Applications and Challenges in Satisfiability Modulo Theer

Leonardo de Moura Nikolaj Bjgrner
Microsoft Research Microsoft Research
One Microsoft Way One Microsoft Way
Redmond, WA 98052 Redmond, WA 98052
leonardo@microsoft.com nbjorner@microsoft.com
Abstract

The area of software analysis, testing and verification i@ nadergoing a revolution thanks
to the use of automated and scalable support for logical mdsth A well-recognized premise is
that at the core of software analysis engines is invarialdgpraponent using logical formulas for
describing states and transformations between systepsst@ne can thus say that symbolic logic
is the calculus of computation. The process of using thisrinftion for discovering and checking
program properties (including such important propert&sadety and security) amounts to automatic
theorem proving. In particular, theorem provers that diyesupport common software constructs
offer a compelling basis. Such provers are commonly cal&igfgability modulo theories (SMT)
solvers. Z3 is the leading SMT solver. It is developed by thénars at Microsoft Research. It can
be used to check the satisfiability of logical formulas ovee or more theories such as arithmetic,
bit-vectors, lists, records and arrays.

This paper examines three applications of Z3 in the contigxivariant generation. The first lets
Z3 infer invariants as a constraint satisfaction probldre,second application illustrates the use of
Z3 for bit-precise analysis and our third application exéfigs using Z3 for calculations.

1 Introduction

Satisfiability Modulo Theories (SMT) solvers have been theus of increased recent attention thanks
to technological advances and an increasing number ofcgbipins. The Z3 solver from Microsoft
Research has several applications. We describe severatiof, tsome are shipped with Windows 7;
others are used as part of internal security testing and soengn an earlier research stage. Z3 is the
premier SMT solver. Itis currently mainly targeted at sotyproblems that arise in software verification
and software analysis. Consequently, it integrates stifpoa variety of theories that arise naturally in
the context of program analysis. Z3 is released publiclynfam-commercial use and is available from
Microsoft Research for download at

http://research.microsoft.com/projects/z3.

You can try Z3 on-line at
http://rise4fun.com/z3.

This paper describes three uses of Z3. Sedflon 2 takes @sgtaoint the VS3 project that treats
problems, such as invariant generation, ranking functioritesis, and program fragment synthesis as
a constraint satisfaction problem. We illustrate how a medeature in Z3 can be used to solve such
satisfaction problems. Sectibh 3 recalls a project usingZiBe context of the scalable program analysis
system PREfix. Many invariant generation techniques taksating point solvers for the domains of
mathematical integers and reals. This is at best imprenisieei context of software analysis. We use
the PREfix experience as an illustration for the use for [Btjze static analysis techniques. Our last
example in Sectionl4 is about using SMT solvers for genagdést-cases from models. It is not directly
related to invariant generation; it illustrates using ZBg$gmbolic calculations. Sectidi 5 summarizes
several important applications of Z3.

http://research.microsoft.com/projects/z3
http://rise4fun.com/z3

Applications and Challenges in Satisfiability Modulo Theer de Moura and Bjgrner

2 From Models to Invariants

The VS3[31] project uses Z3 to automatically discover inshednvariants for proving safety properties
of systems. The project also explores techniques for uditig Slvers to synthesize program fragments.
Other work involving Z3 aim to determine the precise asyriptaun-time bounds of programs [21].
The associated tools can extract asymptotic bounds for arityapf routines from the .NET base class
library (of the formO(n), O(nlog(n)), etc.). The perspective of program analysis (invarianeggion
and ranking function synthesis) as a constraint solvinglera has been pursued in several contexts,
including [12,[5] 20]. We will here sketch a technigue thagsua newer feature available in Z3, called
Model-Based Quantifier InstantiatidB9]. We will adapt an example used previouslylin|[14] tostate
the feature. Considering the template while-loop to thelefow. The invariant synthesis problem is to
synthesize an intermediary assertlothat can be used to show thadstholds in the end of thevhile-
loop. Letpre[s| be a formula encoding the set of states reachable beforetierting of the loopcg[s| be
the encoding of the entering condition|s, S| be the transition relation for the loop body, apds{s| be
the encoding of the property we want to prove. The loop iardrexists if the formulg, is satisfiable.
Any model that provides an interpretation focan be used to extract the loop invariant.

pre.
while (c) { Vs. pre[s] — 1(s) A

T ¢ Vs, 1(S)AC[SAT[sE] = 1(S) A
2’) ost Vs. 1(s) A —c[s| — postis|

We use the following very simple sample program. The loop in-
crementsx andy by 1 and 2, respectively. The post-condition asse@ssert (n>= 0);
that when the loop terminates, thega= 2n. The pre-condition of theX = 0; y = 0;
loop comprises of the assertion and initializationsxtandy, thus while (x < n) {
pre[x,y,n] isn > 0Ax=0Ay=0. The loop conditiorcx,y,n] is X =x + 1

x < n, and the transition relation of the loop bodyTig, y,n, X,y n'] y =y + 2
given byx = x+ 1Ay =y+2An = n. Consequently, the formula}
corresponding t@, is: assert(y == 2n);

VX, y,n.n > 0AX=0Ay=0—1(Xy,n) A
VXY, N XY (G, N AX < NAX =X+ 1AY =y+2A0 =n—=I(X,y,n) A
VX y,n. [(xy,n) A=(x<n) —y=2n

The formula is satisfiable, the following interpretatioraisnodel forg,
[(X,y,n) — 2X=yAX<n.

Until now invariant and rank-synthesis tools that have ubéireduction to constraints have relied
on special purpose algorithms for synthesizing these pagei. One method uses Farkas’ lemma. Other
methods useéemplateshat specify a space of possible interpretations. The tet@plcontain parame-
ters that a separate solving method has to instantiate. IMaded quantifier instantiation, within Z3,
integrates all decision procedures directly and can be indézli of these external methods.

Model-based quantifier instantiation works in the follog/iway. Suppose we are given a constraint
Y AVX. @[x, wherey is quantifier-free and suppod¢ is an interpretation that satisfigs We wish
to check whetheM also satisfies’x. ¢[x]. Then let us replace the free symbolsdirby their values
according tav. We call this new specialized formugd” and check if-¢M[x] is satisfiable. If it is, then

2

Applications and Challenges in Satisfiability Modulo Theer de Moura and Bjgrner

there is an extensiod’ of M that assign to a valuev, andM’ satisfies~¢[x]. ConsequentlyM is not a
model forvx. ¢ [x]. The idea is to instantiate the quantifier with a tersach that™ = vy, and conjoin the
instantiation toy to rule out this model that did not satisfy the quantifier. @& other hand, if¢M[x]
is unsatisfiable, thell does indeed satisfy the entire formula. Note that there neapény terms such
thatt™ = v,.. One simple heuristic it to use a ground terfrom if such term exists. I [39], a strategy
for selecting the terris described, and it is shown that Model-based Quantifigahtgtion equipped
with this strategy is a decision procedure for many fragmenfirst-order logic.

It is also possible to supply enough guidance to Z3 to buildnéerpretation for a predicate or
function symboll. This is achieved by supplying extra (template) equalitied restrict the possible
interpretations fof. For the purpose of this example, the relevant templateliéiggacould be:

X y. 1(X,y,n) <> ax+by+cn=dAax+by+cn<d

It is furthermore helpful restricting the variablasa’, b,b’, c,c’ to range over a finite domain. Then the
instantiation of the templates remain decidable integear problems even wheqy, n are instantiated
by symbolic terms. One way to restrict these variables to migefdomain is to let them range over
bit-vectors.

Z3 recognizes that the template is essentialigacrofor the predicate. It uses this information to
produce an interpretation fétThe notion of macros is more general than just equatiores; iticlude
combining several conditional equalities as well.

We provide an encoding of the constraint satisfaction gnobin SMT-LIB2 below.

(set-option :produce-models true)
(set-option :mbqgi true)
(set-option :bv-enable-int2bv-propagation true)

(define-sort Char () (_ BitVec 8))
(declare-fun I (Int Int Int) Bool)

(declare-fun al () Char)
(declare-fun bl () Char)
(declare-fun c1 () Char)
(declare-fun d1 () Int)

(declare-fun a2 () Char)
(declare-fun b2 () Char)
(declare-fun c2 () Char)
(declare-fun d2 () Int)

(define-fun linearT ((x Int) (y Int) (n Int) (a Char) (b Char) (c Char) (d Int)) Int
(- (+ (* (bv2int a) x) (* (bv2int b) y) (* (bv2int c) n) 4)
(+ (x 128 x) (% 128 y) (* 128 1))))

(assert (forall ((x Int) (y Int) (n Int))
(=> (and (= x0) (=y 0) (>=n0)) (I xymn))))

(assert (forall ((x Int) (y Int) (n Int))
(=>(and (< xn) (Ixymn)) (I (+x1) (+y2) n)))

(assert (forall ((x Int) (y Int) (n Int))

Applications and Challenges in Satisfiability Modulo Theer

(assert (forall ((x Int) (y Int) (n Int))
(iff (I x y n)

(check-sat)
(get-model)

In this case Z3 produces the answer:

sat
(model
(define-fun di
0)
(define-fun ci1
#x80)
(define-fun d2
0)
(define-fun c2
#x1a)
(define-fun b1l
#x60)
(define-fun a1l
#xc0)
(define-fun b2
#xc0)
(define-fun a2
#x66)

(and
= (linearT x y n al bl c1 d1) 0)
(<= (linearT x y n a2 b2 c2 d2) 0)))))

(

O

O

O

O

O

O

O

O

Int

(_ BitVec

Int

(_ BitVec

(_ BitVec

(_ BitVec

(_ BitVec

(_ BitVec

8)

8)

8)

8)

8)

8)

de Moura and Bjgrner

(=> (and (>=xn) (Ixymn) (=y (x2n)))))

(define-fun I ((x'1 Int) (x!2 Int) (x!3 Int)) Bool

(ite (and (=
(ite (and (=
(ite (and (=
(ite (and (=
(ite (and (=
(ite (and (=
(ite (and (=
(let ((a!1
(al2

(not (or

)

x!1
x!1
x!1
x!1
x!1
x!1
x!1

all al2)))))))))))

0) (= x!2
- 1) (=
- 1) (=
1) (= x!2
0) (= x!2
(- 3198))
(- 192))

0) (= x!'3
x!2 1) (=
x!12 2) (=
2) (= x!3
0)
(= x'2 (-

1)) true

x!3 0)) false

x!3 (- 1))) false

1)) true

0)) true

1704)) (= x!3 (- 254))) false

(= x!2 (- 80)) (= x!3 (- 192))) false
(not (= (+ (x 2 x!1) (x (- 1) x'2)) 0)))
(not (>= (+ (* 13 x!1) (* 51 x!3) (* (- 32) x!2)) 0))))

This is close to the expected model. The first conjunct is ¥peeted & =y, the second reads 23
32y+51n > 0, but if we replacey by 2x we get 5h > 51x, which isn > x in disguise.

Model-based Quantifier Instantiation is a relatively neatfiee in Z3. The combination with com-
plete quantifier instantiation_[39] and macro detectionlifees allows it to subsume several known de-
cision classes, including EPR, the Array Property Fragnf@hand pointer data-structures [27]. An
interesting challenge is to develop efficient incremergahhiques for applying model-based quantifier

instantiation.

Applications and Challenges in Satisfiability Modulo Theer de Moura and Bjgrner

3 Bit-precise, scalable analysis with PREfix

Many invariant generation techniques take as startingtpmtvers for the domains of mathematical
integers and reals. This is at best imprecise in the confesdftware analysis. This section highlights an
experience with integrating Z3 with the static analysid RREfix [10] for bit-precise static analysis [10].

Since 1999, PREfix has been used at Microsoft to analyze Cfgeduction code. It relies on an
efficient custom constraint solver, but addresses bit-lsgmantics only partially. On the other hand,
Z3 supports precise machine-level semantics for integdgmagtic operations. The integration of PRE-
fix with Z3 allows uncovering software bugs that could notjwasly be identified, in particular integer
overflows. These typically arise when the programmer wipagsumes mathematical integer semantics,
and they are notorious causes of buffer overflow vulnet#slin C/C++ programs. We ran our integra-
tion during the spring of 2009 over several projects fromWiadows 7 code base and we uncovered a
number of bugs related to integer overflows.

Let us give a simple example of a buffer overflow that was disoed using Z3/PREfix.

ULONG AllocationSize;
while (CurrentBuffer != NULL) {
if (NumberOfBuffers> MAXULONG / sizeof(MyBuffer)) {
return NULL;
}

NumberOfBuffers ++;

CurrentBuffer = CurrentBuffer>NextBuffer;
¥
AllocationSize = sizeof(MyBuffer) * NumberOfBuffers;
UserBuffersHead = malloc (AllocationSize);

Program 3.1: Allocating a vector of buffers

The semantics of multiplication in C is moduld’on DWORDs). Therefore, multiplication can
overflow. The if statement does protect from an integer awerih the multiplication

sizeof (MyBuffer) « NumberOfBuffers,

but asNumber0fBuffers is incremented just before the loop exits, the test is in#ffe. The resulting
buffer can therefore be allocated with fewer bytes tharcgratied. A buffer overflow will happen when
the buffer is later accessed at positions beyond the aitochbundary.

4 Test-case generation using Spec Explorer

The Spec Explorer tool grew out of efforts at Microsoft Reskdor developing model-based design
and test tools. The development of Spec Explorer moved t@tbtcol Test Team in 2007 to provide
testing support for the 250+ protocol documents that Miftofsirnished to the European Commission
and the Department of Justice. The protocol test challeag@iovided a flourishing environment for the
development of Spec Explorer. One use of Z3 in the contexpetExplorer is for generating pair-wise
independent test inputs for input/output specificationd womplex constraints [18]. It can also use Z3
as part of its state-space exploration engine of modelebest programs.

5

Applications and Challenges in Satisfiability Modulo Theer de Moura and Bjgrner

Let us illustrate how Z3 can be used for generating pair-iridependent tests with arbitrary con-
straints. When there are no side-constraints there arécgxghumeration methods for pairwise inde-
pendent testing. The papér [8] examines several of theseoaet

We will use a small artificial example. Suppose we have a tyglar that can fly in any direction,
horizontally (with angleh) or vertically (with anglev), and it can fly backwards or forwards with a
maximal velocityw. We are interested in testing flight-paths of the helicopiegr the sphere with
radiusw and we are interested in testing different combinationsooiiontal and vertical directions. The
helicopter is allowed to fix a horizontal and vertical difentand then take two legs along the chosen
direction. We can fix two ranges for each choice. We can cainsthese choices as follows:

up—0<v<90 -up— —90<v<O0
right - 0<h<90 —right = —90< h<0
forward; - 0<¢; <w —forward; - —-w</¢; <0
forward, - 0 </, <w —forward, - —w</¢, <0

We can add other constraints, for example constrainingethgth of the traveled path to be at leag®
and at mostv.

W/2 < b1+ 4o <w

This leaves four degrees of freedom and a total%c£216 tests. The number of tests grows exponen-
tially in the number of degrees of freedom. We can explore ahramaller set of tests by restricting
the search fopair-wise independent tests by seeking a set of tests that cover eaelipa combina-
tion of the(‘z‘) = 6 pairs(up,right), (up,forward,), (up,forward,), (right,forward,), (right,forward,),
(forward,, forward,).

The algorithm used i [18] for enumerating pair-wise indagent choices involves also a notion of
seed and other concepts, but we will here in the interesteikg the exposition simple provide a basic
algorithm for choice enumeration. For this purpose let tisoduce a propositional variabtg,,) for
each of the 6 choices. For example with the chqigg right) we introduce the variable,pight)- The
set of choice variables are calledoicesand we assert

\V ¢

cechoices

as our objective is to force at least one new pair to be covaueidg each test case. We can reduce the
number of test cases bgaximizingthe set of new choices that are covered with one test. Thidbean
achieved by adapting algorithms for MaxSAT in the conteX$bfT. The Z3 distribution comes with two
sample programs that compute Max ST

We can now enumerate new pairs by successively adding ednistthat enforce that a new as-
signment is chosen. We sketch an algorithm below. It firstkb@vhether the current constraints are
satisfiable, and if it is the case maximizes the number ofgsibppnal variables irthoicesthat are sat-
isfied in the assignment. Then, for each gaig and associated propositiag,) it evaluatesp andg in
the current model. Then it adds a constraint that fomggg) to befalsewhenever a subsequent model
evaluateg and p to the same value.

while (null !'= model+~ MaxSAT (choiceg) {
for c(pq € choices {
Vp < model— eval(p);

Ihttp://research.microsoft.com/en-us/um/redmond/projects/z3/group__maxsat__ex.html

http://research.microsoft.com/en-us/um/redmond/projects/z3/group__maxsat__ex.html

Applications and Challenges in Satisfiability Modulo Theer de Moura and Bjgrner

Vq < model— evalq);

We encoded this algorithm and withh= 100, Z3 produces the following six (instead of 16) test
vectors:

(=h -1) (=h 0) (=h -1) (=h 0) (=h 0) (=h -1)
(=v -1) (=v 0) (=v -1) (=v 0) (=v -1) (= v 0)
(= 11 -51) (= 11 51) (= 11 51) (=11 -1) (=11 1) (= 11 -49)
(=12 1) (=12 -1) (=12 -1) (= 12 51) (= 12 49) (=12 -1)

We see that some pairs are covered more than once, but thiavsidable.
The constraints can of course also have an effect on how manyse independent tests are exer-
cised. Suppose we add
1 <0V, >0,

then solutions wherg, is non-negative ang, is negative are ruled out. With this constraint Z3 generates
5 test vectors.

(=h -1) (=h 0) (=h -1) (=h 0) (=h -1)
(= v -1) (= v -1) (=v 0) (=v 0) (= v -1)
(= 11 49) (= 11 -49) (= 11 -51) (= 11 49) (= 11 -51)
(=12 1) (=12 -1) (=12 -1) (=12 1) (=12 1)

5 Several Other Tools and Applications

There are many other tools and applications of Z3. Sever#liede are surveyed in other places [6,
14] and we will not repeat a detailed treatment of these Harepnly summarize some developed at
Microsoft. The Static Driver Verifier tool SDV[1] uses Z3 teteact and check a finite state abstraction of
programs. Windows 7 ships with SDV 2.0 using Z3. SDV is awdddor external parties writing drivers
and it has identified hundreds of bugs in internal driversABLis related to the BLAST tool [23]. They
use SMT solvers to help build a finite abstraction (a Booleagiam). Newer tools refine also effectively
build finite state abstractions using SMT solvers, but usermally different algorithms. The SLAyer
tool [4] also targets device drivers, but uses an enginedbaseseparation logic to help find memory
errors (bugs that involve pointer-de-referencing). Ydd,[28] uses Z3 as part of the DASH/Synergy
algorithms to refine abstract states for a program. An atisdtate is a control location (program counter)
together with a formula that summarizes a set of states. Tiessare connected by transitions that
correspond to the control flow. The abstract states anditiams are refined by computing weakest
pre-conditions. The weakest pre-conditions are simplifiethg models: a symbolic simulation of a
candidate counter-example is used to prune case analysisafpaliases. Yogi is not the only tool that
takes advantage of the additional information availaldenfdynamic symbolic execution. The SAGE
and Pex|[1]] tools realizemart white-box fuzzingSAGE and Pex collect explored program paths as
formulas and use Z3 to identify new test inputs that forcescetion into new branches. SAGE is used
internally at Microsoft as part of a substantial securistitey effort, and Pex is available for .NET-based
development in the form of a Visual Studio power-tool.

Model programs are behavioral specifications that can beridbesl succinctly and at a high-level
of abstraction as Abstract State Machines or ASMs. ASMs earepresented as guarded commands
encoded as logical formulas. Furthermore, the abstraattgpes typically used in abstract state machine
descriptions can often be directly encoded using theodearfays, sets and bags. The use of bounded

7

Applications and Challenges in Satisfiability Modulo Theer de Moura and Bjgrner

model checking techniques and SMT solvers is investigateal Sequence of recent papers. Bounded
model program checking (BMPC) problems are investigatefB@,[37, 33]. Bounded Conformance
Checking [26] is a variant of BMPC where it is checked if two dabprograms are related using a
refinement relation. The Bounded Input Output ConformanablEm [25] checks if programs are
input-output conformant (ioco). It can be checked direfdlyinput-output model programs or reduced
to BMPC. Regular and context-free string automata, regitarg transducers and regular tree automata
and transducers can be treated as useful special casedrattbtate machines. Unlike general abstract
state machines, several decision problems, such as lamdnelgsion, equivalence and idempotence
under composition are decidable. Similar to general atisttate machines, it is possible to exploit
symbolic representations of the transition relation, asyed in[[34] 24, 32,17, 35].

Program verification is a natural stronghold for the use off3dlvers. The programming system
Spec#l[2] integrates contracts for extended type safetygeherate verification conditions, Spec# pro-
grams are translated into a low-level procedural languageg® [15], which is used for generating
verification conditions (logical formulas) that are hamblley Z3. Boogie can also be used in stand-alone
mode and several other tools described next are based oneBadg\VOC, the Heap-Aware Verifier
for C Programs uses the same Boogie verification conditioreigdor, but targets extended type safety
and heap properties of low level code [80] 13]. The VerifyfdgCompiler system[[16] uses Boogie
just like Spec# and HAVOC, but targets more ambitious fumal correctness properties of the Viridian
Hyper-Visor. The Hyper-V is a relatively small (100K linegperating system layer. The VCC system
was analyzed in multi-year joint project between Micro$oéisearch EMIC in Aachen and Saarbriicken.
Substantial portions of the Hyper-V were verified. The aysk [3] checks refinement types of F7 pro-
grams. It produces verification conditions directly as folas which are then processed by Z3. F7 is an
extension of F#. The FINE todl [11] also integrates refineintygmes. It adds certificates and features for
refinement. Chris Hawblitzel has used Boogie directly tooeleclow-level assembly level components
of the Singularity research operating system kernel. Usirggapproach, he has verified several different
garbage collector implementations [22]. The project atexduides verifying low-level (assembly-level)
operating system kernel code [38].

6 Conclusions

The leading SMT solver, Z3, is developed at Microsoft Redealt is currently used in an array of prod-
ucts and research proto-types at Microsoft. The rich andesspre ways of interfacing with Z3 allows
for building new and diverse set of tools on top of it. We badiét presents a growing set of opportu-
nities for building new tools for software analysis and depeent. We are constantly encouraging and
looking for new and useful ways to apply the technology ulyiley Z3.

References

[1] T. Ball and S. K. Rajamani. The SLAM project: debuggingt®m software via static analysiSIGPLAN
Not. 37(1):1-3, 2002.

[2] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# Pemgming System: An Overview. IGASSIS
2004 LNCS 3362, pages 49-69. Springer, 2005.

[3] Jesper Bengtson, Karthikeyan Bhargavan, Cédric FetuAndrew D. Gordon, and Sergio Maffeis. Refine-
ment types for secure implementations A8F, pages 17-32. IEEE Computer Society, 2008.

[4] Josh Berdine, Byron Cook, and Samin Ishtiaq. SLAyer: rognsafety for systems-level code. In Ganesh
Gopalakrishnan and Shaz Qadeer, edit6AY. Springer, 2011.

8

Applications and Challenges in Satisfiability Modulo Theer de Moura and Bjgrner

[5] Dirk Beyer, Thomas A. Henzinger, Rupak Majumdar, and feydRybalchenko. Invariant synthesis for
combined theories. In Byron Cook and Andreas Podelskipesj/MCAI, volume 4349 of_ecture Notes in
Computer Scien¢g@ages 378-394. Springer, 2007.

[6] Nikolaj Bjgrner and Leonardo Mendonca de Moura. Tagd®ory combinations and practical applications.
In Joél Ouaknine and Frits W. Vaandrager, edittiORMATS volume 5813 ol ecture Notes in Computer
Sciencepages 1-6. Springer, 2009.

[7] Nikolaj Bjgrner and Margus Veanes. Symbolic transdac@echnical Report 2011-3, January 2011.

[8] Andreas Blass and Yuri Gurevich. Pairwise testiBglletin of the EATCS78:100-132, 2002.

[9] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. Wha'sidable about arrays? In E. Allen Emerson
and Kedar S. Namjoshi, editoddMCAI, volume 3855 of NCS pages 427-442. Springer, 2006.

[10] William R. Bush, Jonathan D. Pincus, and David J. Sfel&fstatic analyzer for finding dynamic program-
ming errors.Softw., Pract. Exper30(7):775-802, 2000.

[11] Juan Chen, Ravi Chugh, and Nikhil Swamy. Type-presgrdompilation of end-to-end verification of
security enforcement. In Zorn and Aiken [40], pages 412423

[12] Michael Colon. Schema-guided synthesis of impeeagivograms by constraint solving. In Sandro Etalle,
editor, LOPSTRvolume 3573 o NCS pages 166-181. Springer, 2004.

[13] Jeremy Condit, Brian Hackett, Shuvendu K. Lahiri, afhEQadeer. Unifying type checking and property
checking for low-level code. In Shao and Pierice [29], padgs-314.

[14] Leonardo Mendonca de Moura and Nikolaj Bjgrner. Bugsjes and skeletons: Symbolic reasoning for
software development. In Jurgen Giesl and Reiner Halewligors |IJCAR volume 6173 of_ecture Notes in
Computer Scien¢gpages 400-411. Springer, 2010.

[15] R. DeLine and K. R. M. Leino. BoogiePL: A typed proceddemguage for checking object-oriented pro-
grams. Technical Report 2005-70, Microsoft Research, 2005

[16] E. Cohen and M. Dahlweid and M. Hillebrand and D. Leinacitoand M. Moskal and T. Santen and W.
Schulte and S. Tobies. VCC: A Practical System for Verify@ancurrent C. INMTPHOL, 2009.

[17] P. Godefroid, J. de Halleux, A. V. Nori, S. K. Rajamani, 8¢hulte, N. Tillmann, and M. Y. Levin. Automat-
ing Software Testing Using Program AnalysiEEE Software25(5):30-37, 2008.

[18] Wolfgang Grieskamp, Xiao Qu, Xiangjun Wei, Nicolas Hliaf, and Myra B. Cohen. Interaction coverage
meets path coverage by smt constraint solving. In Manuéidd{iPaul Baker, and Mercedes G. Merayo,
editors,TestCom/FATES/olume 5826 of ecture Notes in Computer Scienpages 97-112. Springer, 2009.

[19] B. S. Gulavani, T. A. Henzinger, Y. Kannan, A. V. Nori,da8. K. Rajamani. Synergy: a new algorithm for
property checking. In Michal Young and Premkumar T. Devamdalitors,SIGSOFT FSEpages 117-127.
ACM, 2006.

[20] Sumit Gulwani, Saurabh Srivastava, and Ramarathnamkafesan. Program analysis as constraint solving.
In Rajiv Gupta and Saman P. Amarasinghe, editet$)!, pages 281-292. ACM, 2008.

[21] Sumit Gulwani and Florian Zuleger. The reachabilitydbd problem. In Zorn and Aiken [40], pages 292—
304.

[22] Chris Hawblitzel and Erez Petrank. Automated verifmatof practical garbage collectors. In Shao and
Pierce[[29], pages 441-453.

[23] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. t@arfe verification with blast. 'SPIN pages
235-239, 2003.

[24] Pieter Hooimeijer and Margus Veanes. An evaluationudbmata algorithms for string analysis. In Ranjit
Jhala and David A. Schmidt, editorgMCAI, volume 6538 of_ecture Notes in Computer Sciengages
248-262. Springer, 2011.

[25] Margus Veanes and Nikolaj Bjgrner. Input-Output MoBebgrams. INCTAC, 2009.

[26] Margus Veanes and Nikolaj Bjgrner. Symbolic Boundecdhfdomance Checking of Model Programs. In
PSI|, 2009.
[27] Scott McPeak and George C. Necula. Data structure Bpattbns via local equality axioms. In Kousha

Etessami and Sriram K. Rajamani, editd@#V, volume 3576 of.ecture Notes in Computer Scienpages
476—490. Springer, 2005.

Applications and Challenges in Satisfiability Modulo Theer de Moura and Bjgrner

[28] Aditya V. Nori, Sriram K. Rajamani, SaiDeep Tetali, aAditya V. Thakur. The Yogi Project: Software
Property Checking via Static Analysis and Testing. In Stef@walewski and Anna Philippou, editors,
TACAS volume 5505 of_ecture Notes in Computer Scienpages 178-181. Springer, 2009.

[29] Zhong Shao and Benjamin C. Pierce, editd?sceedings of the 36th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2009, SavaAn@Ga#, USA, January 21-23, 2008CM,
2009.

[30] Shuvendu K. Lahiri and Shaz Qadeer and Zvonimir Rak@n8itatic and Precise Detection of Concurrency
Errors in Systems Code Using SMT SolversAV’09. Sringer Verlag, 2009.

[31] Saurabh Srivastava, Sumit Gulwani, and Jeffrey S.dfos¥s3: Smt solvers for program verification. In
Ahmed Bouajjani and Oded Maler, edito@4V, volume 5643 oL NCS pages 702—-708. Springer, 2009.

[32] Margus Veanes and Nikolaj Bjgrner. Symbolic tree tchreers. InPS|, 2011.

[33] Margus Veanes, Nikolaj Bjgrner, and Alexander Raschken SMT Approach to Bounded Reachability

Analysis of Model Programs. In Kenji Suzuki, Teruo HigaghiKeiichi Yasumoto, and Khaled El-Fakih,
editors,FORTE volume 5048 of.NCS pages 53-68. Springer, 2008.

[34] Margus Veanes, Peli de Halleux, and Nikolai TillmanmexRSymbolic regular expression explorerlGHT,
pages 498-507. IEEE Computer Society, 2010.

[35] Margus Veanes, David Molnar, and Benjamin LivshitscB&n procedures for composition and equivalence
of symbolic finite state transducers. Technical Report 284, IMicrosoft Research, March 2011.

[36] Margus Veanes and Ando Saabas. On Bounded ReachalfilRyograms with Set Comprehensions. In
LPAR pages 305-317, 2008.

[37] Margus Veanes and Ando Saabas. Using satisfiabilityulmotheories to analyze abstract state machines
(abstract). In Egon Borger, Michael J. Butler, Jonatha®dwen, and Paul Boca, editosBZ volume 5238
of LNCS page 355. Springer, 2008.

[38] Jean Yang and Chris Hawblitzel. Safe to the last insimac automated verification of a type-safe operating
system. In Zorn and Aiken [40], pages 99-110.

[39] Yeting Ge and Leonardo de Moura. Complete instantigfio quantified SMT formulas. ICAV, 2009.

[40] Benjamin G. Zorn and Alexander Aiken, editorBroceedings of the 2010 ACM SIGPLAN Conference on

Programming Language Design and Implementation, PLDI 20@0onto, Ontario, Canada, June 5-10,
2010 ACM, 2010.

10

	Introduction
	From Models to Invariants
	Bit-precise, scalable analysis with PREfix
	Test-case generation using Spec Explorer
	Several Other Tools and Applications
	Conclusions

