
Accelerating lemma learning using joins - DPLL(t)
Nikolaj Bjørner

Microsoft Research
Bruno Dutertre

SRI International
Leonardo de Moura
Microsoft Research

Abstract

State-of-the-art satisfiability modulo theory solvers usea combination of the Davis-Putnam-
Logemann-Loveland (DPLL) procedure for performing Boolean search and an integration of theory
solvers for identifying theory conflicts. Theory conflicts are presented as clauses over the proposi-
tional vocabulary that prune the DPLL search. This combination is often highly effective, as propo-
sitional reasoning is handled by state-of-the-art methodsfor propositional satisfiability, while theory
solvers can be invoked incrementally as the DPLL core asserts literals. However, there are several
cases where this integration misses short proofs if the short proofs require additional literals that
are not part of the input. We present a method based on joins for identifying a sufficient basis of
additional literals and lemmas that can speed up proof search for DPLL with theories exponentially.
We then compare variants of the proposed methods with proof systems based on superposition and
resolution. The theoretical result is that general formulations of joins are equivalent in succinctness
to superposition and resolution.

1 Introduction

Abstract interpretation and theorem proving are both used in program verification but they tradition-
ally approach the problem from different perspectives. Abstract interpretation focuses on automatically
generatingprogram invariants [1] whereas theorem proving is used toverify that given assertions are
invariant. However, the concept oflogical interpretation[5] shows that deductive methods based on
theorem proving can be used to build abstract interpreters.In this paper, we examine the opposite issue,
namely, the use of abstraction techniques in automated theorem proving. More specifically, our goal is to
improve performance of Satisfiability Modulo Theory (SMT) solvers by generating useful lemmas using
abstraction.

SMT solvers decide the satisfiability of formulas in logicaltheories such as linear arithmetic, the
theory of arrays, and bitvectors. Most SMT solvers use the DPLL(T) architecture. They combine a
Boolean satisfiability solver based on the Davis-Putnam-Logemann-Loveland procedure (DPLL) with
a theory solver that can decide satisfiability of conjunctions of atoms in a specific theoryT [2]. In
the last few years, specialized theory solvers and the development of new integration methods have led
to dramatic performance improvement in SMT solving. Still,there are “easy” formulas that cannot
be solved efficiently using the standard DPLL(T) model, because the literals that are necessary for a
short proof are not present in the original formula. This problem has been recognized in the setting of
difference logic constraints [6], where a solution based onadding atoms based on transtivity of inequality
was investigated. We present a method based on abstraction for cheaply discovering additional literals
and lemmas. Essentially, the method discovers atomic factsthat are implied by both side of a disjunction
Φ1 ∨ Φ2, which can drastically reduce the search space by avoiding extraneous case splits. Formula (1)
motivated some of the techniques presented here. It is an abstraction of a pattern seen in verification
conditions from program verification tools. The pattern corresponds roughly to propagating weakest
preconditions over branch statements.

2 DPLL(T) as a Non-deterministic Transition System

The DPLL(T) procedure for satisfiability modulo theories is a combination of the DPLL algorithm for
Boolean satisfiability and a theory solver for a theoryT . In this paper, we focus on the quantifier-free

1

DPLL(t) Bjørner, Dutertre, and de Moura

M ||F =⇒ M`d ||F if
{

` or ` occurs inF
` unassigned inM

(Decide)

M ||F,C ∨ ` =⇒ M`C∨` ||F if
{

` unassigned inM

M ¬C
(UnitPropagate)

M ||F =⇒ M`C∨` ||F if

` unassigned inM
` or ` occurs inF
T ` C ∨ `

M ¬C

(T -Propagate)

M ||F,C =⇒ M ||F,C ||C if M ¬C (Conflict)

M ||F =⇒ M ||F,C ||C if
{

T ` C

M ¬C
(T -Conflict)

M ||F ||C ′ ∨ ` =⇒ M ||F ||C ∨ C ′ if `C∨` ∈ M (Resolve)

M`d
0M

′ ||F ||C ∨ ` =⇒ M`C∨` ||F,C ∨ ` if M ¬C (Backjump)

Figure 1: Abstract DPLL(T) Procedure

theory of pure equalities (calledE).

Given a quantifier-free formulaφ, we denote thatφ is valid in T by T ` φ. A theory solver forT is
an algorithm for deciding the satisfiability of conjunctionof ground literals ofT . Dually, a theory solver
can decide whetherT ` `1 ∨ . . . ∨ `n holds, wherè 1, . . . , `n are ground literals.

The DPLL(T) procedure starts with a formulaφ written in conjunctive normal form. It searches
for a truth assignment that satisfies all the clauses ofφ and is consistent with respect to theoryT . The
search can be described by the transition system of Figure 1.The system states are of the formM ||F or
M ||F ||C whereM is a partial truth assignment,F is a set of clause, andC is a clause.

The assignmentM is represented as a finite sequence of the form`e1

1
. . . `en

n , where`i is a literal and
ei is anexplanation. For everyi, the explanation is either the symbold, in which casè i is adecision
literal, or a clauseC that explains whỳ i must be assigned. The explanation clause is used during
conflict resolution. The assignment is implicitly divided in segments of successive decision levels, where
the decision level of a literal̀i is the number of decisions inM prior to its occurrence. In states of the
form M ||F , the procedure attempts to extend the current truth assignment by using the unit and theory
propagation rules or the decision rule. A conflict is detected when the assignmentM falsifies a clause
C of F (rule Conflict) or whenM is not consistent with respect to the theory (ruleT -Conflict). In both
cases, the system moves to a conflict state of the formM ||F ||C. In any such state, it can be shown
that the clauseC is false inM (written M ¬C). The rulesResolve andBackjump correspond to
conflict-driven clause learningemployed by modern SAT solvers.Resolve constructs a new conflict
clauseC ∨ C ′ by applying resolution.Backjump is applicable when the conflict clause has a unique
literal ` of maximal decision level. The conflict clause is then added to F , backtracking is performed
(i.e., literal assignments are undone), then` is assigned as implied byC ∨ l and the search can continue
from a consistent state.

DPLL(T) terminates when none of the rules of Figure 1 is applicable.This can happen in a state
M ||F where all literals ofF are assigned. In such a case,M is a full assignment that satisfies all the

2

DPLL(t) Bjørner, Dutertre, and de Moura

C ∨ a ' b D[a]
Sup

C ∨ D[b]

C ∨ a 6' a
E-Res

C

C ∨ a ' b ∨ a ' cE-Fact
C ∨ a ' b ∨ b 6' c

C ∨ ` D ∨ ¬`Res
C ∨ D

C ∨ ` ∨ `Fact
C ∨ `

Figure 2: TheSP(E) calculus

clauses ofF and is consistent with respect toT . In other words, the initial formulaφ is satisfiable.
The other terminal states are of the formM ||F ||2 where2 is the empty clause. In such a case,φ is
unsatisfiable. Proof of termination and details can be foundin [2].

2.1 A Superposition CalculusSP(E)

Figure 2 summarizes basic superposition inference rules for the theory of pure ground equalities. It is a
simple instance of more general and complete superpositioncalculi for the first-order theory of equality,
but in this paper we will only consider equalities between constants, and we omit ordering constraints in
side conditions on the rules (SP(E) is finitely saturating without orderings). ByD[a] we refer to the 0
or more, but not necessarily all, of thea positions inD, these selectedas are replaced byb in D[b].

3 A Hard Formula for DPLL(E)

Consider the unsatisfiable formula (1) (and illustrated in Figure 3) also used in [3], and present in the
2008 SMT competition for the EUF division (http://www.smtcomp.org).

a1 6' a50 ∧
49
∧

i=1

[(ai ' bi ∧ bi ' ai+1) ∨ (ai ' ci ∧ ci ' ai+1)] (1)

a1

b1

c1

a2

b2

c2

a3

b3

c3

a4 · a49

b49

c49

a50

Figure 3: Diamond equalities

The formula is unsatisfiable because in every diamond, it is the case thatai ' ai+1 because either
ai ' bi ∧ bi ' ai+1 or ai ' ci ∧ ci ' ai+1. Therefore, by repeating this argument for everyi, we
end up with the implied equalitya1 ' a50. This contradicts the disequalitya1 6' a50. A proof search
method directly based on DPLL(E) is not able to produce a succinct proof like the informal justification
just given. In a propositional abstraction of the problem, each of the equalitiesai ' bi, bi ' ai+1,
ai ' ci, ci ' ai+1 anda1 ' a50 is treated as a propositional variable. Because the atomsai ' ai+1

are not present DPLL assigns truth values to the propositional variables, and a decision procedure for
equalities detects a contradiction only when for everyi = 1, . . . , 49 ai ' ai+1 follows from either
ai ' bi ∧ bi ' ai+1 or ai ' ci ∧ ci ' ai+1. There are249 different such equality conflicts, none of which
subsumes the other. There is no short unsatisfiability proofthat uses only the original atoms.

3

http://www.smtcomp.org

DPLL(t) Bjørner, Dutertre, and de Moura

On the other hand, the formula has a short proof inSP(E). More, generally, every proof in DPLL(E)
can be simulated by a proof of equal length inSP(E), but not conversely. We writeF1 � F2 if
every proof in the formal systemF2 can be reduced to a proof in the formal systemF1 using at most a
polymomial overhead;≡ is used if reduction is possible in both directions and≺ holds if the reduction
only holds in one direction. To summarize:

Theorem 3.1.SP(E) ≺ DPLL(E).

4 A Sufficient Basis of Literals

There is a very simple way of augmenting DPLL(T) to allow it to simulateSP(E): First create the set
∆ consisting of all literals of the forma ' b, wherea andb are constants in the original formulaF .
Then allow these literals to participate in theDecide and propagation rules. For reference, we call the
resulting system DPLL(E + ∆).

Theorem 4.1.SP(E) ≡ DPLL(E + ∆). In particular, any superposition inference can be simulated by
DPLL(E + ∆).

The set∆ is quadratic in the size of the input, so additional techniques are needed to make this
approach efficient, but then neither doesSP(E) provide any built-in guidance.

5 A Solution Based on Joins

Our approach to solving such problems efficiently is based onideas from abstract interpretation. It is
based on the availability of ajoin operator on constraints maintained by theory solvers to discover atomic
facts that are implied by both sides of a disjunction or case split.

To describe the basic procedure in the context of DPLL(T), consider a stateM ||F whereM does
not contain decision literals (literals annotated as`d). We can then choose an unassigned propositional
variablep; first assign it totrue, performUnitPropagate andT -Propagate to derive all consequences
of p to obtain the contextM1, second assignp tofalse and perform the same propagation to obtain the
contextM2. We then use an operatort such thatM1 tM2 is a set of literals that are implied byM1 and
M2 to compute a joint set of implied literals. The rule can be formulated in the context of the abstract
transition system for DPLL(T) as an inference rulet1

1:

Mpd ||F =⇒ M1 ||F M¬pd ||F =⇒ M2 ||F
p is the only decision variable inM1,M2

t1
1M ||F =⇒ M1 t M2 ||F

For the propositional case, the resulting system is reminiscent of Stålmarck’s method [4], except, that
method also allows learning equivalences between literals. The rule allows some proof-acceleration in
formulas like (1), but it is also limited as we have:

Theorem 5.1.SP(E) ≺ DPLL(E + t1
1) ≺ DPLL(E).

5.1 Joining Equalities

Let E be the equivalence classes of a set of constants at stateM . So for everye, e′ ∈ E if e 6= e′ then
e∩ e′ = ∅, and

⋃

E consists of all the constants inM . For a given constantt, associateE(t) as the class
in E such thatt ∈ E(t) ∈ E. We can characterize the join of two partitions as:

E1 t E2 := {E1(t) ∩ E2(t) | t ∈
⋃

E} (2)

4

DPLL(t) Bjørner, Dutertre, and de Moura

Also, the set of equalities associated with a partition is then just a spanning tree of equalities per equiva-
lence class.

5.2 Generalized Join

There is an obvious limitation to the rulet1
1: It can only be applied whenM does not contain decision

literals. Consequently, it allows only learning units facts. The limitation is on purpose: the rule requires
at most a quadratic number of applications (based on the number of atoms inF) to either assign all
literals, or saturate. The more generic formulation of the inference rule is to allow it being applied at any
level and add new literals toM without these being unit facts. For reference, we will call this system
DPLL(E + tω). The definition of joins will then have to be adjusted so thatexplanations are tracked
correctly when literals are joined. We will not give the fulldetails of DPLL(E + tω), instead we will
arrive at a system that is equally succinct as the one just sketched. But we do so thehard way to examine
the limitations of the more conservative liftings of DPLL(E + t1

1).

5.3 k-lookaheads

The rulet1
1 allows for splitting on a single atomp. The implied consequences of the different cases

for p are then combined. We say that this approach usesone lookahead. One lookahead is not always
sufficient for learning the right implied facts. Consider a simple extension of the diamond problem given
in equation (3), and illustrated in Figure 4.

a1 6' a50 ∧
49
∧

i=1

(ai ' bi ∧ bi ' ai+1)
∨ (ai ' ci ∧ ci ' ai+1)
∨ (ai ' di ∧ di ' ai+1)

 (3)

a1

b1

c1

d1

a2

b2

c2

d2

a3

b3

c3

d3

a4 · a49

b49

c49

d49

a50

Figure 4: Double diamond equalities

In order to learn thata0 ' a1 we now need two splits. The obvious generalization of rulet1
1 is to

combine multiple branches in a join. We call the resulting system DPLL(t1
k) wherek are the number

of lookaheads admitted. Note thatk lookaheads produce up to2k branches. It admits short proofs for
formulas such as (3), but it can still be simulated bySP(E).

Theorem 5.2.SP(E) ≺ DPLL(E + t1
k) ≺ DPLL(E + t1

1) ≺ DPLL(E).

5.4 m-disjunctions

The inequality in Theorem 5.2 is strict, as can be seen from the formula in (4) and Figure 5.

a1 6' a50 ∧
49
∧

i=1

(ai ' ai+1 ∨ ai ' bi+1) ∧
49
∧

i=2

(bi ' ai+1 ∨ bi ' bi+1) ∧ b50 ' a50 (4)

5

DPLL(t) Bjørner, Dutertre, and de Moura

a1

a2

b2

a3

b3

a4

b4

a5

b5

· · · ·

a48

b48

a49

b49

a50

b50

Figure 5: Butterfly equalities

Let DPLL(E + tm
k) be the extension of DPLL(E + t1

k) where join may return not only units but
disjunctions with up tom literals. This is also known asdisjunctive join. Instead of adding non-units to
M the resulting (non-unit) clauses are added toF . We also don’t need to examine2k branches because
we can trade additional disjunctions for explored branches. Finally, the resulting system is equivalent to
SP(E) in succinctness:

Theorem 5.3.SP(E) ≡ DPLL(E + tm
k).

6 Conclusions

We have examined the following equivalently succinct systems:

SP(E) ≡ DPLL(E + ∆) ≡ DPLL(E + tm
k) ≡ DPLL(E + tω)

so what is the difference in practice? The advantages of DPLL(T) have been the availability of space-
efficient and adaptive search techniques developed in the context of SAT solvers. The advantage of using
t was that we could combine results from different branches into unit facts or lemmas. In future work we
examine the more general problem of the quantifier-free theory of uninterpreted functions with equality,
as well as describe applying the framework on selected theories, such as the theory of arrays. There are
inherent theoretical limitations in the approaches studied so far. For example, the pigeon hole principle
can be encoded as:

∧

i≤m

∨

j<m

di ' rj

 ∧
∧

i<j≤m

di 6' dj (5)

There are no short superposition proofs of unsatisfiabilityfor this formula, but there are short proofs in
Frege systems, which amounts to short proofs if arbitrary literals and definitions (cuts) can be introduced.

References

[1] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs by
construction or approximation of fixpoints. InPOPL-14, pages 238–252, Los Angeles, California, 1977. ACM
Press, New York, NY.

[2] R. Niewenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT modulo theories: From an abstract Davis-
Putnam-Logemann-Loveland procedure to DPLL(T).Journal of the ACM, 53(6):937–977, November 2006.

[3] M. Rozanov and O. Strichman. Generating minimum transitivity constraints in P-time for deciding equality
logic. In SMT 2007, volume 198 ofENTCS, pages 3–17, 2007.

[4] Mary Sheeran and Gunnar Stålmarck. A Tutorial on Stålmarck’s Proof Procedure for Propositional Logic.
Formal Methods in System Design, 16(1):23–58, 2000.

[5] A. Tiwari and S. Gulwani. Logical interpretation: Static program analysis using theorem proving. In F. Pfen-
ning, editor,CADE-21, volume 4603 ofLNAI, pages 147–166. Springer, 2007.

[6] Chao Wang, Aarti Gupta, and Malay Ganai. Predicate learning and selective theory deduction for a difference
logic solver. InDAC ’06: Proceedings of the 43rd annual conference on Designautomation, pages 235–240,
New York, NY, USA, 2006. ACM.

6

DPLL(t) Bjørner, Dutertre, and de Moura

A Proof Outlines

Sketch proof of Theorem 3.1.The theorem states thatSP(E) ≺ DPLL(E). Formula (1) shows that
DPLL(E) 6� SP(E), so it suffices to establish thatSP(E) � DPLL(E). Thus, every DPLL(E) proof
can be directly simulated inSP(E). First notice that DPLL induces a propositional resolutionproof. In
fact the conflict resolution steps derive the conflict clauseusing a sequence of resolution steps based on
clauses that annotate the literals in the contextM . These clauses are either extracted from the original
formulaF or obtained from conflict resolution. Second, let us examineT -Propagate andT -Conflict.
These rules supply additionalT -lemmas (clauses) into the produced proofs.SP(E) cannot directly
deriveT -lemmas, so we cannot just replace these lemmas by superposition steps. Instead, consider a
supoerposition proof-tree that containsT -lemmas. In the theory of equality allT lemmas are of the form
a1 ' ak ∨

∨k−1

i=1
ai 6' ai+1. We will show how to eliminateT -lemmas from a proof tree, starting from

the lower-most occurrences ofT -lemmas. So suppose thata ' c ∨ a 6' b ∨ b 6' c is a lower-most
T -lemma in a proof-tree. Then there are nodes labeled byC ∨ a ' b, D ∨ b ' c, andE ∨ a 6' c that
resolve with the literals from theT -lemma (and there are other nodes that resolve with literalsin C, D

andE). Apply ruleSup to C ∨ a ' b, D ∨ b ' c to obtain the clauseC ∨ D ∨ a ' c. Then applySup
on the result andE ∨ a 6' c, to obtainC ∨ D ∨ E ∨ a 6' a. UseE-Fact to remove the last disequality.
The remaining literals can be resolved using the same clauses that were used in the original proof. By
repeating this argument, we can eliminate allT -lemmas.

Remark1. Note that we are givingSP(E) some flexibility. In particular, we do not refer to any term
orderings in the side-conditions. The succinctness results for SP(E) would not work if one requires
a total ordering on all constants and that the superpositionrules respect these. For example, create the
disjunction of formula (1) and another copy of it, but swapai andbi in the second copy. We claim that a
good ordering for the (1) is a bad ordering for the second copy, and vice versa. So the disjunction does
not have a short proof if a total ordering on ground constantsis required.

Sketch proof of Theorem 4.1.By case analysis, where we consider the rules specific toSP(E):

C ∨ a ' b D[a]
Sup

C ∨ D[b]

It can be simulated in DPLL(E + ∆) in the following way: UseDecide to build the context withC and
D[b]. By unit propagation deducea ' b. By congruence deduceD[a] (conflict with clauseD[a]). Use
all decided conflict resolution strategy to get(C ∨ D[b]).

The all decided conflict resolution strategy consists in applying (Resolve) until the clauseC
inM ||F ||C contains only decided literals.

C ∨ a 6' a
E-Res

C

DPLL(T) keeps the clauses fully simplified.

C ∨ a ' b ∨ a ' cE-Fact
C ∨ a ' b ∨ b 6' c

UseDecide to build the context withC, a 6' b, b ' c. By unit propagation deducea ' c. Froma 6' b

anda ' c deduceb 6' c (conflict) Use all decided conflict resolution strategy to get C ∨ a ' b ∨ b 6' c.

7

DPLL(t) Bjørner, Dutertre, and de Moura

So, anySP(E) proof can be simulated by DPLL(E + ∆).
The converse direction, that any DPLL(E + ∆) proof can be simulated bySP(E), follows from the

proof of Theorem 3.1.

Sketch proof of Theorem 5.1.Example (1) has a linear size proof inDPLL(E+t1
1) but not in DPLL(E).

Using Tseitsin’s translation into clausal form, the sub-formula a1 ' b1 ∧ b1 ' a2 is associated with a
predicatep1, and similarly, the subformulaa1 ' c1 ∧ c1 ' a2 is associated with a fresh predicateq1,
and the clauses(p1 ∨ q1), (¬p1 ∨ a1 ' b1), (¬p1 ∨ b1 ' a2), (¬q1 ∨ a1 ' c1), (¬q1 ∨ c1 ' a2) are
added. Similarly, all the other conjunctions are represented using proxies. The proof inDPLL(E + t1

1)
is obtained by first splitting onp1. In the branch wherep1 is asserted, botha1 ' b1 andb1 ' a2 are
asserted. From these two equalities it follows thata1 ' a2. In the branch where¬p1 is asserted, unit-
propagation over the clausep1∨q1 ensures thatq1 is asserted. Similarlya1 ' c1 andc1 ' a2 get asserted
and therefore alsoa1 ' a2 is learned. It therefore follows thatDPLL(E + t1

1) ≺ DPLL(E).
Formula (3) shows thatDPLL(E + t1

1) 6� SP(E) because the corresponding clausification of the
formula produces instead of(p1 ∨ q1) the clause(p1 ∨ q1 ∨ r1), and adds¬r1 ∨ a1 ' d1, ¬r1 ∨ d1 ' a2.
Splitting on any of¬p1, ¬q1 or¬r1 does not allow propagating any equalities because these assignments
don’t imply any equalities directly and the clause(p1 ∨ q1 ∨ r1) cannot yet be used for unit-propagation.
Two splits are required to learn any equalities, and in particular learn thata1 ' a2.

We finally show thatSP(E) � DPLL(E+t1
1). Thus, we need to simulate proofs inDPLL(E+t1

1)
usingSP(E). The new proof rulet1

1is simulated by using the decision variable as the selected literal
for resolution. The literals learned in one branch correspond to the clausesp ∨ `i, for i = 1, . . . , k for
somek. The literals learned in the other branch correspond to clauses¬p ∨ `′j , for j = 1, . . . ,m. All
binary clauses in the cross-product can therefore be derived as well. Supposè∈ M1 t M2. Then,` is
already inM or there is a sequence of super-position steps from one of thebinary clauses̀i ∨ `′j such
that factoring applies to produce a single learned literal.

Sketch proof of Theorem 5.2.Formula (3) has a linear size proof in DPLL(E + t1
k) but not in

DPLL(E + t1
1). This establishes that DPLL(E + t1

k) ≺ DPLL(E + t1
1). Formula (4) can be used

to establish that DPLL(E + t1
k) 6� SP(E).

Establishing thatSP(E) � DPLL(E + t1
k) is a direct extension of the argument forSP(E) �

DPLL(E + t1
1): Consider the pairwise join of branches that have all but oneassignment to a decision

literal in common. The argument from Theorem 5.1 can be used in this case to derive a clause that
contains the joined literal and all other decision variables. The clauses produced in this way can be
resolved with each-other leaving just the new literals.

Sketch proof of Theorem 5.3.EstablishingSP(E) � DPLL(E + tk
m) follows by extending the argu-

ments from the sketch proofs of Theorems 5.1 and 5.2. The difference is that we don’t necessarily
need to apply factoring to produce a unit literal. Similar tothe proof of Theorem 4.1, we show that
DPLL(E + tk

m) � SP(E) examining each rule ofSP(E).

Sup: To simulateSup we guess firstC
d
. This causesa ' b to be added usingUnitPropagate.

The context is thusCa ' b ||F,C ∨ a ' b,D[a]. Then guess all variants of the literals inD[a]. The
corresponding copies ofD[b] are implied by the equalitya ' b. The resulting joined clause is the desired
resolventC ∨ D[b].

E-Fact: First guessC
d
, then guess(a 6' b)d. This causesa ' c to be derived usingUnitPropagate.

The context is thusC
d
, (a 6' b)d, a ' c ||F,C ∨ a ' b ∨ a ' c. Then consider the other branch

C
d
, a ' b ||F,C ∨ a ' b ∨ a ' c. This branch is consistent with the clause, but the join of their

8

DPLL(t) Bjørner, Dutertre, and de Moura

difference:((a 6' b)d ∧ a ' c) t a ' b is the disjunctiona ' b ∨ b 6' c which we need for the result of

E-Fact. The other literals fromC are added as we only considerC
d
.

9

	Introduction
	DPLL(T) as a Non-deterministic Transition System
	A Superposition Calculus SP(E)

	A Hard Formula for DPLL(E)
	A Sufficient Basis of Literals
	A Solution Based on Joins
	Joining Equalities
	Generalized Join
	k-lookaheads
	m-disjunctions

	Conclusions
	Proof Outlines

