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Abstract 

We begin by exploring theoretical and 

practical issues with phrasal SMT, several 

of which are addressed by syntax-based 

SMT. Next, to address problems not 

handled by syntax, we propose the 

concept of a Minimal Translation Unit 

(MTU) and develop MTU sequence 

models. Finally we incorporate these 

models into a syntax-based SMT system 

and demonstrate that it improves on the 

state of the art translation quality within a 

theoretically more desirable framework. 

1. Introduction 

The last several years have seen phrasal statistical 

machine translation (SMT) systems outperform 

word-based approaches by a wide margin (Koehn 

2003). Unfortunately the use of phrases in SMT is 

beset by a number of difficult theoretical and 

practical problems, which we attempt to 

characterize below. Recent research into syntax-

based SMT (Quirk and Menezes 2005; Chiang 

2005) has produced promising results in 

addressing some of the problems; research 

motivated by other statistical models has helped 

to address others (Banchs et al. 2005). We refine 

and unify two threads of research in an attempt to 

address all of these problems simultaneously. 

Such an approach proves both theoretically more 

desirable and empirically superior. 

In brief, Phrasal SMT systems employ phrase 

pairs automatically extracted from parallel 

corpora. To translate, a source sentence is first 

partitioned into a sequence of phrases I = s1…sI. 

Each source phrase si is then translated into a 

target phrase ti. Finally the target phrases are 

permuted, and the translation is read off in order. 

Beam search is used to approximate the optimal 

translation. We refer the reader to Keohn et al. 

(2003) for a detailed description. Unless 

otherwise noted, the following discussion is 

generally applicable to Alignment Template 

systems (Och and Ney 2004) as well. 

1.1. Advantages of phrasal SMT 

Non-compositionality 

Phrases capture the translations of idiomatic and 

other non-compositional fixed phrases as a unit, 

side-stepping the need to awkwardly reconstruct 

them word by word. While many words can be 

translated into a single target word, common 

everyday phrases such as the English password 

translating as the French mot de passe cannot be 

easily subdivided. Allowing such translations to 

be first class entities simplifies translation 

implementation and improves translation quality. 

Local re-ordering 

Phrases provide memorized re-ordering decisions. 

As previously noted, translation can be 

conceptually divided into two steps: first, finding 

a set of phrase pairs that simultaneously covers 

the source side and provides a bag of translated 

target phrases; and second, picking an order for 

those target phrases. Since phrase pairs consist of 

memorized substrings of the training data, they 

are very likely to produce correct local re-

orderings. 

Contextual information 

Many phrasal translations may be easily 

subdivided into word-for-word translation, for 

instance the English phrase the cabbage may be 

translated word-for-word as le chou. However we 

note that la is also a perfectly reasonable word-

for-word translation of the, yet la chou is not a 

grammatical French string. Even when a phrase 

appears compositional, the incorporation of 

contextual information often improves translation 



quality. Phrases are a straightforward means of 

capturing local context.  

1.2. Theoretical problems with phrasal SMT 

Exact substring match; no discontiguity 

Large fixed phrase pairs are effective when an 

exact match can be found, but are useless 

otherwise. The alignment template approach 

(where phrases are modeled in terms of word 

classes instead of specific words) provides a 

solution at the expense of truly fixed phrases. 

Neither phrasal SMT nor alignment templates 

allow discontiguous translation pairs. 

Global re-ordering 

Phrases do capture local reordering, but provide 

no global re-ordering strategy, and the number of 

possible orderings to be considered is not 

lessened significantly. Given a sentence of n 

words, if the average target phrase length is 4 

words (which is unusually high), then the re-

ordering space is reduced from n! to only (n/4)!: 

still impractical for exact search in most 

sentences. Systems must therefore impose some 

limits on phrasal reordering, often hard limits 

based on distance as in Koehn et al. (2003) or 

some linguistically motivated constraint, such as 

ITG (Zens and Ney, 2004). Since these phrases 

are not bound by or even related to syntactic 

constituents, linguistic generalizations (such as 

SVO becoming SOV, or prepositions becoming 

postpositions) are not easily incorporated into the 

movement models. 

Probability estimation 

To estimate the translation probability of a phrase 

pair, several approaches are used, often 

concurrently as features in a log-linear model. 

Conditional probabilities can be estimated by 

maximum likelihood estimation. Yet the phrases 

most likely to contribute important translational 

and ordering information—the longest ones—are 

the ones most subject to sparse data issues. 

Alternately, conditional phrasal models can be 

constructed from word translation probabilities; 

this approach is often called lexical weighting 

(Vogel et al. 2003). This avoids sparse data 

issues, but tends to prefer literal translations 

where the word-for-word probabilities are high 

Furthermore most approaches model phrases as 

bags of words, and fail to distinguish between 

local re-ordering possibilities. 

Partitioning limitation 

A phrasal approach partitions the sentence into 

strings of words, making several questionable 

assumptions along the way. First, the probability 

of the partitioning is never considered. Long 

phrases tend to be rare and therefore have sharp 

probability distributions. This adds an inherent 

bias toward long phrases with questionable MLE 

probabilities (e.g. 1/1 or 2/2).
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Second, the translation probability of each 

phrase pair is modeled independently. Such an 

approach fails to model any phenomena that reach 

across boundaries; only the target language model 

and perhaps whole-sentence bag of words models 

cross phrase boundaries. This is especially 

important when translating into languages with 

agreement phenomena. Often a single phrase does 

not cover all agreeing modifiers of a headword; 

the uncovered modifiers are biased toward the 

most common variant rather than the one agreeing 

with its head. Ideally a system would consider 

overlapping phrases rather than a single 

partitioning, but this poses a problem for 

generative models: when words are generated 

multiple times by different phrases, they are 

effectively penalized. 

1.3. Practical problem with phrases: size 

In addition to the theoretical problems with 

phrases, there are also practical issues. While 

phrasal systems achieve diminishing returns due 
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Note that these counts could differ significantly. Picture a 

source phrase that almost always translates into a 

discontiguous phrase (e.g. English not becoming French ne 

… pas), except for the rare occasion where, due to an 

alignment error or odd training data, it translates into a 

contiguous phrase (e.g. French ne parle pas). Then the first 

probability formulation of ne parle pas given not would be 

unreasonably high. However, this is a partial fix since it 

again suffers from data sparsity problems, especially on 

longer templates where systems hope to achieve the best 

benefits from phrases. 



to sparse data, one does see a small incremental 

benefit with increasing phrase lengths. Given that 

storing all of these phrases leads to very large 

phrase tables, many research systems simply limit 

the phrases gathered to those that could possibly 

influence some test set. However, this is not 

feasible for true production MT systems, since the 

data to be translated is unknown. 

2. Previous work 

2.1. Delayed phrase construction 

To avoid the major practical problem of phrasal 

SMT—namely large phrase tables, most of which 

are not useful to any one sentence—one can 

instead construct phrase tables on the fly using an 

indexed form of the training data (Zhang and 

Vogel 2005; Callison-Burch et al. 2005). 

However, this does not relieve any of the 

theoretical problems with phrase-based SMT. 

2.2. Syntax-based SMT 

Two recent systems have attempted to address the 

contiguity limitation and global re-ordering 

problem using syntax-based approaches. 

Hierarchical phrases 

Recent work in the use of hierarchical phrases 

(Chiang 2005) improves the ability to capture 

linguistic generalizations, and also removes the 

limitation to contiguous phrases. Hierarchical 

phrases differ from standard phrases in one 

important way: in addition to lexical items, a 

phrase pair may contain indexed placeholders, 

where each index must occur exactly once on 

each side. Such a formulation leads to a formally 

syntax-based translation approach, where 

translation is viewed as a parallel parsing problem 

over a grammar with one non-terminal symbol. 

This approach significantly outperforms a phrasal 

SMT baseline in controlled experimentation. 

Hierarchical phrases do address the need for 

non-contiguous phrases and suggest a powerful 

ordering story in the absence of linguistic 

information, although this reordering information 

is bound in a deeply lexicalized form. Yet they do 

not address the phrase probability estimation 

problem; nor do they provide a means of 

modeling phenomena across phrase boundaries. 

The practical problems with phrase-based 

translation systems are further exacerbated, since 

the number of translation rules with up to two 

non-adjacent non-terminals in a 1-1 monotone 

sentence pair of n source and target words is 

O(n
6
), as compared to O(n

2
) phrases. 

Treelet Translation 

Another means of extending phrase-based 

translation is to incorporate source language 

syntactic information. In Quirk and Menezes 

(2005) we presented an approach to phrasal SMT 

based on a parsed dependency tree representation 

of the source language. We use a source 

dependency parser and project a target 

dependency tree using a word-based alignment, 

after which we extract tree-based phrases 

(„treelets‟) and train a tree-based ordering model. 

We showed that using treelets and a tree-based 

ordering model results in significantly better 

translations than a leading phrase-based system 

(Pharaoh, Koehn 2004), keeping all other models 

identical. 

Like the hierarchical phrase approach, treelet 

translation succeeds in improving the global re-

ordering search and allowing discontiguous 

phrases, but does not solve the partitioning or 

estimation problems. While we found our treelet 

system more resistant to degradation at smaller 

phrase sizes than the phrase-based system, it 

nevertheless suffered significantly at very small 

phrase sizes. Thus it is also subject to practical 

problems of size, and again these problems are 

exacerbated since there are potentially an 

exponential number of treelets. 

2.3. Bilingual n-gram channel models 

To address on the problems of estimation and 

partitioning, one recent approach transforms 

channel modeling into a standard sequence 

modeling problem (Banchs et al. 2005). Consider 

the following aligned sentence pair in Figure 1a. 

In such a well-behaved example, it is natural to 

consider the problem in terms of sequence 

models. Picture a generative process that 

produces a sentence pair in left to right, emitting a 

pair of words in lock step. Let M = ‹ m1, …, mn › 

be a sequence of word pairs mi = ‹ s, t ›. Then one 

can generatively model the probability of an 

aligned sentence pair using techniques from n-

gram language modeling: 
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 When an alignment is one-to-one and 

monotone, this definition is sufficient. However 

alignments are seldom purely one-to-one and 

monotone in practice; Figure 1b displays common 

behavior such as one-to-many alignments, 

inserted words, and non-monotone translation. To 

address these problems, Banchs et al. (2005) 

suggest defining tuples such that: 

(1) the tuple sequence is monotone, 

(2) there are no word alignment links between 

two distinct tuples, 

(3) each tuple has a non-NULL source side, 

which may require that target words 

aligned to NULL are joined with their 

following word, and 

(4) no smaller tuples can be extracted without 

violating these constraints. 

Note that M is now a sequence of phrase pairs 

instead of word pairs. With this adjusted 

definition, even Figure 1b can be generated using 

the same process using the following tuples: 
m1 = ‹ the, l’ › 

m2 = ‹ following example, exemple suivant › 

m3 = ‹ renames, change le nom › 

m4 = ‹ the, de la › 

m5 = ‹ table, table › 

There are several advantages to such an 

approach. First, it largely avoids the partitioning 

problem; instead of segmenting into potentially 

large phrases, the sentence is segmented into 

much smaller tuples, most often pairs of single 

words. Furthermore the failure to model a 

partitioning probability is much more defensible 

when the partitions are much smaller. Secondly, 

n-gram language model probabilities provide a 

robust means of estimating phrasal translation 

probabilities in context that models interactions 

between all adjacent tuples, obviating the need for 

overlapping mappings. 

These tuple channel models still must address 

practical issues such as model size, though much 

work has been done to shrink language models 

with minimal impact to perplexity (e.g. Stolcke 

1998), which these models could immediately 

leverage. Furthermore, these models do not 

address the contiguity problem or the global 

reordering problem. 

3. Translation by MTUs 

In this paper, we address all four theoretical 

problems using a novel combination of our 

syntactically-informed treelet approach (Quirk 

and Menezes 2005) and a modified version of 

bilingual n-gram channel models (Banchs et al. 

2005). As in our previous work, we first parse the 

sentence into a dependency tree. After this initial 

parse, we use a global search to find a candidate 

that maximizes a log-linear model, where these 

candidates consist of a target word sequence 

annotated with a dependency structure, a word 

alignment, and a treelet decomposition.  

We begin by exploring minimal translation 

units and the models that concern them. 

3.1. Minimal Translation Units 

Minimal Translation Units (MTUs) are related to 

the tuples of Banchs et al. (2005), but differ in 

several important respects. First, we relieve the 

restriction that the MTU sequence be monotone. 

This prevents spurious expansion of MTUs to 

incorporate adjacent context only to satisfy 

monotonicity. In the example, note that the 

previous algorithm would extract the tuple 

‹following example, exemple suivant› even though 

the translations are mostly independent. Their 

partitioning is also context dependent: if the 

sentence did not contain the words following or 

suivant, then ‹ example, exemple › would be a 

single MTU. Secondly we drop the requirement 

that no MTU have a NULL source side. While 

some insertions can be modeled in terms of 

adjacent words, we believe more robust models 

can be obtained if we consider insertions as 

pour éviter ces erreurs , renommez le module

to avoid these errors , rename the module

 
(a) Monotone aligned sentence pair 
 

the following example renames the table

l‟exemple suivant change le nom de la table
 

(b) More common non-monotone aligned sentence pair 

 

Figure 1. Example aligned sentence pairs. 



independent units. In the end our MTUs are 

defined quite simply as pairs of source and target 

word sets that follow the given constraints: 

(1) there are no word alignment links between 

distinct MTUs, and 

(2) no smaller MTUs can be extracted without 

violating the previous constraint. 

Since our word alignment algorithm is able to 

produce one-to-one, one-to-many, many-to-one, 

one-to-zero, and zero-to-one translations, these 

act as our basic units. As an example, let us 

consider example (1) once again. Using this new 

algorithm, the MTUs would be: 
m1 = ‹ the, l’ › 

m2 = ‹ following, suivant › 

m3 = ‹ example, exemple › 

m4 = ‹ renames, change le nom › 

m5 = ‹ NULL, de › 

m6 = ‹ the, la › 

m7 = ‹ table, table › 

A finer grained partitioning into MTUs further 

reduces the data sparsity and partitioning issues 

associated with phrases. Yet it poses issues in 

modeling translation: given a sequence of MTUs 

that does not have a monotone segmentation, how 

do we model the probability of an aligned 

translation pair? We propose several solutions, 

and use each in a log-linear combination of 

models. 

First, one may walk the MTUs in source order, 

ignoring insertion MTUs altogether. Such a 

model is completely agnostic of the target word 

order; instead of generating an aligned source 

target pair, it generates a source sentence along 

with a bag of target phrases. This approach 

expends a great deal of modeling effort in 

regenerating the source sentence, which may not 

be altogether desirable, though it does condition 

on surrounding translations. Also, it can be 

evaluated on candidates before orderings are 

considered. This latter property may be useful in 

two-stage decoding strategies where translations 

are considered before orderings. 

Secondly, one may walk the MTUs in target 

order, ignoring deletion MTUs. Where the source-

order MTU channel model expends probability 

mass generating the source sentence, this model 

expends a probability mass generating the target 

sentence and therefore may be somewhat 

redundant with the target language model. 

Finally, one may walk the MTUs in 

dependency tree order. Let us assume that in 

addition to an aligned source-target candidate 

pair, we have a dependency parse of the source 

side. Where the past models conditioned on 

surface adjacent MTUs, this model conditions on 

tree adjacent MTUs. Currently we condition only 

on the ancestor chain, where parent1(m) is the 

parent MTU of m, parent2(m) is the grandparent 

of m, and so on: 
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This model hopes to capture information 

completely distinct from the other two models, 

such as translational preferences contingent on the 

head, even in the presence of long distance 

dependencies. Note that it generates unordered 

dependency tree pairs.  

All of these models can be trained from a 

parallel corpus that has been word aligned and the 

source side dependency parsed. We walk through 

each sentence extracting MTUs in source, target, 

and tree order. Standard n-gram language 

modeling tools can be used to train MTU 

language models. 

3.2. Decoding 

We employ a dependency tree-based beam search 

decoder to search the space of translations. First 

the input is parsed into a dependency tree 

  English French English Japanese 

Training Sentences 300,000 500,000 

 Words 4,441,465 5,198,932 7,909,198 9,379,240 

 Vocabulary 63,343 59,290 79,029 95,813 

 Singletons 35,328 29,448 44,111 52,911 

Development test Sentences 200 200 

 Words 3,045 3,456 3,436 4,095 

Test Sentences 2,000 2,000 

 Words 30,010 34,725 35,556 3,855 

 OOV rate 5.5% 4.6% 6.9% 6.8% 

Table 4.1 Data characteristics 

 



structure. For each input node in the dependency 

tree, an n-best list of candidates is produced. 

Candidates consist of a target dependency tree 

along with a treelet and word alignment. The 

decoder generally assumes phrasal cohesion: 

candidates covering a substring (not subsequence) 

of the input sentence produce a potential substring 

(not subsequence) of the final translation. In 

addition to allowing a DP / beam decoder, this 

allows us to evaluate string-based models (such as 

the target language model and the source and 

target order MTU n-gram models) on partial 

candidates. This decoder is unchanged from our 

previous work: the MTU n-gram models are 

simply incorporated as feature functions in the 

log-linear combination. In the experiments section 

the MTU models are referred to as model set (1). 

3.3. Other translation models 

Phrasal channel models 

We can estimate traditional channel models using 

maximum likelihood or lexical weighting: 
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We use word probability tables p(t | s) and p(s | t) 

estimated by IBM Model 1 (Brown et al. 1993). 

Such models can be built over phrases if used in a 

phrasal decoder or over treelets if used in a treelet 

decoder. These models are referred to as set (2). 

Word-based models 

A target language model using modified Kneser-

Ney smoothing captures fluency; a word count 

feature offsets the target LM preference for 

shorter selections; and a treelet/phrase count helps 

bias toward translations using fewer phrases. 

These models are referred to as set (3). 
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Syntactic models 

As in Quirk and Menezes (2005), we include a 

linguistically-informed order model that predicts 

the head-relative position of each node 

independently, and a tree-based bigram target 

language model; these models are referred to as 

set (4). 
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4. Experimental setup 

We evaluate the translation quality of the system 

using the BLEU metric (Papineni et al., 02) under 

a variety of configurations. As an additional 

baseline, we compare against a phrasal SMT 

decoder, Pharaoh (Koehn et al. 2003).  

4.1. Data 

Two language pairs were used for this 

comparison: English to French, and English to 

Japanese. The data was selected from technical 

software documentation including software 

manuals and product support articles; Table 4.1 

presents the major characteristics of this data. 

4.2. Training 

We parsed the source (English) side of the 

corpora using NLPWIN, a broad-coverage rule-

based parser able to produce syntactic analyses at 

varying levels of depth (Heidorn 2002). For the 

purposes of these experiments we used a 

dependency tree output with part-of-speech tags 

and unstemmed surface words. Word alignments 

were produced by GIZA++ (Och and Ney 2003) 

with a standard training regimen of five iterations 

of Model 1, five iterations of the HMM Model, 

and five iterations of Model 4, in both directions. 

These alignments were combined heuristically as 

described in our previous work. 

We then projected the dependency trees and 

used the aligned dependency tree pairs to extract 

treelet translation pairs, train the order model, and 

train MTU models. The target language models 

were trained using only the target side of the 

corpus. Finally we trained model weights by 

maximizing BLEU (Och 2003) and set decoder 

optimization parameters (n-best list size, timeouts 



etc) on a development test set of 200 held-out 

sentences each with a single reference translation. 

Parameters were individually estimated for each 

distinct configuration. 

Pharaoh 

The same GIZA++ alignments as above were 

used in the Pharaoh decoder (Koehn 2004). We 

used the heuristic combination described in (Och 

and Ney 2003) and extracted phrasal translation 

pairs from this combined alignment as described 

in (Koehn et al., 2003). Aside from MTU models 

and syntactic models (Pharaoh uses its own 

ordering approach), the same models were used: 

MLE and lexical weighting channel models, 

target LM, and phrase and word count. Model 

weights were also trained following Och (2003). 

5. Results 

We begin with a broad brush comparison of 

systems in Table 5.1. Throughout this section, 

treelet and phrase sizes are measured in terms of 

MTUs, not words. By default, all systems 

(including Pharaoh) use treelets or phrases of up 

to four MTUs, and MTU bigram models. The first 

results reiterate that the introduction of 

discontiguous mappings and especially a 

linguistically motivated order model (model set 

(4)) can improve translation quality. Replacing 

the standard channel models (model set (2)) with 

MTU bigram models (model set (1)) does not 

appear to degrade quality; it even seems to boost 

quality on EF. Furthermore, the information in the 

MTU models appears somewhat orthogonal to the 

phrasal models; a combination results in 

improvements for both language pairs. 

The experiments in Table 5.2 compare quality 

using different orders of MTU n-gram models. 

(Treelets containing up to four MTUs were still 

used as the basis for decoding; only the order of 

the MTU n-gram models was adjusted.) A 

unigram model performs surprisingly well. This 

supports our intuition that atomic handling of 

non-compositional multi-word translations is a 

major contribution of phrasal SMT. Furthermore 

bigram models increase translation quality 

supporting the claim that local context is another 

contribution. Models beyond bigrams had little 

impact presumably due to sparsity and smoothing. 

Table 5.3 explores the impact of using different 

phrase/treelet sizes in decoding. We see that 

adding MTU models makes translation more 

resilient given smaller phrases. The poor 

performance at size 1 is not particularly 

surprising: both systems require insertions to be 

lexically anchored: the only decoding operation 

allowed is translation of some visible source 

phrase, and insertions have no visible trace. 

6. Conclusions 

In this paper we have teased apart the role of 

 EF EJ 

Phrasal decoder (Pharaoh) 

  Model sets (2),(3) 45.8±2.0 32.9±0.9 

Treelet decoder, without discontiguous mappings 

  Model sets (2),(3) 45.1±2.1 33.2±0.9 

  Model sets (2),(3),(4) 48.4±2.0 34.8±0.9 

Treelet decoder, with discontiguous mappings 

  Model sets (2),(3) 46.4±2.1 34.3±0.9 

  Model sets (2),(3),(4) 48.7±2.1 34.9±0.9 

  Model sets (1),(3),(4) 49.6±2.1 33.9±0.8 

  Model sets (1)-(4) 50.5±2.1 36.2±0.9 
 

Table 5.1. Broad system comparison. 

 EF EJ 

Treelet decoder, model sets (1),(3),(4) 

  MTU unigram 47.8±2.1 33.2±0.9 

  MTU bigram 49.6±2.1 33.9±0.8 

  MTU trigram 49.9±2.0 34.0±0.9 

  MTU 4-gram 49.6±2.1 34.1±0.9 

Treelet decoder, model sets (1)-(4)  

  MTU unigram 48.6±2.1 34.3±1.0 

  MTU bigram 50.5±2.1 36.2±0.9 

  MTU trigram 48.9±2.0 36.1±0.9 

  MTU 4-gram 50.4±2.0 36.2±1.0 
 

Table 5.2. Varying MTU n-gram model order. 

Table 5.3. Varying phrase / treelet size. 
 

 Phrasal decoder 

model sets (2),(3) 

Treelet decoder: MTU bigram 

model sets (1),(3),(4) 

Treelet decoder: MTU bigram 

model sets (1)-(4) 

Size EF EJ EF EJ EF EJ 

1 32.6±1.8 20.5±0.7 26.3±1.3 15.4±0.7 29.8±1.4 16.7±0.7 

2 40.4±1.9 29.7±0.7 48.7±2.1 32.4±0.9 47.7±2.1 33.8±0.8 

3 44.3±2.1 30.7±0.9 48.5±2.0 34.6±0.9 48.5±2.0 35.1±0.9 

4 45.8±2.0 32.9±0.9 49.6±2.1 33.9±0.8 50.5±2.1 36.2±0.9 

 



phrases and handled each contribution via a 

distinct model best suited to the task. Non-

compositional translations stay as MTU phrases. 

Context and robust estimation is provided by 

MTU-based n-gram models. Local and global 

ordering is handled by a tree-based model. 

The first interesting result is that at normal 

phrase sizes, augmenting an SMT system with 

MTU n-gram models improves quality; whereas 

replacing the standard phrasal channel models by 

the more theoretically sound MTU n-gram 

channel models leads to very similar 

performance. 

Even more interesting are the results on smaller 

phrases. A system using very small phrases (size 

2) and MTU bigram models matches (English-

French) or at least approaches (English-Japanese) 

the performance of the baseline system using 

large phrases (size 4). While this work does not 

yet obviate the need for phrases, we consider it a 

promising step in that direction. 

An immediate practical benefit is that it allows 

systems to use much smaller phrases (and hence 

smaller phrase tables) with little or no loss in 

quality. This result is particularly important for 

syntax-based systems, or any system that allows 

discontiguous phrases. Given a fixed length limit, 

the number of surface phrases extracted from any 

sentence pair of length n where all words are 

uniquely aligned is O(n), but the number of 

treelets is potentially exponential in the number of 

children; and the number of rules with two gaps 

extracted by Chiang (2005) is potentially O(n
3
). 

Our results using MTUs suggest that such 

systems can avoid unwieldy, poorly estimated 

long phrases and instead anchor decoding on 

shorter, more tractable knowledge units such as 

MTUs, incorporating channel model information 

and contextual knowledge with an MTU n-gram 

model. 

Much future work does remain. From 

inspecting the model weights of the best systems, 

we note that only the source order MTU n-gram 

model has a major contribution to the overall 

score of a given candidate. This suggests that the 

three distinct models, despite their different walk 

orders, are somewhat redundant. We plan to 

consider other approaches for conditioning on 

context. Furthermore phrasal channel models, in 

spite of the laundry list of problems presented 

here, have a significant impact on translation 

quality. We hope to replace them with effective 

models without the brittleness and sparsity issues 

of heavy lexicalization. 
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