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Abstract

An (r, δ, ε)-locally decodable code encodes a k-bit message x to an N -bit codeword C(x), such
that for every i ∈ [k], the i-th message bit can be recovered with probability 1− ε, by a randomized
decoding procedure that queries only r bits, even if the codeword C(x) is corrupted in up to δN
locations.

Recently a new class of locally decodable codes, based on families of vectors with restricted dot
products has been discovered. We refer to those codes as Matching Vector (MV) codes. Several
families of (r, δ,Θ(rδ))-locally decodable MV codes have been obtained. While codes in those families
were shorter than codes of earlier generations, they suffered from having large values of ε = Ω(rδ),
which meant that r -query MV codes could only handle error-rates below 1

r . Thus larger query
complexity gave shorter length codes but at the price of less error-tolerance. No MV codes of
super-constant number of queries capable of tolerating a constant fraction of errors were known to
exist.

In this paper we present a new view of matching vector codes and uncover certain similarities
between MV codes and classical Reed Muller codes. Our view allows us to obtain deeper insights
into the power and limitations of MV codes. Specifically,

1. We show that existing families of MV codes can be enhanced to tolerate a large constant
fraction of errors, independent of the number of queries. Such enhancement comes at a price
of a moderate increase in the number of queries;

2. Our construction yields the first families of matching vector codes of super-constant query
complexity that can tolerate a constant fraction of errors. Our codes are shorter than Reed
Muller LDCs for all values of r ≤ log k/(log log k)c, for some constant c;

3. We show that any MV code encodes messages of length k to codewords of length at least
k2Ω(

√
log k). Therefore MV codes do not improve upon Reed Muller LDCs for r ≥ (log k)Ω(

√
log k).

∗Earlier versions of this work have appeared as ECCC reports [Gop09, DGY10].
†Research partially supported by NSF grants CCF-0832797 and DMS-0835373.
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1 Introduction

Classical error-correcting codes allow one to encode a k-bit message x into an N -bit codeword C(x),
in such a way that x can still be recovered even if C(x) gets corrupted in a number of coordinates.
The disadvantage of classical error-correction is that one needs to read all or most of the (corrupted)
codeword to recover any information about x. Suppose that one is only interested in recovering one
or a few bits of x. In this case, more efficient schemes are possible allowing one to read only a small
number of code positions. Such schemes are known as Locally Decodable Codes (LDCs). Locally
decodable codes allow reconstruction of an arbitrary bit xi, from looking only at r << N randomly
chosen coordinates of C(x). While initial applications of locally decodable codes have been to data
transmission and storage, they have found applications in other areas such as complexity theory and
cryptography. See the surveys [Yek10, Yek07, Tre04, Gas04] for more information. Below is a slightly
informal definition of LDCs:

An (r, δ, ε)-locally decodable code encodes k-bit messages x to N -bit codewords C(x), such that for
every i ∈ [k], the bit xi can be recovered with probability 1− ε, by a randomized decoding procedure
that makes only r queries, even if the codeword C(x) is corrupted in up to δN locations.

We would like to have LDCs that have small values of r,N and ε and a large value of δ. However
typically the parameters are not regarded as equally important. In applications of LDCs to data
transmission and storage one wants δ to be a large constant, (ideally close to 1/4), and the codeword
length N to be small. At the same time the exact number of queries r is not very important provided
that it is much smaller than k. Similarly the exact value of ε < 1/2 is not important since one can
easily amplify ε to be close to 0, by running the decoding procedure few times and taking a majority
vote. In applications of LDCs in cryptography one thinks of δ > 0 and ε < 1/2 as constants whose
values are of low significance and focuses on the trade-off between r and N, with emphasis on very
small values of r such as r = 3 or r = 4.

1.1 Three generations of locally decodable codes

The notion of locally decodable codes was explicitly discussed in various places in the early 1990s,
most notably in [BFLS91, Sud92, PS94]. Katz and Trevisan [KT00] were the first to provide a formal
definition of LDCs (see also [STV99]) and prove lower bounds on their length. Their bounds were
improved in [GKST02, KdW04] where a tight (exponential) lower bound for the length of 2-query
LDCs was obtained. Further lower bounds on the length of LDCs were obtained in [WdW05, Woo07,
DJK+02, Oba02]. The best lower bounds for the length of r-query LDCs currently have the form
Ω̃
(
n1+1/(dr/2e−1)

)
[Woo07]. They are very far form matching the best upper bounds.

One can informally classify the known families of locally decodable codes into three generations
based on the technical ideas that underlie them. The first generation captures codes based on the
idea of (low-degree) multivariate polynomial interpolation. All such codes [BFLS91, KT00, BIK05,
CGKS98, Amb97, Ito99] are (directly or indirectly) based on classical (generalized) Reed Muller (RM)
codes [MS77, vL82]. The code consists of evaluations of low degree polynomials in Fq[z1, . . . , zn], at
all points of Fnq , for some finite field Fq. The decoder recovers the value of the unknown polynomial
at a point by shooting a line in a random direction and decoding along it using noisy polynomial
interpolation [BF90, Lip90, STV99]. The method behind these constructions is very general. It yields
locally decodable codes of all possible query complexities, (i.e., one can choose r to be an arbitrary
non-decreasing function of k) that tolerate a constant fraction of errors. (We say that an r-query code
C tolerates δ fraction of errors if C is (r, δ, ε)-locally decodable for some ε < 1/2.)

The second generation of LDCs [BIKR02, WY05] combined the earlier ideas of polynomial interpo-
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lation with a clever use of recursion to show that Reed-Muller type codes are not the shortest possible
for constant values of query complexity r ≥ 3. Codes of the second generation are (r, δ,Θ(rδ))-locally
decodable. Thus the fraction of noise handled by these codes decays linearly with r. No LDCs of the
second generation with r = ω(1) and δ = Ω(1) are known to exist.

The latest (third) generation of LDCs was initiated in [Yek08] and developed further in [Rag07,
KY09, Efr09, IS10]. New codes are obtained through an argument involving a mixture of combinatorial
and algebraic ideas, where the key ingredient is a design of a large family of low dimensional (matching)
vectors with constrained dot products. Recently an important progress in constructions of LDCs of the
third generation has been accomplished in [Efr09] where the first constructions of codes from matching
vectors modulo composites (rather than primes) were considered. In what follows we refer to LDCs of
the third generation as Matching Vector (MV) codes.

To date several families of (r, δ,Θ(rδ))-locally decodable MV codes have been obtained. While
codes in those families were dramatically shorter than codes of earlier generations, similarly to codes
of [BIKR02, WY05] they suffered from having large values of ε = Ω(rδ). Thus as the number of queries
increased, the length N became smaller as a function of k, but at the price of a reduction in the
error-rate that the code could handle. Codes with constant query complexity could only tolerate tiny
amounts of error, and no MV codes with r = ω(1) capable of tolerating a constant fraction of errors
were known to exist.

The reason that previous constructions all gave ε = Ω(rδ) lay in the reliance on the smoothness of
the decoder to prove its correctness. The proofs proceeded by showing that each of the r queries made
by the decoder is smooth, meaning that it distributed (close to) uniformly over the bits of the codeword.
By the union bound, if a δ fraction is corrupted, then we are unlikely to query any of these locations.
This argument clearly will not work once the error rate exceeds 1/r. Indeed a recent result [GM09]
shows that for 3-query LDCs, correcting more than 1/3 fraction of errors requires exponential length.

1.2 Our results

In this work we develop a new view of matching vector codes and uncover certain similarities between
MV codes and classical Reed Muller codes. Our view allows us to obtain a deeper insight into the
power and limitations of MV codes.

1. We show that existing families of MV codes can be enhanced to tolerate a nearly 1/8 fraction of
errors, independent of the value of r, at a price of a moderate increase in the number of queries1.
Specifically, for every constant t ≥ 2, we obtain a family of binary

(
tO(t), δ, 4δ(1 +O(1/ ln t))

)
-

locally decodable codes of length essentially identical to the length of the currently shortest known(
2O(t), δ, 2O(t)δ

)
-LDCs of [Efr09, IS10]. These codes encode messages of length k into codewords

of length exp exp
(
(log k)1/t(log log k)1−1/t

)
.

2. We obtain the first families of (binary) matching vector codes of super-constant query complexity
that can tolerate a constant fraction of errors, close to 1/8.Our codes are shorter than Reed Muller
LDCs for all values of r ≤ log k/(log log k)c, for some constant c.

3. The parameters of an MV code are determined by the parameters of the underlying family of
matching vectors. We obtain new upper and lower bounds on the parameters of such families
and conclude that any MV code encodes messages of length k to codewords of length at least

1It is interesting to contrast our work with the work of Woodruff [Woo08] who obtained a non-linear transformation
that (in certain circumstances) allows one to reduce LDC codeword length at a price of a loss in the value of δ.
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k2Ω(
√

log k). Therefore MV codes do not improve upon Reed Muller locally decodable codes for
r ≥ (log k)Ω(

√
log k).

1.3 Our techniques

Our constructions are centered around a new view of MV codes that fleshes out some intrinsic sim-
ilarities between MV codes and RM codes. In our view an MV code consists of a linear subspace
of polynomials in Fq[z1, . . . , zn], evaluated at all points of Cn

m, where Cm is a certain multiplicative
subgroup of F∗q . The decoding algorithm is similar to traditional local decoders for RM codes. The
decoder shoots a line in a certain direction and decodes along it. The difference is that the monomials
which are used are not of low-degree, they are chosen according to a matching family of vectors. (Two
collections of vectors U ,V ⊆ Znm form a matching family if for every ui ∈ U there is a unique vi ∈ V
such that (ui,vi) = 0, while other dot products (uj ,vi) belong to a small set S ⊆ Zm \ {0}.) Further,
the lines for decoding are multiplicative, a notion that we will define shortly.

Constructions of locally decodable codes from matching vectors have previously been considered
in [Yek08, Rag07, Efr09, IS10]. In this work we show that if the family of matching vectors underlying
the MV code is bounded (meaning that dot products between all vectors u ∈ U and v ∈ V are small in
Zm with respect to the natural total ordering); then the restriction of a codeword of the MV code to
a multiplicative line yields an evaluation of a low degree polynomial. Therefore one can apply existing
techniques for noisy polynomial interpolation in the decoding process and tolerate a large fraction of
errors. We show how the currently best known families of matching vectors (due to Grolmusz [Gro00])
can be turned into bounded families. We also give a simple construction of bounded families of matching
vectors.

We also initiate a systematic study of families of matching vectors and prove upper bounds on
their sizes. For the case when m = p is a prime, our bounds are obtained by using the expansion of
hyperplanes in Znp when viewed as a collection of points. This bound beats the classical linear-algebra
based bound when the dimension n is small. Our bounds for composites are obtained via reductions
to the prime case. These bounds in turn imply that any matching vector code must stretch messages
of length k to codewords of length k2Ω(

√
log k) for large enough k, regardless of the query complexity.

1.4 Subsequent work

Our results show how one can locally decode binary MV codes from nearly 1/8 fraction of errors (1/4
for codes over large alphabets). In a recent work, Ben-Aroya et. al [BET10] show how one can in fact
decode binary MV codes from nearly 1/4 fraction of errors (1/2 for codes over large alphabets). They
also consider local list decoding of MV codes.

The idea behind the improved unique-decoder is that if we take a sufficiently large (but constant)
number of multiplicative lines; then the average agreement with the codeword along a line is likely to
exceed 1/2. We run our decoder (proposition 7) along every line we picked. Each invocation returns a
candidate value of the desired message symbol. Ben Aroya et. al [BET10] show that if we use Forney’s
GMD decoding technique [For66] where one assigns weights to each output of the decoder based on
the number of errors along the corresponding line; then the symbol with the largest weight is with high
probability the correct symbol.

1.5 Outline

We start section 3 with formal definitions of locally decodable codes and matching families of vectors.
We introduce the concept of a bounded matching family and show how any such family yields an LDC
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tolerating a large fraction of errors. In section 4 we present two constructions of bounded matching
families. In section 5 we put the results of sections 3 and 4 together to obtain new upper bounds on
the length of MV codes. In section 6 we obtain a collection of upper bounds on the size of matching
families of vectors. In section 7 we translate the results of section 6 into lower bounds on the length of
MV codes.

2 Notation

We use the following standard mathematical notation:

• [k] = {1, . . . , k};

• Fq is a finite field of q elements. F∗q is the multiplicative group of Fq;

• For a polynomial f ∈ Fq[z1, . . . , zh] we denote by supp(f) the set of monomials with non zero
coefficients in f , where a monomial ze11 · · · z

eh
h is identified with the integer h-tuple (e1, . . . , eh);

• Zm is the ring of integers modulo an integer m. Z∗m is the set of invertible elements of Zm;

• d(x,y) denotes the Hamming distance between vectors x and y;

• (u,v) stands for the dot product of vectors u and v;

• For a vector w ∈ Znm and an integer l ∈ [n], let w(l) denote the l-th coordinate of w;

• A D-evaluation of a function f defined over D, is a vector of values of f at all points of D.

• We write exp(x) to denote 2O(x).

3 Matching vector codes: the framework

In this section we formally define locally decodable codes and matching families of vectors. We review
the existing construction of LDCs from matching families, casting it in a new language that makes
explicit certain intrinsic similarity between MV codes and RM codes. We then introduce the concept
of a bounded matching family and show how MV codes based on these families can be decoded from
large amounts of error.

Definition 1 A q-ary code C : Fkq → FNq is said to be (r, δ, ε)-locally decodable if there exists a ran-
domized decoding algorithm A such that

1. For all x ∈ Fkq , i ∈ [k] and y ∈ FNq such that d(C(x),y) ≤ δN : Pr[Ay(i) = x(i)] ≥ 1− ε, where
the probability is taken over the random coin tosses of the algorithm A.

2. A makes at most r queries to y.

A locally decodable code is called linear if C is a linear transformation over Fq. Our constructions
of locally decodable codes are linear. While our main interest is in binary codes we deal with codes
over larger alphabets as well.

Definition 2 Let S ⊆ Zm \ {0}. We say that families U = {u1, . . . ,uk} and V = {v1, . . . ,vk} of
vectors in Znm form an S-matching family if the following two conditions are satisfied:
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• For all i ∈ [k], (ui,vi) = 0;

• For all i, j ∈ [k] such that i 6= j, (uj ,vi) ∈ S.

We now show how one can obtain an MV code out of a matching family. We start with some
notation.

• We assume that q is a prime power, m divides q − 1, and denote a subgroup of F∗q of order m by
Cm;

• We fix some generator g of Cm;

• For w ∈ Znm, we define gw ∈ Cn
m by (gw(1), . . . , gw(n));

• For w,v ∈ Znm we define the multiplicative line Mw,v through w in direction v to be the multi-set

Mw,v =
{
gw+λv | λ ∈ Zm

}
; (1)

• For u ∈ Znm, we define the monomial monu ∈ Fq[z1, . . . , zn] by

monu(z1, . . . , zn) =
∏
`∈[n]

zu(`)
` . (2)

3.1 The general encoding/decoding framework

Observe that for any w,u,v ∈ Znm and λ ∈ Zm we have

monu

(
gw+λv

)
= g(u,w)

(
gλ
)(u,v)

. (3)

The formula above implies that the Mw,v-evaluation of a monomial monu is a Cm-evaluation of a
(univariate) monomial

g(u,w)y(u,v) ∈ Fq[y]. (4)

This observation is the foundation of our decoding algorithms. We now specify the encoding procedure
and outline the main steps taken by all decoding procedures described later on (propositions 3, 7,
and 8). Let U ,V be an S-matching family in Znm.

Encoding: We encode a message (x(1), . . . ,x(k)) ∈ Fkq by the Cn
m-evaluation of the polynomial

F (z1, . . . , zn) =
k∑
j=1

x(j) ·monuj(z1, . . . , zn). (5)

Notice that F = Fx is a function of the message x (we will omit the subscript and treat x as fixed
throughout this section).

Basic decoding: The input to the decoder is a (corrupted) Cn
m-evaluation of F and an index

i ∈ [k].

1. The decoder picks w ∈ Znm uniformly at random;

2. The decoder recovers the noiseless restriction of F to Mw,vi . To accomplish this the decoder may
query the (corrupted) Mw,vi-evaluation of F at m or fewer locations.
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To see that noiseless Mw,vi-evaluation of F uniquely determines xi note that by formulas (3), (4)
and (5) the Mw,vi-evaluation of F is a Cm-evaluation of a polynomial

f(y) =
k∑
j=1

x(j) · g(uj ,w)y(uj ,vi) ∈ Fq[y]. (6)

Further observe that the properties of the S-matching family U ,V and (6) yield

f(y) = x(i) · g(ui,w) +
∑
s∈S

 ∑
j : (uj ,vi)=s

x(j) · g(uj ,w)

 ys. (7)

It is evident from the above formula that supp(f) ⊆ S ∪ {0} and

x(i) = f(0)/g(ui,w). (8)

We now describe several local decoders that follow the general paradigm outlined above.

3.2 The simplest decoder

The proposition below gives the simplest local decoder. In the current form it has first appeared
in [Efr09]. Earlier versions can be found in [Yek08, Rag07].

Proposition 3 Let U ,V be a family of S-matching vectors in Znm, |U| = |V| = k, |S| = s. Suppose
m | q − 1, where q is a prime power; then there exists a q-ary linear code encoding k-long messages to
mn-long codewords that is (s+ 1, δ, (s+ 1)δ)-locally decodable for all δ.

Proof: The encoding procedure has already been specified by formula (5). To recover the value x(i)

1. The decoder picks w ∈ Znm at random, and queries the (corrupted) Mw,vi-evaluation of F at
(s+ 1) consecutive locations

{
gw+λvi | λ ∈ {0, . . . , s}

}
to obtain values c0, . . . , cs.

2. The decoder recovers the unique sparse univariate polynomial h(y) ∈ Fq[y] with supp(h) ⊆ S∪{0}
such that for all λ ∈ {0, . . . , s}, h(gλ) = cλ. (The uniqueness of h(y) follows from standard
properties of Vandermonde matrices.)

3. Following the formula (8) the decoder returns h(0)/g(ui,w).

The discussion above implies that if all (s+ 1) locations queried by the decoder are not corrupted
then h(y) is indeed the noiseless restriction of F to Mw,vi , and decoder’s output is correct. It remains
to note that each individual query of the decoder goes to a uniformly random location and apply the
union bound.

Remark 4 In the proposition above we interpolate the polynomial h(y) to recover its free coefficient.
In certain cases (relying on special properties of the integer m and the set S) it may be possible to
recover the free coefficient in ways that do not require complete interpolation and thus save on the
number of queries. This general idea has been used in [Yek08], [Efr09] for the case of three-query codes,
and in [IS10]. In appendix B we present some new general sufficient conditions that allow for such a
saving.
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3.3 Improved decoding using bounded matching families

We now introduce the concept of a bounded matching family of vectors and show how MV codes
based on bounded matching families can be decoded from large amounts of error. In what follows we
identify Zm with the subset {0, . . . ,m − 1} of real numbers. This imposes a total ordering on Zm,
0 < 1 < . . . < m− 1 and allows us to compare elements of Zm with reals.

Definition 5 Let b be a positive real. A set S ⊆ Zm is b-bounded if for all s ∈ S, s < b.

Definition 6 Let b be a positive real. An S-matching family U ,V in Znm is b-bounded if the set S is
b-bounded.

The proposition below gives the first local decoder for MV codes that is capable of tolerating large
amounts of error. Our constructions of MV codes in section 5 rely on it.

Proposition 7 Let σ be a positive real. Let U ,V be a σm-bounded family of S-matching vectors in
Znm, |U| = |V| = k. Suppose m | q − 1, where q is a prime power; then there exists a q-ary linear code
encoding k-long messages to mn-long codewords that is (m, δ, 2δ/(1− σ))-locally decodable for all δ.

Proof: The encoding procedure has already been specified by (5). To recover the value x(i),

1. The decoder picks w ∈ Znm at random, and queries every point of the (corrupted)Mw,vi-evaluation
of F at all m locations

{
gw+λvi | λ ∈ Zm

}
to obtain values c0, . . . , cm−1.

2. The decoder recovers the univariate polynomial h(y) ∈ Fq[y] of degree less than σm such that for
all but at most (m−σm)/2 values of λ ∈ Zm, h(gλ) = cλ. If such an h does not exist the decoder
encounters a failure, and returns 0. Note that deg h < σm implies that h(y) is unique, if it exists.
The search for h(y) can be done efficiently using the Berlekamp-Welch algorithm [MS77].

3. Following the formula (8) the decoder returns h(0)/g(ui,w).

The discussion above implies that if the Mw,vi-evaluation of F is corrupted in at most (m−σm)/2
locations, then h(y) is indeed the noiseless restriction of F to Mw,vi , and the decoder’s output is correct.
It remains to note that each individual query of the decoder goes to a uniformly random location and
thus by Markov’s inequality the probability that more than (m − σm)/2 of decoder’s queries go to
corrupted locations is at most 2δ/(1− σ).

3.4 Further improvement for small and bounded S

The improved decoding described in the previous section did not use any information on the size of
the set S (only the fact that all elements in S are bounded). We now show that, in the case when |S|
is small (and ln q is small relative to m), one can get an even better result.

Proposition 8 Let σ be a positive real. Let U ,V be a σm-bounded family of S-matching vectors in Znm,
|U| = |V| = k, |S| = s. Suppose m | q−1, where q is a prime power; then there exists a q-ary linear code
encoding k-long messages to mn-long codewords that is (r, δ, ε)-locally decodable for all 0 < α < 1−σ, δ,
where

r =
⌈
(s+ 2) ln q/α2

⌉
, ε = 2δ/(1− σ − α).
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Proof: Our decoding algorithm is similar to the one of proposition 7. The saving in the number of
queries comes from the fact that the decoder does not query all points on the multiplicative line but
rather partitions the line into classes, and queries all points within a certain class. Our proof consists
of two parts. Firstly, we establish the existence of an appropriate partition. Secondly, we present the
decoding algorithm. We start with some notation. Let α > 0 be fixed.

• Let L ⊆ Fq[y] be the linear space of polynomials whose support is contained in {0} ∪ S;

• Let T ⊆ Zm. We say that T is α-regular, if for all h ∈ L we have∣∣∣T ∩ {λ ∈ Zm | h(gλ) = 0
}∣∣∣ < (σ + α)|T |; (9)

• Let t ≤ m be a fixed positive integer. Let π be a partition of Zm into p = bm/tc classes where
each class is of size t or more

Zm =
p⊔
`=1

π`; (10)

• We say that π is α-regular, if for each ` ∈ [p], π`, is α-regular.

We now argue that for a sufficiently large t, there exists a partition π satisfying (10) that is α-regular.
Fix an arbitrary non-zero polynomial h ∈ L. Let W =

{
λ ∈ Zm | h(gλ) = 0

}
. Clearly, |W | < σm. Fix

t′ ≥ t and pick a set T ⊆ Zm of size exactly t′ uniformly at random.

Pr [|T ∩W | ≥ (σ + α)t′] = Pr [|T ∩W | − σt′ ≥ αt′] ≤

Pr [|T ∩W | − E(|T ∩W |) > αt′] ≤ exp(−2α2t),
(11)

where the last inequality follows from [DP09, theorem 5.3].
Now let t = d(s+2) ln q/2α2e. If t > m; then the proposition trivially follows from the proposition 7.

We assume t ≤ m and pick π to be a random partition satisfying (10). Clearly, no class in π has size
more than 2t− 1. Relying on (11), the union bound, and m/t < q we conclude that π is α-regular with
positive probability since

(m/t)(q(s+1) − 1) < e2α2t. (12)

Fix an α-regular π. We are now ready to define the code. The encoding procedure has already been
specified by formula (5). To recover the value x(i)

1. The decoder picks w ∈ Znm and ` ∈ [p] uniformly at random, and queries points of the (corrupted)
Mw,vi-evaluation of F at |π`| locations

{
gw+λvi | λ ∈ π`

}
to obtain values {cλ | λ ∈ π`} .

2. The decoder recovers the univariate polynomial h(y) ∈ Fq[y] with supp(h) ⊆ {0} ∪ S such that
for all but at most (1 − σ − α)|π`|/2 values of λ ∈ π`, h(gλ) = cλ. If such an h does not exist
the decoder encounters a failure, and returns 0. Note that the properties of π imply that h(y) is
unique, if it exists.

3. Following the formula (8) the decoder returns h(0)/g(ui,w).

The discussion above implies that if at most (1 − σ − α)|πl|/2 locations queried by the decoder
are corrupted; then h(y) is indeed the noiseless restriction of F to Mw,vi , and the decoder’s output
is correct. It remains to note that each individual query of the decoder goes to a uniformly random
location and thus by Markov’s inequality the probability that more than (1 − σ − α)|πl|/2 queries go
to corrupted locations is at most 2δ/(1− σ − α), and to observe that the total number of queries is at
most 2t− 1.
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3.5 From q-ary to binary codes

Propositions 7 and 8 yield non-binary locally decodable codes. As we remarked earlier our main interest
is in binary LDCs. The next lemma extends proposition 7 to produce binary codes. The idea behind
the proof is fairly standard and involves concatenation with a good binary error correcting code.

Lemma 9 Let σ be a positive real. Let U ,V be a σm-bounded family of S-matching vectors in Znm,
|U| = |V| = k. Suppose m | q − 1, where q = 2b. Further suppose that there exists a binary linear code
Cinner of distance µB encoding b-bit messages to B-bit codewords; then there exists a binary linear code
C encoding kb-bit messages to mnB-bit codewords that is (mB, δ, 2δ/(µ− µσ))-locally decodable for all
δ.

Proof: Observe that the condition of the lemma is strictly stronger than the condition of proposition 7.
Thus the implication of proposition 7 holds. Let Couter be the 2b-ary (m, δ, 2δ/(1− σ))-LDC encoding
k-long messages to mn-long codewords. We define the code C to be the concatenation [MS77, vL82] of
Couter and Cinner. In order to decode a single bit, the decoder recovers the symbol of the large alphabet
that the bit falls into.

Recall that in order to recover a single coordinate of the message the decoder of Couter queries the
corrupted encoding at m points of a multiplicative line, and then solves the Reed Solomon decoding
problem (i.e., finds the unique univariate polynomial of degree less than σm that agrees with the
observed sequence of values in all but at most (1− σ)m/2 locations).

The decoder of C acts similarly. Firstly, it entirely reads m corrupted B-bit codewords of the inner
code that store (encoded) coordinate values of the outer code along a randomly chosen multiplicative
line. Secondly, it decodes a binary code that is a concatenation of a Reed Solomon code of degree less
then σm over F2b and a binary code Cinner up to half of its minimum distance. Decoding is correct
provided that the total number of errors in mB locations read is at most (1−σ)µmB/2. Decoding can
be done efficiently provided that Cinner has an efficient decoder.

It remains to note that each individual query of the decoder goes to a uniformly random location
and thus by Markov’s inequality the probability that more than (1− σ)µmB/2 of decoder’s queries go
to corrupted locations is at most 2δ/(µ− µσ).

Proposition 7 allows one to obtain LDCs over large alphabets that tolerate δ up to 1/4. Lemma 9
allows one to obtain binary LDCs that tolerate δ up to 1/8.

4 Matching vectors: constructions

In this section we present constructions of bounded matching families of vectors. Our first construction
(lemma 13) is based on an existing matching family due to Grolmusz [Gro00]. We argue that an
appropriate scaling turns Grolmusz’s family into a bounded family. Later in section 5 we use this
construction to obtain MV codes that improve upon LDCs of [Efr09, IS10] in terms of the amount
of noise that they can tolerate, and improve upon classical r-query RM LDCs in terms of codeword
length for all r ≤ log k/(log log k)c. Our second construction (lemma 16) is self-contained. It improves
on the first construction for large values of m, and yields MV codes that match RM LDCs for certain
values of r > log k/(log log k)c.

Definition 10 (Canonical set) Let m =
∏t
i=1 pi be a product of distinct primes. The canonical set

in Zm is the set of all non-zero s such that for every i ∈ [t], s ∈ {0, 1} mod pi.

10



Basic parameters of Grolmusz’s family are given by the following lemma. The construction follows
the lines of Grolmusz’s construction of a set system with restricted intersections modulo composites
[Gro00, Gro02], but with some differences. We use an approach suggested by Sudan to go directly from
polynomials to matching vectors without constructing set-systems, which gives a slight improvement
in parameters. We defer the proof to appendix A.

Lemma 11 Let m =
∏t
i=1 pi be a product of distinct primes. Let w be a positive integer. Let {ei},

i ∈ [t] be integers such that for all i, we have pei
i > w1/t. Let d = maxi pei

i , and h ≥ w be arbitrary.

Let S be the canonical set; then there exists an
(
h
w

)
-sized family of S-matching vectors in Znm, where

n =
(
h
≤d

)
.

We now argue that a canonical set can be turned into a bounded one via scaling by an invertible
element.

Lemma 12 Let m =
∏t
i=1 pi be a product of distinct primes. Let S be the canonical set in Zm. There

exists an α ∈ Z∗m such that the set αS is σm-bounded for any σ >
∑

i∈[t] 1/pi.

Proof: We start with some notation.

• For every i ∈ [t], define the integer p̂i = m/pi;

• Let α ∈ Z∗m be the unique element such that for all i ∈ [t], α = p̂i mod pi.

Observe that for any i, j ∈ [t],

(
α−1p̂i

)
mod pj =

{
1, if i=j;
0, otherwise.

Let s ∈ S be arbitrary. Set I = {i ∈ [t] | pi does not divide s}. Observe that s = α−1
∑

i∈I p̂i. Therefore

αs =
∑
i∈I

p̂i ≤ m
∑
i∈[t]

1/pi.

The argument above shows that any S-matching family U ,V where S is the canonical set can be
turned into a bounded one (by scaling all vectors in V by an invertible element). Note that such
scaling does not change the set U , and hence the corresponding MV code. It also does not change
the set of points queried by the decoder (of proposition 7), since for an invertible α ∈ Zm, and an
arbitrary v ∈ Znm multiplicative lines in the directions v and αv are the same. Combining lemma 12
with lemma 11 we obtain

Lemma 13 Let m =
∏t
i=1 pi be a product of distinct primes. Let w be a positive integer. Let {ei},

i ∈ [t] be integers such that for all i, we have pei
i > w1/t. Let d = maxi pei

i , and h ≥ w be arbitrary.

Then there exists an
(
h
w

)
-sized σm-bounded family of matching vectors in Znm, where n =

(
h
≤d

)
and σ

is an arbitrary real number larger than
∑

i∈[t] 1/pi.

In fact one can show that the scaling above is the optimal scaling of the canonical set, in the sense
that it minimizes the size of the maximum element.
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4.1 Simple construction of matching vectors

In this section we give an elementary construction of a bounded family of matching vectors. The
construction works for both prime and composite moduli. The family improves upon the family of
lemma 13 for large values of m. In what follows we use Z≥0 to denote the set of non-negative integers.

Definition 14 Let b(m′, n) denote the number of vectors w ∈ Zn≥0 such that ‖w‖22 = m′.

Thus b(m′, n) counts the number of integer points on the surface of the n-dimensional ball of radius√
m′ in the positive orthant.

Lemma 15 Let m′ < m and n ≥ 2 be arbitrary positive integers. There exists a b(m′, n − 1)-sized
(m′ + 1)-bounded family of matching vectors in Znm.

Proof: Let k = b(m′, n − 1) and let w1, . . . ,wk be the vectors in Zn−1
≥0 such that ‖wi‖22 = m′. For

each wi, we define vectors in Zn by

ui = (1,−wi), vi = (m′,−wi).

We claim that the resulting family of vectors is a {1, . . . ,m′}-matching family. To prove this, observe
that (ui,vj) = m′ − (wi,wj). If i = j, then (wi,wj) = ‖wi‖22 = m′ whereas if i 6= j; then by
Cauchy-Schwartz

(wi,wj) ≤ ‖wi‖2‖wj‖2 = m′.

In fact the inequality must be strict since wi and wj both lie on the surface of the same ball, hence they
are not collinear. But since their inner product lies in Z≥0, we conclude that (wi,wj) ∈ {0, . . . ,m′−1},
hence (ui,vj) ∈ {1, . . . ,m′}. Now note that since m > m′, the intersections do not change modulo
m.

The lemma below follows by combining lemma 15 with some crude lower bounds for b(m′, n− 1).

Lemma 16 Let m′ < m and n ≥ 2 be arbitrary positive integers. There exists a k-sized (m′ + 1)-
bounded family of matching vectors in Znm, where

k = 1
m′+1

(
m′

n−1

)(n−1)/2
for m′ ≥ n, (13)

k =
(
n−1
m′

)
for m′ < n. (14)

Proof: To prove (13), we set d =
⌊√

m′/(n− 1)
⌋
. For every vector w ∈ {0, . . . , d}n−1, we have

0 ≤ ‖w‖2 ≤ (n− 1)d2 ≤ m′. By the pigeonhole principle, there exists some m′′ ∈ {0, . . . ,m′} such that
b(m′′, n − 1) ≥ (d+ 1)n−1/(m′ + 1), which by lemma 15 yields an (m′ + 1)-bounded matching family
of size

k ≥ 1
m′ + 1

(⌊√
m′

n− 1

⌋
+ 1

)n−1

≥ 1
m′ + 1

(
m′

n− 1

)(n−1)/2

.

Note that the condition m′ ≥ n is only needed to ensure that the bound in meaningful.
To prove (14), we observe that b(m′, n− 1) ≥

(
n−1
m′

)
by taking all vectors in {0, 1}n−1 of Hamming

weight exactly m′. The bound follows from lemma 15.
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5 Upper bounds for MV codes

In this section we combine the results of the previous sections to derive upper bounds on MV codes.
A combination of lemma 9 and lemma 13 yields

Lemma 17 Let m =
∏t
i=1 pi be a product of distinct primes. Let w be a positive integer. Suppose

integers {ei}, i ∈ [t] are such that for all i, we have pei
i > w1/t. Let d = maxi pei

i , and h ≥ w be
arbitrary. Let σ is an arbitrary real number larger than

∑
i∈[t] 1/pi. Suppose m | q − 1, where q = 2b.

Further suppose that there exists a binary code Cinner of distance µB encoding b-bit messages to B-bit

codewords; then there exists a binary linear code C encoding
(
h
w

)
· b-bit messages to m

(
h
≤d

)
· B-bit

codewords that is (mB, δ, 2δ/(µ− µσ))-locally decodable for all δ.

In what follows we estimate asymptotic parameters of our codes.

Lemma 18 There exists c > 1 such that for all integers t ≥ 2 and k ≥ 2c2
t

there exists a binary linear
code encoding k-bit messages to

N = exp exp
(

(log k)1/t(log log k)1−1/tt ln t
)

-bit codewords that is
(
tO(t), δ, 4δ(1 +O(1/ ln t))

)
-locally decodable for all δ.

Proof: The proof follows by appropriately setting the parameters in lemma 17.

1. By [Sho05, theorem 5.7] there exists a universal constant c′ such that the range [(c′/2)t ln t, c′t ln t]
contains at least t distinct odd primes p1, . . . , pt;

2. Note that
∑

i∈[t] 1/pi = O(1/ ln t);

3. Set m =
∏
i∈[t] pi. Clearly, m = tO(t);

4. Set b to be the smallest positive integer such that m
∣∣2b − 1 Clearly, b = tO(t). Set q = 2b;

5. A standard greedy argument (that is used to prove the classical Gilbert-Varshamov bound [MS77,
vL82]) implies that there is a universal constant c′′ such that for all integers s ≥ 1, there exists a
binary linear code of distance (1/2− c′′/

√
s)s2 encoding s-bit messages to s2-bit codewords. We

set Cinner to be a binary linear code that encodes b-bit messages to B = tO(t)-bit codewords and
has distance µB, for µ ≥

(
1/2− c′′/tΩ(t)

)
;

6. We now assume that there exists a positive integer w which is a multiple of t such that k = ww/t.
Clearly, we have w = Θ(t log k/ log log k);

7. Following lemma 17 for every i ∈ [t], let ei be the smallest integer such that pei
i > w1/t. Let

d = maxi pei
i . Clearly, d = O(w1/tt ln t);

8. Set h = w1+1/t;

9. k = ww/t ≥ 2c2
t

yields w1/t > 2 and h > 2w. Therefore
(
h
w

)
b ≥ (h/w)w ≥ k;

10. We set the constant c large enough to ensure that (independent of t) we have h > 2d. This implies(
h
≤d

)
≤ (eh/d)d. We set N = m

(
h
≤d

)
B ≤ tO(t)+x, where x = O(t)(ew)O(w1/tt ln t);

13



11. We combine lemma 17 with inequalities that we proved above and make basic manipulations to
obtain a binary linear code encoding k-bit messages to exp exp

(
(log k)1/t(log log k)1−1/tt ln t

)
-bit

codewords that is
(
tO(t), δ, 4δ(1 +O(1/ ln t))

)
-locally decodable for all δ.

12. Finally, we note that the assumption about k = ww/t, for some w can be safely dropped. If k
does not have the required shape, we pad k-bit messages with zeros to get messages of length k′,
where k′ has the shape ww/t and then apply the procedure above. One can easily check that such
padding requires a sub-quadratic blow up in the message length and therefore does not affect
asymptotic parameters.

Setting t to be a constant in lemma 18 yields

Theorem 19 For every integer t ≥ 2 and all sufficiently large integers k, there exists a binary linear
code encoding k-bit messages to exp exp

(
(log k)1/t(log log k)1−1/t

)
-bit codewords that is

(
tO(t), δ, 4δ(1 +O(1/ ln t))

)
-

locally decodable for all δ.

For every constant t ≥ 2, theorem 19 gives a family of
(
tO(t), δ, 4δ(1 +O(1/ ln t))

)
-locally decod-

able codes of length essentially identical to the length of the shortest known
(
2O(t), δ, 2O(t)δ

)
-locally

decodable codes of [Efr09, IS10]. Our codes can tolerate much larger amounts of noise, (i.e., for large
values of t our codes tolerate approximately 1/8 fraction of errors, while the fraction of errors tolerated
by codes from earlier work drops to zero rapidly.) The improvement comes at a price of a moderate
increase in the number of queries.

The following theorem gives asymptotic parameters of our codes in terms of r and k.

Theorem 20 For every large enough integer r and every k, such that k > 2r there exists a binary
linear code encoding k-bit messages to

exp exp
(

(log k)O(log log r/ log r)(log log k)1−Ω(log log r/ log r) log r
)

(15)

bit codewords that is (r, δ, 4δ(1 +O(1/ ln ln r)))-locally decodable for all δ.

Proof: The proof follows by setting parameters in lemma 18. Set t to be the largest integer such
that tO(t) ≤ r, where the constant in O-notation is the same as the one in lemma 18. Assuming r
is sufficiently large we have t = Θ(log r/ log log r). One can also check that k > 2r implies that the
pre-condition of lemma 18 is satisfied. An application of the lemma concludes the proof.

5.1 MV codes over characteristic zero

We remark here that the entire construction and analysis of MV codes described in the preceding
sections (apart from the parts dealing with reduction to the binary case) work also if the underlying
field, Fq, is replaced with the complex number field C. The only property we used in Fq is that it
contains an element of order m, which trivially holds over C for every m. This implies the existence
of linear LDCs with essentially the same parameters as above also over the complex numbers (the
definition of LDCs over an arbitrary field is the same as for finite fields, we simply allow the decoder
to preform field arithmetic operations on its inputs). Once one has linear a code over the complex
numbers, it is straightforward to get a code over the reals by writing each complex number as a pair
of real numbers.
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We find this interesting since, previous to MV codes, there were no known constructions of LDC’s
over characteristic zero (apart from trivial 2-query codes of exponential stretch). In fact, there are
no known constructions, apart from MV codes, even over finite fields with very large characteristic
(RM codes require that the characteristic will be at most the codeword length). Even though this
might seem like an esoteric setting, LDCs over characteristic zero did came up in some recent works in
connection to arithmetic circuit complexity [DS06, Dvi09].

5.2 Comparison to Reed Muller codes

Theorem 20 yields the first family of locally decodable codes (other than RM codes) that have super-
constant query complexity and tolerate a constant fraction of errors. In this section we provide a
comparison between RM codes and our codes.

A Reed Muller locally decodable code [KT00, Tre04, Yek10] is specified by three integer parameters.
Namely, a prime power (alphabet size) q, number of variables n, and the degree d < q − 1. The q-ary
code consists of Fmq -evaluations of all polynomials in Fq[z1, . . . , zn] of total degree at most d. Such

code encodes k =
(
n+d
d

)
-long messages to qn-long codewords. Provided that d < σ(q − 1), the code

is (q − 1, δ, 2δ/(1 − σ))-locally decodable for all δ. If q is a power of 2 non-binary RM LDCs can be
turned into binary via concatenation (in a manner similar to the one used in lemma 9). If one does
concatenation with an asymptotically good code of relative distance µ one gets a binary linear code
encoding k-bit messages to N -bit codewords that is (r, δ, 2δ/(µ−µσ))-locally decodable for all δ, where

k =
(
n+ d

d

)
log q, N = Θ(qn log q), r = Θ(q log q). (16)

One can get various asymptotic families of RM LDCs by specifying an appropriate relation between
n and d and letting these parameters grow to infinity. Increasing d relative to m yields shorter codes
of larger query complexity.

Example 21 Setting d = n, q = cn (for a constant c), and letting n grow while concatenating with
asymptotically good binary codes of relative distance µ one gets a family of binary LDCs that encode k-
bit messages to kΘ(log log k)-bit codewords and are (Θ(log k log log k), δ, 2δ/(µ− 2µ/c))-locally decodable
for all δ.

We now argue that RM LDCs are inferior to codes of theorem 20 (with respect to codeword length)
for all r ≤ log k/(log log k)c, where c is a universal constant. To arrive at such a conclusion we need a
lower bound on the length of RM LDCs. Let d, n, and q be such that formulas (16) yield an r-query
LDC, where r belongs to the range of our interest. We necessarily have d ≤ n (otherwise r > log k).
Thus

k =
(
n+ d

d

)
log q ≤ (en/d)d log q ≤ nO(d), (17)

and n ≥ kΩ(1/d). Therefore writing exp(x) to denote 2Ω(x), we have

N ≥ exp exp (log k/d) ≥ exp exp (log k/r) . (18)

Note that when r is a constant then already 3-query codes of [Efr09] improve substantially upon (18).
To conclude the argument one needs to verify that there exists a constant c such that for every
nondecreasing function r(k), where r(k) grows to infinity, and satisfies r(k) ≤ log k/(log log k)c, for all
sufficiently large k the right hand side of (18) evaluates to a larger value than (15).
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Remark 22 It is interesting to observe that while MV codes of theorem 20 improve upon RM LDCs
only for r ≤ log k/(log log k)c, one can get MV codes that (asymptotically) match RM LDCs of exam-
ple 21 combining lemma 16 (where m has the shape 2b − 1, n = m+ 1 and m′ = n/2) with lemma 9.

6 Matching Vectors: limitations

Let k(m,n) denote the size of the largest family of S-matching vectors in Znm where we allow S to be an
arbitrary subset of Zm \ {0}. The rate of any locally decodable code obtained via propositions 3, 7, 8
or 44 is at most k(m,n)/mn. Our goal in this section is to prove upper bounds on k(m,n). In section 7
we translate these bounds into lower bounds on the length of MV codes.

There is a large body of work in combinatorics on the closely related problem of set-systems with
restricted modular intersections. The problem there is to bound the size of the largest set family F
on [n], where the sets in F have cardinality 0 modulo some integer m, while their intersections have
non-zero cardinality modulo m. The classical result in this area is the modular Ray-Chaudhuri-Wilson
theorem [BF98] showing that when m is a prime (or a prime power), an upper bound of nO(m) holds.
It is known that such a bound does not apply when m is composite [Gro00, Gro02]. The best upper
bound for general m shows that |F| ≤ 2n/2 [Sga99].

We start by bounding k(m,n) in the prime case.

6.1 The prime case

We present two bounds for the prime case. The first is based on the linear algebra method [BF98] and
is tight when p is a constant.

Theorem 23 For any positive integer n and any prime p, we have

k(p, n) ≤ 1 +
(
n+ p− 2
p− 1

)
.

Proof: Let U = {u1, . . . ,uk}, V = {v1, . . . ,vk} be a family of S-matching vectors of Fnp , for some
S ⊆ F∗p. For each i ∈ [k], we consider the polynomial

Pi(z1, . . . , zn) = 1−

(
n∑
l=1

vi(l) · zl

)p−1

in the ring Fp[z1, . . . , zn]. It is easy to see that Pi(ui) = 1, whereas Pi(uj) = 0 for all j 6= i. This
implies that the k polynomials {Pi}ki=1 are linearly independent. But these polynomials all lie in an Fp
vector-space of dimension 1 +

(
n+p−2
p−1

)
, since they are spanned by the monomial 1 and all monomials

of degree exactly p− 1 in z1, . . . , zn.

Note that equation (14) shows that for constant p and growing n, the above bound is asymptotically
tight.

Our second bound comes from translating the problem of constructing matching vectors into a
problem about points and hyperplanes in projective space. The n− 1 dimensional projective geometry
PG(Fp, n−1) over Fp consist of all points in Fnp \{0n} under the equivalence relation λv ≡ v for λ ∈ F∗p.
Projective hyperplanes are specified by vectors u ∈ Fnp \ {0n} under the equivalence relation λu ≡ u
for λ ∈ F∗p; such a hyperplane contains all points v where (u,v) = 0.
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We define a bipartite graph H(U, V ) where the vertices on the left correspond to all hyperplanes in
PG(Fp, n− 1), vertices on the right correspond to all points in PG(Fp, n− 1) and u and v are adjacent
if (u,v) = 0. For X ⊆ U and Y ⊆ V , we define N(X) and N(Y ) to be their neighborhoods. We use
N(u) for the neighborhood of u.

Definition 24 Let n be a positive integer and p be a prime. Let U be the set of hyperplanes in
PG(Fp, n − 1). We say that a set X ⊆ U satisfies the unique neighbor property if for every u ∈ X,
there exists v ∈ N(u) such that v is not adjacent to u′ for any u′ ∈ X \ {u}.

Lemma 25 Let n be a positive integer and p be a prime. Let U be the set of hyperplanes in PG(Fp, n−
1). There exists a set X ⊆ U, |X| = k satisfying the unique neighbor property if and only if there exists
a k-sized family of Z∗p-matching vectors in Znp .

Proof: Assume that X = {u1, . . . ,uk} satisfies the unique neighbor property. Let Y = {v1, . . . ,vk}
be such that vi is a unique neighbor of ui. This implies that (ui,vi) = 0 and (uj ,vi) 6= 0 for i 6= j.
Thus X,Y gives a Z∗p-matching vector family in Znp .

For the converse, let us start with a k-sized matching vector family U ,V in Znp . In case k = 1 the
lemma holds trivially. We claim that if k ≥ 2; then u ∈ U implies that λu 6∈ U for any λ ∈ F∗p \ {1}.
This is true since (u,v) = 0 implies (λu,v) = 0, which would violate the definition of a matching vector
family. Thus we can associate each u ∈ U with a distinct hyperplane in PG(Fp, n − 1). Similarly, we
can associate every v ∈ V with a distinct point in PG(Fp, n− 1). It is easy to see that vi is a unique
neighbor of ui, hence the set U satisfies the unique neighbor property.

Corollary 26 Let n be a positive integer and p be a prime. Let U be the set of hyperplanes in
PG(Fp, n − 1). The size of the largest set X ⊆ U that satisfies the unique neighbor property is ex-
actly k(p, n).

The expansion of the graph H(U, V ) was analyzed by Alon using spectral methods [Alo86, theorem
2.3]. We use the rapid expansion of this graph to bound the size of the largest matching vector family.

Lemma 27 Let n ≥ 2 be an integer and p be a prime. Let U (V ) be the set of hyperplanes (points) in
PG(Fp, n− 1). Let u = pn−1

p−1 = |U | = |V |. For any nonempty set X ⊆ U with |X| = x,

|N(X)| ≥ u− u
n

n−1 /x. (19)

Lemma 28 Let n be a positive integer and p be a prime; then

k(p, n) ≤ 4pn/2 + 2. (20)

Proof: If n = 1, inequality (20) holds trivially. We assume n ≥ 2. Let U ⊆ U , V ⊆ V be a matching
family of size k(p, n). Pick X ⊆ U of size x > 0. By (19),

|N(X)| ≥ u− u
n

n−1 /x.

Since every point in U \X must contain a unique neighbor from V \N(X), we have

|U \X| ≤ |V \N(X)| ≤ u
n

n−1

x
⇒ |U| ≤ u

n
n−1

x
+ x. (21)
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Note that the inequality in the right hand side of (21) holds for all positive integers x. Picking x =⌈
u

n
2(n−1)

⌉
gives

|U| ≤ 2
⌈
u

n
2(n−1)

⌉
≤ 2

(
pn

p− 1

) n
2(n−1)

+ 2 = 2
(

p

p− 1

) n
2(n−1)

pn/2 + 2 ≤ 4pn/2 + 2,

where the last inequality is a simple calculation.

Equation (13) shows that k(p, n) = Ω
(
p(n−3)/2

)
, so the above upper bound is nearly tight when n is

a constant and p grows to infinity. Note that for this setting of parameters, the linear-algebra bound
gives k(p, n) ≤ O(pn−1), so the bound above gives a significant improvement.

6.2 The prime power case

Lemma 29 Let n be a positive integer, p be a prime and e ≥ 2. We have

k(pe, n) ≤ p(e−1)nk(p, n+ 1).

Proof: Assume for contradiction that we have a matching family U = {u1, . . . ,uk},V = {v1, . . . ,vk}
of size k > p(e−1)nk(p, n + 1) in Znpe . For every i ∈ [k], write ui = u′i + pe−1u′′i where u′i ∈ Znpe−1

and u′′i ∈ Znp . By the pigeonhole principle, there are k′ > k(p, n + 1) values of i which give the same
vector u′i ∈ Znpe−1 , assume for convenience that the corresponding vectors in U are u1, . . . ,uk′ with
matching vectors v1, . . . ,vk′ . We will use these vectors to construct a matching vector family of size
k′ > k(p, n+ 1) in Zn+1

p , which gives a contradiction.
For each i ∈ [k′], we extend u′′i to a vector ūi by appending 1 in the last coordinate. For every

i ∈ [k′], write vi = v′i + pv′′i where v′i ∈ Znp and v′′i ∈ Znpe−1 . We extend v′i to a vector v̄i by appending
(u′i,vi)/p

e−1 ∈ Zp in the last coordinate (we will show that this ratio is in fact integral).
We claim that for all i ∈ [k′], (ūi, v̄i) = 0 mod p. To see this, observe that

(ūi, v̄i) = (u′′i ,v
′
i) + (u′i,vi)/p

e−1. (22)

But we have

(ui,vi) = (u′i,vi) + pe−1(u′′i ,vi) ≡ (u′i,vi) + pe−1(u′′i ,v
′
i) = 0 mod pe

From this we conclude that (u′i,vi) ≡ 0 mod pe−1, and that (u′′i ,v
′
i) + (u′i,vi)/p

e−1 = 0 mod p. From
equation (23), we conclude that (ūi, v̄i) = 0 mod p. Next we claim that (ūj , v̄i) 6= 0 mod p for i 6= j ∈
[k′]. We have

(ūj , v̄i) = (u′′j ,v
′
i) + (u′i,vi)/p

e−1 (23)

But, since u′i = u′j , we also have

(uj ,vi) = (u′j ,vi) + pe−1(u′′j ,vi) ≡ (u′i,vi) + pe−1(u′′j ,v
′
i) 6≡ 0 mod pe

which implies that (u′′j ,v
′
i) + (u′i,vi)/p

e−1 6≡ 0 mod p. This shows that the vectors {ūj}k
′
j=1, {v̄i}k

′
i=1

give a matching vector family of size k′ > k(p, n+ 1), which is a contradiction.
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6.3 The composite case

Lemma 30 Let m,n, and q be arbitrary positive integers such that q|m and (q,m/q) = 1; then

k(m,n) ≤ (m/q)n k(q, n).

Proof: Let us write m/q = r. Let U = {u1, . . . ,uk}, V = {v1, . . . ,vk} be a family of S-matching
vectors of Znm, for some S ⊆ Zm\{0}. For each vector u ∈ Znm we can define the vectors u′ ≡ u mod q ∈
Znq and u′′ ≡ u mod r ∈ Znr . From the definition of a matching vector family, we have that

• For all i ∈ [k], (u′i,v
′
i) = 0 and (u′′i ,v

′′
i ) = 0;

• For all i, j ∈ [k] such that i 6= j, (u′j ,v
′
i) 6= 0 or (u′′j ,v

′′
i ) 6= 0.

Assume k > (m/q)n k(q, n). By the pigeonhole principle, there exists a vector u ∈ Znr such that u′′j = u
holds for k′ > k(q, n) values of j ∈ [k]. Let us assume that these values are 1, . . . , k′. Note that for any
i, j ∈ [k′] we have (u′′j ,v

′′
i ) = (u′′i ,v

′′
i ) = 0. Hence, by the definition of a matching family, we must have

• For all i ∈ [k′], (u′i,v
′
i) = 0;

• For all i, j ∈ [k′] such that i 6= j, (u′j ,v
′
i) 6= 0.

Thus vectors {u′1, . . . ,u′k′} and {v′1, . . . ,v′k′} form a matching family mod q of size larger than k(q, n)
which gives a contradiction.

Theorem 31 Let m and n be arbitrary positive integers. Suppose p is a prime divisor of m; then

k(m,n) ≤ 5
mn

p(n−1)/2
.

Proof: Let pe be the largest power of p which divides m. By lemmas 30, 29 and 28, we get

k(m,n) ≤
(
m

pe

)n
p(e−1)n

(
4p(n+1)/2 + 2

)
≤ 5

mn

p(n−1)/2

The above bound is weak when n and p are constants, for instance it is meaningless for n = 1. We
give another bound below which handles the case of small m. We start with the case when n = 1.

Lemma 32 Let m ≥ 2 be an arbitrary positive integer; then

k(m, 1) ≤ mO(1/ log logm) = mom(1).

Proof: Let U = {u1, . . . ,uk},V = {v1, . . . ,vk} be a family of Zm \ {0}-matching vectors in Z1
m. We

treat every vector u ∈ U as an integer and observe that for any i 6= j ∈ [k], gcd(ui,m) 6= gcd(uj ,m).
(Otherwise (ui,vi) = 0 would yield (uj ,vi) = 0.) An application of a standard upper bound on the
number of distinct divisors of an integer [HW85] concludes the proof.

We now proceed to the case of general n.

Theorem 33 Let m and n be arbitrary positive integers; then

k(m,n) ≤ mn−1+om(1).
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Proof: Given a vector u ∈ Znm, we define the Zm-orbit of u to be the set of all vectors that can be
written as λu for λ ∈ Zm. Unlike over Zp, these orbits are no longer disjoint. We claim that all of
Znm can be covered by no more mn

φ(m) orbits, and that each such orbit can contribute at most k(m, 1)
vectors to U .

Let U ⊆ Znm denote the set of all vectors u such that the GCD of all coordinates of u is 1. Any
vector u′ ∈ Znm can be written it as λu for u ∈ U and λ ∈ Zm. Thus the orbits of vectors in U cover
all of Znm. For u,u′ ∈ U , we say that u′ ≡ u′′ if u′′ lies in the Zm orbit of u′. It is easy to see that this
is indeed an equivalence relation on U , which divides U into equivalence classes of size φ(m). Thus if
we pick U ′ ⊆ U which contains a single representative of each equivalence class, then the orbits of U ′

contain all of Znm. Thus we have |U ′| = |U |
φ(m) ≤

mn

φ(m) .
Now consider the orbit of any vector u. Assume that it contributes the vector u1 = λ1u, . . . , λtu

to U where λi ∈ Zm. Assume that the matching vectors in V are v1, . . . ,vt. Then it is easy to see
that U ′ = {λ1, . . . , λt} and V ′ = {(u,v1), . . . , (u,vt)} are a matching vector family in one dimension,
so that t ≤ k(m, 1). Thus we conclude that

k(m,n) ≤ mn

φ(m)
k(m, 1) ≤ mn−1+om(1).

using a standard lower bound on φ(m) [HW85] and lemma 32.

The upper bound of lemma 28 (that applies only when m is prime) is substantially stronger than
the bounds of theorems 31 and 33. We feel that latter bounds can be improved. Specifically, we propose
the following

Conjecture 34 Let m and n be arbitrary positive integers; then k(m,n) ≤ O
(
mn/2

)
.

We discuss the implications of the conjecture for the lower bounds for MV codes in remark 37.

7 Lower bounds for MV codes

We now translate the bounds on matching vector families from the previous section to bounds on the
encoding length of matching vector codes. We argue that any family of (non-binary) matching vector
codes, (i.e., codes that for some m and n, encode k(m,n)-long messages to mn-long codewords) has an
encoding blow-up of at least 2Ω(

√
log k).

Theorem 35 Consider an infinite family of Matching Vector codes C` : Fkq → FNq for ` ∈ N, where
k = k(`) and N = N(`) go to infinity with `. For large enough `, we have

k ≤ N

20.4
√

logN
⇒ N ≥ k20.4

√
log k.

Proof: For each `, we have a family of matching vectors in Znm where m,n depend on `. We have
N = mn while k ≤ k(m,n). First assume that n >

√
logN . Then by theorem 31 with p a prime divisor

of m, we have

k ≤ 5mn

p(n−1)/2
≤ 5N

20.5
√

logN−1/2
≤ N

20.4
√

logN

where the last inequality holds for large enough N , and hence for all large `. Hence assume that
n ≤

√
logN so that m ≥ 2

√
logN . As ` goes to infinity, N and hence m go to infinity. So for large

enough `, Theorem 33 gives k(m,n) ≤ mn−1+om(1) ≤ mn−0.9. Hence

k ≤ mn

m0.9
≤ N

20.9
√

logN
.
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Thus k ≤ N
20.4
√

log N
for large enough `. This implies that N ≥ k20.4

√
log k for large enough `.

One can generalize theorem 35 to get a similar statement for binary MV codes (i.e., codes obtained
by a concatenation of a non-binary MV code with an asymptotically good binary code).

Theorem 36 Let {m`} and {n`}, ` ∈ N be two arbitrary sequences of positive integers, such that m`
n`

monotonically grows to infinity. Consider an infinite family of binary codes C` : Fk`
2 → FN`

2 for ` ∈ N,
where each code C` is obtained via a concatenation of an MV code encoding k(m`, n`)-long messages to
mn`
` -long codewords over Fq` , (here q` = 2t is the smallest such that m` | 2t− 1) with an asymptotically

good binary code of some fixed rate; then for large enough ` the relative redundancy of C` is at least
2Ω(
√

log k`).

Proof: Pick a sufficiently large value of `. Consider two cases

• n` 6= 1. Observe that the argument in the end of section 6.1 yields k(m`, n`) ≥ m`. Next note that

by theorem 35 relative redundancy of the non-binary code is at least 2Ω
(√

log k(m`,n`)
)
, and the

concatenation with a binary code can only increase relative redundancy. Finally note that the

dimension k` of the binary code is at most k(m`, n`)m` ≤ k2(m`, n`). Thus 2Ω
(√

log k(m`,n`)
)
≥

2Ω(
√

log k`), for an appropriately chosen constant in Ω notation.

• n` = 1. Set k′ = k(m`, n`). Be lemma 32, k′ = m
o(1)
` . Note that k` = k′t and N` = Ω(mt), for

some t ≤ m. These conditions yield N` ≥ Ω
(
k

3/2
`

)
.

7.1 Comparison with RM LDCs

Here we observe that it is possible to construct binary RM LDCs that have a blow-up of 2O(
√

log k) and
query complexity of (log k)O(

√
log k). By formula (16) the relative redundancy of any RM LDC specified

by parameters n, d and q is given by

k/N ≤ O
((

n+ d

d

)
/qn
)
.

We assume that n < d; then
(
n+d
d

)
≤ (2ed/n)n. Therefore (relying of d ≤ q) we get

k/N ≤ O((2e/n)n).

Thus to have relative redundancy smaller than 2O(
√

log k) it suffices to have

n = O
(√

log k/ log log k
)
. (24)

Given k we choose m to be the largest integer satisfying (24). Next we choose d to be the smallest
integer satisfying k ≤

(
n+d
d

)
log q. One can easily check that this yields d = (log k)O(

√
log k), giving an

RM LDC with desired parameters.

Remark 37 It is not hard to verify that if conjecture 34 holds; then any MV code must have length
N = Ω(k2). This would imply that RM LDCs improve on MV codes once r ≥ log2 k, (by an argument
similar to the one above). Since MV codes improve on RM codes for r ≤ log k/(log log k)O(1), this
would give a clearer picture of the comparison between the two families of codes.

21



8 Conclusions

In this work we developed a new view of matching vector codes and uncovered certain similarities
between MV codes and classical Reed Muller codes. Our view allowed us to obtain a deeper insight
into the power and limitations of MV codes. We showed that similarly to Reed Muller codes MV codes
constitute a rich code class containing codes of both constant and growing query complexities, capable
of tolerating large amounts of noise. We showed that for query complexity r ≤ log k/(log log k)O(1) MV
codes are superior to RM LDCs and for r ≥ (log k)Ω(

√
log k) MV codes are inferior to RM codes. There

are many questions that are left open by our work. We elaborate on some of them.

• It is very interesting to see if one can get MV codes that improve upon RM codes for values of
r ≥ log k/(log log k)O(1). This calls for constructions of bounded matching families in Znm, where
m is comparable to (or larger than) n.

• It is very interesting to prove (or disprove) conjecture 34. A simple case where it is open is when
n is a constant and m is a product of two nearly equal primes.

• Our results show that MV codes share many properties of RM codes. We would like to know
if MV codes are (or can be made) locally correctable [BIW07, Dvi09]. Note that to date, RM
LDCs constitute the only known class of locally correctable codes.
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A Grolmusz matching family

Our goal here is to prove the following

Lemma 11 Let m =
∏t
i=1 pi be a product of distinct primes. Let w be a positive integer. Suppose

integers {ei}, i ∈ [t] are such that for all i, we have pei
i > w1/t. Let d = maxi pei

i , and h ≥ w be

arbitrary. Let S be the canonical set modulo m; then there exists an
(
h
w

)
-sized family of S-matching

vectors in Znm, where n =
(
h
≤d

)
.

Our construction of the matching family is modeled along the lines of Grolmusz’s construction of
a set system with restricted intersections modulo composites [Gro00, Gro02]. His construction uses
the low-degree OR representations of Barrington et al. [BBR94]. However, we will use Lemma 39 to
bypass the set system and go directly to the matching family from polynomials. In addition to being
more direct, this also gives a slightly larger collection of vectors.

Definition 38 Let S ⊆ Zm \ {0}. We say that a set of polynomials F = {f1, . . . , fk} ⊆ Zm[z1, . . . , zh]
and a set of points X = {x1, . . . ,xk} ⊆ Zhm form a polynomial S-matching family of size k if

• For all i ∈ [k], fi(xi) = 0;

• For all i, j ∈ [k] such that i 6= j, fj(xi) ∈ S.

Let F ,X be a k-sized polynomial matching family. For i ∈ [k], let supp(fi) denote the set of
monomials in the support of the polynomial fi. We define supp(F) =

⋃k
i=1 supp(fi) and dim(F) =

|supp(F)|. The following lemma was observed by Sudan [Sud09].

Lemma 39 An k-sized polynomial S-matching family F ,X over Zm yields a k-sized S-matching family
U ,V in Znm, where n = dim(F).

Proof: Let mon1, . . . ,monn be the set of monomials in supp(F). For every j ∈ [k] we have

fj(z1 . . . , zh) =
n∑
l=1

cjlmonl.

We define the vector uj to be the n-dimensional vector of coefficients of the polynomial fj . Similarly,
for i ∈ [k], we define the vector vi to be the vector of evaluations of monomials mon1, . . . ,monn at the
point xi. It is easy to check that for all i, j ∈ [k], (uj ,vi) = fj(xi) and hence the sets U ,V indeed form
an S-matching family.

In what follows we assume that parameters m, t, {pi}i∈[t], {ei}i∈[t], w, h, and the set S satisfy the
precondition of lemma 11. Theorem 2.16 in [Gop06] yields

Lemma 40 For every i ∈ [t], there is an explicit multilinear polynomial fi(z1, . . . , zh) ∈ Zpi [z1, . . . , zh]
where deg(fi) ≤ pei

i − 1 such that for x ∈ {0, 1}h, we have

fi(x) ≡

{
0 mod pi, if

∑h
l=1 x(l) ≡ w mod pei

i ,

1 mod pi, otherwise.
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Corollary 41 There is an explicit multilinear polynomial f(z1, . . . , zh) ∈ Zm[z1, . . . , zn] such that for
all x ∈ {0, 1}h, we have

f(x) =

{
0 mod m, if

∑h
l=1 x(l) = w,

s mod m, for s ∈ S, if
∑h

l=1 x(l) < w,

where coordinates of x are summed as integers.

Proof: Define the polynomial f so that for all i ∈ [t], f(z1, . . . , zh) ≡ fi(z1, . . . , zh) mod pi. We claim
that it satisfies the above requirement. Observe that by the Chinese remainder theorem

f(x) = 0 mod m iff for all i ∈ [t],
h∑
l=1

x(l) ≡ w mod pei
i .

This is equivalent to saying that
h∑
l=1

x(l) ≡ w mod
∏
i

pei
i .

Note that for all i ∈ [t], pei
i > w1/t. Hence m =

∏
i p
ei
i > w. Thus whenever the integer sum

∑h
l=1 x(l) <

w, we have
∑h

l=1 x(l) 6≡ w mod m, which proves the claim.

Proof of lemma 11: For every T ⊆ [h] of size w, define the polynomial fT wherein the polynomial
f from corollary 41, we set zj = 0 for j 6∈ T (but zj stays untouched for j ∈ T ). Define xT ∈ {0, 1}h
to be the indicator of the set T . Viewing vectors x ∈ {0, 1}h as indicator vectors xL for sets L ⊆ [h],
it is easy to check that for all T, L ∈ [h], fT (xL) = f(xL∩T ). Combining this with Corollary 41 gives

• For all T ⊆ [h], where |T | = w, fT (xT ) = f(xT ) ≡ 0 mod m,

• For all T 6= L ⊆ [h], where |T | = |L| = w, fT (xL) = f(xL∩T ) ∈ S mod m,

where the second bullet follows from the observation that |L∩T | ≤ w− 1. Thus the set of polynomials
F = {fT }T⊆[h],|T |=w and points X = {xT }T⊆[h],|T |=w form a polynomial S-matching family.

It is clear that k = |F| =
(
h
w

)
. To bound n, we note that deg(f) ≤ d and f is multilinear. Thus

we can take supp(F) to be the set of all multilinear monomials in z1, . . . , zh of degree at most d. Thus
dim(F) =

(
h
≤d

)
.

B Improving the locality of the decoder

As we have mentioned in remark 4 is certain cases, relying on the special properties of the integer
m and the set S ⊆ Zm \ {0} it is possible to reduce the query complexity of the decoder given by
proposition 3 below |S| + 1. In this section we present a general sufficient condition that makes such
a reduction possible, generalizing the argument from [Yek08]. We restrict our attention to fields of
characteristic 2.

Definition 42 Fix an integer t ≥ 1 and let m = 2t − 1. Given an integer s, define wt(s) to be
the number of non-zero digits in its base 2 expansion. For a set S ⊆ Zm \ {0}, define wt(S) =
maxs∈S wt(s). Finally, given a polynomial f(y) =

∑
i fiy

i ∈ F2t [y], define its linearity degree as
ldeg(f) = maxi:fi 6=0 wt(i).
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Note that F2t is a t-dimensional vector space over F2, thus we can talk about subspaces of F2t . The
following lemma can be found in [LN83].

Lemma 43 Let f(y) =
∑

i fiy
i ∈ F2t [y]. Let L ⊆ F2t be a subspace. Suppose dimL ≥ ldeg(f) + 1;

then ∑
a∈L\{0}

f(a) = f(0). (25)

The following proposition gives a general condition allowing for a reduction in the query complexity
of the decoder given by proposition 3. We use the notation from section 3.

Proposition 44 Let q = 2t for t ≥ 1 and let m = q− 1. Let U ,V be a family of S-matching vectors in
Znm, where |U| = |V| = k and wt(S) ≤ `− 1. There exists a q-ary linear code encoding k-long messages
to mn-long codewords that is (2` − 1, δ, (2` − 1)δ)-locally decodable for all δ.

Proof: The encoding procedure is specified by formula (5). Recall that g is a generator of Cm = F∗2t .
To recover the value xi,

1. The decoder picks a linear subspace L = {a0, a1, . . . , a2`−1} ⊆ F2t of dimension `. Let integers
λ1, . . . , λ2`−1 be such that gλj = aj for all j ∈ {1, . . . , 2` − 1}.

2. The decoder picks w ∈ Znm uniformly at random, and queries the (corrupted) Mw,vi-evaluation
of F at the locations

{
gw+λjvi | j ∈ {1, . . . , 2` − 1}

}
to obtain the values c1, . . . , c2`−1.

3. The decoder returns
∑2`−1

j=1 cj/g
(ui,w).

To prove the correctness of the decoder, observe that by equation (7), the noiseless Mw,vi-evaluation
of F is given by

f(y) = x(i) · g(ui,w) +
∑
s∈S

 ∑
j : (uj ,vi)=s

x(j) · g(uj ,w)

 ys.

Each query location is uniformly random over the codeword, hence with probability (2` − 1)δ none of
the locations are corrupted. Assuming this holds, we have cj = f(aj) for all j. Since wt(S) ≤ ` − 1,
ldeg(f) ≤ `− 1, hence by lemma 43,∑

j

cj =
∑

a∈L\{0}

f(a) = f(0) = x(i) · g(ui,w).

Remark 45 Proposition 44 generalizes the code construction from [Yek08, Rag07]. Those works
choose m to be a Mersenne prime, and S to be the multiplicative group generated by 2 in Z∗m. Such
choice clearly yields wt(S) = 1. By proposition 44 this translates to a large saving in query complexity.
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