
i-MAC - A MAC that Learns

Krishna Kant Chintalapudi
∗

Microsoft Research India,
Bangalore, India

ABSTRACT
Traffic patterns in manufacturing machines exhibit strong
temporal correlations due to the underlying repetitive na-
ture of their operations. A MAC protocol can potentially
learn these patterns and leverage them to efficiently sched-
ule nodes’ transmissions. Recently, with the advent of low
power MEM based sensors, wireless sensing in these ma-
chines has gained prominence. Communication in control
loops must cater to extremely low hard real-time latencies
while embracing low-power design principles. In this paper,
we present a novel MAC, i-MAC, a wireless MAC protocol
that learns to expect and plan for traffic bursts and conse-
quently coordinate node transmissions efficiently.

Categories and Subject Descriptors
C.3 [Special-purpose and application-based systems]:
Real-time and embedded systems

General Terms
Algorithms, Design

1. INTRODUCTION
Manufacturing systems (e.g., assembly lines, packaging

machines etc.) are ubiquitous and form the cornerstone of
perhaps every major industry around the world today. In
countries such as the USA and Germany, where the manu-
facturing sector accounts for over a trillion dollars of their
Gross Domestic Product (GDP), rely heavily on automated
assembly lines that operate round the clock for several days,
or even months, with limited or no human intervention.

Central to the operation of a modern day manufacturing
machine is the communication system in its control loop
that connects sensors e.g., temperature, pressure, proximity
sensors) and actuators (e.g., drills, conveyers, robotic arms,

∗This work was done at Robert Bosch Research and Tech-
nology Center, Palo Alto, CA

welding units) to a central controller. Typical modern day
assembly lines make use of wired communication solutions
such as EtherCat[14] and Profibus [12] etc..

Recent advances in low-power MEMs based sensors and
low-power radio platforms (e.g., CC2420 [22]) have spurred
immense interest in low-power wireless sensing platforms. A
typical modern day manufacturing machine has a large num-
ber of sensors (between 50-200) and enabling wireless sens-
ing in control loops of machines has the potential to offer a
number of benefits. First, a wireless solution promises cost
reduction due to elimination of communication cables and
expensive I/O hardware to and from these large number of
sensors. Second, often machines have rapidly moving parts,
and cables drawn from these parts are subject to repetitive
stress resulting in frequent cable wear and tear based faults.
A wireless solution can eliminate maintenance costs result-
ing from such faults. Third, It can reduce costs through
its ease of installation, deployment and maintenance since
it does not involve cumbersome installation procedures that
require skilled labor.

Actuators (e.g., drills, robotic arms) typically perform
power intensive operations and are always tethered to a
power source via cables. Since communication cables can
typically be “bunched up” with power cables, the benefits
from enabling wireless communication to actuators may not
be “significant.” Thus, in this paper we shall focus on en-
abling wireless sensing in manufacturing machines.

Given the highly competitive nature of the manufactur-
ing industry, mechanisms that can result in even modest cost
savings, can provide an edge. Despite the advantages, how-
ever, modern day manufacturing systems still shy away from
employing wireless communication in their control loops.
The reason for this is simple - existing wireless standards
do not satisfy the stringent communication requirements de-
manded by control loops in automated manufacturing.

How a Manufacturing Machine Works
Most manufacturing machines are discrete event control

systems. Sensors detect discrete events and notify a central
controller. The central controller is a finite state machine,
which updates its state based on the sensory notifications
and induces the required actuation.

Figure 1 illustrates the operation of a section of an assem-
bly line. This rather simple example has been specifically
chosen to provide the reader an intuition regarding the func-
tioning of typical machines. In (A) an infrared sensor (IR1)
detects the arrival of the product on the conveyer and noti-
fies the controller. Upon receiving the notification from IR1,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IPSN’10, April 12–16, 2010, Stockholm, Sweden.
Copyright 2010 ACM 978-1-60558-988-6/10/04 ...$10.00.

315

Figure 1: Assembly line operation example

the controller then starts the conveyer motor M1 to move
the product to place it under the robotic arm. In (B), in-
frared sensor IR2 detects and notifies the controller of the
arrival of the product under the robotic arm. Upon receiving
notification from IR2, the controller immediately stops the
conveyer and starts motor M2 of the robotic arm to move
down with the part to be joined. In (C), as the surfaces of
the two parts come into contact, the limit switch LS1 on
the robotic arm is triggered and this is conveyed to the con-
troller. The controller immediately stops the movement of
the robotic arm and starts the gluing process. In (D), after
the gluing, the controller starts the robotic arm motor to
move upwards to its original position while the conveyer is
started to move the product to the end. In (E), and (F)
the limit switch LS2 is responsible for indicating that the
robotic arm has reached the top while the infrared sensor
IR3 senses the arrival of the product at the next stage.

Communication Requirements
There are three main requirements that need to be satisfied
in order to make a wireless solution viable.

Hard Real Time Delay Bounds : Communication in con-
trol loops of manufacturing machines must cater to hard
real time delay bounds i.e., messages must reach their des-
tination within a pre-specified delay bound. Messages that
reach after the pre-specified delay bound may either lead to
defective products or cause a serious disruption in the pro-
duction process, leading to a need to flush the pipeline and
restart. Such disruptions translate to significant monetary
losses through reduction in production throughput.

To understand the need for hard real time delay bounds,
consider a simple example. Suppose that in Figure 1 (B), the
conveyer were moving at 1 m/sec. Let the delay between the
time the product arrives at IR2 and the time the conveyer
motor M1 stops be d ms. During this time, the conveyer
would have moved d mm. This, in turn, means that the
positioning error for the product would be d mm - in other
words the parts would be joined d mm off the correct po-
sition. A maximum allowable positioning error bound then
translates directly to a hard real time delay bound.

Ultra-low Communication Error Rates : The economic
value of an automated manufacturing machine depends on
its ability to manufacture large volumes and meet produc-
tion demands. Machine operators will never accept a wire-
less solution that replaces the existing wired communica-
tion system at the cost of even minor losses in production
throughput. The primary performance measure of a com-
munication system in manufacturing machines is the Com-
munication Error Rate (CER) - the probability that reli-
able message delivery latency exceeds the pre-specified hard

real time delay bound. Consider a pipelined manufactur-
ing machine that has 100 sensors and produces a product
once every second. On an average, 100 sensors would send
a message to the controller each second or about 8 million
messages each day. 1ppm error then translates to about 8
errors per day per machine. Current day wired communi-
cation systems (e.g., Profibus) provide CER in the range of
1ppm (10−6) to 1ppb (10−9) for hard real time delays in the
range of 5-50ms. Any wireless solution must provide perfor-
mance comparable to existing wired systems in ordered to
be accepted by machine manufacturers.

Longevity : Frequent battery replacement in hundreds
of wireless sensors in a machine can be a time-consuming,
labor-intensive job and will offset all the gains obtained from
a wireless communication system. In typical machines, sen-
sors will be expected to operate without replacement for at
least a few years. Consequently any wireless sensing solution
in manufacturing machines must embrace low-power plat-
forms (e.g., low power transceivers) and protocol designs (al-
low for duty-cycling). A trivial power budget calculation will
indicate that the desired low-power radio platform must con-
sume few ten milliwatts while transmitting/receiving. Fur-
ther these platforms must have very small wakeup times
(typically under 1ms) to enable fast duty-cycling. Neither
802.11 based standards nor Bluetooth cater to these require-
ments [17],[9]. An example of a standard that does meet
these requirements is IEEE 802.15.4.

What makes meeting these requirements hard?
A combination of three basic factors makes satisfying the
above requirements a challenging problem.

Bandwidth Constraints of Low-Power Radios : Current
day low-power radios typically do not provide high data
rates similar to 802.11 based standards. For example, radios
based on 802.15.4 such as the extremely popular CC2420
provide 250Kbps data rate. More recently radio low-power
platforms with data rates of up to 2Mbps have started to
become available. Often however, a higher data rate comes
at the cost of decreased range and link quality.

Dense Node Placement : Most manufacturing machines
span 2-10 mts along their longest dimension and house be-
tween 50-200 sensors within this small space. In other words,
all the sensors are within one radio range of each other, lead-
ing to an extremely dense interference environment.

Bursty Traffic : Often in manufacturing machines, a sin-
gle event might trigger several sensors at the same time. For
example, a large number of proximity sensors may be used to
ascertain orientation of a work-piece. In addition, manufac-
turing machines are typically pipelined and designed to pro-
cess multiple products simultaneously. Consequently traffic
bursts, in which several sensors attempt to notify the con-
troller at the same time, are quite common in many ma-
chines. In the event of a traffic burst, messages from all
sensors must reach the controller within the pre-specified de-
lay bound. Since all these sensors are typically within each
other’s radio range, traffic bursts leading to packet collisions
can dramatically undermine performance.

Can’t we simply use TDMA?
TDMA is perhaps the obvious choice when hard real time
guarantees are desired; however, it does not scale very well
for a large number of nodes. Consider a simple experiment
using the CC2420 radio. Transmission of a typical sensor

316

notification packet (comprising about 10-15 bytes including
headers, data and trailers) will require about 800µsec [4]. A
single TDMA slot, consisting of a packet transmission to the
controller and an ACK from the controller will then be 1.6
ms long. The TDMA frame for a 100 sensor machine will
thus be 160ms long (100 slots). Given that typical packet
success rates in the wireless channel range 90% - 99.9%, 4-
9 retransmissions may be required to guarantee a CER in
the range of 1ppm-1ppb. Since a sensor has to wait for its
turn in the next frame for a retransmission, 4-9 retransmis-
sions translate to 4-9 frames (640-1600ms). This is clearly
much greater than the desired 5-50ms. While recently some
low-power radios have begin to offer up to raw data rates
of 2Mbps, much higher rates are required to make TDMA
based solutions viable for up to 200 nodes.

Existing Research in Low-Power MAC Protocols for
Wireless Sensor Networks
Research efforts in the area of sensor networks have led to
a large number of MAC protocols that are specifically tar-
geted to increase the longevity of power constrained sensor
nodes through aggressive duty-cycling techniques. One ob-
vious problem that arises when sensor nodes are duty-cycled
is that the receiver and transmitter must somehow coordi-
nate so as to remain awake at the same time. B-MAC [18]
tackles this problem by transmitting a long preamble prior
to the packet. The duration of the preamble is longer than
the duty-cycle period of the nodes. This allows the receiv-
ing nodes to sense the preamble and remain awake to receive
the transmission. NanoMac [2] improves channel utilization
for sense deployment scenarios by making use of RTS/CTS
based mechanisms and novel algorithms for duty-cycling. S-
MAC [23], T-MAC [5], P-MAC [24] rely on synchronizing the
sleep and wakeup schedules of neighboring nodes and put the
radios to sleep periodically (duty-cycling) while using mech-
anisms similar to RTS/CTS found in 802.11. WiseMAC [7],
TRAMA [19] and µ-MAC [3] use spatial TDMA and np-
CSMA, where nodes wake up based on schedules that are
offset in order to avoid collisions. While f-MAC [21] provides
collision free transmissions with guaranteed delay bounds
over one-hop topologies, it does not scale to a 100 nodes.
DMAC [16] is a spatial TDMA based MAC designed specif-
ically for networks where sensors form a tree topology to
transmit data to a base station. SIFT [13] uses a non-
uniform probability distribution to pick transmission slots
and exponentially adapts the transmission probabilities on
noticing idle slots. PTDMA [8] and ZMAC [20] allow a
seamless transition between TDMA and CSMA by assign-
ing probabilistic ownerships to time slots that are adjusted
based on the number of transmitters. RL-MAC [15] uses
reinforcement learning to infer the traffic load conditions
based on packet losses and adjusts the duty-cycle based on
these estimates. All of the above approaches are designed
for generic multi-hop wireless sensor networks and are not
specifically tailored to address the rather harsh requirements
posed by manufacturing machines.

Existing Approaches to enabling wireless sensing in
manufacturing systems
Given the rather harsh set of requirements for manufactur-
ing systems, some solutions ignore the power constraints and
use high bandwidth wireless solutions hoping that the radios
will be powered e.g., Wireless Profibus [6]. Such solutions

have found their place in certain niche applications. Some
other solutions attempt to provide power wirelessly by using
magnetic coupling e.g., WISA [1]. These solutions signifi-
cantly reduce the cost benefits due to their need for addi-
tional wireless power equipment. Other solutions such as
Wireless HART [10] (based on 802.15.4 physical layer) uses
TDMA based scheduling and cannot scale to dense deploy-
ments of 100s of nodes while adhering to hard real time
latencies of a few ten ms.
Proprietary Low power Multi-radio Platforms : Solutions
that have employed low-power radios have typically attacked
the bandwidth bottleneck by employing low-power multi-
radio platforms([1] [4] [11]). These solutions allow simul-
taneous reception and transmission over multiple channels,
thereby increasing the bandwidth. Most of these solutions
also rely heavily on platform specific low-level optimizations
to maximize radio utilization [4].
Reliable MAC Protocols : Most existing systems([1] [11])
have attempted to use Freq-Time Division Multiple Access
(FTDMA) based solutions, where each sensor is assigned a
unique time-frequency slot. However, these solutions are un-
deniably inefficient given that not all sensors transmit data
at the same time. More recently, Chintalapudi et al. [4] have
evaluated and implemented contention based MAC that use
multi-radio extensions to popular schemes such as ALOHA
and Exponential Backoff. While these schemes perform bet-
ter than FTDMA when traffic bursts are not large, they re-
quire setting certain MAC parameters that determine their
efficiency. Since machines typically do not operate under
constant conditions, it may not be practical to determine
these parameters in advance.

Contribution made by this paper
In this paper we propose a fundamentally novel approach to-
wards designing a MAC for manufacturing systems Ű namely,
leveraging the repetitive nature inherent to almost all auto-
mated manufacturing systems. Manufacturing systems tend
to be repetitive in the nature of their operations, conse-
quently the communication traffic also tends to exhibit repet-
itive patterns. A MAC protocol that learns these patterns
can potentially use them to schedule transmissions efficiently.
In this paper we propose i-MAC, a MAC that leverages tem-
poral communication patterns efficiently to avoid transmis-
sion collisions in the channel. i-MAC learns on the fly and
continuously adapts itself to its host machine and its op-
erating conditions. Consequently, it performs better than
both traditional contention-free (e.g., TDMA or FTDMA)
and contention-based MAC protocols. To the best of our
knowledge, we know of no such prior work that leverages
the inherent repetitive nature of manufacturing machines.

Organization of the paper
Section 2 is geared to provide insights to the reader regard-
ing the nature of communication traffic in manufacturing
machines. This is followed by the description of the ba-
sic ideas behind i-MAC in sections 3 and 4. In Section 5
we provide the implementation details of i-MAC. Finally, in
Section 6 we present the results of performance of i-MAC
and compare them with existing schemes.

2. TRAFFIC PATTERNS IN MACHINES
An assembly line manufacturing machine generally com-

prises several stations, each designed to accomplish a part

317

Figure 4: A traffic generation example

Figure 5: Recurring patterns exhibited at steady state.

Figure 2: Example of a manufacturing machine

of the production process. A single station can typically
process one product at any given time. After a station com-
pletes its task, the partially completed product is transferred
to another station over conveyers or using robotic arms.

Often, a single machine is equipped with several copies
of the same station to relieve bottlenecks in the manufac-
turing process (in case that particular station takes a much
longer time than the rest). The example machine in Fig-
ure 2 has seven stations assigned to perform four different
kinds of tasks on the product. The product enters at sta-
tion 1, after which it may be transferred to stations 2, 3 or
4 for task II. The reason for having three identical stations
is that task II takes thrice as long as the desired production
rate. Similarly, there are two copies for task III, stations
5 and 6. Station 7 performs the final task on the product
prior to its exit. Thus, a product may be routed through
the stations via several different paths, e.g., < 1, 3, 5, 7 >
or < 1, 4, 6, 7 >. The exact path that a product takes is
determined by a scheduler at run-time, and may depend on
several factors such as the current state of occupancy of the
various stations, their current state of wear and tear.

Stations are designed to operate in a very deterministic
manner (e.g., a robotic wrapper is designed to take a fixed
amount of time to complete packing a chocolate bar). When
a product arrives at a station at time t, it results in a deter-
ministic sequence of sensor events that occur at fixed offsets
from t. Figure 2 illustrates an example where station 1 has
5 sensors where arrows depict sensor events. A product ar-
rival at time t at station 1, generates a sequence of sensor

Figure 3: An illustration for the concept of burst sets

events with sensor i triggering at t + ∆ti; ∆ti being a con-
stant offset specific to the station and the type of product.

A Simple Example
Figure 4 depicts a simple example assembly line with three
stations and a total of 27 sensors. Each product must pass
through stations 1 to 3 in that order. The temporal sequence
of sensor trigger events is depicted using small arrows at each
station in Figure 4.

When product P1 (Figure 4) is introduced at station 1,
it will generate a sequence of sensor trigger (1-27) events
as it passes through the three stations (Figure 4). The ar-
rival of another product (P2) at station 1 will generate a
time-lagged version of the same sequence of sensor events
generated by P1 (Figure 4). The overall temporal sequence
of sensor events generated due to the two products will be
a superposition of their individual sequences (Figure 4), as
each product independently generates events at different sta-
tions. During the steady state operation of a machine, as
products keep arriving one after the other, the overall tem-
poral sequence of sensor events will be the superposition of
those generated by each product.

In many automated manufacturing machines, products ar-
rive at fixed intervals, depending on production demands.
For low production demands, the product inter-arrival times
will be large and the machine is said to be lightly loaded. The

318

minimum inter-arrival time is determined by the bottleneck
station in the pipeline. A machine operating at the mini-
mum inter-arrival time is said to be fully loaded.

During steady operation of a machine (machines often op-
erate at contant load conditions for several hours), the se-
quence of sensor events will typically exhibit dominant re-
curring temporal patterns owing to the underlying repet-
itive nature of the process. The nature of these patterns
will depend on the loading conditions. Figure 5 depicts the
temporal sequences of sensor events generated during the
operation of the machine for two different product arrival
rates (loading conditions).

As seen in Figure 5, certain groups of sensors will have a
tendency to detect events at about the same time, depending
on the arrival rate of the products. For example, in the case
of the highly loaded scenario, the sets of sensors {1, 17, 18},
{2, 19}, {4, 5, 6, 7, 20, 21}, {10, 24, 25}, {11, 12, 26, 27} and
{14, 15, 16} detect events at around the same time. Such
scenarios, where several sensors detect events around the
same time, will lead to traffic bursts, as all these sensors
will have event notification messages to transmit to the con-
troller.

In case a machine has copies of identical stations, a sched-
uler at the controller decides at run time which path the
product must take. The methods used by the scheduler are
usually based on deterministic rules. As a result, even in ma-
chines where products can take multiple paths, the system
often settles into a“rhythm”and exhibits recurring temporal
patterns.

3. BURST SETS
In this section we introduce the notion of a burst set which

is fundamental to the design of i-MAC. The burst set (rep-
resented by φ in the rest of the paper) is defined as - the set
of sensors in the machine that have pending data to transmit
at the same time.

Figure 3, illustrates the concept of a burst set through a
simple example, which depicts the sensor activity within a
small slice of time during a machine’s operation. In Fig-
ure 3, sensor i detects an event at time ti and has to notify
this event to the controller. t∗i represents the time when
the event notification message from sensor i reaches the
controller. The delay t∗i − ti might include several com-
ponents such as several retransmissions due to packet losses
in the wireless channel or packet collisions, or delays such
as back-offs induced by the underlying MAC. At any time
ti < t < t∗i , the sensor i will have pending data to transmit
to the controller.

In the time interval t1 < tA < t2, there is only one sensor
with pending data to transmit - sensor 1. The burst set seen
in the machine at a time tA is thus given by φA = {1}. At a
time t2 < tB < t∗1, however, sensor 1 has not yet succeeded in
transmitting its notification message to the controller and in
addition, sensor 2 has data to transmit. Thus, two sensors (1
and 2) have data to transmit at time tB and so the burst set
seen by the machine at this time is φB = {1, 2}. Similarly,
at a time, t∗1 < tC < t3, sensor 1 has already succeeded and
only sensor 2 has data to transmit, thus φC = {2}.

Some burst sets may appear more frequently than others.
To measure the relative frequency of occurrence of a burst
set, i-MAC also maintains the occurrence probability pφ for
each observed burst set φ. pφ reflects the chance that the
machine sees the burst set φ given that one or more sensors

have data to transmit. An intuitive way to compute pφ is to
compute the fraction of time when a certain burst set was
seen by the machine. We illustrate this using a simple ex-
ample in Figure 3. In Figure 3, let us assume for simplicity’s
sake that the communication pattern exactly repeats itself
throughout the operation of the machine. The burst set φA

is seen during the interval (t1, t2) within the total time in-
terval of (t1, t

∗
5) thus pφA = t2−t1

t∗5−t1
. Similarly, since the burst

set φB is seen during the interval (t2, t
∗
1), pφB =

t∗1−t2
t∗5−t1

. If L

is the set of all observed burst sets probability of occurrence
of a burst set φ computed at a time t can be mathematically
expressed as,

pφ =

R t

−∞ Ψφ(τ)dτP
∀φi∈L

R t

−∞ Ψφi(τ)dτ
. (1)

In Eqn 1, Ψφ(τ) is the burst indicator function (Figure 3)
which attains a value 1 if the burst set φ is seen in the
machine at a time τ , and remains 0 otherwise.

The main drawback of defining pφ according to Eqn 1
is that it has infinite memory. In order to be adaptive, i-
MAC must “forget”burst sets that have occurred far back in
time. However, i-MAC should not “forget”during periods of
prolonged inactivity when production has been temporarily
paused. Thus, i-MAC uses a definition of pφ that weights the
more recent burst sets to a greater extent than those in the
past while including only active periods in the computation.

pφ =

R t

−∞ Ψφ(t− τ)e−α(γ(t)−γ(τ))dτP
∀φi∈L

R t

−∞ Ψφi(t− τ)e−α(γ(t)−γ(τ))dτ
. (2)

γ(t) in Eqn 2 is the total time during which at least one
sensor had pending data and is given by,

γ(t) =
X
∀φi∈L

Z t

−∞
Ψφi(τ)dτ (3)

During periods of inactivity γ(t) does not increase at all since
there will be no sensor with pending data; thus i-MAC does
not “forget” during these periods.

In Eqn 2 burst sets lose their relevance in an exponen-
tially decaying manner. While in principle, other weighting
functions could be used, our choice in Eqn 2 is motivated
by the fact that it allows for an algorithm - the BSUA algo-
rithm (described in Figure 6) - that is amenable to simple
incremental updates.

The choice of the memory parameter α is a tradeoff be-
tween the accuracy of the estimated values of occurrence
probabilities pφ versus the quickness in the adaptability of
i-MAC. If α is too small, i-MAC will be slow to adapt,
whereas if α is too large it will forget too quickly for the
statistics (occurrence probabilities) to be accurate. i-MAC
uses an adaptive α that is proportional to rate of product ar-
rival. The rationale being that when products arrive faster,
not only is the need for rapid adaptation greater, but statis-
tics also tend to converge faster as more sensor events occur
within a short time. For this, i-MAC maintains an estimate
of the average inter-arrival time T̂ by noting the intervals be-
tween two consecutive times when the same sensor event is
detected across several sensors. α is chosen as, α = log(χ)

log(qT̂)
.

This ensures that an event corresponding to a product that
arrived roughly q products ago will be given a weight of χ.
In our implementation of i-MAC, we chose q = 1000 and

319

1: φ∗ = {}, T = 0, L = {}
2: Read next event triple < t,id,type >
3: if φ∗ 6= {} then
4: ∆t = t− tlast, τ = 1− e−αT

5: T = T + ∆t, η = e−α∆t

6: for all φ ∈ L do
7: pφ =

ηpφτ

1−e−αT

8: end for
9: end if

10: tlast = t
11: if type = SENSOR TRIGGER EV ENT then
12: φ∗ = φ∗ ∪ {id}
13: else
14: φ∗ = φ∗ − {id}
15: end if
16: if φ∗ ∈ L then

17: pφ∗ = pφ∗ + (1−η)

1−e−αT

18: else
19: L = L ∪ φ∗

20: pφ∗ = 1−η
1−e−αT

21: end if
22: goto Line 2

Figure 6: The BSUA Algorithm

χ = 0.011.

Burst Set Update Algorithm (BSUA)
In i-MAC, the base-station always maintains a list of fre-
quently observed burst sets and their probabilities. The
event notification packets in i-MAC (Figure 11) carry the
time when the event was detected (the Trigger Time field)
in the sensor data packet and the ID of the sensor that de-
tected the event. Two events are inferred from the receipt
of a single packet at the base-station - a sensor trigger event
corresponding to the trigger time (ti) read from the packet,
and a successful notification event corresponding to the time
of receipt of the packet (t∗i) at the base-station2.

i-MAC uses BSUA to update and maintain the burst set
list at the base-station. Each event in BSUA is represented
by the triple < t, id, type >. Here t is the time of occurrence
of the event (either sensor trigger event or successful noti-
fication event), id is the sensor id of the sensor responsible
for the events and type the type of event. The output of
BSUA is a list L of burst sets and their probabilities of oc-
currence computed using Eqn 2. Figure 6 depicts the BSUA
algorithm.

As events are presented to BSUA in increasing order of
times, φ∗ maintains the current burst set seen by the ma-
chine based on the sequence of events presented so far. Upon
seeing a sensor trigger event from sensor i, BSUA adds i to
the set of active sensors φ∗ (Line 12, Figure 6). When it sees
a successful notification event from i, BSUA removes i from
φ∗ (Line 14, Figure 6). BSUA maintains only a list of ob-
served burst sets with two or more elements (|φ∗| > 1), since
transmission collisions can only occur if more than one sen-

1The particular choice was motivated by the fact that usu-
ally, production machines operate under the same operating
conditions for prolonged periods of time, several hours or
even days.
2In i-MAC all sensors are time-synchronized to the base-
station and have the same notion of time.

sor has data to transmit at the same time. Upon receiving
each new packet, BSUA updates the occurrence probability
of every burst set in L based on Eqn 2. If a new burst set
with greater than two elements (φ∗ /∈ L) is seen, BSUA adds
it to the list (line 22, Figure 6).

The events need to be presented to BSUA in increasing
order of their event times. However, packets from sensors
may not necessarily arrive in order. To present the events in
order, upon receiving a packet, the corresponding events are
buffered in increasing order of their times of occurrence into
an event buffer (Figure 12) and then presented to BSUA.
Events must be buffered for a time greater than the pre-
specified hard real time deadline to ensure correctness of
BSUA. In our implementation we buffered for 500ms.

Given n sensors there can be 2n possible burst sets. In
practice however, we always found that the number of burst
sets observed is limited to a few hundred in number. To
avoid a possible explosion in the number of burst sets, in our
implementation we used three methods. First, burst sets
with negligible occurrence probabilities (under 10−5) were
discarded. Second, in many cases burst sets are subsets of
each other i.e., φ1 ⊂ φ2. In such cases φ1 may be removed
by simply incrementing pφ2 by pφ1 . Thus, in our list of burst
sets we ensured that no burst set was a subset of another in
the list. Finally, we enforced an upper limit of 10,000 burst
sets in the list by dropping the burst sets with the lowest
ourrence probability.

4. COLLISION AVOIDANCE IN i-MAC
If two sensors belong to the same burst set φ with a high

value of pφ, it is likely that these sensors will attempt to
transmit to the controller at the same time. Similarly, if
two sensors do not belong to any of the burst sets, then
these sensors will most likely never attempt to transmit at
the same time. i-MAC uses this basic fact to avoid potential
packet collisions.

i-MAC is a slotted protocol like TDMA (or FTDMA),
where each sensor is assigned a fixed slot in which to trans-
mit to the base-station. i-MAC differs from TDMA, in that
multiple sensors may be assigned to the same slot. In i-
MAC, sensors that have a high probability of transmitting
together are assigned different transmission slots. However,
sensors that have a no or extremely low likelihood of trans-
mitting at the same time may be assigned to the same slot.

An Example
To illustrate this idea, we shall continue to build on the ex-
ample in Figure 3. Consider for simplicity’s sake that the
machine has only five sensors and that the communication
pattern shown in Figure 7 exactly repeats itself periodically.
In the list of burst sets generated in our example in Figure 3,
there are four burst sets with cardinality greater than one -
{1, 2},{2, 3},{2, 3, 4} and {3, 4}. These are the only scenar-
ios where a transmission collision can occur. As shown in
Figure 7 we can schedule sensors 1, 3 to transmit in slot 1,
sensors 2, 5 in slot 2, and sensor 4 in slot 3. Such a schedule
requires only 3 slots unlike 5 slots needed for TDMA and
yet makes sure that no two sensors that belong to the same
burst set are assigned to the same slot, thus precluding any
possibility of packet collisions.

More formally, i-MAC attempts to find a Sensor Slot As-
signment (SSA) - a function f(x) = y that maps sensor ids
(x) to slot numbers (y) so as to minimize the number of slots

320

Figure 7: A Collision free SSA in i-MAC

(s) while ensuring that the expected number of collisions in
any given slot is extremely small.

Optimal SSA Problem
Given an SSA f , let θk be the set of sensors that were as-
signed to a certain slot k (in our example θ1 = {1, 3}). Given
the list of burst sets L = {φ1, φ2, · · · } and their occurrence
probabilities, the expected number of transmission collisions
ek in a slot k are given by,

ek =
X
φ∈L

pφΥ (|φ ∩ θk|) . (4)

Here,

Υ(x) =
0 if x ≤ 1
x if x > 1

(5)

i-MAC attempts to find an SSA f that minimizes the num-
ber of slots s while ensuring that the expected number of
colliding sensors ek within each slot k is less than a pre-
specified threshold ε i.e., ek < ε∀k = 1, · · · , s. We refer to
this problem as the Optimal SSA (OSSA) problem in the
rest of the paper. The OSSA problem is NP-Hard as the
corresponding decision problem can be shown to belong to
class NP-Complete by reducing it to the well known graph
coloring problem. We do not provide the proof in this pa-
per due to space limitations. Consequently, for solving the
OSSA problem, i-MAC resorts to using a heuristic.

i-MAC’s heuristic for OSSA
i-MAC’s Sensor Slot Assignment (ISSA) algorithm starts
by hoping that one slot (s = 1) will be sufficient to find
an SSA that satisfies the constraints ek < ε∀k = 1, · · · , s.
It then uses the Maximum Collision First Sensor Slot As-
signment (MCF-SSA) algorithm (described shortly in this
section) to determine an SSA. The MCF-SSA algorithm re-
turns a FAILURE if it is unable to find a viable SSA. Upon
failure, ISSA increments the value of s and attempts to find
an SSA until it is successful. The algorithm pseudo-code is
provided below:

1: ISSA(L, {pφ1 , pφ2 , · · · }, n, ε)
2: s = 1
3: while MCF-SSA(L, {pφ1 , pφ2 , · · · }, s, n, ε) returns FAIL-

URE do
4: s = s + 1
5: end while

The MCF - SSA Algorithm
Given a list of burst sets L = {φ1, φ2, · · · } and their oc-

1: MCF-SSA (L, {pφ1 , pφ2 , · · · }, s, n, ε)
2: for i = 1 to n do
3: Compute ci using Eqn 6
4: end for
5: Sort the sensors in decreasing order of ci. Let this order

of the sensor ids be O =< o1, o2, · · · , on >.
6: f(o1) = 1, θ1 = {o1}, θi = {}∀i = 2, · · · , s. Assign

sensor o1 to slot 1.
7: for i = 2 to n do
8: for j = 1 to s do
9: θj = θj ∪ {oi} (assign sensor oi to slot j.)

10: Compute ej using Eqn 4
11: θj = θj − {oi} (remove sensor oi from slot j).
12: end for
13: Find the slot k that offers the minimum expected

number of collisions k = arg minj ej . In case several
different values of k have the same minimum value,
one among them is uniformly randomly chosen.

14: if ek > ε then
15: return FAILURE
16: else
17: Assign sensor oi to slot k. f(oi) = k, θk = θk∪{oi}.
18: end if
19: end for

Figure 8: The MCF-SSA Algorithm

currence probabilities, the number of slots s, the number
of sensors n, and the threshold ε, the MCF heuristic at-
tempts to determine an SSA that satisfies the constraints
ek < ε, ∀k = 1, · · · , s. It returns a failure in case it is unable
to find such an assignment.

The MCF-SSA algorithm is provided in Figure 8. MCF-
ISSA starts by computing collision index ci for each sensor
i (Lines 1-3 in Figure 8) defined as,

ci =
X

∀φ∈L|i∈φ

pφΥ(|φ|). (6)

The collision index measures the expected number of sensor
transmissions that a transmission from sensor i would collide
with, if all sensors were assigned the same slot. The essential
idea in the MCF heuristic is to first assign slots to those
sensors whose transmissions are most likely to collide with
others’. The sensors are thus sorted in the decreasing order
of their collision indices (line 4 Figure 8) and considered for
slot assignment sequentially in this order. Each sensor under
consideration is assigned a slot that minimizes the expected
number of collisions with already assigned sensors (lines 6
to 18). In case no slots can be found with expected number
of collisions (with already assigned sensors) less than the
desired threshold ε, a failure is returned.

The base-station periodically runs the ISSA algorithm on
the current list of burst sets to determine an SSA. If this
newly found SSA provides a “significant” improvement over
the existing SSA, the base-station disseminates the new SSA
to all the sensors. In our implementation, a new SSA is
deemed a significant improvement over the existing SSA only
if at least one of two criteria are met. First, the old SSA
is no longer a valid solution to the current list of burst sets
(it violates one or more constraints). Second, the number of
time slots for the new SSA is smaller than that for the old
SSA.

321

Figure 9: The architecture

of the base-station used in

our implementation of i-

MAC
Figure 10: The operation of i-MAC Figure 11: Packet formats in i-MAC

5. i-MAC- THE DETAILS
As depicted in Figure 10, communication between the sen-

sors and the controller in i-MAC is organized into frames
(similar to TDMA) that repeat. Each i-MAC frame com-
prises several sensor transmission slots in which sensors trans-
mit event notification messages to the controller (base-station),
and acknowledgement slots in which the controller transmits
an acknowledgement packet to notify the reception of pack-
ets in the current frame.

i-MAC allows for the base-station to have multiple ra-
dios, each operating on a different channel. In figure 10, the
base-station is equipped with m radios, so that it can simul-
taneously receive packets from m sensors. The total number
of sensor transmission slots s = lm, where l is the number
of time-slots within a frame. In the acknowledgement slots,
the base-station transmits m acknowledgement packets si-
multaneously. An acknowledgement packet transmitted in
channel i contains a list of all the sensors from which packets
were successfully received in the current frame in channel i
(see Figure 11). The sensor persistently retransmits in each
successive frame until it receives an acknowledgement packet
with its ID included in the ACK-list. The acknowledgement
packets also serve as time-synchronization beacons to keep
the sensors synchronized to the base-station and carry a two
byte time-stamp (Figure 11)3.

We have implemented i-MAC on a home-built prototype
platform that uses CC2420 transceivers. In our implemen-
tation, the base-station is a home-built platform with four
CC2420 transceivers, each controlled as a slave by an MSP430
micro-controller of SPI interfaces as shown in Figure 9. The
BSUA and the ISSA algorithms were implemented on a
desktop computer,4 which communicated with the MSP430
micro-controllers driving the transceivers over UART.

Upon receiving notification packets, the base-station con-
tinuously updates the list of burst sets using BSUA (Sec-
tion 3). This list is then used to generate an SSA using the
ISSA algorithm described in section 4. If the new SSA is

3In our implementation, nodes were synchronized up to
within 64µsec of each other
4Standard processors used in controllers today are mini-
computers which, we believe, are quite capable of running
the ISSA and BSUA algorithms.

a significant improvement over the old SSA (section 4), the
base-station distributes the new SSA to all the sensors. This
is depicted in Figure 12. In typical manufacturing systems,
each sensor node is responsible for a unique set of events.
Consequently, in our implementation, the field node id (in
Figure 11) actually contained an event id from which the
receiver can deduce the id of the transmitting node.

Transmission Pipelining in i-MAC
For efficient channel utilization the transmission slots in i-
MAC are transmission pipelined [4]. The time interval be-
tween initiating transmission at the transmitter and the end
of packet reception of the receiver was about 1ms. However,
the total time during which bits were actually transmitted
over the air was only 480µsec. The remaining channel idle
period comprised 150µsec of radio over head (including time
to transmit bits between MSP430 and CC2420), 192µsec of
radio calibration, 120 µsec of packet processing overhead
at receiver and a guard band of 64µsec to allow for time-
synchronization errors. To avoid this idle time, consecu-
tive transmission slots were arranged so that the next node
would initiate transmission so as to offset the channel’s idle
period5. This is depicted in Figure 10.

Frequency-Transceiver Hopping
To avoid temporary fades in the wireless channel, our imple-
mentation of i-MAC uses frequency-transceiver hopping i.e.,
in any two successive retransmissions (successive frames), a
sensor nodes transmits on a different physical channel and
to a different physical transceiver (among the m available
transceivers). This is achieved by using a channel mapping
function (CMF) known to all the sensors. The CMF trans-
lates a slot (assigned by SSA) to a physical channel based on
the current frame number and the node id. Consequently,
knowing the current frame number and the slot assigned to
it by SSA, a node can determine which physical channel to
transmit on. In our implementation, the physical channel
used by a sensor was skipped by four channels between each
successive frame. Each of the transceivers at the BS, on the
other hand skipped five channels between each successive
frame. This ensured that a sensor node transmitted to a

5These measurements were done using an oscilloscope.

322

different physical transceiver in every retransmission.

SSA Distribution in i-MAC
The design of SSA distribution scheme in i-MAC has to ful-
fill two crucial goals. First, the updated schedules must be
distributed so as to waste minimum energy for the sensors.
Second, at any given time all nodes must be using the same
schedule.

To achieve these goals, each frame in i-MAC has a frame
counter f which increments for every frame and wraps after
20n. The base-station transmits SSA info for sensor i in the
10 consecutive frames (to ensure reliable reception of the
SSA information) that satisfy 10∗ (i−1) ≤ mod(f, 10∗n) <
10 ∗ i − 1 in the Node-SSA field (Figure 11). Sensor nodes
thus wake up in the frames intended for them to update
their SSA information as well as to correct possible time-
synchronization errors due to skew. Since the number of
slots s might change, the ACK carries and s, m field 11. This
scheme allows the sensors to duty-cycle and save power.

In the wake of an SSA change, each packet also contains
an SSA-start frame number (SSA-SFF)(Figure 11) that in-
dicates the frame number at which the sensors can start
using the new schedule. Until this frame number, the sen-
sors must continue using the old schedule. The SSA-SFF
is chosen to be n frame away from the frame at which the
schedule was updated. This ensure that all the nodes have
received the new SSA before the SSA-SFF.

Persistent Collision Syndrome (PCS)
When load is suddenly increased in a machine, the traffic
patterns will change. While i-MAC will eventually learn
and begin adapting itself to the new conditions, during the
transition period when the list of burst sets still retains mem-
ory from the low load conditions, the existing SSA might fall
short of avoiding all the collsions. Suppose for example, that
a machine was lightly loaded and sensors 1,15 were never
triggered at the same time and thus were assigned the same
time-frequency slot for transmission. Now suppose the ma-
chine was suddenly fully loaded and under these conditions
sensors 1 and 15 frequently trigger together. During the
short period when the old SSA is followed, sensors 1 and 15
will persistently keep trying to transmit in the same slot and
consequently never succeed in their transmissions. We shall
refer to this as the Persistent Collision Syndrome (PCS).
PCS can also arise under normal operating conditions, since
certain very rarely occurring bursts may not have been cap-
tured in the list of burst sets.

Solution To PCS
To circumvent PCS, each sensor keeps track of the number
of times a particular transmission has failed. If a particu-
lar transmission fails more than a certain number of times
in consecutive frames (say 3 consecutive frames), i-MAC
assumes a PCS and attempts to avoid it by switching tem-
porarily to a Randomized Transmission Mode (RTM). In
RTM, instead of using its assigned slot, it uniformly ran-
domly chooses one of the next available b time-frequency
slots (these may span across multiple frames) and transmits
in this slot. The value b should be a conservative value to
accommodate large bursts, but not too conservative to re-
duce the throughput significantly. i-MAC maintains the size
of the largest observed burst and uses this as the value of b.

The Starting Problem
When a machine starts afresh after a halt, i-MAC has not
yet compiled the list of burst sets and thus has not com-
puted an SSA. During this phase, i-MAC transmits in the
randomized transmission mode for a few product cycles un-
til the new SSA is computed and adopted by the various
sensors. For this phase we chose b to be 10% of the total
number of sensors of the machine.

6. RESULTS
Since i-MAC adapts to its host machine, a meaningful

evaluation requires testing i-MAC on several different ma-
chines. Gaining access to real manufacturing machines to
conduct experiments proves to be extremely difficult for
two reasons. First, typical manufacturing environments run
on aggressive deadlines and obtaining an idle machine for
performing experiments is usually not easy. Second, these
machines are extremely expensive and not easy to procure.
While i-MAC has been implemented, consequently, in this
paper, for a meaningful evaluation of i-MAC, we relied on
simulations. However, we used actual measurements from
our implementation to seed the various parameters (such as
slot timings etc.) into the simulations.

While there are several accurate simulators to test the
timing and performance of specific assembly lines that are
used by designers, to the best of our knowledge, there is
no established generic model for traffic in assembly lines.
Further, to the best of our knowledge, there are no public
databases that provide traffic traces for assembly lines. We
used a proprietary simulator to generate random assembly
lines in order to test i-MAC. The simulator was built based
on inputs collected from several machine users. These in-
puts were in many cases approximate and of verbal nature
rather than precise. For example, “there are few large sized
machines (150 sensors or more) and most machines have
between 60-100 sensors” or “large number of automated ma-
chines have product arrival rates in the range of 1-4sec at
full load while larger machines with small robotic parts have
arrival rates of 5-10 sec and some might have up to 60 sec-
onds,” etc. Figure 13 depicts the distribution of number of
sensors per machine from 50,000 assembly lines generated
from our simulator and Figure 14 depicts the distribution of
production cycle times (the inter-arrival times of products
at full load).

Based on the studies performed for WISA [1], there is al-
most no electromagnetic interference due to the operation of
machines in the 2.4Ghz region in factory floors. The packet
loss model in our simulator was rather simple - the chan-
nel is assigned a packet success rate (PSR) and packets are
dropped with a probability 1-PSR. Given that communicat-
ing nodes frequency hop in every frame in i-MAC there no
correlation between two successive transmissions, this model
tends to be not too far to reality. Further, even if one chan-
nel has a low PSR, typically another will have a higher PSR.
Choosing the same low PSR for all channels provides us with
a worst case performance.

An Example Run
In this section we aim to provide the reader an intuition into
the learning behavior of i-MAC using a machine with 165
sensors and seven stations. The machine has a production
cycle time of 2 seconds. We equip the machine’s base-station
with a single CC2420 radio m = 1. The machine is inten-

323

Figure 12: Operation of i-MAC

0

5

10

15

20

25

30

Number of Sensors

%
ag

e
of

 M
ac

hi
ne

s

60− 80

80 −100

100 −120

120−140
140−160

160−20020− 40

 40 − 60

Figure 13: Distribution of num-

ber of sensors.

0

5

10

15

20

25

30

35

40

45

Production Cycle Time

%
ag

e
of

 M
ac

hi
ne

s

2−5 sec

0−2 sec

5−10 sec

10−60 sec

Figure 14: Distribution of pro-

duction cycle times.

Figure 15: How i-MAC learns and adapts to traffic conditions.

tionally subject to extreme changes in load conditions in
order to stress-test the learning behavior of i-MAC. To pro-
vide a reference for comparison we ran p-persistent slotted
ALOHA and exponential backoff (EB) based MAC protocols
on the same machine with identical product traffic. To give
ALOHA and EB the maximum benefit of doubt, through
experiments we determined the parameters (p for ALOHA
and maximum backoff window for EB) that minimized their
average delay. We found that for ALOHA, p = 0.2 and for
EB a backoff window of 8 were the best values. Figures
18A, B and C depict the delays experienced by each of the
event notification packets over the first 1,000 seconds of a
machine’s operation using i-MAC, ALOHA and EB respec-
tively. The PSR was fixed at 90% for this experiment6.
Point A : When the first product arrives i-MAC has no
information regarding the nature of traffic in the machine.
Consequently it starts in the Randomized Transmission Mode
(RTM) with 16 time-slots (10% of the sensors) as discussed
in section 5. The maximum notification delays are around
28ms for the packets resulting from the arrival of the first

6This was a pessimistic choice, as in all our measurements
for distances less than 10mts, we found PSR to be higher
than 90%.

product. Peak delays seen in ALOHA are similar and in the
range of around 30ms while those seen by EB are slightly
higher in the range of 40 ms.
Interval A and B : In the interval A to B products arrive
at one tenth the full load. By the time the second prod-
uct arrives, i-MAC learns from the traffic generated by the
first product by updating the list of burst sets and generates
an SSA with only 5 time-slots (Figure 18A). Starting from
the second product, i-MAC exits RTM when all the sensors
adopt this new SSA. Consequently, the delays during the
rest of interval A-B have now dramatically reduced to less
than 12ms as i-MAC has “learned” and adapted to the ma-
chine’s traffic. Delays for ALOHA and EB however, vary
between 30 and 40ms throughout this interval.
At point B : Here the load on the machine is suddenly
increased to 100% (products arrive 10 times faster that in
the interval A-B). This changes the nature of traffic signif-
icantly; however, some part of what i-MAC has learned is
still valid (many of the burst sets are still valid). The old
SSA only partially succeeds in avoiding collisions among sen-
sor node transmissions. Consequently, once again at point
B, the notification delays spike to around 35ms.
Interval B to C : Within a few seconds of being subject to
the new load, i-MAC once again learns the new traffic con-

324

ditions by updating its list of burst sets. This new SSA has
6 time-slots instead of 5 (see Figure 18A). It then generates
a new SSA and distributes it among all the sensors.
Once the new SSA is adopted, the notification delays de-
crease and remain below 25ms during the rest of interval
B-C. The delays seen in ALOHA and EB however increase
and lie between 40 and 60ms.
Interval C to D : The load is reduced back to 10% dur-
ing the interval C-D. The delays experienced by i-MAC in
the interval A-B are slightly (about 2ms on average) higher
on average than those in the interval C-D. This is because
the new SSA has 6 slots in this interval geared towards ac-
commodating the possibility of products arriving at full load
(i-MAC learns quickly but forgets slowly since recent events
have exponentially higher weight). Delays seen by EB and
ALOHA revert back to those seen in interval A to B.
Interval D to E : Once again the load is suddenly switched
to 100%, however, this time there is no spike in the notifica-
tion delays at point D similar to that seen at point A. This
is because i-MAC learned from the previous fully loaded in-
terval B-C and adapted its SSA accordingly with 6 slots.
Delays for EB and ALOHA remain the same as in the inter-
val B to C.

0 10 20 30 40 50 60 70 80
−6

−5

−4

−3

−2

−1

Hard Real−Time Deadline in ms

P
ro

ba
bi

lit
y

of
 m

ee
tin

g
th

e
de

ad
lin

e

IMAC − 1 Ch
IMAC − 2 Ch
IMAC − 4 Ch
MALOHA − 1 Ch
MALOHA − 2 Ch
MALOHA − 4 Ch
MCEB − 1 Ch
MCEB − 2 Ch
MCEB − 4 Ch

10

10

10

10

10

10

Figure 16: Performance of i-MAC

6.1 Performance of i-MAC
In this section we compare the performance of i-MAC

with other MAC protocols proposed in literature. We gen-
erated 1000 different random machines from our simulator.
Each machine was simulated under fully loaded conditions
for 108 events. CER was computed as the fraction of packets
that succeeded before a given deadline. The graph provides
the average delay incurred in achieving various CER values
across all the machines. The channel PSR was set to 90%
in all simulations. As mentioned before, this choice of PSR
was significantly pessimistic compared to our measurements
in a real factory floor that gave us a PSR of about 99% was
observed for non-line of sight distances of 3-10 mts (typical
size of a machine)

We compare the performance of i-MAC with three other
multi-radio MAC protocols, namely, FTDMA, Multi-channel
Exponential Backoff (MCEB) and T-MALOHA.
MCEB [4] is a multi-channel extension of the exponential
backoff scheme where the base-station is equipped with mul-
tiple radios and can receive simultaneously over different
channels from various sensors. A crucial parameter deter-

mining the performance of MCEB is the maximum back-
off window. To provide the maximum benefit of doubt for
MCEB we tried several different maximum window sizes and
chose the one corresponding to the best results namely 16.
T-MALOHA [4] uses a pre-determined fixed window size of
time-frequency slots unlike MCEB. This window is chosen
to be larger than (ideally equal to) the largest possible traf-
fic burst in the machine. In our simulations we found that a
window size of 16 gave T-MALOHA the maximum benefit.
For seeding the slot widths for each of these protocols we
used the measurement data used in [4].

Figure 16 depicts the CER (y-axis), versus different hard
real-time deadline (x-axis) and number of radios used for
each of the four protocols. As seen in Figure 16, i-MAC
performs “significantly” better than all the other existing
MAC protocols. Delays offered by i-MAC are less than half
that offered by MCEB or FTDMA for the same probability
of communication error and more than 30% less than that
offered by T-MALOHA. This is largely due to the efficient
SSA in i-MAC.

Longevity : The CC2420 radio draws 17.4mA,19.7mA and
0.426mA in transmit, receive and idles modes [22]. Further
each radio wakeup in itself costs about 7.5µASec [4]. There
are three main sources of power consumption for the sensors
running i-MAC. First, the energy consumed by the sensor
itself, second, the energy consumed for transmitting event
notifications and finally the energy consumed in listening to
ACKs for SSA information and time-synchronization.
Power Consumed due to Events : If the average number of
retransmissions required by i-MAC is r, then for each event
occurrence, the sensor consumes energy required for trans-
mitting r times and listening to the ACK r times. The radio
is put in idle mode between re-transmissions and powered
off between events. Consequently it must be woken up once
for each event occurrence. Each transmission lasts about
800 µsec and each ACK reception lasts about 1ms, the total
energy consumed in the process is given by r(17.4 × 0.8 +
19.7) + 7.5 µAHr. If events occur at a rate of β, the total
average consumed will be (r(17.4× 0.8 + 19.7) + 7.5) β.
Power Consumed Listening to ACKs : Given a clock-skew
of MSP430 is around 20-30ppm and the real time clock has a
minimum resolution of about 32µsec (at 32Khz), the clocks
need to be corrected roughly once a second to maintain
perfect synchronization with an error of ± 32µsec. How-
ever, correction every 500ms provides for sufficient over-
provisioning. Listening to an ACK costs about 19.7 µAHr.
A sensor may not succeed in listening to the ACK in the
very first attempt and will on an average require 1

PSR
at-

tempts. Given that PSR usually ranges between 90% -99%,
the average energy consumption to listen for a single ACK is
about 20µAHr. While a sensor typically listens to an ACK
twice in one second, it does so while trying to receive and
ACK response for its event notification message Ű this oc-
curs at a rate β. Further since the radio is powered down, it
needs to be woken up each time to listen to an ACK. Thus,
the average energy consumed listening to ACKs is given by
(2− β)(7.5 + 20).
Power Consumed by the Sensor : This depends on the spe-
cific sensor and can be comparable to, or even higher than,
the power consumption of the radio. In our analysis, how-
ever, we consider only the power consumed by i-MAC.

In our simulations we found that that the average number

325

of re-transmission for i-MAC was slightly higher than 1
PSR

and close to about 1.17. Using high end LiH batteries that
have a capacity of 2900mAHr we can compute the longevity
of the sensors as 6 yrs for β of 1 per second and 8 yrs for
β < 0.1. Power consumption by the sensor may cut these
numbers by half or even more.

7. PRACTICAL CONSIDERATIONS
In this section we discuss some practical considerations

that arise when deploying i-MAC in real environments.
Interference from neighboring machines : A typical
factory floor is designed to hold a large number of machines.
Consequently, a machine is often surrounded by other ma-
chines within a distance of a few meters. As a result wireless
communication among neighboring machines may interfere
with each other. These effects can however be significantly
mitigated through careful frequency planning to ensure that
neighboring machines use non-overlapping set of channels,
coupled with carefully chosen transmission power settings
to avoid over-extending the range significantly beyond the
machine’s boundaries.
Effect of WiFi : Since WiFi operates in the same frequency
range as 802.15.4, its presence in the factory floor can poten-
tially degrade the performance of i-MAC. In our experience
however, we found that the persistent retransmissions and
frequency-hopping are usually sufficient to mitigate the ef-
fects due to WiFi. Several factories today forbid the use of
WiFi inside factories to avoid interference with the operation
of their machines. Such regulations may not be unreason-
able for dedicated manufacturing environments.

8. CONCLUSION
Automated manufacturing machines perform repetitive tasks

and consequently, repetitive communication patterns are in-
duced in the control loops of these machines. In this pa-
per we presented a novel MAC protocol,i-MAC, that learns
collision patterns among transmitting nodes, and leverages
it to efficiently coordinate transmissions. i-MAC performs
significantly better than existing low-power wireless MAC
protocols designed for sensing in manufacturing machines.
We believe that learning mechanisms developed in this pa-
per are generic and can be applied to other systems that
exhibit repetitive patterns.

9. REFERENCES
[1] ABB-WISA. http://www.eit.uni-kl.de/litz/WISA.pdf.
[2] Ansari, J., Riihijaveri, J., Mahonen, P., and Haapola,

J. Implementation and Performance Evaluation of
nanoMAC : A Low-Power MAC Solution for Higher
Density Wireless Sensor Networks. International Journal of
Sensor Networks 2 (July 2007), 341–349.

[3] Barroso, A., Roedig, U., and Sreenan, C. J. uMAC: An
Energy-Efficient Medium Access Control for Wireless
Sensor Networks. In Proceedings of the 2nd IEEE European
Workshop on Wireless Sensor Networks (EWSN2005)
(Istanbul, Turkey, February 2005), IEEE Computer Society
Press.

[4] Chintalapudi, K., and Venkatraman, L. On the Design
of MAC Protocols for Low Latency Hard Real TimeDiscrete
Control Applications Over 802.15.4 Hardware. In
International Conference on Information Processing in
Sensor Networks (IPSN)-SPOTS (2008), pp. 356–367.

[5] Dam, T. V., and Langendoen, K. An Adaptive Energy
Efficient MAC Protocol for Wireless Sensor Networks. In

The First ACM Conference on Embedded Networked
Sensor Systems (Sensys’03) (Los Angeles, CA, USA,
Novemeber 2003).

[6] ELPRO-Technologies. http://www.elprotech.com/.
[7] Enz, C. C., El-Hoiydi, A., Decotignie, J. D., and

Peiris, V. WiseNET: An Ultralow-Power Wireless Network
Solution. IEEE Computer 37, 8 (November 2004).

[8] Ephremides, A., and Mowafi, O. A. Analysis of a Hybrid
Access Scheme for Buffered Users - Probabilistic Time
Division. IEEE Transactions on Software Engineering
SE-8, 1 (Jan 1982), 52–61.

[9] Feeny, L. M., Nilsson, M., Aia, M., and Min, J.
Investigaing the power consuption of a wireless network
interface in an ad-hoc networking environment. In IEEE
INFOCOM (2001).

[10] Foundation, H. C. http://www.hartcomm.org/.
[11] H. J Korber, H. W., and Scholl, G. Modular Wireless

Rreal-Time Sensor/Actuator Network for Factory
Automation Applications. IEEE Transactions on Industrial
Informatics 3, 2 (May 2007), 111–119.

[12] International, P. . P. http://www.profibus.com/.
[13] Jamieson, J., Balakrishnan, H., and Straser, Y. C. T.

Sift: A MAC Protocol for Event-Driven Wireless Sensor
Networks. Tech. Rep. 893, MIT Laboratory for Computer
Science, May 2003.

[14] Janssen, D., and Buttner, H. Real-time Ethernet:
theEtherCAT solution. Computing and Control
Engineering 15 (2004), 16–21.

[15] Liu, Z., and Elhanany, I. RL-MAC : A Reinforcement
Learnning Based MAC Protocol for Wireless Sensor
Networks. International Journal of Sensor Networks 1
(September 2006), 117–124.

[16] Lu, G., Krishnamachari, B., and Raghavendra, C. S.
An adaptive Energy-Efficient and Low-Latency MAC for
Data Gatherting in Wireless Sensor Networks. In
Proceedings of the 18th International Parallel and
Distributed Processing Symposium (April 2004).

[17] Negri, L., Beutel, J., and Dyer, M. The Power
Consumption of Bluetooth Scatternets. In Consumer
Communications and Networking Conference (Jan 2006).

[18] Polastre, J., Hill, J., and Culler, D. Versatile Low
Power Medium Access for Wireless Sensor Networks. In
The Second ACM Conference on Embedded Networked
Sensor Systems (Sensys’04) (Baltimore, MD, USA,
Novemeber 2004).

[19] Rajendran, V., Obraczka, K., and
Garcia-Luna-Aceves, J. J. Energy-Efficient,
Collision-Free Medium Access Contorl for Wireless Sensor
Networks. In The First ACM Conference on Embedded
Networked Sensor Systems (Sensys’03) (Los Angeles, CA,
USA, Novemeber 2003).

[20] Rhee, I., Warrier, A., Aia, M., and Min, J. Z-MAC: a
Hybrid MAC for Wireless Sensor Networks. In The Third
ACM Conference on Embedded Networked Sensor Systems
(Sensys’05) (San Diego, CA, USA, Novemeber 2005).

[21] Roedig, U., Barroso, A., and Sreenan, C. J. f-MAC: A
Deterministic Media Access Control Protocol Without
Time Synchronization. In European Workshop on Wireless
Sensor Networks (EWSN2006) (Zurich, Switzerland,
February 2006).

[22] TI-CC2420. http://focus.ti.com/docs/prod/folders/print/
cc2420.html.

[23] Ye, W., Heidemann, J., and Estrin, D. Medium Access
Control With Coordinated Adaptive Sleeping for Wireless
Sensor Networks. IEEE/ACM Transactions on Networking
12, 3 (June 2004), 493–506.

[24] Zheng, T., RadhaKrishnan, S., and Sarangan, V.
PMac : An Adaptive Energy Efficient MAC Protocol for
Wireless Sensor Networks. In Proceedings of the 19th IEEE
International Parallel and Distributed Processing
Symposium (IPDPS 05) (2005).

326

