i ∈ V . Next, same as in Figure 1, each fixed edge has cost 0,
each flexible edge has cost 1 (so that the corresponding starting node can choose at most one flexible edge),
and each forbidden edge has cost M > 1. Finally, the weight function has to be carefully set as follows
to make the reduction work. For all j ∈ {1, . . . ,m}, w(A,Dj) = w(A,Ej) = w(A,Fj) = w(Dj , Fj) =
w(Ej , Dj) = w(Fj , Ej) = 1; for all i ∈ {1, . . . , `}, w(Pi, A) = w(Pi, Qi) = a for some constant a > 2m;
for all i ∈ {1, . . . , `} and all j ∈ {1, . . . ,m}, (a) if clause Cj contains variable xi, then w(Pi, Bj) =
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Fig. 2. The strucutre of the instance of a B3C game corresponding to an instance of a 3-SAT problem.

w(Pi, Cj) = w(Fj , Li) = w(Fj , L̄i) = 1; and (b) if literal xi (or x̄i) is in clause Cj , then w(Li, Dj) = b (or
w(L̄i, Dj) = b), for some constant b > 1. For all other pairs (u, v) not included above, w(u, v) = 0.

The overall idea of the reduction is as follows. First, we make sure that edges pointing to the assignment
nodeA correspond to an assignment to all variables. Next, if the 3-SAT instance has a satisfying assignment,
we show that for each clause Cj , there exist shortest paths from some literal nodes to Dj with significant
weights. We show that these paths make the gadget for clause Cj stable. Thus all gadgets are stable and the
configuration is a nontransient Nash equilibrium. Finally, if the 3-SAT instance has no satisfying assignment,
there must exist at least one clause Cj such that there is no path from the literal nodes to Dj with nonzero
weights. When this is the case, the gadget corresponding to Cj will not be stable and thus the game has no
nontransient Nash equilibrium.

We consider maximal graphs of the game in which all fixed edges are present and exactly one flexible
edge from each node in {Li, L̄i | i = 1, 2, . . . , `} ∪ {Bj , Cj | j = 1, 2, . . . ,m} is present. We say that a
maximal graphG of the game is an assignment graph if for all i ∈ {1, . . . , `}, there is exactly one edge from
{Li, L̄i} to A in G. We show the follow sequence of Lemmata to prove the theorem, the proofs of which are
included in the appendix.

Lemma 4. If a maximal graph G of the game is stable, G must be an assignment graph.

Lemma 5. If the 3-SAT instance does not have a satisfying assignment, then for any maximal assignment
graph G, there always exists a j ∈ {1, . . . ,m} such that for all i ∈ {1, . . . , `} and all literals v ∈ {Li, L̄i},
edge (v,A) being in G implies w(v,Dj) = 0.

Lemma 6. For a maximal assignment graph G, if there exists a j ∈ {1, . . . ,m} such that for all i ∈
{1, . . . , `} and all literals v ∈ {Li, L̄i}, edge (v,A) being in G implies w(v,Dj) = 0, then G is not a Nash
equilibrium.

Lemma 7. If the 3-SAT instance does not have a satisfying assignment, then the constructed B3C game
instance does not have nontransient Nash equilibrium.



8 Wei Chen, Shang-Hua Teng, and Jiajie Zhu

Fig. 3. A cyclic sequence of better responses in the uniform B3C game with n = 5 and k = 2.

Proof. Suppose, for a contradiction, that the B3C game instance has a nontransient Nash equilibrium. By
Lemma 3, there exists a maximal graph G that is stable. By Lemma 4 G must be an assignment graph.
Since the 3-SAT instance does not have a satisfying assignment, by Lemmata 5 and 6 G is not stable, a
contradiction. �

Lemma 8. If the 3-SAT instance has a satisfying assignment, then there exists a maximal assignment graph
G of the game in which for all j ∈ {1, . . . ,m}, there exists i ∈ {1, . . . , `} and literal v ∈ {Li, L̄i} such
that the edge (v,A) is in G and w(v,Dj) = b.

Lemma 9. Given a maximal assignment graph G in which for all j ∈ {1, . . . ,m}, there exists i ∈
{1, . . . , `} and literal v ∈ {Li, L̄i} such that the edge (v,A) is in G and w(v,Dj) = b, we construct a
graph G′ such that G′ is the same as G except that for all j ∈ {1, . . . ,m}, both Bj and Cj are connected
to Dj in G′. The maximal graph G′ must be a nontransient Nash equilibrium.

Lemma 10. If the 3-SAT instance has a satisfying assignment, then the constructed B3C game instance has
a nontransient Nash equilibrium.

Proof. This is immediate from Lemmata 8 and 9. �

The entire proof for Theorem 2 is now complete with Lemmata 7 and 10. �

4 Uniform games

In this section, we investigate uniform B3C games and report both experimental results and theoretical
results on uniform games. Experimentally, we focus on the case of k = 2 with small values of n and we
study both the Nash equilibria structures and better response dynamics. Our experiments have also inspired
us to establish some theoretical results reported in this section.

4.1 Experimental results

We conduct many experiments on uniform B3C games with small n and k = 2. The experiments are
computationally intensive, so we cannot afford to run experiments for large n yet. We obtained several
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Fig. 4. (a) A counter example with n = 8 and k = 2 showing that not all Nash equilibria are Eulerian graphs; (b) Nash equilibrium
for n = 12; (c)(d) Nash equilibrium for n = 16; (e)(f) Nash equilibrium for n = 20.

results from the experiments. First, we find cyclic sequences of better responses even for n = 5 and k = 2
(Figure 3). This means that the uniform game is not a potential game.

Next for k = 2 and different n values, we try to find the structures of Nash equilibria. When n > 5,
exhaustive search of Nash equilibria becomes infeasible, and we need to use some conjectures to narrow the
search space. The conjectures we use are: for every (n, k), there exist Nash equilibria that have Hamiltonian
cycles and are Eulerian (i.e. each node has the same in-degree and out-degree). So far, we have found Nash
equilibria satisfying this conjecture for all n ≤ 12 and n = 16, 20. Figure 4 (b)-(f) show examples we found
for n = 12, 16, and 20, and more examples are included in the appendix. We also found that not all Nash
equilibria are Eulerian, and an example is shown in Figure 4 (a). Since it becomes infeasible to exhaustively
search all graphs satisfying the above conjecture when n > 12, we have not found any n and k = 2 that
does not satisfy the conjecture.

4.2 Hardness in computing the best response

The best response of a node in a configuration of the uniform game is the strategy of the node that gives the
node the best utility (i.e. best betweenness). In a uniform game with parameters (n, k), one can exhaustively
search all

(
n−1

k

)
and find the one with the largest betweenness. Computing the betweenness of nodes given

a fixed graph can be done by all-pair shortest paths algorithms in polynomial time (e.g. [5]). Therefore, the
entire brute-force computation takes polynomial time if k is a constant. However, if k is not a constant,
we show by the following theorem that computing the best response of a node (reformulated as a decision
problem) is NP-hard.

Theorem 3. Consider the following betweenness problem instance: (a) a directed graph G = (V,E) with
n nodes and each node has k outgoing edges; (b) a natural number b; (c) one node v in G. It is NP-hard to



10 Wei Chen, Shang-Hua Teng, and Jiajie Zhu

decide whether there is a strategy of v (i.e. a set of k nodes in V \ {v}) such that v’s betweenness is at least
b using the strategy.

4.3 On Abelian Cayley graphs

In this section, we investigate a class of symmetric graphs called Abelian Cayley graphs. A Cayley graph
is defined by a tuple 〈G,S〉, where G is a group and S is a generating set of G. Each element in group G
corresonds to a node in the graph, and for all g, h ∈ G, there is an edge (g, h) in the graph if any only if
h = g · s for some s ∈ S, where · is the operation of the group.

An Abelian Cayley Graph is a Cayley Graph whose group is an Abelian Group. It can be denoted as
〈Zn, A〉, where Zn is the additive group containing {0..n− 1}, A is a generating set of Zn of size k, and the
operation is addition module n. Thus, any Abelian Cayley graph with parameters (n, k) is a configuration
of the uniform B3C game with the same parameters.

We prove below that when k = 2, Abelian Cayley graphs cannot be Nash equilibria for the correspond-
ing uniform B3C game, when the size of the graph is large enough. The intuition is that when nodes are
all symmetric to each other, a node may change some of its edge to break the symmetry and gain a better
betweenness. We suspect that the result is also true for larger k.

Fig. 5. Grid representation of an Abelian Cayley Graph, with {a, b} as the generating set. The graph as four parameters (p, q, s, t)
shown. Wrap-around edges from the right border to the left border and from the bottom border to the top border are not shown.

When k = 2, the generating setA = {a, b}, where a 6= 0, b 6= 0, and (n, a, b) = 1. We use several results
about these graphs from [15]. First, we represent the graph as a two-dimensional grid (Figure 5), following
the construction in [15]. Each node in the graph has a coordinate (x, y), where x and y are integers. Node
0 is put at the origin (0, 0), but since the graph is symmetric any node could be put at the origin and the
resulting graph structure is the same. The node with coordinate (x, y) is v ≡ x + yb (mod n). In the first
round, we fix nodes that are one step away from the origin, which are (1, 0) and (0, 1), and we start with
(1, 0). In the second round, we fix nodes that are two steps away from the origin, which are (2, 0), (1, 1),
and (0, 2), in this order. The x-axis edges (x, y) → (x + 1, y) are drawn horizontally toward right, and
y-axis edges (x, y)→ (x, y + 1) are drawn vertically downwards. When we encounter a node (x, y) whose
value already appear earlier, we ignore this node. The construction process is complete when all values of
Zn have appeared in the graph. Figure 5 shows the graph with all nodes and rightward edges and downward
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edges. There are wrap-around edges from the right border to the left border and from the bottom border to
the top border, which are omitted in the figure. Let d(u, v) be the shortest distance from node u to node v.
The following are results proven in [15].

Lemma 11 (Wong and Coppersmith [15]). 2 The following results hold for the constructed Abelian Cayley
graph 〈Zn, {a, b}〉.

(1) The graph has the structure shown in Figure 5, which is a rectangle with a missing rectangle corner,
with four parameters s, t, p, q such that st+ sq + pq = n and s, q > 0, t, p ≥ 0.

(2) sa+ qb ≡ 0 (mod n), tb ≡ (s+ p)a (mod n), and pa ≡ (q + t)b (mod n).
(3) The average distance of the graph An(b) is given below:

An(b) =

∑
u6=v∈Zn

d(u, v)
n(n− 1)

=
s2q + sq2 + 2stq + s2t+ st2 + 2spq + p2q + pq2

2(st+ sq + pq)
− 1 (3)

We now show how to calculate the betweenness of node 0 in the graph.

Lemma 12. For any graph G = (V,E), we have∑
i∈V

btwi(G) =
∑

u6=v∈V,m(u,v)>0

(d(u, v)− 1) (4)

Proof. By the definition of btwi(G) (equation (1)), we have∑
i∈V

btwi(G) =
∑
i∈V

∑
u6=v 6=i∈V,m(u,v)>0

mi(u, v)
m(u, v)

=
∑

u6=v∈V,m(u,v)>0

∑
i 6=u,v∈V

mi(u, v)
m(u, v)

=
∑

u6=v∈V,m(u,v)>0

(d(u, v)− 1)

�

Lemma 13. In the Abelian Cayley Graph 〈Zn, {a, b}〉, the betweenness of each node is

btworig = (n− 1)(An(b)− 1) (5)

where An(b) is given in Lemma 11.

Proof. According to Lemma 12:∑
i∈Zn

btwi =
∑

u6=v∈Zn

(d(u, v)− 1) = n(n− 1)(An(b)− 1)

Since Abelian Cayley graphs are symmetric, every node has the same betweenness. Therefore,

btworig =

∑
i∈Zn

btwi

n
= (n− 1)(An(b)− 1)

�
2 The results in [15] are for the case 〈Zn, {1, b}〉, but the same results apply to 〈Zn, {a, b}〉 with the same proofs.
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In the remaining analysis, we show that in almost all cases, node 0 can improve its betweenness by
changing either its edge to node a (coordinate (1, 0)) or node b (coordinate (0, 1)) to the edge connecting
node a+ b (coordinate (1, 1)). The two exceptions are (a) when a+ b ≡ 0 (mod n), in which case the graph
is a bidirectional Hamiltonian cycle, and (b) when 2a + b ≡ 0 (mod n), in which case the graph has one
Hamiltonian cycle in one direction, and a reverse cycle made of every other node in the Hamiltonian cycle.
We show that in these two cases, node 0 can increase its betweenness by connecting to the opposite end of
the cycle. The detailed analysis is given in the appendix. As a result, we have the following theorem.

Theorem 4. There exists a number N > 0 such that for all n ≥ N , no Abelian Cayley graph Gn,a,b is a
Nash equilibrium.

On the contrary, when k = 1, we show below that the Abelian Cayley graph, which is the Hamiltonian
cycle, is the only nontransient Nash equilibrium, and from any maximal graph, there is a sequence of better
responses that leads to the Hamiltonian cycle.

Theorem 5. In the uniform B3C game with k = 1, the Hamiltonian cycle is the unique nontransient Nash
equilibrium, and from every maximal graph, there is a sequence of better responses that leads to the Hamil-
tonian cycle.

In general, we conjecture that for all fixed k ≥ 2, no Abelian Cayley graph with a generating set of size
k is Nash equilibrium when the graph size is large enough.

5 Conclusion and future work

In this paper, we present results on bounded budget betweenness centrality (B3C) game, a type of network
formation games in which nodes in the network try to strategically select other nodes to connect subject to
the budget constraint in order to maximize their betweenness centrality in the network. There are a number
of directions to continue the study of B3C games.

First, it is still an open question on whether Nash equilibrium always exists in uniform games, and
what are the possible structures in these Nash equilibria. Second, we can study various properties of Nash
equilibria, such as strong connectivity, diameter, and fairness in betweenness among different nodes. We
may also look into different variants of the game, such as the undirected version, or the version without
budget constraint but minimizing link cost as part of the objective function. Given that computing exact best
responses for nodes is NP-hard, we may study approximate algorithms that node may employ in finding near-
optimal responses and the corresponding Nash equilibria with such dynamics, which may also be related to
approximate Nash equilibria.

Acknowledgment. We would like to thank Heiko Röglin for his helpful discussions on this research topic.
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Appendix

A Complete proofs for results in Section 3

Lemma 1 In any nonuniform B3C game, the following configurations are all Nash equilibria: (i) the empty
graph with no edges; and (ii) any Hamiltonian cycle, i.e., any cycle that passes through every node exactly
once, provided that the budget constraint allows such configurations. Moreover, they are transient Nash
equilibria under the following conditions: (a) for the empty graph, if there exist nodes i, j, and k such that
{j} ∈ Si, {k} ∈ Sj and w(i, k) > 0; (b) for a Hamiltonian cycle, if there exist nodes i, j and k such that
(b.1) j is on the shortest path from i to k, (b.2) the length of the shortest path from k to i is at least 2, (b.3)
k is allowed to add an edge to j, (b.4) j is allowed to add an edge to i, and (b.5) w(k, i) > 0.

Proof. For the empty graph, the betweenness centrality of every node is zero. Since each node i can only
add its own outgoing edges, there is no path between any pair of nodes different from i, no matter how i add
its own outgoing edges. Thus, the betweenness centrality of i is still zero with any strategy change, which
means the empty graph is a Nash equilibrium. Moreover, with condition (a), we can consider the strategy
change sequence in which i first changes to strategy {j} (adding an edge from i to j), and then j changes to
strategy {k} (adding an edge from j to k). After j’s change, its betweenness improves from 0 tow(i, k) > 0,
since it is now on the shortest path from i to k. Thus, the empty graph is a transient Nash equilibrium.

Now consider a configuration with a Hamiltonian cycle. Consider a node i. For any pair of nodes j, k 6= i,
if i is on the shortest path from j to k, i gain 1 in its betweenness since the shortest path is unique on the
Hamiltonian cycle. To improve i’s betweenness, the only possibility is for i to find a pair of nodes j, k 6= i
such that i was not on the shortest path from j to k but i is on the shortest path from j to k after i’s strategy
change. However, since i’s strategy change can only change its own outgoing edges, and the above implies
that the shortest distance from j to i is less than the shortest distance from j to k before i’s strategy change,
which means i is already on the shortest path from j to k because it is a Hamiltonian cycle. Therefore, the
Hamiltonian cycle is a Nash equilibrium.

Moreover, with conditions (b.1) to (b.5), we can have a strategy change sequence in which k adds an
edge to j and then j adds an edge to i. After k adds the edge to j, k’s utility does not change, but after j
adds the edge to i, path 〈k, j, i〉 becomes a shortest path from k to i since the shortest distance from k to i
was at least two before the change. Then j’s utility increases at least w(k, i)/2 > 0. Therefore, in this case,
the Hamiltonian cycle is a transient Nash equilibrium. �

Lemma 2 Adding an outgoing edge to a node i does not decrease i’s betweenness. That is, for any graph
G = (V,E) with i ∈ V and (i, j) 6∈ E for some j ∈ V . Let G′ = (V,E ∪ {(i, j)}). Then btwi(G) ≤
btwi(G′).

Proof. For each pair of nodes u, v 6= i, the length of the shortest path from u to v does not increase after
adding edge (i, j). If the length decreases, the new shortest path must pass through (i, j), and thus pair (u, v)
contributes 1 to btwi(G′), which is no less than the contribution of (u, v) to btwi(G). If the length remains
the same, all the additional shortest paths between u and v pass through (i, j). Thus, the contribution of
(u, v) to btwi(G′) is at least the same as the contribution to btwi(G). Therefore, when summing over the
contributions from all pairs, we have btwi(G) ≤ btwi(G′). �

Lemma 3 Given a nonuniform B3C game with parameters (n, b, c, w), if a maximal graph G of the game
is not stable, then any subgraph of G cannot be a nontransient Nash equilibrium. If none of the maximal
graphs of the game is stable, then the game does not have any nontransient Nash equilibrium.

Proof. Consider any subgraph G′ of G. We can construct a sequence of strategy changes that change the
graph G′ to G, where only new edges are added in all strategy changes. By Lemma 2, all these changes will
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either keep the changer’s utility or increase its utility. Since G is unstable, some node can have a strategy
change that increases its utility. Therefore, G′ cannot be a nontransient Nash equilibrium.

If none of the maximal graphs of the game is stable, by the above argument we know that no configu-
ration (graph) is a nontransient Nash equilibrium, since any configuration is a subgraph of some maximal
graph. �

Lemma 4 If a maximal graph G of the game is stable, G must be an assignment graph.

Proof. Suppose, for a contradiction, that G is not an assignment graph. Then for some i ∈ {1, . . . , `},
both Li and L̄i connect to Qi or to A. Suppose they both connect to Qi. The only shortest paths that pass
through Li and L̄i and have nonzero weights are 〈Pi, Li, Qi〉 and 〈Pi, L̄i, Qi〉. Since w(Pi, Qi) = a, we
have btwLi(G) = btwL̄i

(G) = a/2. In this case, Li can change its strategy to connect to A instead of Qi

to obtain G′. In G′, Li is on the only shortest path from Pi to A, and thus btwLi(G
′) = a > btwLi(G).

Therefore, G is not stable, contradicting to the assumption of the lemma.
Now suppose that both Li and L̄i connect to A. They split the shortest paths from Pi to A, which

contributes a/2 to the betweenness of Li and L̄i each. Among other possible shortest paths that pass through
Li or L̄i, the only nonzero weight ones are from Pi to Bj and Cj for all j ∈ {1, . . . ,m}. Since Li and L̄i

equally split these shortest paths, we have btwLi(G) ≤ a/2+
∑m

j=1(w(Pi, Bj)+w(Pi, Cj))/2 = a/2+m.
In this case, Li can change its strategy to connect to Qi instead of A to obtain G′. In G′, Li is on the only
shortest path from Pi to Qi, so btwLi(G

′) = a > a/2 +m since a > 2m. Therefore, G is not stable, again
contradicting to the assumption of the lemma. Hence, G must be an assignment graph. �

Lemma 5 If the 3-SAT instance does not have a satisfying assignment, then for any maximal assignment
graph G, there always exists a j ∈ {1, . . . ,m} such that for all i ∈ {1, . . . , `} and all literals v ∈ {Li, L̄i},
edge (v,A) being in G implies w(v,Dj) = 0.

Proof. Suppose that the 3-SAT instance does not have a satisfying assignment and G is a maximal as-
signment graph. The edges pointing to A in G correspond to a truth assignment to variables in the 3-SAT
instance: If edge (Li, A) is inG, assign variable xi to true; if edge (L̄i, A) is inG, assign variable xi to false.
Since the 3-SAT instance is not satisfiable, for the above assignment, there exists a clause Cj that is evaluated
to false. For any variable xi not in Cj we have w(Li, Dj) = w(L̄i, Dj) = 0 by our definition of the weight
function. So we only consider a variable xi appearing in Cj . If edge (Li, A) is in G, we assign xi to true,
and since Cj is evaluated to false, we know that literal x̄i is in Cj . Then by our definition, w(L̄i, Dj) = b but
w(Li, Dj) = 0. The case when (L̄i, A) is in G has a symmetric argument. Therefore, the lemma holds. �

Lemma 6 For a maximal assignment graph G, if there exists a j ∈ {1, . . . ,m} such that for all i ∈
{1, . . . , `} and all literals v ∈ {Li, L̄i}, edge (v,A) being in G implies w(v,Dj) = 0, then G is not a Nash
equilibrium.

Proof. Consider such a graph G with j ∈ {1, . . . ,m} satisfying the condition given in the lemma. Consider
the shortest paths that pass through Bj and Cj . Since all literal nodes that connect to A have zero weights
to Dj (and thus also to Ej and Fj), the only shortest paths passing through Bj and Cj that have nonzero
weights are paths from A to Dj , Ej and Fj . This essentially reduces the gadget corresponding to Cj to the
gadget in Figure 1 with one additional node A and no cluster nodes. By an argument similar to the one in
the proof of Theorem 1, no matter how Bj and Cj currently connect to nodes in {Dj , Ej , Fj}, one of them
will always want to change its strategy to connect to one node in {Dj , Ej , Fj} that is next to what the other
current connects to (according to the direction of the triangle) to increase its utility. Therefore, G is not a
Nash equilibrium. �

Lemma 8 If the 3-SAT instance has a satisfying assignment, then there exists a maximal assignment graph
G of the game in which for all j ∈ {1, . . . ,m}, there exists i ∈ {1, . . . , `} and literal v ∈ {Li, L̄i} such
that the edge (v,A) is in G and w(v,Dj) = b.
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Proof. Suppose that the 3-SAT instance has a satisfying assignment f . construct a maximal assignment
graph G such that for all i ∈ {1, . . . , `}, if variable xi is assigned to true in the assignment f , then Li

connects to A; otherwise, L̄i connects to A. For all j ∈ {1, . . . ,m}, since clause Cj is evaluated to true
under assignment f , there exists variable xi whose corresponding literal in Cj is evaluated to true. If literal
xi is in Cj , xi is assigned to true. By the above construction ofG, (Li, A) is inG, and by the definition of the
weight function, w(Li, Dj) = b. The same argument applies to the case when literal x̄i is in Cj . Therefore,
the lemma holds. �

Lemma 9 Given a maximal assignment graphG in which for all j ∈ {1, . . . ,m}, there exists i ∈ {1, . . . , `}
and literal v ∈ {Li, L̄i} such that the edge (v,A) is in G and w(v,Dj) = b, we construct a graph G′ such
that G′ is the same as G except that for all j ∈ {1, . . . ,m}, both Bj and Cj are connected to Dj in G′. The
maximal graph G′ must be a nontransient Nash equilibrium.

Proof. We prove that in G′ any strategy change strictly decreases the changers betweenness, and thus G′

must be a nontransient Nash equilibrium.
We go through all nodes and check all possible strategy changes in the following list.

– For each node Qi, i ∈ {1, . . . , `}, it has only the empty strategy so there is no strategy change for Qi.
– For each node Pi, i ∈ {1, . . . , `}, the only change of the strategy is to remove one or both of the edges

(Pi, Li) and (Pi, L̄i). Suppose variable xi appears in clause Cj . Then we know that Dj connects to Pj

(since G′ is maximal). By the definition of the weight function w(Fj , Li) = w(Fj , L̄i) = 1. Thus paths
from Fj to Li and L̄i through Pi contribute positive values to the betweenness of Pi. If Pi were to
remove edge (Pi, Li) or (Pi, L̄i) or both, Pi’s betweenness would strictly decrease.

– For each node Li, i ∈ {1, . . . , `}, its strategy change is either removing its flexible edge or changing
its flexible edge. If it removes its flexible edge, it loses the shortest path from Pi to Qi or A, and since
w(Pi, Qi) = w(Pi, A) = a, its betweenness strictly decreases. If it changes its flexible edge, then both
Li and L̄i connects to Qi or A. By the same argument as in the proof of Lemma 4, its betweenness
strictly decreases.

– For each node L̄i, i ∈ {1, . . . , `}, the argument is the same as the argument for Li.
– For node A, it can remove any of edges (A,Bj) or (A,Cj), for j ∈ {1, . . . ,m}. Suppose it removes

edge (A,Bj) in G′. Let xi be a variable in Cj . Since G′ is an assignment graph, Pi has a shortest path
connecting to Bj through Li or L̄i and A. Since w(Pi, Bj) = 1, this shortest path contributes 1 to the
betweenness of A in G′. If A removes edge (A,Bj) in G′, there will be no path from Pi to Bj and A’s
betweenness will decrease by 1. Therefore, any strategy change of A strictly decrease its betweenness.

– For each node Bj , j ∈ {1, . . . ,m}, it can either remove its flexible edge or change its flexible edge. By
the assumption of the Lemma, there exists i ∈ {1, . . . , `} and literal node v ∈ {Li, L̄i} such that the
edge (v,A) is in G and w(v,Dj) = b. Suppose that there are t such literal nodes v. By the definition
of w, we know that t ≤ 3. Since Bj at least splits the shortest paths from v and A to Dj , btwBj (G′) =
(tb+ 3)/2 ≥ (b+ 3)/2. If Bj removes its flexible edge (Bj , Dj), it will not connect to any node and its
betweenness will decrease to zero. If Bj changes its flexible edge to (Bj , Ej) to obtain a graph G′′, it
loses the share on the shortest paths from v andA toDj but gain the full share on the shortest paths from
A to Ej and Fj . Then btwBj (G′′) = 2 < (b + 3)/2 ≤ btwBj (G′) since b > 1. So Bj’s betweenness
strictly decreases. IfBj changes its flexible edge to (Bj , Fj), it loses the share on the shortest paths from
v and A to Dj and Ej and only gains the full shar on the shortest paths from A to Fj , so it is worse than
the above case. Therefore, all strategy changes on Bj strictly decreases Bj’s betweenness.

– For each node Cj , j ∈ {1, . . . ,m}, the argument is the same as the argument for Bj .
– For each node Dj , j ∈ {1, . . . ,m}, it can change its strategy by removing its fixed edge to Ej and/or

removing some of its fixed edges to some Pi’s. If it removes its edge toEj , it loses the shortest path from
Fj to Ej with weight 1, so its betweenness strictly decreases. If it removes any edge to some node Pi, it
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loses shortest paths from Fj to Li and L̄i with weight 1, so its betweenness strictly decreases. Therefore,
Di cannot change its strategy.

– For each node Ej , j ∈ {1, . . . ,m}, it can change its strategy by removing its fixed edge to Fj . This
however will cause Ej losing the shortest path from Dj to Fj with weight 1, so its betweenness strictly
decreases.

– For each node Fj , j ∈ {1, . . . ,m}, it can change its strategy by removing its fixed edge to Dj . This
however will cause Fj losing the shortest path from Ej to Dj with weight 1, so its betweenness strictly
decreases.

By the above argument exhausting all possible cases, we show that graph G′ is indeed a nontransient Nash
equilibrium. �

B More experimental results on Nash equilibria

Figure 6 provides several more Nash equilibria found for k = 2 and n = 16, 20. All Nash equilibria
have Hamiltonian cycles and are Eulerian. More over every four nodes along the Hamiltonian cycle are
symmetric, which is the property we used to search for Nash equilibria. However, we have not been able to
find Nash equilibria using this property for larger graphs such as n = 24 or n = 28.

Fig. 6. Several more Nash equilibria for k = 2. (a) to (h) have n = 16 and (i) (j) have n = 20
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C Complete proofs for Section 4

C.1 Proofs for the hardness result on finding best responses

Theorem 3 Consider the following betweenness problem instance: (a) a directed graph G = (V,E) with
n nodes and each node has k outgoing edges; (b) a natural number b; (c) one node v in G. It is NP-hard to
decide whether there is a strategy of v (i.e. a set of k nodes in V \ {v}) such that v’s betweenness is at least
b using the strategy.

Proof. We reduce this problem from the set cover problem. Given an instance of the set cover problem
〈U, S, t〉, in which U is a universe and S is a family of subsets of U with |U | = n, |S| = m, and t is a
natural number. The problem is to determine whether there are at most t subsets in S whose union is the
universe. We construct an instance of the betweenness problem as follows (see Figure 7).

– Let k = min(t,m).
– We use k+ 1 nodes to form a clique so that each node has out degree k. These nodes are used to absorb

links from other nodes that would otherwise do not have k outgoing edges.
– We set node B to be the one we need to compute the best response for.
– We set node A to connect to B and another k − 1 nodes in the clique;
– We set n element nodes v1, . . . , vn to correspond to n elements in U , and they connect to arbitrary k

nodes in the clique;
– We set m subset nodes s1, . . . , sm to correspond to m subsets in S. For a slight abuse of notation, we

use vi to denote both the node in the graph and the element in U , and sj to denote both the node in
the graph and the subset in S. We intend to connect sj to all node vi if vi ∈ si, but subset sj may
have more than k elements causing the node sj to have out-degree larger than k. To deal with this
case, for each sj , we build a complete k-ary tree rooted at si with height h = dlogk maxj{|sj |}e − 1.
In the tree of sj , we connect kh leaves arbitrarily to all vi ∈ sj as long as each leaf connects to at
most k nodes in vi’s. For leaves do not have k connections, we connect them arbitrarily to nodes in
the clique to increase their out-degree to k. Let a be the number of nodes in one k-ary tree. Note that
a = (kh+1 − 1)/(k − 1) < kmaxj{|sj |}, so the construction is certainly in polynomial time.

The decision problem in the game is to determine whether node B can choose a set of edges of size at
most k that make its betweenness at least n+ ka.

Lemma 14. If there is a cover of size at most t whose union is the universe U , then node B can choose a
set of edges of size at most k that makes its betweenness to be at least n+ ka.

Proof. Suppose that the cover which satisfies the requirement is C. Without loss of generality, we can
assume that |C| = k. Let node B connect to the root set nodes si for all si ∈ C. In this case, B stands
on the shortest paths from A to the k root set nodes and their corresponding tree nodes, and thus k gains
betweenness ka from these shortest paths. Since∪si∈Csi = U , according to the construction of the structure,
B can reach all n element nodes {v1, . . . , vn} and B stands on all the paths from A to the elements nodes.
Hence they contribute n to the betweenness of B. So betweenness of B is at least n + ka. This concludes
the proof. �

Lemma 15. If node B can find a set of edges of size at most k that makes its betweenness to be at least
n+ ka, then there is a cover of size at most t whose union is the universe U .

Proof. We first prove that B can achieve the best betweenness by connecting to k subset nodes sj’s.
Node B’s betweenness comes from the shortest paths from A to other nodes. If B connects to a node L

not in the clique, it will not gain any betweenness from the paths from A to B to L and then to any clique
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Fig. 7. A structure corresponding to the instance of set cover problem.

node, because A can reach k− 1 clique nodes directly and the remaining two clique nodes in one more step,
but the paths through B and L have length at least 3.

Since k ≤ m, if B connects to any other node, it will lose a connection to some subset node sj . We
argue case by case below that it will not give a better betweenness than B connecting to some subset node
instead.

– Node B connects to node L in the tree rooted at node sj and L 6= sj . If B already connects to sj , then
connection to L does not contribute any more to the betweenness of B, and B should connect to some
other subset node sj′ not yet connected to increase its betweenness. If B has no connection to sj , then
replacing the connection to L with connection to sj will increase B’s betweenness since B is at least on
one more shortest path from A to sj .

– Node B connects to some element node vi. It can gain at most 1 by the shortest path from A to vi via
B, since vi only connects to clique nodes, and we have already argued that the path from A to B to vi

and then to clique nodes are not shortest paths. In this case, B can instead connect to an available subset
node sj not yet connected, by which it gains betweenness of at least 1, no worse than the connection to
vi.

– Node B connects to some clique node L. If A has a direct connection to L, B will not gain any be-
tweenness by this connection. If A does not have direction connection to L, 〈A,B,L〉 is a shortest path
of length 2, but there are k − 1 other shortest paths from A to L. Thus B gains betweenness of at most
1/k. In this case, B is better off connecting to an available subset node sj .

– NodeB connects to nodeA. This does not contribute any betweenness toB, soB is better off connecting
to an available subset node sj .

Therefore, node B can achieve the best betweenness by connecting to k subset nodes. Let these k subset
nodes form a set C. In this case, the betweenness of B is ka + | ∪si∈C si|, because only through B node
A can reach all k trees rooted at nodes in C plus nodes in ∪si∈Csi, but for the clique nodes A has shorter
paths to reach them not through B. Since B can achieve a betweenness of at least ka + n, we know that
| ∪si∈C si| ≥ n, which means that C must be a solution to the set cover instance. �

The proof of Theorem 3 is now complete with Lemmata 14 and 15. �
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C.2 Proofs on Abelian Cayley graphs

All lemmata in this section consider the Abelian Cayley Graph Gn,a,b generated from 〈Zn, {a, b}〉, with
parameters (p, q, s, t) dependent on (n, a, b), as shown in Figure 5.

Lemma 16. For all parameters (p, q, s, t), we have t ≤ s+ p and p ≤ q + t.

Proof. by Lemma 11, tb ≡ (s + p)a (mod n). Since node tb appears in the graph while node (s + p)a
does not, the distance from 0 to tb is at most the distance from 0 to (s + p)a, which means t ≤ s + p.
Symmetrically, we have p ≤ q + t. �

Lemma 17. If s = q = 1, t, p ≥ 0, the graph is isomorphic toGn,1,−1, which is a bidirectional Hamiltonian
cycle. There exists number N1 > 0 such that for all n ≥ N1, in Gn,1,−1 node 0 can remove its edge to 1 and
add an edge to bn2 c to improve its betweenness.

Fig. 8. In undirected circle, node 0 change (0, 1) to (0, bn
2
c)

Proof. By Lemma 11 (2), sa+qb ≡ 0 (mod n), so b ≡ −a (mod n) with s = q = 1. Since (n, a, b) = 1, we
have (n, a) = 1 and thus the generating set {a,−a} is equivalent to {1,−1}, which leads to the bidirectional
Hamiltonian cycle Gn,1,−1. The betweenness of node 0 in Gn,1,−1 has different equations when n is odd or
even. To avoid the complexity, we use the asympotic notation. Before node 0 changes its edge,

btworig = 2
n/2+o(n)∑

i=1

i =
n2

4
+ o(n2)

Then we calculate the new betweenness after node 0 removes its edge to 1 and adds an edge to bn2 c
(Figure 8).

The first part of betweenness comes from the shortest paths to the last quarter of nodes (from node 3n/4
to node n− 1 in Figure 8).

btwmodif1 =
n/2+o(n)∑

i=n/4+o(n)

i = 3n2/32 + o(n2)

The second part of betweenness comes from the shortest paths from the first quarter of nodes (from node
1 to node n/4) to the third quarter of nodes (from node n/2 to node 3n/4) through the shortcut.

btwmodif2 = (n/4 + o(n))(n/4 + o(n)) = n2/16 + o(n2)
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The third part of betweenness comes from the shortest paths from the first quarter of nodes to the second
quarter of nodes (from node n/4 to node n/2) through the shortcut.

btwmodif3 =
n/4+o(n)∑

i=1

i = n2/32 + o(n2)

The fourth part of betweenness comes from the shortest paths from the last quarter of nodes to the third
quarter of nodes through the shortcut.

btwmodif4 =
n/4+o(n)∑

i=1

i = n2/32 + o(n2)

The fifth part of betweenness comes from the shortest paths from the last quarter of nodes to the first
and the second quarter of nodes through the shortcut.

btwmodif5 = (n/4 + o(n))(n/2 + o(n)) = n2/8 + o(n2)

btwmodif = btwmodif1 + btwmodif2 + btwmodif3 + btwmodif4 + btwmodif5 = 11n2/32 + o(n2)

In this case, it is obvious that there exists some N1 such that for all n ≥ N1, btwmodif > btworig. �

Lemma 18. If q = 1, s = 2, t, p ≥ 0, the graph is isomorphic to Gn,1,−2. There exists number N2 > 0 such
that for all n ≥ N2, in Gn,1,−2 node 0 can remove its edge to −2 and add an edge to bn2 c to improve its
betweenness. Symmetrically, it is also true for s = 1, q = 2, t, p ≥ 0.

Proof. By Lemma 11 (2), sa + qb ≡ 0 (mod n), so b ≡ −2a (mod n) with s = 2 and q = 1. Since
(n, a, b) = 1, we have (n, a) = 1 and thus the generating set {a,−2a} is equivalent to {1,−2}, which leads
to the graph Gn,1,−2.

By Lemma 11 (1), n = 2t+ p+ 2. By the inequalities of Lemma 16, it is easy to derive that n/3− 1 ≤
t ≤ n/3, and n/3 − 3 ≤ p ≤ n/3 + 1. Using Lemma 13 and Lemma 11 (3), we plug in s = 2, q = 1,
t = n/3 +O(1), p = n/3 +O(1) and obtain the betweenness of node 0 in Gn,1,−2:

btworig =
n2

6
+O(n)

We now caculate the betweenness of node 0 when it removes its edge to −2 and adds an edge to bn2 c
(Figure 9).

We calculate the contributions to its betweenness from several categories. For convenience, we say that
the big cycle with edges (v, v+ 1) is the clockwise cycle, while the cycle with edges (v, v− 2) the counter-
clockwise cycle.

First, we consider the contributions of all paths with the clockwise big cycle:

btwmodif1 =
d(n−1)/3e−1∑

i=1

i =
n2

18
+O(n)

Second, we consider the contributions of paths with the clockwise cycle and the shortcut edge (0, bn2 c):

btwmodif2 =
ddn/2e/3e−1∑

i=1

i =
n2

72
+O(n)
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Fig. 9. Node 0 change (0,−2) to (0, bn
2
c)

Third, we consider the contributions of the paths with counter-clockwise cycle and the shortcut edge
(0, bn2 c):

btwmodif3 =
bbn/2c/3c∑

i=1

i =
n2

72
+O(n)

Finally, we consider the contributions of paths that start with the clockwise cycle, then pass through the
shortcut and continue with the counter-clockwise cycle, and also the symmetric paths that start with the
counter clockwise cycle and end with the clockwise cycle. Each contributes n2/18 +O(n) to the between-
ness of node 0, so together

btwmodif4 =
n2

9
+O(n)

Therefore, the total betweenness difference after the change is:

∆ ≥ btwmodif1 + btwmodif2 + btwmodif3 + btwmodif4 − btworig

=
n2

36
+O(n)

Therefore, it is clear that there exists N2 such that for all n ≥ N2, node 0 can improve its betweenness when
s = 2 and q = 1. The result also holds for the symmetric case of s = 1 and q = 2. �

Lemma 19. If s, q ≥ 2; t, p ≥ 0, there exists number N3 > 0 such that for all n ≥ N3, in graph Gn,a,b

node 0 can remove either its edge to a (coordinate (1, 0)) or its edge to b (coordinate (0, 1)) and adds and
edge to a+ b (coordinate (1, 1)) to improve its betweenness.

Proof. We focus on the calculation of the betweenness when node 0 changes its edge to node a to node
a + b, as shown in Figure 10. We will point out the symmetric change and the corresponding result when
necessary. It is not easy to apply Equation (1) to caculate the betweenness of node 0 in the modified graph.
Instead, we use the symmetric property of graph Gn,a,b. We rotate node 0 to all positions in the graph, and
for each rotated graph G′, we compute the betweenness of node 0 in G′ contributed by the path initiated
from the node in the origin of G′. We then sum up all these betweenness, which gives the betweenness of
node 0 contributed by all possible paths. Figure 11 shows an example of node 0 rotated one position to the
right.

Node 0 gains betweenness from several sources after it changes its edge. First, with the diagonal edge
from 0 to a+b, all shortest paths from the origin to the lower right region of node a+b pass through node 0,
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Fig. 10. The configuration in which upleft node 0 changes its strategy by changing one edge.

Fig. 11. Change the position of each node in the drawing of the graph



24 Wei Chen, Shang-Hua Teng, and Jiajie Zhu

since the diagonal edge makes these path one step shorter than their competing alternative paths not passing
through 0. This region is illustrated in Figure 12 (a). For this computation, we consider node 0 rotated into
five regions, A,B,C,D and E, as shown in Figure 12 (b). It corresponds to the five summation terms in the
follow formula.

btwmodif1 =
s−1∑
i=2

((q + t− 1)(s− i) + (q − 1)p) +
p−1∑
i=0

(p− i)(q − 1) +

q−1∑
j=2

(
s−1∑
i=1

((s− i)(q + t− j) + (q − j)p) +
p−1∑
i=0

(p− i)(q − j)) +

t−1∑
j=0

s−2∑
i=0

(j + 1)(i+ 1)

= p2q2/4 + ts2q/2 + psq2/2 + t2s2/4 + q2s2/4
−tsq/2− pq2/4− p2q/4− pqs/2
−qs2/4− ts2/4− t2s/4− q2s/4
−3pq/4− 3ts/4− 3qs/4 + s+ t+ p+ q − 1

= n2/4− pqst/2− n(p+ q + s+ t)/4 + tp(s+ q)/4− 3n/4
+p+ q + s+ t− 1

= n2/4− pqst/2− n(p+ q + s+ t)/4 + tp(s+ q)/4 +O(n)

Second, consider the case when node 0 is on the top border. By wrap-around edges from the bottom
border to the top border, node 0 is still on shortest paths from the origin to some other nodes to the right of
0 in the top border. These shortest paths are better viewed if we attach another copy of the L-shape graph at
the corner of the current graph (see Figure 12 (c)). We only consider the shortest paths to the first p nodes in
the top border of the attached copy, which gives the following amount of betweenness:

btwmodif2 =
p−2∑
i=1

i

= (p− 1)(p− 2)/2

Third, consider the case when node 0 is on the left border. Then it is still on all the shortest paths from
the origin to nodes that are below node 0, because it still has the edge to node b (see Figure 12 (d)). This
gives node 0 the following amount of betweenness:

btwmodif3 =
q+t−2∑

i=1

i

= (q + t− 2)(q + t− 1)/2

We still need to add some amount of betweenness to node 0 in order to show that its betweenness strictly
increases. For this purpose, we finally consider the case when node 0 is on the the second vertical line from
the left (see Figure 12 (e)). It still gains partial betweenness from the origin to the nodes below it:
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Fig. 12. Illustrations for the calculation of the betweenness of node 0 after its edge change.
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btwmodif4 =
q+t∑
i=2

i−1∑
j=1

j

i

=
q+t∑
i=2

i− 1
2

= (q + t)(q + t− 1)/4

There are other contributions to the betweenness of node 0 but we omit them in the calculation.
The betweenness of node 0 before changing the edge is

btworig = (n− 1)(An(b)− 1)
= (1/2− 1/(2n))(n(p+ q + s+ t)− tp(s+ q))− 2(n− 1)

So the difference of the betweenness before and after changing is

∆ ≥ btwmodif1 + btwmodif2 + btwmodif3 + btwmodif4 − btworig

=
n

4
(n− 3p− 3q − 3s− 3t) +

pt

4
(3s+ 3q − 2sq) +

p2

2
+

3(q + t)2

4
+O(n) (6)

We now separate all possible values of (p, q, s, t) into several cases and argue that in each case node 0
can improve its betweenness when n is large enough.

Case 1. p, q, s, t ≤ n4/5.

∆ ≥ n2

4
− pqst

2
+ o(n2)

≥ n2

4
− n2

8
+ o(n2) (since pq + st ≤ n)

≥ n2

8
+ o(n2)

Thus, there exists N3,1 such that for all n ≥ N3,1 ∆ > 0 in this case.

Case 2. q ≥ n4/5. Since pq + qs + st = n, we have p ≤ n1/5 and s ≤ n1/5. Since t ≤ s + p, we have
t ≤ 2n1/5. Moreover, q = (n − st)/(p + s), giving the bound of q as n/(p + s) ≥ q ≥ n/(p + s) − st ≥
n/(p+ s)− 2n2/5.

∆ ≥ n

4
(n− 3q) +

3
4
q2 + o(n2)

=
(p+ s)2 − 3(p+ s) + 3

4(p+ s)2
n2 + o(n2) (using the bound of q above)

≥ 1
4(p+ s)2

n2 + o(n2) (since s ≥ 2)

Thus, there exists N3,2 such that for all n ≥ N3,2 ∆ > 0 in this case.
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Case 3. s ≥ n4/5. This case is symmetric to Case 2, which means there existsN3,3 such that for all n ≥ N3,3

node 0 gains betweenness if it switches its edge connecting node b to node a+ b.

Case 4. p ≥ n4/5. Since pq + qs + st = n, we have q ≤ n1/5. By inequality t + q ≥ p, and thus
t ≥ n4/5 − n1/5. Then again by pq + qs+ st = n, s ≤ n/(q + t) ≤ n/p ≤ n1/5. We simplify Equation (6)
in the following way: First, we use pq + qs+ st to replace n; second, we remove any term that is O(n7/5).
This leads to the following:

∆ ≥ t2(s2 − 3s+ 3) + p2(q2 − 3q + 2)
4

+O(n7/5)

≥ t2

4
+O(n7/5) (since s, q ≥ 2)

≥ n8/5

4
+O(n7/5) (since t ≥ n4/5 − n1/5)

Hence, there exists N3,4 such that for all n ≥ N3,4 ∆ > 0 in this case.

Case 5. t ≥ n4/5. This case is symmetric to Case 4, which means that there exists N3,5 such that for all
n ≥ N3,5 node 0 gains betweenness if it switches its edge connecting node b to node a+ b.

Note that the above five cases cover all possible values of (p, q, s, t) when s, q ≥ 2. Therefore, we can
set N3 = max{N3,1, N3,2, N3,3, N3,4, N3,5} and the lemma holds for this N3. �

Lemma 20. If q = 1, s > 2; t, p ≥ 0, there exists number N4 > 0 such that for all n ≥ N4, in graph
Gn,a,b node 0 can remove its edge to b (coordinate (0, 1)) and adds and edge to a + b (coordinate (1, 1))
and improve its betweenness.

Proof. We use the same approach as in the proof of the previous lemma to compute the betweenness of node
0 after it changes its edge.

First, we compute the betweenness contributed by the shortest paths from the origin to the lower-left
region of the diagonal edge.

btwmodif1 =
s−1∑
i=2

(t(s− i)) +
t−1∑
j=0

s−2∑
i=0

(j + 1)(i+ 1)

=
t(s− 1)(st+ 3s− 4)

4
=
s2t2 + 3s2t− st2

4
+O(n)

Next, we compute the betweenness contributed by the shortest paths from the origin to the right of node
0 when node 0 is on the top border.

btwmodif2 =
p+s−2∑

i=1

i

= (p+ s− 1)(p+ s− 2)/2

Finally, we compute the betweenness contributed by the shortest paths from the origin to some nodes
below node 0, when node 0 is on the left border.

btwmodif3 =
t−2∑
i=1

i

= (t− 1)(t− 2)/2



28 Wei Chen, Shang-Hua Teng, and Jiajie Zhu

Thus,

∆ ≥ btwmodif1 + btwmodif2 + btwmodif3 − btworig

=
s2t2 + s2t+ 2t2 − 3st2

4
+O(n) (7)

Case 1. s ≥ n3/4. Since n = st + s + p, we have n ≥ st, and thus t ≤ n/s ≤ n1/4. We also have t ≥ 1,
since we already have q = 1, and the node b has distance one to node 0 which means it must be added as the
node below 0, making t ≥ 1.

By Equation (7), we have

∆ ≥ s2 − 3st2

4
+O(n)

≥ s2 − 3n · t
4

+O(n) (since st ≤ n)

≥ n3/2 − 3n5/4

4
+O(n)

It is clear that there exists N4,1 such that for all n ≥ N4,1 ∆ > 0 in this case.
Case 2. t ≥ n3/4 and s > 2. By Equation (7), we have

∆ ≥ (s2 − 3s+ 2)t2 + s2t

4
+O(n)

≥ t2/2 +O(n) (since s > 2)
≥ n3/2/2 +O(n)

It is clear that there exists N4,2 such that for all n ≥ N4,2 ∆ > 0 in this case.
Case 3. p ≥ n3/4 and s > 2. Since t+ 1 ≥ p, t ≥ n3/4 − 1. With the similar argument as in Case 3, we can
show that there exists N4,3 such that for all n ≥ N4,3 ∆ > 0 in this case.
Case 4. s, t, p ≤ n3/4. By Equation (7), we have

∆ ≥ s2t2 − 3st2

4
+O(n)

≥ (n− 2n3/4)2 − 3n7/4

4
+O(n) (since st ≥ n− 2n3/4, st ≤ n)

≥ n2/4 + o(n2)

It is clear that there exists N4,4 such that for all n ≥ N4,4 ∆ > 0 in this case.
Note that the four cases above cover all possible parameters of (s, t, p, q) with q = 1 and s > 2. Let

N4 = max{N4,1, N4,2, N4,3, N4,4}. The lemma thus hold with this N4. �

Lemma 21. If s = 1, q > 2; t, p ≥ 0, there exists number N5 > 0 such that for all n ≥ N5, in graph
Gn,a,b node 0 can remove its edge to a (coordinate (1, 0)) and adds and edge to a + b (coordinate (1, 1))
and improve its betweenness.

Proof. This case is symmetric to that of Lemma 20, so it obviously hold too. �

Theorem 4 There exists a number N > 0 such that for all n ≥ N , no Abelian Cayley graph Gn,a,b is a
Nash equilibrium.

Proof. Take N = max{N1, N2, N3, N4, N5}, where N1 to N5 are from Lemmata 17 to 21. Since the five
lemmata cover all possible cases of (p, q, s, t), and thus cover all possible Abelian Cayley graph Gn,a,b, we
know that for all n ≥ N , no Abelian Cayley graph Gn,a,b is a Nash equilibrium. �
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C.3 Proofs on the case of k = 1

Lemma 22. The Hamiltonian cycle is a nontransient Nash equilibrium in the uniform B3C game with k = 1.

Fig. 13. When k = 1, Hamiltonian cycle is the only nontransient Nash equilibrium in the uniform B3C game.

Proof. Since the Hamiltonian cycle is a symmetric graph, we only consider one node, for example, node 0
in Figure 13.

Betweenness of node 0 contains the contributions of all paths from i to j with j > i ≥ 1. If 0 chooses to
connect to 2 instead of 1, it loses all contributions from node i ≥ 2 to 1 but it does not gain any new contribu-
tions. Connecting to other nodes are evening worse. If 0 simply removes its edge, its betweenness becomes
0. Therefore, all strategies changes of 0 strictly decreases its betweenness. Therefore the Hamiltonian cycle
is a nontransient Nash equilibrium. �

Lemma 23. From any maximal graph, there is a sequence of better responses that leads to the Hamiltonian
cycle. This immediately means that the Hamiltonian cycle is the only nontransient Nash equilibrium.

Fig. 14. Node A can benefit from changing (A, B) to (A, C)
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Fig. 15. Node A can benefit from changing (A, B) to (A, C)

Proof. Any maximal graph has several weakly connected components, in each of which there is a cycle and
several branches pointing to some nodes on the cycle. (Figure 14)

Consider the case that there is some component which has branches on its cycle. For example, in the left
graph of Figure 14, there is a branch on node B, and node C on the branch connects to B while node A on
the cycle also connects to B. If node A connect to node C instead of node B, it will gain the betweenness
from other nodes in the cycle and the branch nodes except those on B to node C. It is easy to verify that in
this caseA can change its edge to connect to C to improve its betweenness. The result of this better response
is that the component has a larger cycle. This process can continue until that the component has a cycle with
no branches.

Now consider the case that there are two components which have no branches on them (e.g. Figure
15). Assume the number of nodes in cycle with A is nA and that in the cycle with C is nC . Assume that
nA ≤ nC . Betweenness of node A is

btwA =
nA−2∑
i=1

i =
(nA − 1)(nA − 2)

2

If node A change edge (A,B) to (A,C), then the betweenness of node A is

btw′A = nC(nA − 1) ≥ nA(nA − 1) > btwA

Thus node A will benefit from changing from (A,B) to (A,C).
The above process can continue to merge two components into one, and then make the merged compo-

nent to be a big cycle with no branches. Therefore, eventually the better response sequence will lead to the
Hamiltonian cycle. �

Theorem 5 In the uniform B3C game with k = 1, the Hamiltonian cycle is the unique nontransient
Nash equilibrium, and from every maximal graph, there is a sequence of better responses that leads to the
Hamiltonian cycle.

Proof. From Lemmata 22 and 23. �


