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Abstract

Sentiment classification is a very domain-
specific problem; classifiers trained in one do-
main do not perform well in others. Unfor-
tunately, many domains are lacking in large
amounts of labeled data for fully-supervised
learning approaches. At the same time, senti-
ment classifiers need to be customizable to new
domains in order to be useful in practice. We
attempt to address these difficulties and con-
straints in this paper, where we survey four dif-
ferent approaches to customizing a sentiment
classification system to a new target domain in
the absence of large amounts of labeled data.
We base our experiments on data from four dif-
ferent domains. After establishing that näıve
cross-domain classification results in poor clas-
sification accuracy, we compare results obtained
by using each of the four approaches and dis-
cuss their advantages, disadvantages and per-
formance.

1 Introduction

In recent years there has been an increasing inter-
est in the detection and classification of sentiment
or affect in various text genres (Pang et al. 02;
Pang & Lee 04; Turney 02; Turney & Littman
02; Wiebe et al. 01; Bai et al. 04; Yu & Hatzi-
vassiloglou 03). This area constitutes a problem
that is orthogonal to the usual task of text clas-
sification: In traditional text classification the fo-
cus is on topic identification, whereas in senti-
ment classification the focus is on the assessment
of the writer’s sentiment toward the topic. Ide-
ally, sentiment classification ought to be able to
address fairly sophisticated issues - identifying the
object of sentiment, detecting mixed and overlap-
ping sentiments in a text, identifying and dealing
with sarcasm, etc. In practice, most work to date
has been concerned with the less ambitious goal
of identifying the overall polarity of sentiment in
a document, i.e. whether the writer is express-
ing positive or negative opinions. This task by
itself has proved to be interesting and challenging
enough, and is the framework within which the
experiments in the present work were conducted.

Detection of sentiment is an important technol-
ogy for applications in business intelligence, where
customer reviews, customer feedback, survey re-
sponses, newsgroup postings, etc. are automati-
cally processed in order to extract summary in-
formation. At a time when large companies re-
ceive many thousands of pieces of feedback on a
daily basis, human processing of such text vol-
umes is prohibitively expensive; the only alterna-
tive is automatic extraction of relevant informa-
tion. Ideally one would like to be able to quickly
and cheaply customize a system to provide rea-
sonably accurate sentiment classification for a do-
main.

This is not a simple problem, since sentiment
in different domains can be expressed in very dif-
ferent ways (Engström 04). Supervised classifi-
cation techniques which are typically applied to
the sentiment classification problem require large
amounts of labeled training data. Acquisition of
these labeled data can be time-consuming and ex-
pensive. This paper explores various strategies for
training classifiers in domains lacking large num-
bers of labeled training examples. We present
four different strategies to customize sentiment
classifiers to a new domain (hereafter: target do-
main) in the absence of large amounts of labeled
data in that domain. The four approaches we in-
vestigate and compare are:

1. training on a mixture of labeled data from
other domains where such data are available

2. training a classifier as above, but limiting the
set of features to those observed in the target
domain

3. using ensembles of classifiers from domains
with available labeled data

4. combining small amounts of labeled data
with large amounts of unlabeled data in the
target domain



2 Data

We used data from 4 different sources in our ex-
periments.

• Movie review data (“movie”): for this do-
main we used the movie review data set made
public by Pang and Lee (Pang & Lee 04).
The data consist of 1000 positive and 1000
negative reviews from movie databases. This
has become the de facto standard data set
for sentiment classification.

• Book review data (“book”): in this domain
we collected 1000 positive and 1000 negative
book reviews from the web.

• Product Support Services web survey data
(“pss”): the data in this domain consist of
verbatim user feedback from a web survey.
The data contain 2564 examples of positive
feedback and 2371 examples of negative feed-
back, based on an associated rating of “not
satisfied” versus “very satisfied”.

• Knowledge Base web survey data (“kb”):
these data were collected along the same lines
as the previous data set. They consist of 6035
examples of “bad” feedback and 6285 exam-
ples of “good” feedback.

These four domains differ considerably in their
properties. Movie reviews tend to be lengthy and
elaborate; book reviews are shorter but still may
consist of multiple paragraphs. The two sets of
survey data, on the other hand, consist of typi-
cally very short pieces of text (often just phrases,
not even complete sentences).

3 Experimental Setup

Each document is represented as a feature vector.
The feature sets in our experiments consisted of
unigrams, bigrams and trigrams. Only features
that occurred 3 times or more in any of the do-
mains were included in the feature vectors for that
domain. Ngram features are binary, i.e. only ab-
sence versus presence of an ngram in a document
is indicated, not the frequency of that ngram.
This decision is motivated by various results in
the literature where binary features outperformed
frequency features in similar tasks (Pang & Lee
04; Joachims 98).

In order to reduce vector size, we employed a
cutoff on the training set using the log likelihood

ratio (LLR) for each feature with respect to the
class feature (Dunning 93). In this feature se-
lection method, only the top n LLR-ranked fea-
tures were included, where n ranges from 1000 to
10,000. In preliminary experiments this approach
proved to yield better results than a simple count
cutoff.

Results for the initial round of experiments, de-
scribed in Section 4, are based on 5-fold cross-
validation. Where statistical significance is men-
tioned, the assessment is based on the McNemar
test at a 99% significance level. The McNemar
test has proved reliable for the comparison of
different classifiers in supervised learning exper-
iments (Dietterich 1998).

In all of the experiments except for the ex-
periments in Section 5.4, we used support vec-
tor machines (SVMs). SVMs have consistently
been shown to perform better than other classifi-
cation algorithms for text classification in general
(Joachims 98; Dumais et al. 98), and for senti-
ment classification in particular (Pang et al. 02;
Pang & Lee 04). The training algorithm we used
is Sequential Minimal Optimization (SMO) (Platt
99). For the experiments in Section 5.4 we used
näıve Bayes classifiers because they can be for-
malized as generative models whose parameters
can be tuned using the EM algorithm.

In the experiments in Section 5, which compare
the different strategies for customizing classifiers
to domains with little labeled training data, the
test data sets for each target domain consist of
sets of 1800 randomly chosen test vectors. For
approaches capable of using small amounts of la-
beled target domain data, parameter tuning data
sets of 50, 100, and 200 vectors were used. No
cross validation was performed for these experi-
ments since no training was done on target do-
main data.

4 Classification Accuracy Within and

Across Domains

In a first set of experiments, we establish a base-
line for experimentation with more sophisticated
techniques and try to get a sense of the extent
of domain specificity and generalizability for the
four domains we are dealing with. We trained
SVM classifiers for each domain, using four differ-
ent feature sets (all ngrams, unigrams, bigrams,
trigrams) and six different LLR cutoffs (no cutoff,
top 20k/10k/5k/2k/1k features). We then tested



movie book kb pss

movie 90.45 70.29 57.59 61.36

book 72.08 79.42 59.28 66.59

kb 57.1 58.62 77.34 81.42

pss 52.16 55.33 70.48 83.73

Table 1: Best results of svm classifiers within and
across domains

movie book kb pss

movie ngrams,
top 20k

unigrams,
top 10k

unigrams,
no cutoff

unigrams,
no cutoff

book unigrams,
top 5k

ngrams,
top 2k

unigrams,
top 1k

unigrams,
top 2k

kb unigrams,
top 5k

unigrams,
top 1k

ngrams,
top 2k

unigrams,
top 2k

pss trigrams,
top 1k

trigrams,
no cutoff

ngrams,
top 2k

ngrams,
top2k

Table 2: Feature sets and LLR cutoffs that pro-
duced the best results in Table 1

each of the resulting classifiers on each domain,
so that each classifier was tested both on its own
native domain and on all three foreign domains.
Table 1 shows the best results for each classi-
fier/domain combination. Numbers in boldface
indicate the best results within domain, i.e. when
both training data and test data were drawn from
the same domain. The baseline accuracy (most
frequent class value) for the domains are: 50%
for the movie and book domain, 51% for the KB
domain, and 52% for the PSS domain.

As far as we can tell, the result on the movie
data set is the best so far reported in the litera-
ture. Our best guess as to the reason for this is
the combination between a lower frequency count
cutoff for the features than reported in most re-
search, and additional feature reduction by LLR.
The latter tends to select features that (even at
low frequencies) have a good correlation with the
target. Table 2 shows for each of these (best) ac-
curacy results, which LLR cutoff and feature set
they are based on.

Table 1 and Table 2 illustrate a number of im-
portant generalizations regarding domain speci-
ficity of sentiment detection:

• Domain differences are substantial to the
point where a classifier trained on one do-
main may be barely able to beat the baseline
in another domain

Target domain Training domains accuracy

Movies books, kb, pss 72.89

Books movie, kb, pss 64.58

Kb movie, book, pss 63.92

Pss movie, book, kb 74.88

Table 3: Classification accuracy of a classifier
trained on three domains and tested on the forth
domain

• Within a domain, a mixture of all ngram fea-
tures works best, while across domains some-
times unigrams, sometimes trigrams, and
sometimes all ngrams work best

• Among the four domains we are investigat-
ing, books and movies on the one hand and
the web survey sets (kb and pss) on the other
hand form two distinct clusters.

• Domains vary widely in terms of general dif-
ficulty. In our case, as can be seen by the
in-domain results, the movie domain is the
easiest in which to achieve high accuracy, and
the kb domain is the most difficult.

5 Approaches to Overcome the

Domain Specificity Problem

5.1 Training One Classifier on all

Available Data

One straightforward approach to the problem of
multiple domains is to train a single classifier us-
ing equal amounts of training data from each of
the domains where labeled data are available. In
the remainder of the paper we will refer to this ap-
proach as the all data approach. This all-purpose
classifier, being trained on multiple domains, will
be less domain-specific than a classifier that has
only seen data from one domain. Throughout the
rest of the paper we will be using this approach as
our baseline. Table 3 illustrates the classification
accuracy for each of the held-out domains using a
classifier trained on data from the other three do-
mains. These results are based on a feature cutoff
of the top 5000 features according to LLR. In or-
der to keep a balance between the different data
sets we restricted the training data sets to 2000
vectors each.



5.2 Limiting Features to those Observed

in the Target Domain

A small modification of the all data approach is
to limit the features used during training to those
that appear in the target domain. In other words,
the training data are represented in the “feature
vocabulary” of the target domain. In the remain-
der of the paper we will refer to this as the limit
approach. Note that the limit approach requires
no labeled data in the target domain. The as-
sumption behind this strategy is that the distri-
bution of target domain features given the class
label in the outside domains is similar to their
distribution in the target domain. To the extent
that this assumption holds, it allows the classifi-
cation algorithm to make the best possible use of
the out-of-domain data since it need not take into
account features that never appear in the target
domain. This assumption certainly does not hold
in the general case for arbitrary sets of domains;
one can easily imagine cases where a given fea-
ture would be correlated with positive sentiment
in one domain and negative sentiment in another.
For instance, while the word “small” might be
correlated with positive reviews on a web site ded-
icated to compact cameras, it would most likely
indicate the opposite in a forum dedicated to re-
viewing SUVs. Nevertheless, there is some hope
that the distribution of features between certain
domains will be similar enough to each other that
the out-of-domain data might be used to some ad-
vantage. Our experiments, summarized in Table
4, show the mixed results one would expect given
the discussion above; in the kb domain, limiting
the feature space significantly improved classifi-
cation accuracy over the all data approach. In
the book and pss domains the results were sta-
tistically identical, and in the movie domain the
results when limiting features were significantly
worse. These results bring up the very interest-
ing question of whether one could predict a priori,
given a set of labeled data from a number of differ-
ent domains and a small amount of labeled data
from the target domain, which subset of those do-
mains, or even which subset of training examples
from all the domains, has a feature distribution
most similar to the target domain, an area we in-
tend to explore in future research.

Target Domain All data Target
domain
features
only

movies 72.89 59.11

books 64.58 64.19

kb 63.92 70.98

pss 74.99 75.26

Table 4: Classification accuracy when using a fea-
ture set limited by the target domain. Boldface
numbers indicate differences that are statistically
significant at 99.9%.

5.3 Ensemble of Classifiers

Different classifiers can be combined in ensembles
where each of the individual classifiers contributes
to the overall classification or class probability.
An overview of ensemble classifiers can be found
in (Dietterich 97). The classifiers in an ensemble
can differ along various parameters, e.g. learning
algorithm, training data, feature sets, etc. There
is also a wide choice of methods for combining the
scores or votes from the different classifiers in an
ensemble: simple majority voting, weighted vot-
ing (where the weight can be determined by the
accuracy of the classifier, the strength of its class
probability prediction, etc). Finally, the scores
of the classifiers in an ensemble can be combined
into a new training set for meta-learning. A meta-
classifier is trained on that set and calibrates the
combination of scores from the individual classi-
fiers on a held-out data set. More details can be
found in (Todorovski & Dzeroski 03).

Classifier ensembles are a promising solution for
the data bottleneck because they offer a way to
reuse labeled out-of-domain data for a new tar-
get domain. For each of the available domains
(and for distinct feature sets), a classifier can be
trained and included in the ensemble. Faced with
data from the target domain, the decision has
to be made how the individual classifiers in the
ensemble work best together to make adequate
predictions in the target domain. Using a meta-
learning technique, only n parameters (where n is
the number of classifiers in the ensemble) need to
be tuned on data from the target domain. Since
tuning the ensemble through a meta-learning ap-
proach can be achieved with a small labeled data
set from the new domain, this method provides a
low-effort adaptation to a new domain. The fol-



Held-
out
do-
main

All data 50
train-
ing
cases

100
train-
ing
cases

200
train-
ing
cases

movies 72.89 71.72 74.22 74.55

books 64.58 67.81 70.79 70.49

kb 63.92 68.38 71.65 72.39

pss 74.88 76.85 80.03 80.47

Table 5: Classification accuracy of a meta-
classifier at various training set sizes

lowing experiments were conducted with an en-
semble of nine classifiers: unigram, bigram, and
trigram classifiers for each of the three training
domains. These nine classifiers were then ap-
plied to the parameter tuning sets from the tar-
get domain in order to create a new set of vec-
tors with nine continuously valued features, each
representing the output for one member of the
ensemble. An SVM meta-classifier was trained
using this data set. For testing, the scores of the
nine classifiers were collected for the target do-
main data, and the meta-classifier was applied to
those scores.

The results are presented in Table 5, at three
different meta-classifier training set sizes: 50, 100,
and 200. The baseline results from Table 3 are
repeated in this table as a point of comparison.

Statistical significance testing revealed that in
this experiment only the difference between using
50 and 100 training cases is significant. Compared
to the baseline results in the first column, statis-
tical significance is indicated by boldface num-
bers. To summarize: with 50 labeled training
cases from the target domain, the classifier ensem-
ble performs significantly better than the all data
approach on two out of the four domains (books
and kb). When the training size is increased to a
set of 100, performance significantly increases in
three domains (books, kb, pss). Performance on
the movie domain does not increase significantly
compared to the baseline. Increasing the size of
the training set from 100 cases to 200 cases does
not significantly improve classification accuracy.

5.4 Using In-domain Unlabeled Data

In this approach, due to (Nigam et al. 00), small
amounts of labeled target domain data were com-
bined with large amounts of unlabeled data from
the same domain in order to learn the model pa-

Target domain Base-line amount of labeled data
50 100 200

movies 72.89 61.67 79.56 77.44

books 64.58 62.48 71.08 76.55

Kb 63.92 65.84 68.1 73.86

Pss 74.88 81.79 80.75 82.39

Table 6: Classification accuracy in the bootstrap-
ping approach

rameters for a generative näıve Bayes classifier
using the Expectation Maximization algorithm
(hereafter: EM). An initial, “priming” classifier
is trained using the labeled data alone. This clas-
sifier is then used to estimate a probability dis-
tribution over the class values of the unlabeled
training set. The probability distribution of class
values for the labeled data is given by the la-
bels, and never changes. The algorithm uses the
probability distributions over both labeled and
unlabeled training examples to re-estimate the
model parameters, and then recompute the ex-
pected class probability distribution over the un-
labeled training examples. This step is repeated
until convergence is achieved, i.e. the difference
in the probability of the model parameters and
the data between each iteration is less than some
small constant ǫ. Nigam et al. found that us-
ing another model parameter, λ, to weight the
expected counts for the unlabeled training data
significantly improved classification accuracy. A
description of the algorithm, along with all the
necessary parameter estimation formulae, can be
found in (Nigam et al. 00).

We ran each experiment at several different
lambda values (0, 0.01, 0.1, 0.3, 0.5, 0.7. 0.9.
0.95, and 1.0), but found that the differences be-
tween the best lambda and the lambda set to 1.0
were insignificant. Hence, in the interests of sim-
plicity, all results in Table 6 are reported with a
lambda of 1.0. In each case, we ran the algorithm
until the expected log probability of the parame-
ters and the data changed by less than 0.01.1

With 50 training examples, the results are
somewhat mixed – the EM approach is signifi-
cantly better than all data in two domains, worse
in one, and too close to call in the fourth. With
100 or 200 training examples, however, the EM

1In the EM experiments, we included the test data in
our unlabeled training data. This is justifiable since the
class labels are never consulted.



Figure 1: Accuracy with 50 labeled examples

Figure 2: Accuracy with 100 labeled examples

approach is significantly better than the baseline
approach in all four domains.

6 Discussion

6.1 Classification Accuracy of

Approaches

Figures 1, 2, and 3 compare the classification
accuracy of the four classification strategies de-
scribed in the paper in instances with 50, 100, and
200 labeled training examples. For comparison,
the results of applying SVM’s trained on similar
amounts of data have also been reported. Classi-
fication accuracies for the all data and limit ap-
proaches are constant across the charts because
these approaches do not use labeled target do-
main data. While classification accuracy across
domains varied somewhat with 50 labeled docu-
ments, in both the 100 and 200 labeled document
sets the EM approach was best in each case, fol-
lowed by the ensemble approach. We speculate
that the EM approach worked best because it was

Figure 3: Accuracy with 200 labeled examples

Approach In-
domain,
labeled

In-
domain,
unla-
beled

Out-of-
domain

Traditional Lots None None

Baseline (train all) None None Lots

Limit None None Lots

Ensemble Some None Lots

NaiveBayes-EM Some Lots None

Table 7: Data Needs

the only approach that was able to make use of
the unlabeled data in the target domain. Sim-
ilarly, the superior performance of the EM and
ensemble approaches over the all data and limit
approaches can be attributed to the fact that they
are able to take advantage of the labeled data in
the target domain, while the other two approaches
use only out-of-domain data.

6.2 Data Needs

The different classification approaches in Sec-
tion 5 have different data requirements. Table
7 summarizes which kinds and amounts of data
are needed by each of the different classification
strategies.

6.3 Performance

The runtime time and space requirements of the
nǎıve Bayes and SVM classifiers are both roughly
linear in the number of features. However, the
training time for the SVM classifiers was usually
much faster than for the näıve Bayes classifier.
Although the näıve Bayes classifier usually con-
verged within 20 or so EM iterations, in some



cases it took more than 100 iterations to reach
convergence, which could take up to several hours
on data sets with large numbers of features. The
SVM classifiers generally converged within a few
minutes at worst, and often within seconds.

7 Conclusion

Our survey discussed the challenges inherent in
customizing sentiment classifiers to new domains,
as well as four possible approaches to the problem.
Although all of the approaches differ with regard
to what kinds of data they can use, they all share
the property that they need, at most, a relatively
small number of labeled training examples. The
EM approach, since it is able to take advantage
of unlabeled data in the target domain, provided
the best classification accuracy of the four.
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