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Abstract. In this paper we provide explicit formulæ to compute bilin-
ear pairings in compressed form. We indicate families of curves where the
proposed compressed computation method can be applied and where par-
ticularly generalized versions of the Eta and Ate pairings due to Zhao et

al. are especially efficient. Our approach introduces more flexibility when
trading off computation speed and memory requirement. Furthermore,
compressed computation of reduced pairings can be done without any fi-
nite field inversions. We also give a performance evaluation and compare
the new method with conventional pairing algorithms.
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1 Introduction

Cryptographically relevant bilinear maps like the Tate and Weil pairing usually
take values over an extension field Fpk of the base field Fp. Pairing inputs are
typically points on an elliptic curve defined over Fp. It has been known for a
while (see the work of Scott and Barreto [13] and Granger, Page and Stam [7])
that pairing values can be efficiently represented in compressed form by using
either traces over subfields or algebraic tori. The former approach leads to a small
loss of functionality: the trace of an exponential, Tr(gx), can be computed from
the trace Tr(g) and the exponent x alone, but the trace of a product Tr(gh)
cannot be easily computed from Tr(g) and Tr(h). The latter approach does
not suffer from this drawback, since torus elements can implicitly be multiplied
in the compressed representation. With either approach, pairing values can be
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efficiently compressed to one half or one third of the original length, depending
on the precise setting of the underlying fields and curves.

Our contribution in this paper is to provide explicit formulæ to compute
pairings directly in compressed form. Although we do not claim any perfor-
mance improvement over existing methods, we show that full implementation of
arithmetic over Fpk can be avoided altogether; only operations for manipulating
pairing arguments and (compressed) pairing values are needed.

From an implementor’s or hardware designer’s perspective the contribution
of this paper consists of mainly two aspects. Firstly, the explicit formulæ for
multiplication and squaring of torus elements give more flexibility in trading off
computation speed with memory requirement. The second aspect concerns field
inversions during pairing computation. Using projective representation for curve
points, inversions can be avoided in the Miller loop. However, a very efficient
way to then compute the final exponentiation is to decompose the exponent into
three factors and use the Frobenius automorphism to compute powers for two
of these factors. This involves an inversion in Fpk , which can be avoided using
the compressed representation of pairing values. Hence, we can entirely avoid
field inversion during pairing computation and still use fast Frobenius actions
in the final exponentiation. From a more theoretical perspective this approach
can be seen as a first step to further enhancement of the resulting algorithms,
and parallels the case of hyperelliptic curve arithmetic where the introduction
of explicit formulæ paved the way to more efficient arithmetic.

We provide timing results for implementations of different pairing algorithms,
comparing the newly proposed pairings in compressed form with their conven-
tional counterparts. Additionally, we give examples of curve families amenable
to pairing compression where generalized versions of the Eta and Ate pairings
due to Zhao et al. are more efficient than the non-generalized versions. We pro-
vide examples for the three AES security levels 128, 192 and 256 bits. In this
paper we use the notion Eta pairing instead of twisted Ate pairing, because it
has originally been used in the non-supersingular case as well.

This paper is organized as follows. In Sections 2 and 3 we review mathe-
matical concepts related to pairings and algebraic tori. In Section 4 we discuss
torus-based pairing compression and provide explicit formulæ for pairing com-
putation in compressed form. We describe how to avoid inversions in Section 5.
In Section 6 implementation costs are given and we conclude in Section 7.

2 Preliminaries on pairings

Let E be an elliptic curve defined over a finite field Fp of characteristic p ≥ 5. Let
r be a prime divisor of the group order n = #E(Fp) and let k be the embedding
degree of E with respect to r, i.e. k is the smallest integer such that r | pk − 1.
We assume that k > 1.

Let Fq be an extension of Fp. An elliptic curve E′ over Fq is called a twist

of degree d if there exists an isomorphism ψd : E′ → E defined over Fqd and d
is minimal with this property. There is a nice summary about twists of elliptic
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curves regarding their existence and the possible group orders of E′(Fq) given
by Hess, Smart and Vercauteren in [8].

We consider an r-torsion point P ∈ E(Fp)[r] and an independent r-torsion
point Q ∈ E(Fpk)[r]. We fix G1 = 〈P 〉 ⊆ E(Fp)[r] and G2 = 〈Q〉 ⊆ E(Fpk)[r]. If
the curve has a twist of order d we may choose the point Q arising asQ = ψd(Q

′),
where Q′ is an Fpk/d -rational point of order r on the twist E′, see again [8].
Taking this into account we can represent points in 〈Q〉 by the points in 〈Q′〉 ⊆
E′(Fpk/d)[r]. Let t be the trace of Frobenius on E/Fp and λ = (t− 1)k/d mod r.
Notice that λ is a primitive d-th root of unity modulo r.

The i-th Miller function fi,P for P is a function with divisor (fi,P ) = i(P )−
([i]P )−(i−1)(O). We use Miller functions to compute pairings. Let the function
es be defined by

es : G1 ×G2 → µr, (P,Q) 7→ fs,P (Q)(p
k−1)/r.

For certain choices of s this function is a non-degenerate bilinear pairing. For
s = r we obtain the reduced Tate pairing τ , s = λ yields the reduced Eta
pairing η and s = T = t− 1 leads to the reduced Ate pairing α by switching the
arguments. Altogether we have

– Tate pairing: τ(P,Q) = fr,P (Q)(p
k−1)/r,

– Eta pairing: η(P,Q) = fλ,P (Q)(p
k−1)/r,

– Ate pairing: α(P,Q) = fT,Q(P )(p
k−1)/r.

To obtain unique values, all pairings are reduced via the final exponentiation by
(pk −1)/r. The Eta pairing was introduced in the supersingular context by Bar-
reto, Galbraith, Ó’ hÉigeartaigh and Scott in [1]. The Ate pairing was introduced
by Hess, Smart and Vercauteren [8]. Actually the concept of the Eta pairing can
be transferred to ordinary curves as well. Hess, Smart and Vercauteren [8] call
it the twisted Ate pairing.

Recently much progress has been made in improving the performance of
pairing computation. Main achievements have been made by suggesting variants
of the above pairings which shorten the loop length in Miller’s algorithm, for
example so called generalized pairings [15], optimized pairings [11], the R-Ate
pairing [10] as well as optimal pairings [14].

As an example we consider the generalized versions of the Eta and Ate pair-
ings by Zhao, Zhang and Huang [15]:

– generalized Eta pairing: ηc(P,Q) = fλc mod r,P (Q)(p
k−1)/r, 0 < c < k,

– generalized Ate pairing: αc(P,Q) = fT c mod r,Q(P )(p
k−1)/r, 0 < c < k.

For a certain choice of c the loop length of the generalized pairings may turn
out shorter than the loop length of the original pairing. Notice that if T c ≡ −1
(mod r) or λc ≡ −1 (mod r) the loop length is r − 1 which is the same as for
the Tate pairing and does not give any advantage.

For each of the three AES security levels 128, 192 and 256 bits we give
examples of elliptic curve families where generalized pairings lead to a shortening
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of the loop length. The examples all have embedding degree divisible by 6 and
a twist of degree 6 such that the compressed pairing computations of Sections 4
and 5 can be applied. We stress that for all example families the generalized Eta
pairing is more efficient than the Tate pairing. We emphasize the Eta pairing
since this goes along with our compression method, but we note that there are
versions of the Ate pairing which have a much shorter loop length than the
pairings suggested here. For example the curves in Example 1 can be used for
an optimal Ate pairing with loop length log2 r/4 (see Vercauteren [14]).

Example 1. We consider the family of elliptic curves introduced by Barreto and
Naehrig in [2]. Let E be an elliptic curve of the family parameterized by p =
36u4 + 36u3 + 24u2 + 6u + 1 and t = 6u2 + 1. From the construction it follows
that the curve has prime order, i.e. r = n, complex multiplication discriminant
D = −3 and embedding degree k = 12. As shown in [2] E admits a twist E′ of
degree d = 6. This also follows from Lemma 4 in Section 4.2. We consider

λ = (t− 1)k/d = (6u2)2 ≡ 36u4 (mod n).

Since n = 36u4 + 36u3 + 18u2 + 6u + 1 for positive values of u the length of
λ is about the same as n, which means that there is no point in using the eta
pairing. But for negative u we obtain λ ≡ −36u3−18u2−6u−1 (mod n) which
is only 3/4 the size of n. Thus the Eta pairing gets faster than the Tate pairing.

For positive u the generalized version of the Eta pairing suggests to use a
different power of λ. For example we could use λ4 = −λ since λ is a primitive
sixth root of unity. We have −λ ≡ −36u4 ≡ 36u3 + 18u2 + 6u+ 1 (mod n) and
the length of −λ is as well 3/4 of that of n which yields a faster pairing than
the Tate pairing.

Example 2. A family of curves with embedding degree k = 18 was found by
Kachisa and is described in Example 6.14 of [6]. For those curves we have r(u) =
u6+37u3+343 and t(u) = 1

7 (u4+16u+7). The generalized Ate pairing computing
the loop over T 12 ≡ u3+18 (mod r) for positive u and T 3 ≡ −u3−18 (mod r) for
negative u is more efficient than the standard Ate pairing using T ≡ 1

7 (u4+16u).
The curves have a sextic twist and can be used for the Eta pairing with a

loop over λ = T 3 which for negative u is as short as the generalized Ate pairing
loop. For positive u take T 12 for the generalized Eta pairing.

Example 3. Recently, Kachisa, Schaefer and Scott [9] found a family of pairing
friendly curves with embedding degree k = 36. The curves have a sextic twist and
lead to shorter loops in pairing computation. The group order is parametrized
by a polynomial of degree 12 which we omit for space reasons. The trace of
Frobenius is parametrized by the following polynomial of degree 7:

t = 125339925335955356307102330222u7 + 8758840655324856893143016502u6

+262317360751146188910784278u5 + 4364504419607578015316190u4

+43570655272439907140970u3 + 260978358826886222466u2

+868445151522065613u+ 1238521382045476.
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Both the generalized Ate and Eta pairings can be computed with a loop over
T6 = T 6 mod r with

T6 = 15259304277569437096067973u6 + 913997772652077313277994u5

+22810998708750407745555u4 + 303628259738257192620u3

+2273330651802144795u2 + 9077823883505034u+ 15103919293237.

For details see [9].

3 Preliminaries on tori

Let Fq be a finite field and Fql ⊇ Fq a field extension. Then the norm of an
element α ∈ Fql with respect to Fq is defined as the product of all conjugates of

α over Fq, namely NF
ql /Fq

(α) = ααq · · ·αql−1

= α1+q+···+ql−1

= α(ql−1)/(q−1).

Rubin and Silverberg describe in [12] how algebraic tori can be used in cryp-
tography. We recall the definition of a torus. For a positive integer l define the
torus

Tl(Fq) =
⋂

Fq⊆F(F
ql

ker(NF
ql/F ). (1)

Thus we have Tl(Fq) = {α ∈ Fql | NF
ql/F (α) = 1, Fq ⊆ F ( Fql}. If Fq ⊆ F (

Fql then F = Fqd where d | l so the relative norm is given as NF
ql/F

qd
(α) =

α(ql−1)/(qd−1). The number of elements in the torus is |Tl(Fq)| = Φl(q), where
Φl is the l-th cyclotomic polynomial. We know that

X l − 1 =
∏

d|l

Φd(X) = Φl(X)
∏

d|l,d 6=l

Φd(X).

Thus the torus Tl(Fq) is the unique subgroup of order Φl(q) of F∗
ql . Set Ψl(X) =∏

d|l,d 6=l Φd(X) = (X l − 1)/Φl(X).

Lemma 1. Let α ∈ F∗
ql . Then αΨl(q) ∈ Tl(Fq).

Proof. Let β = αΨl(q), then βΦl(q) = αql−1 = 1, thus β has order dividing Φl(q)
and therefore lies in Tl(Fq). ⊓⊔

Lemma 2. For each divisor d | l of l it holds Tl(Fq) ⊆ Tl/d(Fqd).

Proof. Let β ∈ Tl(Fq). Then NF
ql/F (β) = 1 for all fields Fq ⊆ F ( Fql . In

particular the norm is 1 for all fields Fqd ⊆ F ( Fql . And so β ∈ Tl/d(Fqd). ⊓⊔

Combining the above two Lemmas shows that the element α raised to the
power Ψl(q) is an element of each torus Tl/d(Fqd) for all divisors d | l, d 6= k.

Let E be an elliptic curve defined over Fp with embedding degree k as in the
previous section. By the definition of the embedding degree we have r ∤ Φd(p)
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for all divisors d | k, d 6= k. From that we see that the final exponent can be
split up as

pk − 1

r
= Ψk(p)

Φk(p)

r
.

This means that pairing values lie in the torus Tk(Fp) und thus by the preceeding
Lemmas in each torus Tk/d(Fpd) for d | k, d 6= k.

4 Compressed pairing computation

Scott and Barreto [13] show how to compress the pairing value before the final
exponentiation and how to use traces to compute the result. Also the use of tori
has been investigated for the final exponentiation and to save bandwidth.

It is already shown by Granger, Page and Stam [7] how a pairing value in a
field extension Fq6 can be compressed to an element in Fq3 plus one bit. We note
that the technique of compression that we use here has already been explained
in [7] for supersingular curves in characteristic 3. Granger, Page and Stam [7]
mention that the technique works as well for curves over large characteristic
fields. We describe and use the compression in the case of large characteristic and
additionally as a new contribution include the compression into the Miller loop to
compress the computation itself. In the following section 4.1 we recapitulate the
compression for even embedding degree and show how to use it during pairing
computation.

To make the paper as self-contained as possible and to enhance better un-
derstanding we derive and prove certain facts which are already known in the
literature.

4.1 Compression for even embedding degree

Let k be even and let p ≥ 5 be a prime. In this section let q = pk/2 and thus
Fq = Fpk/2 such that Fq2 = Fpk . Choose ξ ∈ Fq to be a nonsquare. Then the
polynomial X2 − ξ is irreducible and we may represent Fq2 = Fq(σ) where σ is
a root of X2 − ξ.

Lemma 3. Let α ∈ Fq2 . Then αq−1 is an element of T2(Fq) and can be rep-

resented by a single element in Fq plus one additional bit. This element can be

computed by one inversion in Fq.

Proof. We compute the q-Frobenius of σ which gives πq(σ) = σq = −σ. The
element α can be written as α = a0 + a1σ with coefficients a0, a1 ∈ Fq. Raising
α to the power of q − 1 we obtain

(a0 + a1σ)q−1 =
(a0 + a1σ)q

a0 + a1σ
=
a0 − a1σ

a0 + a1σ
.

If a1 6= 0 we can proceed further by dividing in numerator and denominator by
a1 which gives

(a0 + a1σ)q−1 =
a0/a1 − σ

a0/a1 + σ
=
a− σ

a+ σ
. (2)
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It is clear that the above fraction is an element of T2(Fq). It can be represented
by a ∈ Fq only. But we need an additional bit to represent 1 in the torus. If
a1 = 0 we started with an element of the base field and the exponentiation gives
1. In summary αq−1 can be represented by just one value in Fq plus one bit to
describe the unit element 1. ⊓⊔

The final exponentiation in the reduced pairing algorithm has to be carried
out in the large field Fpk . The idea is to do part of the final exponentiation
right inside the Miller loop to move elements to the torus T2(Fq). Using torus
arithmetic we may compute the compressed pairing value by computations in
the torus only using less memory than with full extension field arithmetic. The
rest of the final exponentiation can be carried out in the end on the compressed
pairing value by also using torus arithmetic only.

Now if we have an elliptic curve with embedding degree k, in the final expo-
nentiation we raise the output of the Miller loop to (pk−1)/r = (q2−1)/r where
r is the order of the used subgroup. Since the embedding degree is k we have
that r ∤ q − 1. Therefore we may split up the final exponentiation and raise the
elements to q − 1 right away. This can be done in the above described manner
by only one Fq inversion. Since the pairing value is computed multiplicatively
we already exponentiate the line functions in the Miller loop by q − 1 and then
carry out multiplications in torus arithmetic.

There is no need to have a representation for 1 in the torus during the pairing
computation. The remaining part of the final exponentiation (q + 1)/r is even,
if q is the power of an odd prime and r is a large prime which thus is also odd.
Therefore both values 1 and −1 are mapped to 1 when the final exponentiation
is completed. We thus may take the representation for −1 whenever 1 occurs
during computation. This will not alter the result of the pairing. Note that the
torus element −1 has a regular representation with a = 0, since then the fraction
(2) assumes the value −1. In this way we can save the bit which is usually needed
to represent 1 when working in the torus.

For α = a0 + a1σ we denote by α̂ ∈ Fq the torus representation of αq−1 for
the pairing algorithm, i.e. α̂ = a0/a1 if a1 6= 0 and α̂ = 0 if a1 = 0. The latter
means we identify 1 and −1. Granger, Page and Stam [7] have demonstrated
that arithmetic in the multiplicative group T2(Fq) can now be done via

α̂− σ

α̂+ σ
·
β̂ − σ

β̂ + σ
=
α̂β − σ

α̂β + σ
,

where

α̂β = (α̂β̂ + ξ)/(α̂+ β̂) (3)

if α̂ 6= −β̂ and α̂ 6= 0 and β̂ 6= 0. If α̂ = −β̂ the result is simply 1. If one of the
values represents 1 we return the other value. For squaring a torus element with

α̂ 6= 0 we compute α̂2 = α̂/2 + ξ/(2α̂).
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The representation of the inverse of a torus element given by α̂ can be seen
to be −α̂, since

α−1 =

(
α̂− σ

α̂+ σ

)−1

=
α̂+ σ

α̂− σ
=

−α̂− σ

−α̂+ σ
. (4)

We point out that doing inversions in torus representation does not need inver-
sions in a finite field. Instead computation of an inverse only requires negation
of a finite field element.

As seen above, we need to compute the result of the Miller loop only up to
sign since −1 will be mapped to 1 in the final exponentiation. If we take the
negative of a torus element, we obtain

−
α̂− σ

α̂+ σ
=
σ2 − α̂σ

σ2 + α̂σ
=
ξ − α̂σ

ξ + α̂σ
=
ξ/α̂− σ

ξ/α̂+ σ
,

as long as α̂ 6= 0. If α̂ = 0 we are dealing with the element −1 and the negative
of it is 1. This computation shows that the negative of a torus element α 6= ±1
represented by α̂ is represented by ξ/α̂.

There may be potential to even further compress the computation inside the
Miller loop. If it is possible to raise elements to Ψk(p) in an efficient way, one
may use the norm conditions in other tori to deduce equations which allow to
achieve even more compact representations for the field elements used in the
pairing computation. We will see in section 4.2 how this works in the special
case k ≡ 0 (mod 6).

4.2 Curves with a sextic twist and 6 | k

From now on we assume that 6 | k, i.e. k = 6m, where m is an arbitrary positive
integer. In this section we fix q = pm. Then Fq = Fpm and Fq6 = Fpk . We
have a look at the case where we are dealing with an elliptic curve which has
complex multiplication discriminant D = −3. Under the above assumptions we
give the details of our new method to include compression into the Miller loop.
The existence of twists of degree 6 leads to compressed values of line functions
which can easily be computed by only a few field operations in Fq.

The description of twists and their orders given by Hess, Smart and Ver-
cauteren in [8] yields the following lemma.

Lemma 4. Let E be an ordinary elliptic curve with CM discriminant D = −3.
Let E be defined over Fq where q ≡ 1 (mod 6) and let r be a divisor of the group

order #E(Fq). The curve E can be represented as E : y2 = x3 +B, B ∈ Fq.

Then there exists a twist E′ of degree d = 6 which is defined over Fq and

E′(Fq) has order divisible by r.

The twist is given by E′ : y2 = x3 +B/ξ, where ξ ∈ F∗
q is not a square or a third

power. A Fq6 -isomorphism is given by

ψd : E′ → E, (x, y) 7→ (ξ1/3x, ξ1/2y). (5)
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We can represent the field extensions of Fq contained in Fq6 as Fq2 = Fq(ξ
1/2)

and Fq3 = Fq(ξ
1/3) respectively. We use the twist to compactly represent the

second argument of the pairing. This also implies that elliptic curve arithmetic
in the group G2 can be replaced by arithmetic in E′(Fq).

The twist also gives rise to further improvements for the compressed pairing
computation. We consider terms which arise from line functions inside the Miller
loop. Let lU,V (Q) be the line function of the line through the points U and V
evaluated at Q. In the Miller loop U and V are points in E(Fp) and Q = ψd(Q

′)
for a point Q′ ∈ E′(Fq) on the twist. These assumptions can not be made when
computing the Ate pairing. Let U = (xU , yU ), V = (xV , yV ) and Q′ = (xQ′ , yQ′),
and thus Q = (xQ, yQ) = (τxQ′ , σyQ′) where σ = ξ1/2 ∈ Fq2 and τ = ξ1/3 ∈ Fq3 .
Notice that σq = −σ and that Fq6 = Fq3(σ). For U 6= −V the line function then
yields

lU,V (Q) = λ(xQ − xU ) + (yU − yQ),

where λ is the slope of the line through U and V , i.e. λ = (yV − yU )/(xV − xU )
if U 6= ±V and λ = (3x2

U )/(2yU) if U = V respectively. In the case U = −V the
line function is lU,−U (Q) = xQ − xU .

We take advantage of the fact that Q arises as Q = ψd(Q
′) for some point

Q′ ∈ E′(Fq) and obtain

lU,V (Q) = λ(τxQ′ − xU ) + (yU − σyQ′)

= (yU − λxU + λxQ′τ) − yQ′σ.

For U = −V we have lU,−U (Q) ∈ Fq3 . We thus proved the following lemma.

Lemma 5. For U 6= −V the torus representation of (lU,V (Q))q3−1 can be com-

puted as (λxU − yU − λxQ′τ)/yQ′ ∈ Fq3 .

Although (λxU − yU − λxQ′τ)/yQ′ is an element of Fq3 it is possible to
compute it with just a few Fq computations since λ as well as the coordinates
of all involved points are elements of Fq. Note that no exponentiation in Fq3 is
required.

Inside the Miller loop we must carry out multiplications and squarings in
torus representation. Squarings have to be done with elements represented by
full Fq3 elements. But multiplications always include a line function as one factor.
Let µ = −(yU − λxU + λxQ′τ) be the numerator of the representative for the
exponentiated line function. If we compute the torus product with α̂ an arbitrary
Fq3 element and β̂ = µ/yQ′ we get the following.

α̂β =
α̂β̂ + ξ

α̂+ β̂
=
α̂µ+ ξyQ′

α̂yQ′ + µ
.

There is no need to invert yQ′ to compute the corresponding torus representation

for (lU,V (Q))q3−1. Instead we directly compute the product representative. Thus
there is only one inversion in Fq3 needed to exponentiate the line function and
compute the product in the Miller loop.
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The final exponentiation is raising to (q6 − 1)/r in terms of q. We may write
this as

q6 − 1

r
= (q3 − 1)(q + 1)

q2 − q + 1

r
.

What we did up to now is to raise line functions to q3−1 in order to already move
the elements to T2(Fq3 ). But when we now do the exponentiation to q + 1 we
have raised the element to Ψ6(q) and therefore end up with an element in T6(Fq).
This in particular means that our element lies in the kernel of NFq6/Fq2

. If we

use this property we may compress the element α̂ to two Fq elements which also
has been demonstrated similarly by Granger, Page and Stam [7], and compute
the pairing using this compact representation.

Proposition 1. Let p ≡ 1 (mod 3) and α ∈ F∗
q6 . Then αΨ6(q) can be uniquely

represented by a pair (a0, a1) of Fq elements.

Proof. As seen before we can represent αq3−1 by α̂ as αq3−1 = α̂−σ
α̂+σ . Let

β = αΨ6(q) =

(
α̂− σ

α̂+ σ

)q+1

.

We represent β by its torus representative β̂, which can be computed as follows:

β =

(
α̂− σ

α̂+ σ

)q

·
α̂− σ

α̂+ σ
=
α̂q + σ

α̂q − σ
·
α̂− σ

α̂+ σ
=

−α̂q − σ

−α̂q + σ
·
α̂− σ

α̂+ σ
.

If α̂q = α̂ we get β = 1. Otherwise, using (3) we get β̂ = (−α̂q+1 +ξ)/(−α̂q + α̂).
We now make use of the property that α has been raised to Ψ6(q) and thus lies
in the torus T6(Fq). We have NFq6/Fq2

(β) = 1, i. e.

(
β̂ − σ

β̂ + σ

)1+q2+q4

= 1,

which is equivalent to (β̂ − σ)1+q2+q4

= (β̂ + σ)1+q2+q4

. We write β̂ = b0 +
b1τ + b2τ

2 with bi ∈ Fq and use the fact that τq = ζ2τ for ζ a primitive third
root of unity which lies in Fq since q ≡ 1 (mod 3). An explicit computation of

(β̂±σ)1+q2+q4

and simplification of the equation (β̂−σ)1+q2+q4

= (β̂+σ)1+q2+q4

gives the following relation:

−3b1b2ξ + ξ + 3b20 = 0.

This equation can be used to recover b2 from b0 and b1 if b1 6= 0 as

b2 =
3b20 + ξ

3b1ξ
. (6)

If b1 = 0 we have ξ = −3b20. Since p ≡ 1 (mod 3) then −3 is a square modulo
p thus ξ is a square which is not true. Therefore b1 can not be 0 in this case.
Summarizing we see that we can represent the element β by b0 and b1 only which
concludes the proof. ⊓⊔
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We now turn our attention again to the line functions lU,V (Q) used in Miller’s
algorithm.

Proposition 2. Let ζ ∈ Fq be a primitive third root of unity such that τq = ζ2τ .
Let β = (lU,V (Q))Ψ6(q) where Q = ψd(Q

′). If β 6= 1 then β can be uniquely

represented by

c0 =

(
−ζ

1 − ζ2
y−1

Q′

)
(yU − λxU ), c1 =

(
ζ2

1 − ζ2
y−1

Q′

)
λxQ′ . (7)

Proof. In the proof of Proposition 1 we have seen how to compute β̂ = (−α̂q+1 +
ξ)/(−α̂q + α̂). For the line function we take α̂ = (λxU − yU − λxQ′τ)/yQ′ from
Lemma 5. We thus obtain

−α̂q =
yU − λxU + λxQ′ζ2τ

yQ′

.

Multiplying with α̂ yields

−α̂q+1 = −
1

y2
Q′

(
(yU − λxU )2 + (1 + ζ2)λxQ′ (yU − λxU )τ + λ2x2

Q′ζ2τ2
)
.

We further have

−α̂q + α̂ =
λxQ′ (ζ2 − 1)τ

yQ′

and compute

β̂ =
(1 + ζ2)λxQ′ (yU − λxU )ξ + λ2x2

Q′ζ2ξτ + ((yU − λxU )2 − ξy2
Q′)τ2

λ(1 − ζ2)xQ′yQ′ξ

=
1 + ζ2

1 − ζ2
·
yU − λxU

yQ′

+
ζ2

1 − ζ2
·
λxQ′

yQ′

τ +
(yU − λxU )2 − ξy2

Q′

λ(1 − ζ2)xQ′yQ′ξ
τ2.

Recall that τ3 = ξ. Taking ci the coefficient of τ i we have the property c2 =
3c2

0
+ξ

3c1ξ
and thus c2 can be computed from c0 and c1. ⊓⊔

The input Q is not changed during one pairing computation. Hence, y−1
Q′ can

be computed at the beginning of the pairing computation and we do not need
inversions to compute the values of the exponentiated line functions inside the
Miller loop.

For squaring and multiplication in the Miller loop we need formulæ to com-
pute with compressed values. Squaring of an element (a0, a1) can be done with
the following formulæ which can be derived by computing the square of the
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corresponding torus elements explicitly and compressing again. Compute

r0 = a5
0 + ξ(a3

0 − 2a2
0a

3
1) + ξ2(1

3a0 − a3
1),

r1 = a5
0 + ξ(2a3

0 − 2a2
0a

3
1) + ξ2(a0 − 2a3

1),

s0 = a0(a0r0 + a6
1ξ

2 + 1
27ξ

3) − 1
3a

3
1ξ

3,

s1 = a1(a0r1 + a6
1ξ

2 + 4
27ξ

3),

s = 2(a0r0 + a6
1ξ

2 + 1
27ξ

3),

c0 =
s0
s
,

c1 =
s1
s
.

Then the square of the Fq6 element represented by (a0, a1) is represented by
(c0, c1). Multiplication can be derived in a similar way. We give formulæ for
the computation of the product of two elements given by (a0, a1) and (b0, b1) in
compressed form.

r0 = a2
0 + 1

3ξ,

r1 = b20 + 1
3ξ,

s0 = ξ(a1b1(a0b0 + ξ) + a2
1r1 + b21r0),

s1 = a1b1ξ(a0b1 + a1b0) + r0r1,

s2 = a2
1b

2
1ξ + a0a1r1 + b0b1r0,

t0 = a1b1ξ(a0 + b0),

t1 = a1b1ξ(a1 + b1),

t2 = b1r0 + a1r1,

u = t30 + t31ξ + t32ξ
2 − 3ξt0t1t2,

u0 = t20 − t1t2ξ,

u1 = t22ξ − t0t1,

u2 = t21 − t0t2,

v0 = s0u0 + s1u2ξ + s2u1ξ,

v1 = s0u1 + s1u0 + s2u2ξ,

c0 =
v0
u
,

c1 =
v1
u
.

The product is then represented by (c0, c1).

5 Dealing with field inversions

In this section we use the assumptions from section 4.2, i. e. q = pm. For com-
pressed computation we need to do inversions during our computations. This
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is usually unpleasant, because inversions are very expensive. First of all, one
can replace inversion of an element a in Fpm by an inversion in Fp and at most
⌊lgm⌋ + 1 multiplications in Fpm by

1

a
=
ap+p2+···+pm−1

NFpm/Fp
(a)

.

The term in the numerator can be computed by addition chain like methods.
For a description of this method see section 11.3.4 in [5].

5.1 Avoid inversions by storing one more Fq element

The above squaring and multiplication formulæ for compressed computation in-
clude an inversion in Fq. We may avoid to do the inversions in each step by ad-
ditionally storing the denominator and homogenizing the formulae. This means
we represent compressed elements in a projective space. At the cost of providing
memory space for one more Fq element and some additional multiplications we
get rid of all inversions during the Miller loop. For the compressed line functions
computed in Proposition 2 this means that we do not store (c0, c1) given by
equations (7) but instead we store (C0, C1, C), where

C0 =

(
−ζ

1 − ζ2

)
(νyU − µxU ), C1 =

(
ζ2

1 − ζ2

)
µxQ′ , C = νyQ′ . (8)

Here µ, ν ∈ Fp are the numerator and denominator of the slope λ of the line
function, i.e. λ = µ/ν. Notice that µ and ν are elements of Fp since they arise
from points in E(Fp) (when the pairing we compute is the Tate or Eta pairing).

5.2 Storing only one more Fp element

When m > 1 we are able to compress further, by using the method described
at the beginning of Section 5. The denominator C which has to be stored in a
third coordinate can be replaced by a denominator which is an element in Fp,
namely the norm NFpm/Fp

(C) of the previous denominator in Fq. We only need

to multiply the other two coordinates by Cp+p2+···+pm−1

.
In this way it is possible to avoid inversions during pairing computation. Tak-

ing into account that inversion of torus elements can be done by negating the
representative, we also do not need finite field inversions for the final exponentia-
tion. Normally an inversion is needed to efficiently implement the exponentiation
by using the Frobenius automorphism. Furthermore, the cheap inversion of torus
elements makes it possible to use windowing methods for Miller loop computa-
tions without any field inversions. This is particularly interesting if the loop
scalar can not be chosen to be sparse.

We give an example of the compressed squaring and multiplication formulæ
for embedding degree k = 12.
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Example 4. For embedding degree 12 we have q = p2. Let Fp2 = Fp(i) and i2 =
−z for some element z ∈ Fp. Let (A0, A1, A) be an element in compressed form,
i.e. A0, A1 ∈ Fp2 and A ∈ Fp. Squarings and Multiplications can be computed
using the following formulæ.

Squaring: We can compute the square (C0, C1, C) as follows.

R0 = A5
0 + ξ(A3

0A
2 − 2A2

0A
3
1) + ξ2(1

3A0A
4 −A3

1A
2),

R1 = A5
0 + 2ξ(A3

0A
2 −A2

0A
3
1) + ξ2(A0A

4 − 2A3
1A

2),

S0 = A0(A0R0 +A6
1ξ

2 + 1
27A

6ξ3) − 1
3A

3
1A

4ξ3,

S1 = A1(A0R1 +A6
1ξ

2 + 4
27A

6ξ3),

S = 2A(A0R0 +A6
1ξ

2 + 1
27A

6ξ3).

Write S = s0 + is1 with s0, s1 ∈ Fp. Then the square is given by

C0 = S0(s0 − is1),

C1 = S1(s0 − is1),

C = s20 + zs21.

Multiplication: To multiply two compressed elements (A0, A1, A) and
(B0, B1, B) we have to use the following formulæ.

R0 = A2
0 + 1

3A
2ξ,

R1 = B2
0 + 1

3B
2ξ,

S0 = ξ(A1B1(A0B0 + ξAB) +A2
1R1 +B2

1R0),

S1 = A1B1ξ(A0B1 +A1B0) +R0R1,

S2 = A2
1B

2
1ξ +A0A1R1 +B0B1R0,

T0 = A1B1ξ(A0B +B0A),

T1 = A1B1ξ(A1B +B1A),

T2 = B1BR0 +A1AR1,

T = T 3
0 + T 3

1 ξ + T 3
2 ξ

2 − 3ξT0T1T2,

U0 = T 2
0 − T1T2ξ,

U1 = T 2
2 ξ − T0T1,

U2 = T 2
1 − T0T2,

V0 = S0U0 + S1U2ξ + S2U1ξ,

V1 = S0U1 + S1U0 + S2U2ξ.
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Write T = t0 + it1 where t0, t1 ∈ Fp. Then the product (C0, C1, C) of the two
elements is given by

C0 = V0(t0 − it1),

C1 = V1(t0 − it1),

C = t20 + zt21.

For an implementation of a pairing algorithm in compressed form without in-
versions one can use (8) to compute the evaluated compressed line functions
and then use the above formulæ for squaring and multiplication in Miller’s al-
gorithm. The remaining part of the exponent for the final exponentiation is
(p4−p2 +1)/n. The final pairing value can be computed by use of the Frobenius
and a square and multiply algorithm with the above squaring and multiplication
formulæ (see Devigili, Scott and Dahab [4]). Pseudocode of the above squaring
and multiplication algorithms is given in Appendix A.

6 Performance evaluation

In order to evaluate the performance of the compressed pairing computation, we
implemented several pairing algorithms in C. For all these implementations3 we
used the curve E : y2 = x3 + b over Fp with parameters described in Table 1
which belongs to the family in Example 1. It has been constructed using the
method of Barreto and Naehrig described in [2]. This curve has also been used
for the performance evaluation of pairing algorithms by Devegili, Scott and Da-
hab in [4]. For a fair comparison we implemented pairing algorithms with Fp12

constructed as a quadratic extension on top of a cubic extension which is again
built on top of a quadratic extension, as described in [4] and by Devigili, Scott,
Ó’ hÉigeartaigh and Dahab in [3]. For Ate, generalized Eta and Tate pairings
we thus achieve similar timings as [4]. We do not use windowing methods since
the curve parameters are chosen to be sparse. The final exponentiation for the
non-compressed pairings uses the decomposition of the exponent (pk −1)/n into
the factors (p6 − 1), (p2 + 1) and (p4 − p2 + 1)/n.
In the Miller loop we entirely avoided to do field inversions, by computing the
elliptic curve operations in Jacobian coordinates and by using the compressed
representation and storing denominators separately as described in Subsection
5.2. For multiplication and squaring of torus elements we use the algorithms
given in Appendix A. The figures in table 2 indicate that, depending on the
machine architecture, compressed pairing computation is about 20-45% slower
than standard pairing computation, if both computations are optimized for com-
putation speed rather than memory usage.
Performance was measured on a 2.2 GHz Intel Core 2 Duo (T7500), a 2.4 GHz
Intel Pentium IV (Northwood) and an AMD Athlon XP 2600+ running on 1.9
GHz. The CPU cycles required for Miller loop and final exponentiation respec-
tively are given in Table 2.

3 The code for our implementation can be found at http://www.cryptojedi.org/

downloads/
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p 82434016654300679721217353503190038836571781811386228921167322412819029493183
n 82434016654300679721217353503190038836284668564296686430114510052556401373769
bitsize 256
t 287113247089542491052812360262628119415
k 12

λc (t − 1)8 mod n

Table 1. Parameters of the curve used in our implementation

Core 2 Duo Pentium IV Athlon XP

Ate 16,750,000 50,400,000 38,000,000
13,000,000 38,600,000 29,300,000

Generalized Eta 22,370,000 67,400,000 51,700,000
13,000,000 38,600,000 29,300,000

Tate 30,300,000 90,500,000 69,500,000
13,000,000 38,600,000 29,300,000

Compressed generalized Eta 31,000,000 107,000,000 84,900,000
11,700,000 40,300,000 30,900,000

Compressed Tate 41,400,000 146,000,000 115,000,000
11,700,000 40,300,000 30,900,000

Table 2. Rounded average results of measurements on various CPUs. The upper num-
ber describes cycles needed for the Miller loop, the lower number cycles needed for
final exponentiation

7 Conclusion

We have described explicit formulæ for pairing computation in compressed form
for the Tate and Eta pairings. For different AES security levels we have also
indicated families of curves amenable to pairing compression where generalized
versions of the Eta and Ate pairings are very efficient. Our implementations and
cost measurements show that the pairing algorithms in compressed form are on
certain platforms only about 20% slower than the conventional algorithms. The
algorithms in compressed form have the advantage that they can be implemented
without finite field inversions. This is not only an advantage for pairing com-
putations on restricted devices, but also favors implementation of inversion-free
windowing methods for the Miller loop. Furthermore compressed pairing com-
putation gives more flexibility in trading off computation speed versus memory
requirement.

Neither the algorithms nor the curve families considered herein are exhaus-
tive; we thus hope that these are the first steps toward further algorithmic en-
hancements for compressed pairings and towards new, efficient constructions of
compressible pairing-friendly curves.
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A Compressed multiplication and squaring algorithms

Algorithm 1 Squaring of the element (A0, A1, A)

Require: (A0, A1, A) ∈ Fp2 × Fp2 \ {0} × Fp

Ensure: (C0, C1, C) = (A0, A1, A)2

r1 ← A2

0, r2 ← A0r1, S0 ← r1r2, t0 ← A2, r4 ← r2t0, r5 ← A2

1, r5 ← A1r5,
r3 ← r1r5, r4 ← r4 − r3, r0 ← r4ξ, r0 ← 2r0, S1 ← S0 + r0, r4 ← r4 − r3, r4 ← r4ξ,
S0 ← S0 + r4, t1 ← t20, r4 ← t1A0, r0 ←

1

3
r4, r1 ← r5t0, r0 ← r0 − r1, r1 ← 2r1,

r4 ← r4 − r1, r0 ← ξ2r0, r4 ← ξ2r4, S0 ← S0 + r0, S0 ← S0A0, S1 ← S1 + r4,
S1 ← S1A0, r2 ← r2

5 , r2 ← r2ξ
2, r4 ← t1t0, r4 ←

1

27
ξ3r4, r1 ← r2 +r4, S0 ← S0 +r1,

S ← S0A, S0 ← S0A0, S ← 2S, r4 ← 4r4, r1 ← r2 + r4, S1 ← S1 + r1, S1 ← S1A1,
r1 ← r5t1, r1 ←

1

3
ξ3r1, S0 ← S0 − r1

Write S = s0 + is1

r1 ← (s0 − is1), C0 ← S0r1, C1 ← S1r1, C ← Sr1 = s2

0 + cs2

1

return (C0, C1, C)

Algorithm 2 Multiplication of elements (A0, A1, A) and (B0, B1, B)

Require: (A0, A1, A), (B0, B1, B) ∈ Fp2 × Fp2 \ {0} × Fp

Ensure: (C0, C1, C) = (A0, A1, A) · (B0, B1, B)
R0 ← A2

0, t1 ← A2, r3 ←
1

3
ξt1, R0 ← R0 + r3,

R1 ← B2

0 , t1 ← B2, r3 ←
1

3
ξt1, R1 ← R1 + r3

r3 ← A1B1, r4 ← A0B0, t1 ← AB, r5 ← t1ξ, r4 ← r4 + r5, S0 ← r3r4, S2 ← r2

3

S2 ← S2ξ, r4 ← A0B1, r5 ← A1B0, r4 ← r4 + r5, r6 ← r3ξ, S1 ← r6r4, r4 ← R0R1

S1 ← S1 + r4, r4 ← A1R1, r5 ← r4A0, S2 ← S2 + r5, T2 ← r4A, r4 ← r4A1,
S0 ← S0 + r4, r4 ← B1R0, r5 ← r4B, T2 ← T2 + r5, r5 ← r4B0, S2 ← S2 + r5,
r4 ← r4B1, S0 ← S0+r4, S0 ← S0ξ, T0 ← A0B, r4 ← B0A, T0 ← T0+r4, T0 ← r6T0,
T1 ← A1B, r4 ← B1A, T1 ← T1 + r4, T1 ← T1r6

r0 ← T 2

0 , r1 ← T 2

1 , r2 ← T 2

2 , T ← r0T0, r3 ← r1T1, r3 ← r3ξ, T ← T + r3

r3 ← r2T2, r3 ← r3ξ
2, T ← T + r3, r3 ← T1T2, r3 ← r3ξ, U0 ← r0 − r3, r3 ← r3T0

r3 ← 3r3, T ← T−r3 , r3 ← T0T1, U1 ← r2ξ, U1 ← U1−r3 , r3 ← T0T2, U2 ← r1−r3

V0 ← S0U0, r0 ← S1U2, r1 ← S2U1, r0 ← r0 + r1, r0 ← r0ξ, V0 ← V0 + r0

V1 ← S0U1, r0 ← S1U0, V1 ← V1 + r0, r0 ← S2U2, r0 ← r0ξ, V1 ← V1r0

Write T = t0 + it1
r1 ← (t0 − it1), C0 ← V0r1, C1 ← V1r1, C ← Sr1 = t20 + ct21
return (C0, C1, C)
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