
An SMT-LIB Format for Sequences and Regular Expressions

Nikolaj Bjørner
Microsoft Research

Vijay Ganesh
MIT

Raphaël Michel
University of Namur

Margus Veanes
Microsoft Research

June 3, 2012

Abstract
Strings are ubiquitous in software. Tools for verification and testing of software rely in various

degrees on reasoning about strings. Web applications are particularly important in this context since
they tend to be string-heavy and have large number security errors attributable to improper string
sanitzation and manipulations. In recent years, many string solvers have been implemented to ad-
dress the analysis needs of verification, testing and security tools aimed at string-heavy applications.
These solvers support a basic representation of strings, functions such as concatenation, extraction,
and predicates such as equality and membership in regular expressions. However, the syntax and
semantics supported by the current crop of string solvers are mutually incompatible. Hence, there is
an acute need for a standardized theory of strings (i.e., SMT-LIBization of a theory of strings) that
supports a core set of functions, predicates and string representations.

This paper presents a proposal for exactly such a standardization effort, i.e., an SMT-LIBization
of strings and regular expressions. It introduces a theory of sequencesgeneralizing strings, and
builds a theory ofregular expressionson top of sequences. The proposed logicQF BVRE is designed
to capture a common substrate among existing tools for string constraint solving.

1 Introduction

This paper is a design proposal for an SMT-LIB format for a theory of strings and regular expressions.
The aim is to develop a set of core operations capturing the needs of verification, analysis, security and
testing applications that use string constraints. The standardized theory should be rich enough to support
a variety of existing and as-yet-unknown new applications.More complex functions/predicates should
be easily definable in it. On the other hand, the theory shouldbe as minimal as possible in order for the
corresponding solvers to be relatively easy to write and maintain.

Strings can be viewed as monoids (sequences) where the main operations are creating the empty
string, the singleton string and concatentation of strings. Unification algorithms for strings have been
subject to extensive theoretical advances over several decades. Modern programming environments
support libraries that contain a large set of string operations. Applications arising from programming
analysis tools use the additional vocabulary available in libraries. A realistic interchange format should
therefore support operations that are encountered in applications.

The current crop of string solvers [9, 12, 3] have incompatible syntax and semantics. Hence, the
objective of creating an SMT-LIB format for string and regular expression constraints is to identify a
uniform format that can be targeted by applications and consumed by solvers.

The paper is organized as follows. Section 2 introduces the theorySeq of sequences. The theory
RegEx of regular expressions in Section 3 is based onSeq. The theories admit sequences and regular
expressions over any type of finite alphabet. The charactersin the alphabet are defined over the theory of
bit-vectors (Section 4). Section 5 surveys the state of string-solving tools. Section 6 describes benchmark
sets made available forQF BVRE and a prototype. We provide a summary in Section 7.

2 Seq: A Theory of Sequences

In the following, we developSeq as a theory of sequences. It has a sort constructorSeq that takes the
sort of the alphabet as argument.

1

SMT-LIB Sequences and Regular Expressions

2.1 The Signature of Seq

(par (A) (seq-unit (A) (Seq A))) ; String consisting of a single character

(par (A) (seq-empty (Seq A))) ; The empty string

(par (A) (seq-concat ((Seq A) (Seq A)) (Seq A))) ; String concatentation

(par (A) (seq-cons (A (Seq A)) (Seq A))) ; pre-pend a character to a seq

(par (A) (seq-rev-cons ((Seq A) A) (Seq A))) ; post-pend a characeter

(par (A) (seq-head ((Seq A)) A)) ; retrieve first character

(par (A) (seq-tail ((Seq A)) (Seq A))) ; retrieve tail of seq

(par (A) (seq-last ((Seq A)) A)) ; retrieve last character

(par (A) (seq-first ((Seq A)) (Seq A))) ; retrieve all but the last char

(par (A) (seq-prefix-of ((Seq A) (Seq A)) Bool)) ; test for seq prefix

(par (A) (seq-suffix-of ((Seq A) (Seq A)) Bool)) ; test for postfix

(par (A) (seq-subseq-of ((Seq A) (Seq A)) Bool)) ; sub-sequence test

(par (A) (seq-extract ((Seq A) Num Num) (Seq A))) ; extract sub-sequence

parametric in Num

(par (A) (seq-nth ((Seq A) Num) A)) ; extract n’th character

parametric in Num

(par (A) (seq-length ((Seq A)) Int) ; retrieve length of sequence

The sortNum can be either an integer or a bit-vector. The logicQF BVRE instantiates the sortNum to
bit-vectors, and not to an integer.

2.2 Semantics Seq

The constantseq-empty and functionseq-concat satisfy the axioms for monoids. That is,seq-empty

is an identity ofseq-concat andseq-concat is associative.

(seq-concat seq-empty x) = (seq-concat x seq-empty) = x

(seq-concat x (seq-concat y z)) = (seq-concat (seq-concat x y) z)

Furthermore,Seq is the theory all of whose models are an expansion to the free monoid generated
by seq-unit andseq-empty.

2.2.1 Derived operations

All other functions (except extraction and lengths) are derived. They satisfy the axioms:

2

SMT-LIB Sequences and Regular Expressions

(seq-cons x y) = (seq-concat (seq-unit x) y)

(seq-rev-cons y x) = (seq-concat y (seq-unit x))

(seq-head (seq-cons x y)) = x

(seq-tail (seq-cons x y)) = y

(seq-last (seq-rev-cons x y)) = y

(seq-first (seq-rev-cons x y)) = x

(seq-prefix-of x y)⇔∃z . (seq-concat x z) = y

(seq-suffix-of x y)⇔∃z . (seq-concat z x) = y

(seq-subseq-of x y)⇔∃z,u . (seq-concat u x z) = y

Observe that the value of(seq-head seq-empty) is undetermined. Similarly forseq-tail,
seq-first andseq-last. Their meaning isunder-specified. Thus, the theorySeq admitsall inter-
pretations that satisfy the free monoid properties and the axioms above.

2.2.2 Extraction and lengths

It remains to provide semantics for sequence extraction andlength functions. We will here describe these
informally.

(seq-length s) The length of sequences. Seq satisfies the monoid axioms and is freely generated
by unit and concatenation. So every sequence is a finite concatenation of units (i.e., characters in
the alphabet). The length of a sequence is the number of unitsin the concatenation.

(seq-extract seq lo hi) produces the sub-sequence of characters betweenlo andhi-1. If the
length ofseq is less thanlo, then the produced subsequence is empty. If the bit-vectorhi is
smaller thanlo the result is, once again, the empty sequence. If the length of seq is larger than
lo, but less thanhi, then the result is truncated to the length ofseq. In other words,seq-extract
satisfies the equation (The length function is abbreviated as l(s)):

(seq-extract s lo hi) =

seq-empty i f l (s)< lo

seq-empty i f hi < lo

seq-empty i f hi < 0

(seq-extract (seq-tail s) (lo−1) (hi−1)) i f 0< lo

(seq-extract (seq-first s) (0) (m)) i f 0< m

m= l(s)−hi+1

s otherwise

(seq-nth s n) Extract then’th character of sequences. Indexing starts at 0, so for example isc
(whereNum ranges overInt).

(seq-nth (seq-cons c s) 0)

3

SMT-LIB Sequences and Regular Expressions

3 RegEx: A Theory of Regular Expressions

We summarize a theory of regular expressions over sequences. It includes the usual operations over
regular expressions, but also a few operations that we founduseful from applications when modeling
recognizers of regular expressions. It has a sort constructor RegEx that takes a sort of the alphabet as
argument.

3.1 The Signature of RegEx

(par (A) (re-empty-set () (RegEx A))) ; Empty set

(par (A) (re-full-set () (RegEx A))) ; Univeral set

(par (A) (re-concat ((RegEx A) (RegEx A)) (RegEx A))) ; Concatenation

(par (A) (re-of-seq ((Seq A)) (RegEx A))) ; Regular expression of sequence

(par (A) (re-empty-seq () (RegEx A))) ; same as (re-of-seq seq-empty)

(par (A) (re-star ((RegEx A)) (RegEx A))) ; Kleene star

(par (A) ((_ re-loop i j) ((RegEx A)) (RegEx A))) ; Bounded star, i,j >= 0

(par (A) (re-plus ((RegEx A)) (RegEx A))) ; Kleene plus

(par (A) (re-option ((RegEx A)) (RegEx A))) ; Option regular expression

(par (A) (re-range (A A) (RegEx A))) ; Character range

(par (A) (re-union ((RegEx A) (RegEx A)) (RegEx A))) ; Union

(par (A) (re-difference ((RegEx A) (RegEx A)) (RegEx A))) ; Difference

(par (A) (re-intersect ((RegEx A) (RegEx A)) (RegEx A))) ; Intersection

(par (A) (re-complement ((RegEx A)) (RegEx A))) ; Complement language

(par (A) (re-of-pred ((Array A Bool)) (RegEx A))) ; Range of predicate

(par (A) (re-member ((Seq A) (RegEx A)) Bool)) ; Membership test

Note the following. The functionre-range is defined modulo an ordering over the character sort.
The ordering is bound in the logic. For example, in theQF BVRE logic, the corresponding ordering
is unsigned bit-vector comparisonbvule. While re-range could be defined usingre-of-pred, we
include it because it is pervasively used in regular expressions. The functionre-of-pred takes an array
as argument. The array encodes a predicate. No other features of arrays are used, and the intent is that
benchmarks that usere-of-pred also include axioms that define the values of the arrays on allindices.
For example we can constrainp using an axiom of the form

(assert (forall ((i (_ BitVec 8))) (iff (select p i) (bvule #0A i))))

3.2 Semantics of RegEx

Regular expressions denote sets of sequences. Assuming a denotation[[s]] for sequence expressions, we
can define a denotation function of regular expressions:

4

SMT-LIB Sequences and Regular Expressions

[[re-empty-set]] = /0

[[re-full-set]] = {s | s is a sequence}

[[(re-concat x y)]] = {s· t | s∈ [[x]], t ∈ [[y]]}

[[(re-of-seq s)]] = {[[s]]}

[[re-empty-seq]] = {[[seq-empty]]}

[[(re-star x)]] = [[x]]∗ =
ω
⋃

i=0

[[x]]i

[[(re-plus x)]] = [[x]]+ =
ω
⋃

i=1

[[x]]i

[[(re-option x)]] = [[x]]∪{[[seq-empty]]}

[[((re-loop l u) x)]] =
u
⋃

i=l

[[x]]i

[[(re-union x y)]] = [[x]]∪ [[y]]

[[(re-difference x y)]] = [[x]]\ [[y]]

[[(re-intersect x y)]] = [[x]]∩ [[y]]

[[(re-complement x)]] = [[x]]

[[(re-range a z)]] = {[[(seq-unit x)]] | a≤ x≤ z}

[[re-of-pred p]] = {[[(seq-unit x)]] | p[x]}

[[(re-member s x)]] = [[s]] ∈ [[x]]

3.3 Anchors

Most regular expression libraries include anchors. They are usually identified using regular expression
constantŝ (match the beginning of the string) and$ (match the end of a string). We were originally
inclined to include operators corresponding these constants. In the end, we opted to not include anchors
as part of the core. The reasons were that it is relatively straightforward to convert regular expressions
with anchor semantics into regular expressions without anchor semantics. The conversion increases the
size of the regular expression at most linearly, but in practice much less. If we were to include anchors,
the semantics of regular expression containment would alsohave to take anchors into account. The
denotation of regular expressions would then be context dependent and not as straightforward.

We embed regular expressions with anchor semantics into regular expressions with “regular” seman-
tics using the funnctioncomplete. It takes three regular expressions as arguments, and it is used to convert
the regular expressione with anchors by calling it with the argumentscomplete(e,⊤,⊤). Note that the
symbol⊤ corresponds tore-full-set, andε corresponds tore-empty-set.

5

SMT-LIB Sequences and Regular Expressions

complete(string,e1,e2) = e1 ·string·e2

complete(x·y,⊤,⊤) = complete(x,⊤,ε) complete(y,ε ,⊤)

complete(x·y,⊤,ε) = complete(x,⊤,ε) y

complete(x·y,ε ,⊤) = x complete(y,ε ,⊤)

complete($,e1,e2) = ε
complete(^,e1,e2) = ε

complete(x+y,e1,e2) = complete(x,e1,e2)+complete(y,e1,e2)

We will not definecompletefor Kleene star, complement or difference. Such regular expressions are
normally considered malformed and are rejected by regular expression tools.

4 The logic QF BVRE

The logicQF BVRE uses the theory of sequences and regular expressions. It includes the SMT-LIB theory
of bit-vectors as well. Formulas are subject to the following constraints:

• Sequences and regular expressions are instantiated to bit-vectors.

• The sortNum used for extraction and indexing is a bit-vector.

• re-range assumes the comparison predicatebvule.

• Length functions can only occur in comparisons with other lengths or numerals obtained from
bit-vectors. So while the range ofseq-length is Int, it is only used in relative comparisons
or in comparisons with a number over a bounded range. In otherwords, we admit the following
comparisons (wheren is an integer constant):

({<,<=,=,>=,>} (seq-length x) (seq-length y))

({<,<=,=,>=,>} (seq-length x) n)

To maintain decidability, we also require that whenever a benchmark contains(seq-length x)

it also contains an assertion of the form(assert (<= (seq-length x) n)).

• The sequence operationsseq-prefix-of, seq-suffix-of andseq-subseq-of are excluded.

5 String solvers

String analysis has recently received increased attention, with several automata-based analysis tools. Be-
sides differences in notation, which the current proposal addresses, the tools also differ in expressiveness
and succinctness of representation for various fragments of (extended) regular expressions. The tools
also use different representations and algorithms for dealing with the underlying automata theoretic op-
erations. A comparison of the basic tradeoffs between automata representations and the algorithms for
product and difference is studied in [11], where the benchmarks originate from a case study in [19].

6

SMT-LIB Sequences and Regular Expressions

The Java String Analyzer (JSA) [7] uses finite automata internally to represent strings with the
dk.brics.automaton library, where automata are directed graphs whose edges represent contiguous
character ranges. Epsilon moves are not preserved in the automata but are eliminated upon insertion.
This representation is optimized formatchingstrings rather thanfindingstrings.

The Hampi tool [16] uses an eager bitvector encoding from regular expressions to bitvector logic.
The Kudzu/Kaluza framework extends this approach to systems of constraints with multiple variables
and supports concatenation [22]. The original Hampi formatdoes not directly support regular expression
quantifiers“at leastm times” and “at mostn times”, e.g., a regexa{1,3} would need to be expanded
to a|aa|aaa. The same limitation is true for the core constraint language of Kudzu [22] that extends
Hampi.

The tool presented in [14] uses lazy search algorithms for solving regular subset constraints, inter-
section and determinization. The automaton representation is based on the Boost Graph Library [23]
and uses a range representation of character intervals thatis similar to JSA. The lazy algorithms pro-
duce significant performance benefits relative to DPRLE [13]and the original Rex [27] implementation.
DPRLE [13] has a fully verified core specification written in Gallina [8], and an OCaml implementation
that is used for experiments.

Rex [27] uses a symbolic representation of automata where labels are represented by predicates.
Such automata were initially studied in the context of natural language processing [21]. Rex usessym-
bolic language acceptors, that are first-order encodings of symbolic automata into the theory of alge-
braic datatypes. The initial Rex work [27] explores variousoptimizations of symbolic automata, such
as minimization, that make use of the underlying SMT solver to eliminate inconsistent conditions. Sub-
sequent work [26] explores trade-offs between the languageacceptor based encoding and the use of
automata-specific algorithms for language intersection and language difference. TheSymbolic Automata
library [25] implements the algebra of symbolic automata and transducers[24]. Symbolic Automata is
the backbone of Rex and Bek.1

Kleene Boole re-range re-of-pred re-loop seq-concat seq-length Σ
JSA X X X BV16

Hampi X X BV8
Kudzu/Kaluza X X X X BV8

Symbolic Automata/Rex X X X X X ALL

Table 1: Expressivity of string tools.

Table 1 compares expressivity of the tools with an emphasis on regular expression constraints.
Columns represent supported features.Kleenestands for the operationsre-empty-set, re-empty-seq,
re-concat, re-union, andre-star. Boolestands forre-intersect andre-complement. Σ refers
to supported alphabet theories. In Hampi and Kudzu the Boolean operations over languages can be en-
coded through membership constraints and Boolean operations over formulas. In the Symbolic Automata
Toolkit, automata are generic and supportall SMT theories as alphabets.

A typical use ofre-range is to succinctly describe a contiguous range of characters,such as all
upper case letters or[A-Z]. Similarly, re-of-pred can be used to define acharacter classsuch as\W
(all non-word-letter characters) through a predicate (represented as an array). For example, provided that
W is defined as follows

∀x(W[x]⇔¬((‘A’≤ x≤ ‘Z’)∨ (‘a’≤ x≤ ‘z’)∨ (‘0’≤ x≤ ‘9’)∨x= ‘_’))

then(re-of-pred W) is the regex that matches all non-word-letter characters. Finally, re-loop is
a succinct shorthand for bounded loops that is used very frequently in regular expressions.

1http://research.microsoft.com/bek/

7

SMT-LIB Sequences and Regular Expressions

MONA [10, 17] provides decision procedures for several varieties of monadic second–order logic
(M2L) that can be used to express regular expressions over words as well as trees. MONA relies on a
highly-optimized multi-terminal BDD-based representation for deterministic automata. Mona is used in
the PHP string analysis tool Stranger [29] through a string manipulation library.

Other tools include custom domain-specific string solvers [20, 28]. There is also a wide range of
application domains that rely on automata based methods: strings constraints with length bounds [30];
automata for arithmetic constraints [6]; automata in explicit state model checking [5]; word equations [1,
18]; construction of automata from regular expressions [15]. Moreover, certain string constraints based
on common string library functions [4] (not using regular expressions) can be directly encoded using a
combination of existing theories provided by an SMT solver.

6 A prototype for QF BVRE based on the Symbolic Automata Toolkit

This section describes a prototype implementation forQF BVRE. It is based on the Symbolic Automata
Toolkit [25] powered by Z3. The description sidesteps the current limitation that all termss of sort
(Seq σ) are converted to terms of sort(List σ). While lists in Z3 satisfy all the algebraic properties
of sequences, only the operations equivalent toseq-empty, seq-cons, seq-head, andseq-tail are
(directly) supported in the theory of lists. This also explains whyseq-concat andseq-length (as is
also noted in Table 1) are currently not supported in this prototype.

To start with, the benchmark file is parsed by using Z3’s API methodParseSmtlib2File providing
a Z3 Term object ϕ that represents the AST of the assertion contained in the file. The assertionϕ is
converted into a formulaConv(ϕ) where each occurrence of a membership constraint(re-member s r)
has been replaced by an atom(Accr s), whereAccr is a new uninterpreted function symbol called the
symbolic languge acceptor for r. The symbolAccr is associated with a set of axiomsTh(r) such that,
(Accr s) holds moduloTh(r) iff s is a sequence that matches the regular expressionr. The converted
formulaConv(ϕ) as well as all the axiomsTh(r) are asserted to Z3 and checked for satisfiability.

The core of the translation is in convertingr into a Symbolic Finite Automaton SFA(r) and then
definingTh(r) as the theory ofSFA(r) [26]. The translation uses closure properties of symbolic automata
under the following (effective) Kleene and Boolean operations:

• If A andB are SFAs then there is an SFAA ·B such thatL(A ·B) = L(A) ·L(B).

• If A andB are SFAs then there is an SFAA∪B such thatL(A∪B) = L(A)∪L(B).

• If A andB are SFAs then there is an SFAA∩B such thatL(A∩B) = L(A)∩L(B).

• If A is an SFAs then there is an SFAA∗ such thatL(A∗) = L(A)∗.

• If A is an SFAs then there is an SFAA such thatL(A) = L(A).

The effectiveness of the above operationsdoes notdepend on the theory of the alphabet. In SFAs all
transitions are labeled by predicates. In particular, a bit-vector range(re-range m n) is mapped into an
anonymous predicateλx.(m≤ x≤ n) over bit-vectors and a predicate(re-of-pred p) is just mapped
to p. The overall translationSFA(r) now follows more-or-less directly by induction of the structure
of r. The loop construct(re-loop m n r) is unfolded by usingre-concat andre-union. Several
optimizatons are possible that have been omitted here.

As a simple example of the above translation, consider the regex

utf16= ^([\0-\uD7FF\uE000-\uFFFF]|([\uD800-\uDBFF][\uDC00-\uDFFF]))*$

8

SMT-LIB Sequences and Regular Expressions

that describes valid UTF16 encoded strings. Using the SMT2 format and assuming the defined sort
as(_ BitVec 16) the regex is

(re-star (re-union (re-union (re-range #x0000 #xD7FF) (re-range #xE000 #xFFFF))

(re-concat (re-range #xD800 #xDBFF) (re-range #xDC00 #xDFFF))))

The resultingSFA(utf16) can be depicted as follows:

q0 q0 q1

λx.#xD800≤ x≤ #xDBFF

λx.#xDC00≤ x≤ #xDFFF

λx.(x≤ #xD7FF∨#xE000≤ x)

and the theoryTh(utf16) contains the following axioms:

∀y(Accutf16(y)⇔ (y= ε ∨ (y 6= ε ∧ (head(y) ≤ #xD7FF∨#xE000≤ head(y))∧Accutf16(tail(y)))∨
(y 6= ε ∧#xD800≤ head(y) ≤ #xDBFF∧Acc1(tail(y)))))

∀y(Acc1(y)⇔ (y 6= ε ∧#xDC00≤ head(y)≤ #xDFFF∧Accutf16(tail(y))))

Benchmarks in the proposed SMT-LIB format that are handled by the tool are available2.

7 Summary

We proposed an interchange format for sequences and regularexpressions. It is based on the features
of strings and regular expressions used in current main solvers for regular expressions. There are many
possible improvements and extensions to this proposed format. For example, it is tempting to lever-
age that SMT-LIB already allows string literals. The first objective is to identify a logic that allows to
exchange meaningful benchmarks between solvers and enablecomparing techniques that are currently
being developed for solving sequence and regular expression constraints.

7.1 Contributors

Several people contributed to discussions about SMTization of strings, including Nikolaj Bjørner, Vi-
jay Ganesh, Tim Hinrichs, Pieter Hooimeijer, Raphaël Michel, Ruzica Piskac, Cesare Tinelli, Margus
Veanes, Andrei Voronkov and Ting Zhang. This effort grew outfrom discussions at Dagstuhl seminar
[2] and was followed up atstrings-smtization@googlegroups.com.

References

[1] Sebastian Bala. Regular language matching and other decidable cases of the satisfiability problem for con-
straints between regular open terms. InSTACS, pages 596–607, 2004.

[2] Nikolaj Bjørner, Robert Nieuwenhuis, Helmut Veith, andAndrei Voronkov. Decision Procedures in Soft,
Hard and Bio-ware - Follow Up (Dagstuhl Seminar 11272).Dagstuhl Reports, 1(7):23–35, 2011.

[3] Nikolaj Bjørner, Nikolai Tillmann, and Andrei Voronkov. Path feasibility analysis for string-manipulating
programs. InTACAS, 2009.

[4] Nikolaj Bjørner, Nikolai Tillmann, and Andrei Voronkov. Path feasibility analysis for string-manipulating
programs. InTACAS, 2009.

[5] Stefan Blom and Simona Orzan. Distributed state space minimization. J. Software Tools for Technology
Transfer, 7(3):280–291, 2005.

2 http://research.microsoft.com/~nbjorner/microsoft.automata.smtbenchmarks.zip

9

strings-smtization@googlegroups.com
http://research.microsoft.com/~nbjorner/microsoft.automata.smtbenchmarks.zip

SMT-LIB Sequences and Regular Expressions

[6] Bernard Boigelot and Pierre Wolper. Representing arithmetic constraints with finite automata: An overview.
In ICLP 2002: Proceedings of The 18th International Conference on Logic Programming, pages 1–19, 2002.

[7] Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. Precise Analysis of String Expres-
sions. InSAS, 2003.

[8] Thierry Coquand and Gérard P. Huet. The calculus of constructions. Information and Computation,
76(2/3):95–120, 1988.

[9] Vijay Ganesh, Adam Kiezun, Shay Artzi, Philip J. Guo, Pieter Hooimeijer, and Michael D. Ernst. Hampi: A
string solver for testing, analysis and vulnerability detection. In Ganesh Gopalakrishnan and Shaz Qadeer,
editors,CAV, volume 6806 ofLecture Notes in Computer Science, pages 1–19. Springer, 2011.

[10] J.G. Henriksen, J. Jensen, M. Jørgensen, N. Klarlund, B. Paige, T. Rauhe, and A. Sandholm. Mona: Monadic
second-order logic in practice. InTACAS’95, volume 1019 ofLNCS, 1995.

[11] Pieter Hooimeijer and Margus Veanes. An evaluation of automata algorithms for string analysis. InVM-
CAI’11, volume 6538 ofLNCS, pages 248–262. Springer, 2011.

[12] Pieter Hooimeijer and Westley Weimer. A decision procedure for subset constraints over regular languages.
In PLDI, 2009.

[13] Pieter Hooimeijer and Westley Weimer. A decision procedure for subset constraints over regular languages.
In PLDI, 2009.

[14] Pieter Hooimeijer and Westley Weimer. Solving string constraints lazily. InASE, 2010.

[15] Lucian Ilie and Sheng Yu. Follow automata.Information and Computation, 186(1):140–162, 2003.

[16] Adam Kiezun, Vijay Ganesh, Philip J. Guo, Pieter Hooimeijer, and Michael D. Ernst. HAMPI: a solver for
string constraints. InISSTA, 2009.

[17] Nils Klarlund, Anders Møller, and Michael I. Schwartzbach. MONA implementation secrets.International
Journal of Foundations of Computer Science, 13(4):571–586, 2002.

[18] Michal Kunc. What do we know about language equations? In Developments in Language Theory, pages
23–27, 2007.

[19] Nuo Li, Tao Xie, Nikolai Tillmann, Peli de Halleux, and Wolfram Schulte. Reggae: Automated test genera-
tion for programs using complex regular expressions. InASE’09, 2009.

[20] Yasuhiko Minamide. Static approximation of dynamically generated web pages. InWWW ’05, pages 432–
441, 2005.

[21] Gertjan Van Noord and Dale Gerdemann. Finite state transducers with predicates and identities.Grammars,
4:263–286, 2001.

[22] Prateek Saxena, Devdatta Akhawe, Steve Hanna, Feng Mao, Stephen McCamant, and Dawn Song. A Sym-
bolic Execution Framework for JavaScript, Mar 2010.

[23] Jeremy G. Siek, Lie-Quan Lee, and Andrew Lumsdaine.The Boost Graph Library: User Guide and Refer-
ence Manual (C++ In-Depth Series). Addison-Wesley Professional, December 2001.

[24] M. Veanes, P. Hooimeijer, B. Livshits, D. Molnar, and N.Bjørner. Symbolic finite state transducers: Algo-
rithms and applications. InPOPL’12, 2012.

[25] Margus Veanes and Nikolaj Bjørner. Symbolic automata:The toolkit. In C. Flanagan and B. König, editors,
TACAS’12, volume 7214 ofLNCS, pages 472–477. Springer, 2012.

[26] Margus Veanes, Nikolaj Bjørner, and Leonardo de Moura.Symbolic automata constraint solving. In
C. Fermüller and A. Voronkov, editors,LPAR-17, volume 6397 ofLNCS/ARCoSS, pages 640–654. Springer,
2010.

[27] Margus Veanes, Peli de Halleux, and Nikolai Tillmann. Rex: Symbolic Regular Expression Explorer. In
ICST’10. IEEE, 2010.

[28] Gary Wassermann and Zhendong Su. Sound and precise analysis of web applications for injection vulnera-
bilities. In PLDI, 2007.

[29] Fang Yu, Muath Alkhalaf, and Tevfik Bultan. Stranger: Anautomata-based string analysis tool for PHP. In
TACAS’10, LNCS. Springer, 2010.

[30] Fang Yu, Tevfik Bultan, and Oscar H. Ibarra. Symbolic String Verification: Combining String Analysis and
Size Analysis. InTACAS, pages 322–336, 2009.

10

	Introduction
	Seq: A Theory of Sequences
	The Signature of Seq
	Semantics Seq
	Derived operations
	Extraction and lengths

	RegEx: A Theory of Regular Expressions
	The Signature of RegEx
	Semantics of RegEx
	Anchors

	The logic QF_BVRE
	String solvers
	A prototype for QF_BVRE based on the Symbolic Automata Toolkit
	Summary
	Contributors

