
IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 24, NO. 5, MAY 2016 833

Robust and Efficient Multiple Alignment
of Unsynchronized Meeting Recordings

T. J. Tsai, Student Member, IEEE, and Andreas Stolcke, Fellow, IEEE

Abstract—This paper proposes a way to generate a single
high-quality audio recording of a meeting using no equipment
other than participants’ personal devices. Each participant in
the meeting uses their mobile device as a local recording node,
and they begin recording whenever they arrive in an unsynchro-
nized fashion. The main problem in generating a single summary
recording is to temporally align the various audio recordings in a
robust and efficient manner. We propose a way to do this using an
adaptive audio fingerprint based on spectrotemporal eigenfilters,
where the fingerprint design is learned on-the-fly in a totally unsu-
pervised way to perform well on the data at hand. The adaptive
fingerprints require only a few seconds of data to learn a robust
design, and they require no tuning. Our method uses an itera-
tive, greedy two-stage alignment algorithm which finds a rough
alignment using indexing techniques, and then performs a more
fine-grained alignment based on Hamming distance. Our pro-
posed system achieves >99% alignment accuracy on challenging
alignment scenarios extracted from the ICSI meeting corpus, and
it outperforms five other well-known and state-of-the-art finger-
print designs. We conduct extensive analyses of the factors that
affect the robustness of the adaptive fingerprints, and we provide a
simple heuristic that can be used to adjust the fingerprint’s robust-
ness according to the amount of computation we are willing to
perform.

Index Terms—Audio fingerprint, adaptive, eigenfilter, align-
ment, meetings.

I. INTRODUCTION

M ORE and more, mobile computing devices are carried
by their users at all times, including when they engage

in meetings with others. As a result, it makes sense to explore
an application scenario in which multiple mobile devices could
be used to generate a reasonably high-quality recording of a
meeting, offering a low-cost alternative to potentially expen-
sive recording equipment or software. In this scenario, meeting
participants would use their mobile phones, tablets or laptop
computers as audio recording devices in an unsynchronized
manner. No matter when they arrive at the meeting, partici-
pants place their mobile devices on the table in front of them
and begin recording. Assume person A arrives at time t = 0
minutes and begins recording. Person B arrives at time t = 2.

Manuscript received June 04, 2015; revised November 30, 2015; accepted
January 26, 2016. Date of publication February 08, 2016; date of current ver-
sion March 23, 2016. The associate editor coordinating the review of this
manuscript and approving it for publication was Dr. Hirokazu Kameoka.

T. J. Tsai is with Department of Electrical Engineering and Computer
Science, University of California Berkeley, Berkeley, CA 94720 USA (e-mail:
tjtsai@icsi.berkeley.edu).

A. Stolcke is with Microsoft Research. He resides in Berkeley, CA 94704
USA.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TASLP.2016.2526787

Person C joins remotely via skype at t = 5, and he too simply
places his mobile phone in front of him at his remote location.
Person D arrives late at time t = 25 minutes and begins record-
ing. Some people leave the meeting early; others stay late. At
the end of the meeting, everyone has an audio recording. We
would like to take these partial, unsynchronized, overlapping
audio recordings and generate a single high-quality “summary"
recording of the entire meeting. This paper proposes a method
for accomplishing this in an efficient and robust manner.

The main problem that needs to be addressed in this applica-
tion scenario is to align the audio files with each other in time.
Once the audio files are aligned in time, we can generate a sum-
mary recording by simply averaging the audio channels or using
a blind beamforming approach. Note that the term “alignment”
often refers to aligning text and audio (e.g. forced alignment),
whereas here we are aligning audio to audio. No transcriptions
are necessary for this type of alignment.

Note that explicit timestamping of recordings would not be
a reliable way to align files. Clocks on mobile devices are not
typically synchronized, and might not even record time at the
required precision (on the order of milliseconds).

The most straightforward content-based alignment method
is to use a simple cross-correlation method. While cross-
correlation might work for aligning audio files with small time
offsets, it would be prohibitively expensive for situations where
the recordings are an hour long and the time offset might be
25 minutes, as in the example above.1 Additionally, simple
cross-correlation alone will not handle transitive relationships:
if A and B overlap, and B and C overlap, but A and C do
not overlap, we should still be able to align all three using the
information given. One can immediately come up with several
ideas to improve the efficiency of a cross-correlation approach:
performing the cross-correlation on FFT data rather than time
samples, using only a segment of audio to compute the corre-
lation estimates, etc. This paper represents the development of
one such line of thought taken to its logical conclusion.

This paper proposes an approach to the multiple alignment
problem that is based on audio fingerprinting techniques. The
primary novel contribution of this work is a method for learning
a fingerprint representation on-the-fly in an unsupervised man-
ner. This binary fingerprint representation is based on learning
a set of spectrotemporal eigenfilters, and then allowing the fin-
gerprint bits to represent whether the resulting spectrotemporal
features are increasing or decreasing in time. The fact that this
method works in an unsupervised fashion makes it possible to
learn the fingerprint design on-the-fly, so that the fingerprint

1We will compare the computation requirements of our approach with a
simple pairwise cross-correlation method in Section VI.

2329-9290 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

834 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 24, NO. 5, MAY 2016

representation is adapted to each alignment scenario (i.e. group
of audio files to be aligned) rather than being fixed based on
a global training set. One significant benefit of our approach
is that, because the fingerprint design is learned on-the-fly,
our system requires little or no tuning. The robustness of the
fingerprints can be adjusted very easily by tuning two hyper-
parameters, according to the amount of computation we are
willing to perform. Once the audio is represented in a binary fin-
gerprint representation, the alignment is accomplished using an
iterative, greedy two-stage alignment algorithm which performs
a rough alignment using efficient indexing techniques, and then
refines the alignment estimate based on Hamming distance.

The rest of the paper is organized as follows. Section II dis-
cusses background work on relevant topics. Section III explains
the experimental setup, including a detailed description of
the audio fingerprinting technique and alignment algorithm.
Section IV shows the results of our experiments. Section V
does an in-depth analysis of results. Section VI discusses sev-
eral practical takeaway lessons. Section VII summarizes and
concludes the work.

II. RELATED WORK

Our approach for the alignment of multiple overlapping
meeting recordings grows out of the development of audio
fingerprinting techniques. We will introduce previous work in
three areas: music identification, online copy detection, and
alternative applications of audio fingerprinting.

Audio fingerprinting techniques were first developed in the
context of music identification. In this scenario, a user, often
with significant ambient noise, would like to identify a song
that is playing in the background. By recording a noisy sam-
ple of the song, the user can search for a match in a database
of known songs. There are several commercial applications for
cell phones that offer this functionality, such as Shazam [1] and
SoundHound [2]. We will briefly describe some well-known
approaches.

Perhaps the most well-known approach is the Philips finger-
print proposed by Haitsma and Kalker [3]. In this approach, one
first computes a spectrogram containing 33 Mel bands between
300 Hz and 2kHz. Each frame yields a single 32-bit fingerprint,
where each bit conveys whether the energy difference in two
adjacent frequency bands increases or decreases between two
consecutive frames. Many works have extended this approach
in various ways, such as weighting the fingerprint bits according
to their robustness [4], [5], giving more emphasis to fingerprints
that repeat consecutively and are thus more stable and robust
[6], and distributing the database across a cluster in a way that
is memory-efficient [7], [8].

Another well-known approach is the Shazam fingerprint
proposed by Wang [9]. This approach first identifies local
spectral peaks in the spectrogram. It then considers various
pairings of peaks and constructs 32-bit fingerprints of the form
(f1, f2,Δt), where f1 and f2 denote the frequency of the two
spectral peaks and Δt denotes the time difference between the
peaks. This approach rests on the insight that the spectral peaks
are the part of the signal that are most robust to additive noise,

and that the onset of spectral peaks is very pronounced in musi-
cal signals. Several works extend this approach to allow for
tempo changes [10], pitch shifts [11], or both [12], [13]. Other
works explore a similar method of encoding the locations of
maxima in wavelet coefficients [14], [15], spectral luminance
values [16], and sparse spectrotemporal dictionary elements
[17]. Some approaches use the location of local maxima in
time, time-frequency, or time-feature space to determine when
to compute a local fingerprint descriptor [18]–[21].

Many other works propose fingerprints based on manually
designed features, such as modulation frequency features [22],
[23], chroma [20], [21], spectral flatness [24], [25], and spectral
subband moments [26], [27].

Several approaches to music identification have incorporated
learning into the process. Ke et al. [28] improve upon the Philips
fingerprint by treating the spectrogram as an image, consider-
ing a family of Viola-Jones face detection features [29], and
then introducing a pairwise boosting algorithm to automati-
cally select the most robust features and their corresponding
thresholds. The works by Jang et al. [30] and Kim and Yoo
[31] similarly consider a candidate set of features, and then use
boosting to select the most robust set of features and thresh-
olds. Burges et al. [32] propose a method based on training a
linear convolutional neural network, where each layer performs
an oriented PCA reduction.

Audio fingerprinting has also been explored in the context of
online copy detection. In this scenario, we would like to detect
when a user uploads copyrighted material to a file sharing web-
site. Note that music identification and copyright detection both
have the same basic problem formulation but different types of
noise and distortion. In the music identification case, the distor-
tions may include the room acoustics, additive noise from the
environment, and the microphone characteristics. In the online
copyright detection case, the distortions may include different
audio compression qualities, frame dropping, equalization, and
mixing with other audio tracks. The TRECVID content based
copy detection task [33] provided a common platform to eval-
uate both video and audio copy detection, and it spurred much
of the research in online audio copy detection [18], [34]–[43].

Beyond music identification and copy detection, audio fin-
gerprinting techniques have also been applied to a variety of
other applications. These include detecting repeating objects in
audio streams [44]–[48], recognizing a TV channel in real-time
[49], synchronizing two different versions of a movie [50], two
TV audio streams [51], or a music video and a studio album
track [52], and performing self-localization of multiple record-
ing devices [53]. Of particular interest to this present work,
several works have explored the synchronization of consumer
videos of the same live event. Shrestha et al. [54] apply the
Philips fingerprint to match pairs of video in order to synchro-
nize several video recordings of the same live event. Kennedy
and Naaman [55] likewise apply the Shazam fingerprint in a
pairwise manner to synchronize videos of live concert record-
ings. Su et al. [56], Bryan et al. [57], and Six and Leman [58]
extend the work of Kennedy and Naaman by applying addi-
tional post-processing steps such as clustering or a more refined
alignment.

TSAI AND STOLCKE: ROBUST AND EFFICIENT MULTIPLE ALIGNMENT OF UNSYNCHRONIZED MEETING RECORDINGS 835

Our work explores a specific application which has hitherto
not been studied: aligning unsychronized audio recordings of
meetings, such as might be collected from participants’ per-
sonal devices. This application scenario presents some unique
challenges and requirements which lead to the development of
novel audio fingerprinting techniques.

The primary contribution of our work is a method to learn
an audio fingerprint design in an unsupervised manner. This
allows the fingerprint representation to be adaptive to each
alignment scenario (i.e. a set of meeting recordings that need
to be aligned). Rather than fixing a fingerprint representa-
tion based on a separate training set, the fingerprint design is
instead learned on-the-fly in a completely unsupervised fash-
ion and adapted to perform well on the data at hand. Many
fingerprint approaches are manually designed or learned in a
supervised manner, but, to the best of our knowledge, this is the
first entirely unsupervised adaptive fingerprinting method. Our
method is based on learning a set of spectrotemporal eigen-
filters, and then encoding whether or not the corresponding
spectrotemporal features are increasing or decreasing in time
as bits in the fingerprint. This method requires very little data
to train (on the order of seconds of speech), is efficient to com-
pute, and works without any labeled data, which allows us to
tailor the fingerprint design to the particular characteristics of
each alignment scenario.2

It is important to note that our current problem should
not be confused with research work on microphone arrays.
Research on microphone arrays focuses on small time lags
between microphone elements in order to infer source loca-
tion or inform beamforming weights. These works typically
assume that the microphone elements record audio in a coordi-
nated manner or are approximately synchronized, so that simple
cross-correlation over small time lags can be used to align the
recordings. Our focus here is on aligning audio files which
might be offset by an arbitrary amount of time (e.g. 30 min-
utes), or may not be directly overlapping at all (i.e. A overlaps
with B, B overlaps with C, but A and C do not overlap).

III. EXPERIMENTAL SETUP

The experimental setup will be described in five parts: the
fingerprint computation, the fingerprint design, the alignment
algorithm, the data, and the evaluation metrics.

A. Fingerprint Computation

The fingerprint computation consists of 6 steps, which are
described below.

1) Compute spectrogram. We used 100 ms windows in
time with 10 ms hop size to generate a linear spectrogram.
We then integrated over 33 Mel frequency bands between
200Hz and 2000Hz and took the logarithm of band ener-
gies. These settings are similar to those used in several
previous audio fingerprinting works [3], [28], [14], [18].

2This paper extends our earlier preliminary work [59]. Note that the lat-
tice projection step in our earlier work has been abandoned, as we empirically
verified that it led to less robust fingerprints.

2) Collect context frames. When computing the fingerprint
at a particular frame, we consider w frames of context. So,
at each frame we are working with a vector of dimension
33w.

3) Apply eigenfilters. We compute a set of N features at
each frame by applying N different spectrotemporal fil-
ters. In other words, each feature is a linear combination
of the log Mel spectrogram values for the current frame
and surrounding context frames. Note that MFCCs are a
special case of spectrotemporal filters in which the filter
coefficients match the coefficients of the discrete cosine
transform transform. Rather than using MFCCs, however,
we use filters that capture the directions of maximum vari-
ance. We will refer to these filters as eigenfilters. We will
discuss our choice of spectrotemporal filters in the next
section.

4) Compute deltas. For each of our N features, we com-
pute the change in the feature value over a time lag T .
If the feature value at frame n is given by xn, then the
corresponding delta feature will be Δn = xn − xn+T . In
our experiments, we used a time lag of 50 frames (.5 sec-
onds). The justification for this step and for this particular
choice of T will be discussed in the next section.

5) Apply threshold. Each of the N delta features is com-
pared to a threshold value of 0, which results in a binary
value. These bits represent whether the N features are
increasing or decreasing across the time lag T .

6) Bit packing. The N binary values are packed into a sin-
gle 32-bit integer which represents the fingerprint value
for a single frame. This compact binary representation
will allow us to store fingerprints in memory efficiently
and to do reverse indexing, to quickly look up fingerprint
matches.

Figure 1 shows a block diagram of the fingerprint compu-
tation process. The text above the boxes shows the dimension
(per frame) at each stage of the process. The text below the
boxes provides additional clarifying information. We will now
turn our attention to an explanation and justification of why we
use the computation process in Figure 1.

B. Fingerprint Design

We now discuss the rationale and design of the proposed fin-
gerprint computation. Our formulation grows out of two key
principles of good fingerprint design.

Design principle 1: Informativeness. A good fingerprint
should represent a maximum amount of information in as lit-
tle space as possible. There are two direct consequences of this
principle in the context of our fingerprint. First, the threshold
for each bit should be set to the median of the underlying distri-
bution. This threshold value ensures that the fingerprint bit will
have maximum entropy and thus communicate the most infor-
mation. Note that if the threshold is set to an extreme value in
the tail of the distribution, the bit will always be 0 (or 1) and
thus communicate no useful information. Second, the finger-
print bits should be uncorrelated. Any correlations between
fingerprint bits represents inefficiency. For example, a single
fingerprint bit that is simply replicated 32 times will result in

836 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 24, NO. 5, MAY 2016

Fig. 1. Block diagram of the fingerprint computation.

a fingerprint which still only contains a maximum of 1 bit of
entropy. On the other hand, a set of 32 independent bits will
have the maximum 32 bits of entropy.

Design principle 2: Robustness. A good fingerprint should be
robust to noise. In the context of our fingerprint design where
each bit represents a feature compared to a threshold, achieving
robustness corresponds to maximizing the variance of the fea-
ture distribution. To see this, note that the feature distribution
will be roughly bell-shaped (as a result of the central limit the-
orem), and that the threshold will be set at the median of the
distribution (as discussed above). If a particular feature value
falls close to the threshold, a small perturbation from noise
may cause the feature to fall on the other side of the threshold,
resulting in an incorrect bit. This situation can be minimized by
maximizing the variance of the feature distribution.

We now express these design principles in a mathematical
form. Consider the nth audio frame in a set of audio data, and
let the log Mel spectrogram values for the w context frames be
denoted an ∈ �33w. Let A ∈ �M×33w denote the matrix con-
taining all such data points an, where M is (approximately) the
total number of audio frames in the data set. Let xi ∈ �33w

specify the weights of the ith spectrotemporal filter, and let S ∈
�33w×33w be the covariance matrix of the data in A. Finally,
let N denote the number of bits in the fingerprint. Then, for
i = 1, 2, . . . , N , we would like to solve

maximize xT
i Sxi

subject to ‖xi‖22 = 1

xT
i xj = 0, j = 1, . . . , i− 1.

(1)

Each resulting xi specifies the spectrotemporal filter weights
for the ith fingerprint bit.

Let’s unpack the above formulation. The first line can be
summarized as “maximize the variance.” To see this, note that
the variance of the features Axi can be expressed as 1

M ‖Ãxi‖22,
where the columns of Ã are zero mean. This objective is
motivated by our second design principle (robust). The first
constraint simply says, “finite energy.” We could use a num-
ber of different ways to constrain the energy, and we choose
the L2 norm for reasons that we will see shortly. The last con-
straint says, “uncorrelated filters.” This constraint ensures that
the filters are mutually orthogonal. This constraint is motivated
by our first design principle (uncorrelated bits).

Equation (1) is exactly the eigenvalue/eigenvector problem,
where xi, i = 1, . . . , N are the N eigenvectors of S with high-
est eigenvalue. The benefit of this formulation is that it can

be solved very efficiently using standard implementations. The
eigenvectors, once “reassembled” as eigenfilters spanning w
context frames, are the spectrotemporal filters that are applied
in Step 3 of the fingerprint computation. These spectrotem-
poral filters yield the spectrotemporal features with maximum
variance, ensuring that the fingerprint bits will be robust. The
eigenvectors will also be orthogonal to one another, ensuring
that the fingerprint bits will be uncorrelated. One big advantage
of this formulation is that it can be done in an unsupervised
fashion. We can thus design a robust fingerprint without labeled
data.

We cannot simply threshold the spectrotemporal features
themselves, however, for the resulting fingerprint would not sat-
isfy one other important characteristic: invariance to volume
level. In order to work effectively in our use-case scenario,
the fingerprints must be invariant to acoustic energy level. So,
the same audio signal attenuated or amplified should yield the
same fingerprint values. This is important because when a per-
son speaks, the same signal will be picked up by multiple
recording nodes, but with varying attenuation levels (along with
distortions, of course) depending on the distance to the speaker.

To make our fingerprint invariant to acoustic energy level, we
compute delta features before applying the thresholds. If the
feature at frame n is xn, then the corresponding delta feature
will be Δn = xn − xn+T , where T represents the time lag. By
symmetry, these delta features will have a distribution centered
around 0, so our median thresholds will all be set to 0. Each fin-
gerprint bit thus represents whether the features are increasing
or decreasing in time (across a time lag T), which is invariant
to acoustic energy level. In contrast, applying a threshold to the
features themselves (rather than the delta features) would not
be invariant to volume level.

Computing delta features is a more effective way to achieve
volume-invariance than L2 normalization for two reasons. First,
it is computationally cheaper. Computing delta features sim-
ply requires one additional subtraction per feature per frame,
whereas normalizing the spectral values in a set of context win-
dows at each frame is much more expensive. Second, the delta
features are far more robust. Each delta feature can thought of
as the sum of two different variables, which effectively doubles
the variance of the feature and thus increases its robustness.

There is a tradeoff in the selection of the time lag T . For very
small T , the delta features will have lower variance, since we
are taking the difference between features that are immediately
adjacent in time (and thus highly correlated). A larger T will
thus yield a more robust fingerprint up until the point where the

TSAI AND STOLCKE: ROBUST AND EFFICIENT MULTIPLE ALIGNMENT OF UNSYNCHRONIZED MEETING RECORDINGS 837

Fig. 2. Graphical depiction of the temporal alignment problem.

signal becomes decorrelated with itself. On the other hand, a
very large T results in a fingerprint that is not very localized in
time. So, the ideal T is the minimum time lag that ensures that
the underlying audio signal has become decorrelated with itself.
The selection of T could thus be determined empirically on-the-
fly by measuring autocorrelation, or it could be set to a fixed
value based on a priori assumptions. Given that typical speech
rates in American English range between 110 - 150 words per
minute, we select T = 50 frames (.5 seconds) as a conservative
value that ensures decorrelation.

To recap, we select a set of orthogonal spectrotemporal filters
which maximize the variance of the resulting feature distribu-
tion. We can do this efficiently by computing eigenvectors with
highest eigenvalues. Selecting this set of eigenfilters ensures a
maximally robust fingerprint. In order to make our fingerprints
invariant to acoustic energy level, we insert an additional delta
computation stage before applying the thresholds.

The above representation is similar to locality sensitive hash-
ing [60], except that the data is projected onto dimensions
of maximum variance, rather than projected onto randomly
selected directions. In the hashing literature, this approach is
known as spectral hashing [61]. So, one can think of our
fingerprint computation as applying spectral hashing to audi-
tory spectrogram values in surrounding context frames, along
with a modification which ensures that the representation is
volume-invariant.

C. Alignment Algorithm

In this subsection, we describe the algorithm used to align
the multiple audio recordings in time. The problem of aligning
multiple recordings in time is depicted graphically in Figure 2.
Here, we see four different audio recordings denoted by A, B,
C, and D. Person A begins recording first (t = 0), person B
begins recording 180 seconds into the meeting, and so forth.
Note the nontransitive relationships among the files: A overlaps
with B, and B overlaps with C, but A and C do not overlap. It
will be important for our algorithm to be able to handle these
nontransitive relations, rather than simply comparing files in a
pairwise manner.

The alignment algorithm has four steps, each described
below.

Step 1: Initialization. The initialization step has four compo-
nents. First, we determine the adaptive fingerprint design using
the method outlined in the previous subsection. This determines
the 32 spectrotemporal filters that are adapted to the data at

hand. Second, we compute fingerprints on all the audio record-
ings in the current alignment scenario. In the example shown
in Figure 2, this means extracting fingerprints from recordings
A, B, C, and D. Third, we create a database which contains
triples of the form (fp, fileid, offset), where fp specifies the
32-bit fingerprint value, fileid specifies the audio recording,
and offset specifies the frame offset relative to the beginning
of the audio recording. To make the fingerprint lookups more
efficient, we also create a reverse index which maps fingerprint
values to the list of triples with that fingerprint value. Fourth, we
select one of the audio recordings to serve as our “anchor” file.
In our experiments, we selected the anchor file to be the audio
recording with highest average energy. All other time indices
will be computed relative to the beginning of this anchor file.
We denote this time index as the universal time index. The time
scale in Figure 2 shows the universal time index when recording
A is selected as the anchor file.

Step 2: Find the best match. Using the anchor file as a query,
we find the audio recording that has the strongest match. We
use the method proposed in the Shazam algorithm [9], which
is based on histograms of time differences. A brief explana-
tion is given here, and the reader is referred to the Shazam
paper for more details. For every fingerprint f at time offset
offsetquery in the query file, we look up the list of matching
fingerprint triples (f, Ui, offsetUi

) in the database, where Ui,
i = 1, 2, . . . , k is the fileid for one of the k currently unaligned
audio recordings. If the query file and an unaligned file Ui

overlap in time, we expect there to be a lot of matching finger-
print triples with a fixed time difference Δt = offsetquery −
offsetUi

. So, we can estimate the true alignment between the
query and Ui by accumulating a histogram of the matching fin-
gerprint time differences Δt, and then scanning the histogram
counts for a peak. If there are a lot of matching fingerprints at
a particular time offset Δt, then Δt indicates the relative align-
ment between the query file and the unaligned audio recording.
In this way, we accumulate a histogram of time offsets for
each unaligned audio recording Ui, and we take the maxi-
mum bin count of each histogram as the match score for Ui.
The unaligned audio recording with the highest match score is
identified as the best match.

Step 3: Fine alignment. We know the approximate offset Δt
between the query file and the best match. However, this off-
set is not very precise, since its precision is limited by the
width of the histogram bins. Also, since a fingerprint match
requires all 32 fingerprint bits to be correct, the match score
ignores a lot of more fine-grained information about fingerprint
agreement. For these reasons, we do a fine-grained alignment
between the query file Q and U∗, the unaligned audio recording
with the best (rough) match score. We consider a range of pos-
sible offsets [Δt−B,Δt+B], where B represents a search
window size in frames. For each possible offset, we compare
the corresponding fingerprints in Q and U∗ and determine what
percentage of the fingerprint bits agree. Note that here we are
comparing individual fingerprint bits, which allows us to detect
partial matches, unlike in the best match step that compares
only the full 32-bit fingerprint values. These bit comparisons
can be computed very efficiently using bit arithmetic, and they
allow us a much more precise estimate of fingerprint agreement.

838 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 24, NO. 5, MAY 2016

The offset Δt∗ which yields the highest fingerprint agreement is
selected, and it specifies the starting time of U∗ on the universal
time index. U∗ is added to the list of aligned files.3

Step 4: Repeat steps 2 and 3. We repeat step 2 using the
most recently aligned file as the query file. For all aligned files,
frame offsets are adjusted to represent the universal time index.
In other words, fingerprint tuples (fp, fileid, offset) will
effectively become (fp, fileid, offset+Δt∗). When accu-
mulating histogram counts for the current query file, we retain
the histograms from previous steps and simply add additional
counts. In this way, we accumulate evidence from all of the pre-
viously aligned files to help match unaligned files. This means
that when we align the last recording (which will be the record-
ing that had the lowest match scores), we will have the most
data and evidence to help determine the optimal alignment.
Steps 2 and 3 are thus repeated in like fashion until all files
have been aligned.

At the end of this process, we have estimates of the rela-
tive alignment among all the audio recordings. Figure 2 shows
a possible representation of the alignment estimates after the
entire alignment process has been completed.

D. Data

To evaluate our system, we ran experiments on data extracted
from the ICSI meeting corpus [62]. The original data set con-
sists of multi-channel audio recordings of 75 real research
group meetings, totaling approximately 72 hours of meetings.
For each meeting, participants wore headsets which captured
audio through close-talking microphones. Several tabletop
microphones spread across the conference room table also col-
lected audio data. These tabletop microphones included four
high-quality omnidirectional microphones and two low-quality
microphones mounted on a stand. The meetings ranged in
length from 17 to 103 minutes, and the number of simultaneous
audio channels ranged from 9 to 15 channels. The data set also
contains manual annotations of what people said, who spoke,
and when they spoke.

The ICSI meeting corpus provides useful source material
that we can use to generate realistic query scenarios for the
task at hand. The corpus has three important characteristics that
make it suitable for our experiments. First, the data contains
multiple synchronized recordings. The ICSI data set contains
simultaneous audio recordings that are synchronized down to
the level of milliseconds, which gives us a reliable ground truth.
Second, the data has microphones placed throughout the con-
ference room. In a realistic scenario where a group uses their
portable devices to record a meeting, there will be diversity
in microphone location, so this is an important characteristic
to maintain. Third, the data contains a variety of microphone
characteristics. In our scenario of interest, users would have
different types of portable devices which would have different
microphone characteristics, so diversity in microphone char-
acteristics is an important aspect. The meeting data contains

3The method described above is useful for finding an approximate alignment
on the order of the frame size (10 ms) very efficiently. If even finer precision is
needed, one could do an additional cross-correlation in the time-domain around
the approximate alignment.

close-talking and far-field microphones, as well as both high-
quality and low-quality microphones. It is useful to point out
that data collected from a microphone array generally does not
satisfy characteristics 2 and 3 above. While using actual data
with mobile phones would be ideal, coordinating the collection
of such a data set in sufficient quantity is outside the scope of
this work. For the reasons described above, the ICSI meeting
corpus provides good source material for our experiments.4

We generate each alignment scenario as follows. Given the
audio data for a single meeting, we randomized the ordering
of audio channels and performed the following steps on each
channel in the random order.

1) Select an audio segment length from a uniform distri-
bution [0, T]. In our experiments, we selected T to be
10 minutes.

2) Randomly select a time interval of this length from the
full audio recording.

3) Verify that the selected audio segment has 30 seconds or
more of temporal overlap with at least one other previ-
ously selected audio segment. If it does not, repeat Steps
1 and 2 until this condition is met.

In this way, each audio channel generates a randomly chosen
audio segment, and every audio segment is guaranteed to have
at least 30 seconds of overlap with at least one other audio seg-
ment. Since the above process is probabilistic, we can generate
multiple query scenarios from a single meeting. We generated
10 query scenarios from each of the 75 meetings, resulting in
a total of 750 query scenarios and approximately 8500 align-
ments. We used 37 of the meetings for training, and the other
38 meetings for testing. Since our fingerprint design is entirely
learned on-the-fly for each alignment scenario, there is little
training to do. The training set was primarily used for system
debugging and for learning appropriate values for a few system
parameters such as the histogram bin width.

Note that the above process of generating queries is prob-
ably more difficult and challenging than a typical use case
scenario, since users would probably all record a very substan-
tial chunk of the meeting, with an occasional user leaving the
meeting early or entering very late. However, generating more
difficult alignment scenarios with shorter audio segments and
shorter amounts of temporal overlap will enable us to better
characterize and test the robustness of our system.

E. Evaluation Metrics

We evaluate our proposed system by measuring the robust-
ness and accuracy of the alignments in the following man-
ner. Consider a single alignment scenario, such as the one
depicted in Figure 2. If we use channel A as an anchor file,
we can compute the time offset of all other files relative to
A. These time offsets are denoted in Figure 2 as ΔB, ΔC,
etc. Our alignment system will produce a set of hypotheses
ΔBhyp,ΔChyp, · · · for each alignment scenario. Since we gen-
erated the alignment scenario ourselves, we also know the true

4The AMI Meeting Corpus [63] would be another data set that is suitable for
our study. We chose to use the ICSI meeting corpus because the meetings are
not scripted, and there is greater diversity in the number of meeting participants
and microphone types.

TSAI AND STOLCKE: ROBUST AND EFFICIENT MULTIPLE ALIGNMENT OF UNSYNCHRONIZED MEETING RECORDINGS 839

offsets ΔBref ,ΔCref , · · ·. We then compare the estimated off-
set for each audio recording to the true offset. Let e denote the
difference between the estimated offset (e.g. ΔBhyp) and the
true offset (e.g. ΔBref). If |e| > γ, where γ specifies an error
tolerance, we consider that particular alignment to be incorrect.
We can compute the fraction of alignments that are correct at a
fixed error tolerance. By sweeping across a range of γ values,
we can characterize the tradeoff between accuracy and error
tolerance.

Note that an alignment scenario with K audio recordings will
generate K − 1 predictions that are either correct or incorrect.
Our accuracy versus error tolerance curves aggregate the results
of these predictions over all alignment scenarios. In addition to
the accuracy versus error tolerance tradeoff, we can also suc-
cinctly characterize the performance of a system by looking at
the accuracy at a fixed error tolerance.

It is useful to point out that the anchor file for scoring and the
anchor file in our alignment system (as described previously)
are totally independent concepts. Our evaluation metric should
not depend on our selection of scoring anchor file, since this
selection is arbitrary. Accordingly, for each alignment scenario,
we consider all possible channels as the scoring anchor file, and
choose the one which yields the highest accuracy. This step is
necessary to prevent an unlucky selection from unfairly penaliz-
ing the results. For example, if the scoring anchor file is aligned
incorrectly, the N − 1 predicted alignments will all be incor-
rect, even if the other N − 1 files are aligned correctly amongst
themselves. By considering all possible scoring anchor files,
this situation would (correctly) yield N − 2 correct alignments
and 1 incorrect alignment.

IV. RESULTS

In this section we present experimental results for our pro-
posed system. As a baseline comparison to our adaptive finger-
print design, we also ran experiments with five other fingerprint
designs: the Philips fingerprint [3], the Shazam fingerprint5 [9],
the boosted fingerprints proposed by Ke et al. [28], the MASK
fingerprint [18], and the Panako fingerprint [12]. The Philips
and Shazam fingerprints are the most well-known approaches
in the literature, the work by Ke and colleagues is one of the
most highly cited works among those that incorporate boost-
ing into the fingerprint design process, and the MASK and
Panako fingerprints are relatively recent works that extend pre-
vious approaches to provide greater robustness to changes in
pitch and/or tempo. Thus, these five fingerprint designs span a
range of different approaches and include both well-known and
recent works.

Figure 3 shows the tradeoff between alignment accuracy and
error tolerance for the six different fingerprints. To make the
comparison as fair as possible, all six fingerprints were evalu-
ated using the same cumulative alignment algorithm. However,
there is one important difference to mention. The fine align-
ment step described in section IIIC assumes that fingerprints are
computed at every time frame and that the Hamming distance

5For the Shazam fingerprint, we used the implementation provided by Dan
Ellis [64].

Fig. 3. The tradeoff between accuracy and error tolerance for six different fin-
gerprints. The ordering of the legend corresponds to the performance ordering
at 100 ms error threshold.

between fingerprints corresponds to a measure of dissimilarity.
For the three approaches that do not satisfy these assumptions
– Shazam, MASK, and Panako – the fine alignment step was
omitted. For the experiments, we used the default parameter
settings in the provided implementation or reference paper. The
proposed adaptive fingerprint in Figure 3 uses 16 bits and 32
frames of context.6 The ordering of the legend corresponds to
the ordering of performance at 100ms error tolerance.

There are three things to notice about Figure 3. First, there
are two separate dimensions along which we can measure
the performance of a fingerprint design: precision and robust-
ness. Precision corresponds to how quickly the performance
curve levels off, and robustness refers to the accuracy at which
the curve levels off. It is important to point out that these
two dimensions are not necessarily correlated. Some finger-
prints have high precision but low robustness, such as the
Philips fingerprint. Other fingerprints have high robustness but
low precision, such as the Shazam and Panako fingerprints.
Both dimensions are important to consider in evaluating the
effectiveness of a fingerprint design.

Second, the relative performance of the proposed system is
very good. Among the six fingerprint designs that were evalu-
ated, the adaptive fingerprint has the best performance both in
terms of precision and robustness. The adaptive fingerprint is
approximately tied with the Philips fingerprint for highest pre-
cision – they both level off at an error tolerance of around 50 ms.
It is also slightly more robust than the three other highly robust
fingerprints: Shazam, MASK, and Panako. It is interesting that
all three of these other approaches level off at approximately
the same accuracy, perhaps because all three approaches focus
on identifying the location of spectral peaks. While different
fingerprints may offer different tradeoffs between precision and
robustness, the decision here is clear: the adaptive fingerprints
are best along both dimensions.

Third, the absolute performance of the proposed system is
very good. Beyond simply performing well relative to other

6The choice of 16 bits is discussed in Section V-A.

840 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 24, NO. 5, MAY 2016

fingerprints, the adaptive fingerprint has very good absolute
performance numbers. As seen in Figure 3, the adaptive finger-
print achieves an accuracy of 99.4% for 100 ms error tolerance.
The errors from this system generally came from close-talking
microphone channels that contained only silence (e.g. the chan-
nel was not used or the person was silent) or local noise (e.g. the
person wore the headset too closely and the microphone picked
up their breathing patterns). Furthermore, we can improve the
robustness of the alignment even more (if needed) by provid-
ing more context information to the adaptive fingerprint and by
reducing the number of fingerprint bits in the lookup. We will
explore the effect of these two factors on fingerprint robustness
in the analysis section. We simply note here, however, that the
proposed system works very reliably and robustly.

V. ANALYSIS

In this section we will investigate and answer six questions of
interest. These investigations will develop intuition and under-
standing of the inner workings, capabilities, and limitations of
the proposed adaptive fingerprint.

A. Effect of Number of Lookup Bits

The first question we will answer is, “How does the number
of lookup bits affect the robustness of the fingerprint?” In many
other works, fingerprints are often characterized by 32 bits so
that each fingerprint can be represented compactly as a sin-
gle 32-bit integer. Here, we investigate how the number of bits
affects robustness.

Before presenting any experimental results, we can approach
the question from a theoretical standpoint. Note that using a
higher number of lookup bits results in higher specificity but
lower accuracy. To see this, consider a 32-bit fingerprint whose
bits are uncorrelated and balanced (each bit is 1 half the time
and 0 half the time). If each bit independently has a α = 90%
probability of being correct given a noisy true match, then the
fingerprint would be correct (.9)32 ≈ 3.4% of the time. When
compared to a randomly selected fingerprint, we would expect a
random match approximately 1

232 of the time. This corresponds
roughly to one spurious match for every 10, 000 hours of audio.
Clearly, this is far more specificity than we need for our appli-
cation of interest, which involves a few tens of hours of audio at
most. Now consider a 16-bit fingerprint in the same hypotheti-
cal scenario. This fingerprint would be correct (.9)16 ≈ 18.5%
of the time, and it would have roughly one spurious match for
every 10 minutes of audio. This is a much more reasonable
choice for our application of interest. The tradeoff essentially
comes down to this: reducing the number of lookup bits by
1 increases the fingerprint true match accuracy by a factor of
α (which was .9 in the example above) but also increases the
number of spurious matches by a factor of 2.

Now that we know what the results should look like, we
present our experimental results investigating the effect of the
number of lookup bits. Figure 4 shows the accuracy (at a fixed
100 ms error tolerance) of the adaptive fingerprint for three dif-
ferent lookup key sizes: 16, 24, and 32 bits. We did not run
experiments with an 8-bit lookup since processing the large

Fig. 4. Determining the effect of the number of fingerprint lookup bits. The
leftmost group shows the performance of the Philips fingerprint with a 16-, 24-,
and 32-bit lookup. The three rightmost groups show the same comparison for
the adaptive fingerprints with 2, 8, and 32 frames of context.

number of spurious matches would result in very long run
times. Each group of bars compares the effect of lookup key
size on an adaptive fingerprint with a fixed amount of context,
where we consider 2, 8, and 32 frames of context information.

As we expect, reducing the number of fingerprint lookup
bits improves system accuracy. This improvement is dramatic
for the Philips fingerprint, since the original 32-bit fingerprint
leaves a lot of room for improvement. For the more robust
adaptive fingerprints, there is still a clear but less dramatic
improvement, since the results are nearly saturated already. We
can also see the effect of context from this figure, but we will
defer discussion of this until a later analysis subsection.

B. Effect of Overlap

The second question we will answer is, “How much temporal
overlap is required to correctly align files?” This question will
help us understand the conditions necessary to align recordings
correctly in meeting scenarios.

To answer this question, we created a slightly different exper-
imental setup in order to isolate the effect of temporal overlap.
This modified setup makes two changes to the main experi-
mental setup described previously. First, only two randomly
selected channels (rather than all channels) are used to gener-
ate each query scenario. This simplifies the setup and allows
us to focus on the effect of the amount of overlap between
two recordings. Since close-talking microphones often con-
tain extended amounts of silence and we will be considering
short amounts of overlap (in the range of a few seconds), we
only considered the six tabletop microphone channels for these
experiments. Second, we deterministically control the lengths
of the two audio segments rather than selecting the lengths ran-
domly as in the previous experiments. Specifically, one channel
is selected to be the reference channel and is kept in its entirety

TSAI AND STOLCKE: ROBUST AND EFFICIENT MULTIPLE ALIGNMENT OF UNSYNCHRONIZED MEETING RECORDINGS 841

Fig. 5. Determining how much temporal overlap between two recordings is
necessary to find a correct alignment. The top three curves show the perfor-
mance of the adaptive fingerprint with 2, 8, and 32 frames of context. The
bottom curve shows the performance of the Philips fingerprint.

(i.e. the entire original audio recording is used). The other chan-
nel is selected to be the query, and an N second segment is
randomly selected from that channel. Thus, we are given an N
second query from one tabletop microphone and we are trying
to identify where in the meeting the query occurs in a different
tabletop microphone. We can then measure how our accuracy
of alignment depends on the length of query. Note that the
meetings in the ICSI meeting corpus are typically around an
hour long, so with an error tolerance of 100 ms the accuracy of
random guessing would be about .006%.

Figure 5 shows the results of our overlap experiments. Each
curve shows the effect of query length on the alignment accu-
racy at a fixed 100 ms error tolerance. Each point on the
curve represents the accuracy averaged over approximately
1100 queries. The top three curves correspond to the adaptive
fingerprints with 2, 8, and 32 context frames, and the lowest
curve corresponds to the Philips fingerprint.

There are two things to notice about the results in Figure 5.
First, there is a dramatic improvement in using adaptive finger-
prints rather than the Philips fingerprint. For 15 second queries,
for example, the adaptive fingerprints have alignment accura-
cies of 94% and higher, while the Philips fingerprint has an
accuracy of 14%. Second, using more context frames improves
alignment robustness and shortens the minimum required tem-
poral overlap. Note that the amount of temporal overlap needed
to achieve saturated performance decreases as we include more
and more context. With 2 context frames, we need about 30
seconds of overlap. With 8 context frames, this number drops
to about 15 seconds. With 32 frames of context, 10 seconds of
overlap is sufficient to reliably ensure correct alignment. These
numbers assume typical meeting dynamics (i.e. the overlap will
contain natural pauses but probably not long, extended silence).

C. Effect of Amount of Training Data

The third question we will answer is “How much data is nec-
essary to learn a robust fingerprint design?” When meetings

Fig. 6. Determining the effect of the amount of training data. A T -second seg-
ment is randomly selected from each channel, and the fingerprint design is
learned only on the selected data. Performance is shown for T = 1, 5, 30, and
∞ (use all available data). The three groups of bars show the performance of
adaptive fingerprints with 2, 8, and 32 frames of context.

are very long, we would like to know how much data is actu-
ally necessary to learn a robust fingerprint design. Alternatively,
when meetings are short, we would like to know if the amount
of data is sufficient to learn a reasonable fingerprint design.

To answer this question, we ran the original set of experi-
ments with one change: instead of learning the eigenfilters on
all of the available data, we selected one T -second random seg-
ment from each available channel and learned the eigenfilters
only on the selected data. By varying the amount of available
training data, we can determine how much data is necessary to
learn a robust fingerprint design.

Figure 6 compares the alignment accuracy for adaptive fin-
gerprints with T =1, 5, 30, and ∞ (using all available data for
training). Each group of bars corresponds to an adaptive finger-
print with a fixed amount of context frames, where we again
consider 2, 8, and 32 frames of context.

Surprisingly, even just a 1 second segment from each channel
provides enough information to learn a reasonable fingerprint
design with good performance. The performance of the adap-
tive fingerprints is approximately saturated for T = 5, so there
is only very marginal benefit in using more than 5 seconds
of training data from each channel. These results have two
very encouraging implications: (1) the adaptive fingerprints will
work well for any length of meeting, even very short meet-
ings, and (2) for very long meetings, we can achieve roughly
the same level of performance with less computation by only
training the filters on a very small subset of data.

D. Effect of Context

The fourth question we will answer is, “How does the amount
of context affect fingerprint robustness?” Since we explored a

842 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 24, NO. 5, MAY 2016

TABLE I
COMPARING SEVERAL VARIANTS OF THE ALIGNMENT ALGORITHM. THE

INDICATED NUMBERS ARE THE ACCURACY AT A SPECIFIED ERROR

TOLERANCE. ALL EXPERIMENTS USE 16-BIT ADAPTIVE FINGERPRINTS

WITH 2 CONTEXT FRAMES

range of context values in all of our previous analysis experi-
ments, we will simply revisit our previous results but now with
a focus on the effect of context.

Earlier we saw that using fewer lookup bits improves accu-
racy at the expense of computation. This can be seen in Figure 4
by comparing the results within each group of bars. But we
can see the effect of context in the same figure by comparing
results across the groups of bars. For example, if we look at
the rightmost bar in each group, we can see that the accuracy
increases from 87.2% to 93.5% to 98.4% as we increase the
context from 2 to 8 to 32 frames. For fewer lookup bits, we
see a similar but less dramatic improvement, since the results
are closer to saturation. Clearly, using more context makes the
system more robust, though the amount of improvement in
system-level accuracy depends on how saturated the results are.

We can similarly revisit the results in Figure 6 with a focus
on context. Because so little data is needed to train robust filters,
however, we see little differentiation between different amounts
of context. For all practical application scenarios, there is more
than enough data to learn a robust fingerprint design for up to
32 context frames.

E. Assessing the Alignment Algorithm

The fifth question we will answer is, “How much actual ben-
efit is gained by aggregating cumulative evidence and doing a
refined alignment?” We can tease apart the effect of these two
components by starting with a pairwise out-of-the-box align-
ment approach, and then adding in these components one at a
time.

Table I compares the performance of three different align-
ment algorithms. The top line shows the performance of a
pairwise alignment approach, similar to the works by Kennedy
and Naaman [55] and Su et al. [56]. This approach does not
aggregate cumulative evidence and does not do a refined align-
ment step. The second line shows the performance when we
aggregate cumulative evidence, but without a refined align-
ment. The third line shows the performance when we aggregate
cumulative evidence and perform a refined alignment. All
experiments use a 16-bit adaptive fingerprint with 2 frames of
context.

The results in Table I are somewhat surprising. There is a
significant benefit in using our proposed approach over a sim-
ple pairwise out-of-the-box approach, but all of the benefit is
coming from the refined alignment step. Comparing the top
two rows of the table, we see that the accuracy is roughly the
same. Sometimes the accuracy is slightly higher and sometimes
it is slightly lower, depending on the error threshold. But there

Fig. 7. The top 32 learned eigenfilters from one alignment scenario. The filters
are arranged from left to right, and then from top to bottom.

seems to be no measurable benefit (or detriment) to aggregating
cumulative evidence in this scenario. On the other hand, doing
a refined alignment yields drastic improvements at all error
thresholds. For example, at a 25 ms error threshold, the refined
alignment improves the accuracy from about 52% to 66%. As
we might expect, the refined alignment improves accuracy the
most for very small error thresholds.

F. Learned Filters

The sixth question we will answer is, “What do the learned
filters look like?” The purpose of this question is not so much to
improve system performance as it is to gain more intuition and
understanding into what constitutes a robust fingerprint design.

Figure 7 shows the top 32 eigenfilters for one particular query
scenario when the fingerprint is given 32 context frames. Recall
that the filters are learned from scratch on each query, so each
query will have its own set of filters. Figure 7 shows one exam-
ple set of filters. The filters progress from left to right, and then
from top to bottom. So the upper leftmost is the first filter, and
the lower rightmost is the 32nd filter.

There are three observations to make about the filters shown
in Figure 7. First, modulations in both time and frequency are
useful. Some of the filters primarily capture modulations in
time, such as filters 2, 3, 5, and 8 in Figure 7. Some of the
filters primarily capture modulations in frequency, such as fil-
ters 1, 4, 6, and 13. Other filters capture modulations in both
time and frequency, such as filters 7 and 15. The key thing to
point out is that both are important, so we should not emphasize
one to the exclusion of the other. For example, giving the adap-
tive filters only two frames of context forces the filters to focus
almost entirely on frequency modulations rather than temporal
modulations, since two frames is insufficient to capture much
variation in the temporal dimension. Second, low modulations
seem to be most important and useful. We can see a progres-
sion from low modulations to higher frequency modulations as
we get to later and later filters. For example, the second, third,
fifth, eighth, and fourteenth filters capture higher and higher fre-
quency modulations in time. In general, we see a progression
from slower modulations in the top few filters to faster modula-
tions in later filters. Third, the filters are remarkably consistent
from query to query. When we look at the learned filters for
many different queries, we observe that the first 8-10 filters are
usually very similar and in approximately the same order. As

TSAI AND STOLCKE: ROBUST AND EFFICIENT MULTIPLE ALIGNMENT OF UNSYNCHRONIZED MEETING RECORDINGS 843

TABLE II
AVERAGE RUN TIME REQUIRED TO ALIGN K RECORDINGS EACH OF

LENGTH L USING THE PROPOSED APPROACH. EXPERIMENTS

WERE RUN ON A 2.2 GHZ INTEL XEON PROCESSOR

we progress to later filters, there is more diversity and differ-
ence from query to query. This suggests that these top few filters
are capturing information that is characteristic of the genre of
audio data (i.e. meeting speech), rather than something specific
to what is being said in a particular meeting.

VI. DISCUSSION

In this section we discuss three practical takeaway lessons
from our experimental findings.

Takeaway lesson #1: Adaptive fingerprints are a robust way
to align meeting recordings. Our system is able to achieve more
than 99% alignment accuracy at a reasonable error tolerance
(100ms) on alignment scenarios that are much more challeng-
ing and aggressive than would typically be found in practice
(i.e. shorter audio recordings and less temporal overlap). The
files that our system could not align correctly were close-talking
microphone channels consisting almost entirely of silence or
local noise such as the speaker breathing into the microphone.
Only about 10 seconds of typical meeting speech is neces-
sary to identify a correct alignment. Furthermore, since only
a few seconds of data from each recording is needed to reliably
learn a robust fingerprint design, the adaptive fingerprints can
be learned quickly and efficiently on meetings of any length,
even short ones. In general, the adaptive fingerprints should be
able to align meeting recordings very reliably.

Takeaway lesson #2: Adaptive fingerprints are an efficient
way to align meeting recordings. We can compare the amount
of time required to align files using a simple cross-correlation
approach and using our proposed approach. Table II shows the
average run time required to align K recordings that are each
exactly L minutes long using the proposed approach. So, for
example, aligning 8 files that are each 1 hour long takes 795
seconds on average. Here, we have chosen values of K and
L that span a range of realistic scenarios. These measurements
were taken on a single thread of a 2.2 GHz Intel Xeon processor.

Making similar measurements on a naive pairwise cross-
correlation approach would be computationally infeasible.
However, we can analyze such an approach to determine a
lower bound on actual running time. Computing the cross-
correlation at every possible offset between two files requires
approximately N2 multiplications and N2 additions, where N
is the number of time-domain samples. For K recordings, the
total number of multiplications (and additions) required would

thus be

(
K
2

)
N2. Table III shows a theoretical lower bound

on the run time required to align K recordings of length L

TABLE III
THEORETICAL LOWER BOUND ON RUN TIME REQUIRED TO ALIGN K

RECORDINGS EACH OF LENGTH L USING A NAIVE PAIRWISE

CROSS-CORRELATION APPROACH. ASSUMES 8 KHZ DATA AND ONE

ADDITION OR MULTIPLICATION PER CYCLE ON A 2.2 GHZ PROCESSOR.

using a naive pairwise cross-correlation approach, assuming
8kHz data and a simple model of performing a single addition
or multiplication per cycle on a 2.2 GHz processor.

There are two things to notice in Tables II and III. First, the
pairwise cross-correlation approach is computationally infea-
sible. Just aligning two 5-minute recordings would require 90
minutes to run. Aligning eight recordings that are each 60
minutes long would require more than 8 months. Second, the
running time for the proposed approach is acceptable for any
realistic scenario. The running times are on the order of min-
utes, which is acceptable for an offline task. It would also be
trivial to parallelize this task for a further reduction in compu-
tation time. When aligning eight recordings that are each 60
minutes long, the proposed approach results in a savings of
more than four orders of magnitude.

Takeaway lesson #3: If more robustness is needed, it can be
achieved very simply. There are two parameters that we can
modify to improve the robustness of the fingerprint, both of
which come at the cost of more computation. The first param-
eter is the amount of context. We saw in section V-D that
increasing the amount of context improves the alignment accu-
racy and reduces the amount of temporal overlap needed for
correct alignment. Varying this first parameter increases com-
putation linearly. Note that increasing the amount of context by
a factor of N means doing N times as many dense multipli-
cations at each frame when extracting fingerprints. The second
parameter is the number of fingerprint lookup bits. We saw ear-
lier that decreasing the number of lookup bits increases the
alignment accuracy. Varying this second parameter increases
computation exponentially: for every 1 bit reduction in the
lookup key size, we will have to process twice as many spurious
fingerprint matches.

Given these two parameters, we can adopt the following
simple strategy to increase the robustness if needed: First, we
increase the context to gain robustness at the expense of a lin-
ear increase in computation. If the fingerprint is still not robust
enough, we can then begin decreasing the number of finger-
print lookup bits and paying the heavier exponential cost. The
number of lookup bits adjusts robustness at a coarse granu-
larity, and the context adjusts robustness at a fine granularity.
Because the proposed fingerprints are learned on the fly in an
unsupervised manner, there is very little system tuning to do
given a new set of data to align. We can start with a reasonable
setting (e.g. 16-bit lookup with 32 frames of context) and, if
more robustness is needed, we can follow the simple strategy
above.

844 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 24, NO. 5, MAY 2016

VII. CONCLUSION

We have proposed a method for aligning a set of overlap-
ping meeting recordings. Our method uses an audio fingerprint
representation based on spectrotemporal eigenfilters that are
learned on-the-fly in an unsupervised manner. The recordings
are then aligned with an iterative, greedy two-stage alignment
algorithm which performs a rough alignment using indexing
techniques, followed by a fine-grained alignment based on
Hamming distance. Using the ICSI meeting corpus as source
material to generate challenging alignment scenarios, our pro-
posed method is able to achieve greater than 99% alignment
accuracy at a reasonable error tolerance of 0.1 seconds. The
method only requires a few seconds of audio from each chan-
nel to learn a robust fingerprint design, and can robustly identify
an alignment with 10 seconds of temporal overlap in a typical
meeting scenario. One of the greatest benefits of our approach
is that it requires little to no system tuning given a new set of
recordings to align, since the fingerprint is learned on-the-fly.
We demonstrated how the robustness of the fingerprint can be
improved by increasing the amount of context information or
by decreasing the number of fingerprint lookup bits. We have
discussed the tradeoffs of changing these two factors and pro-
posed a simple strategy to adjust them in practice. Future work
includes testing this approach on different types of data besides
meeting recordings, including other speech genres and music.

ACKNOWLEDGMENT

Thanks to Adam Janin, Nelson Morgan, Steven Wegmann,
and Eric Chu for constructive feedback and discussions.

REFERENCES

[1] Shazam. (2014). [Online]. Available: http://www.shazam.com/
[2] SoundHound. (2014). [Online]. Available: http://www.

soundhound.com/
[3] J. Haitsma and T. Kalker, “A highly robust audio fingerprinting system,”

in Proc. Int. Soc. Music Inf. Retrieval (ISMIR’02), Paris, France, Oct.
2002, pp. 107–115.

[4] B. Coover and J. Han, “A power mask based audio fingerprint,” in
Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP’14), 2014,
pp. 1394–1398.

[5] J. S. Seo, “An asymmetric matching method for a robust binary audio
fingerprinting,” IEEE Signal Process. Lett., vol. 21, no. 7, pp. 844–847,
Jul. 2014.

[6] H. Schreiber, P. Grosche, and M. Müller, “A re-ordering strategy for
accelerating index-based audio fingerprinting,” in Proc. Int. Soc. Music
Inf. Retrieval (ISMIR’11), 2011, pp. 127–132.

[7] G. Yang, X. Chen, and D. Yang, “Efficient music identification by utiliz-
ing space-saving audio fingerprinting system,” in Proc. IEEE Int. Conf.
Multimedia Expo (ICME’14), 2014, pp. 1–6.

[8] C. Yu, R. Wang, J. Xiao, and J. Sun, “High performance indexing for
massive audio fingerprint data,” IEEE Trans. Consum. Electron., vol. 60,
no. 4, pp. 690–695, Nov. 2014.

[9] A. L.-C. Wang, “An industrial-strength audio search algorithm,” in Proc.
Int. Soc. Music Inf. Retrieval (ISMIR’03), Baltimore, MD, USA, Oct.
2003, pp. 7–13.

[10] J. George and A. Jhunjhunwala, “Scalable and robust audio fingerprint-
ing method tolerable to time-stretching,” in Proc. IEEE Int. Conf. Digit.
Signal Process. (DSP), 2015, pp. 436–440.

[11] S. Fenet, G. Richard, and Y. Grenier, “A scalable audio fingerprint
method with robustness to pitch-shifting,” in Proc. Int. Soc. Music Inf.
Retrieval (ISMIR’11), 2011, pp. 121–126.

[12] J. Six and M. Leman, “Panako: A scalable acoustic fingerprinting system
handling time-scale and pitch modification,” in Proc. Int. Soc. Music Inf.
Retrieval (ISMIR’14), 2014.

[13] R. Sonnleitner and G. Widmer, “Quad-based audio fingerprinting robust
to time and frequency scaling,” in Proc. Int. Conf. Digit. Audio Effects,
2014, pp. 173–180.

[14] S. Baluja and M. Covell, “Audio fingerprinting: Combining computer
vision & data stream processing,” in Proc. IEEE Int. Conf. Acoust.
Speech Signal Process. (ICASSP’07), Honolulu, HI, USA, Apr. 2007,
pp. 213–216.

[15] S. Baluja and M. Covell, “Waveprint: Efficient wavelet-based audio fin-
gerprinting,” Pattern Recognit., vol. 41, no. 11, pp. 3467–3480, May
2008.

[16] Y. Shi, W. Zhang, and J. Liu, “Robust audio fingerprinting based on
local spectral luminance maxima scheme,” in Proc. Interspeech, 2011,
pp. 2485–2488.

[17] C. V. Cotton and D. P. Ellis, “Audio fingerprinting to identify multi-
ple videos of an event,” in Proc. IEEE Int. Conf. Acoust. Speech Signal
Process. (ICASSP’10), 2010, pp. 2386–2389.

[18] X. Anguera, A. Garzon, and T. Adamek, “MASK: Robust local fea-
tures for audio fingerprinting,” in Proc. IEEE Int. Conf. Multimedia Expo
(ICME’12), Melbourne, VIC, Australia, Jul. 2012, pp. 455–460.

[19] M. Ramona and G. Peeters, “Audioprint: An efficient audio fingerprint
system based on a novel cost-less synchronization scheme,” in Proc.
IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP’13), 2013,
pp. 818–822.

[20] S. Fenet, Y. Grenier, and G. Richard, “An extended audio fingerprint
method with capabilities for similar music detection,” in Proc. Int. Soc.
Music Inf. Retrieval (ISMIR’13), 2013, pp. 569–574.

[21] M. Malekesmaeili and R. K. Ward, “A local fingerprinting approach for
audio copy detection,” Signal Process., vol. 98, pp. 308–321, 2014.

[22] S. Sukittanon and L. E. Atlas, “Modulation frequency features for audio
fingerprinting,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process.
(ICASSP’02), 2002, pp. 1773–1776.

[23] M. Ramona and G. Peeters, “Audio identification based on spectral mod-
eling of bark-bands energy and synchronization through onset detection,”
in Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP’11),
2011, pp. 477–480.

[24] J. Herre, E. Allamanche, and O. Hellmuth, “Robust matching of audio
signals using spectral flatness features,” in Proc. IEEE Workshop Appl.
Signal Process. Audio Acoust., New Platz, NY, USA, Oct. 2001, pp. 127–
130.

[25] E. Allamanche, J. Herre, O. Hellmuth, B. Fröba, T. Kastner, and
M. Cremer, “Content-based identification of audio material using MPEG-
7 low level description,” in Proc. Int. Soc. Music Inf. Retrieval
(ISMIR’01), 2001.

[26] J. S. Seo, M. Jin, S. Lee, D. Jang, S. Lee, and C. D. Yoo, “Audio fin-
gerprinting based on normalized spectral subband centroids,” in Proc.
IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP’05), 2005,
pp. 213–216.

[27] J. S. Seo, M. Jin, S. Lee, D. Jang, S. Lee, and C. D. Yoo, “Audio finger-
printing based on normalized spectral subband moments,” IEEE Signal
Process. Lett., vol. 13, no. 4, pp. 209–212, Apr. 2006.

[28] Y. Ke, D. Hoiem, and R. Sukthankar, “Computer vision for music identi-
fication,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recog.
(CVPR’05), San Diego, CA, USA, Jun. 2005, pp. 597–604.

[29] P. Viola and M. Jones, “Robust real-time face detection,” Int. J. Comput.
Vis., vol. 57, no. 2, pp. 137–154, Jul. 2004.

[30] D. Jang, C. D. Yoo, S. Lee, S. Kim, and T. Kalker, “Pairwise boosted
audio fingerprint,” IEEE Trans. Inf. Forensics Security, vol. 4, no. 4,
pp. 995–1004, 2009.

[31] S. Kim and C. D. Yoo, “Boosted binary audio fingerprint based on spec-
tral subband moments,” in Proc. IEEE Int. Conf. Acoust. Speech Signal
Process. (ICASSP’07), Honolulu, HI, USA, Apr. 2007, pp. 241–244.

[32] C. J. C. Burges, J. C. Platt, and S. Jana, “Distortion discriminant analysis
for audio fingerprinting,” IEEE Trans. Speech Audio Process., vol. 11,
no. 3, pp. 165–174, May 2003.

[33] P. Over et al., “TRECVID 2011—An overview of the goals, tasks, data,
evaluation mechanisms and metrics,” in Proc. TREC Video Retrieval
Eval. Online (TRECVID), Gaithersburg, MD, USA, Dec. 2011.

[34] C. W. Ngo et al., “VIREO/DVMM at TRECVID 2009: High-level feature
extraction, automatic video search, and content-based copy detection,” in
Proc. TRECVID, 2009, pp. 415–432.

[35] M. Héritier, V. Gupta, L. Gagnon, G. Boulianne, and S. Foucher,
and P. Cardinal, “CRIM’s content-based copy detection system for
TRECVID,” in Proc. TRECVID Workshop, Gaithersburg, MD, USA,
2009.

[36] A. Saracoglu et al., “Content based copy detection with coarse
audio-visual fingerprints,” in Proc. IEEE Int. Workshop Content-Based
Multimedia Indexing (CBMI’09), 2009, pp. 213–218.

TSAI AND STOLCKE: ROBUST AND EFFICIENT MULTIPLE ALIGNMENT OF UNSYNCHRONIZED MEETING RECORDINGS 845

[37] V. N. Gupta, G. Boulianne, and P. Cardinal, “CRIM’s content-based audio
copy detection system for TRECVID 2009,” Multimedia Tools Appl.,
vol. 60, no. 2, pp. 371–387, 2012.

[38] E. Younessian, X. Anguera, T. Adamek, N. Oliver, and D. Marimon,
“Telefonica Research at TRECVID 2010 content-based copy detection,”
in Proc. TRECVID, 2010.

[39] Y. Uchida, S. Sakazawa, M. Agrawal, and M. Akbacak, “KDDI Labs and
SRI International at TRECVID 2010: Content-based copy detection,” in
Proc. TRECVID, 2010.

[40] R. Mukai, T. Kurozumi, K. Hiramatsu, T. Kawanishi, H. Nagano, and
K. Kashino, “NTT Communication Science Laboratories at TRECVID
2010content based copy detection,” in Proc. TRECVID, 2010.

[41] Y. Liu, W.-L. Zhao, C.-W. Ngo, C.-S. Xu, and H.-Q. Lu, “Coherent bag-
of audio words model for efficient large-scale video copy detection,” in
Proc. ACM Int. Conf. Image Video Retrieval, 2010, pp. 89–96.

[42] C. Ouali, P. Dumouchel, and V. Gupta, “A robust audio fingerprinting
method for content-based copy detection,” in Proc. IEEE Int. Workshop
Content-Based Multimedia Indexing (CBMI), 2014, pp. 1–6.

[43] H. Jégou, J. Delhumeau, J. Yuan, G. Gravier, and P. Gros, “BABAZ: A
large scale audio search system for video copy detection,” in Proc. IEEE
Int. Conf. Acoust. Speech Signal Process. (ICASSP’12), 2012, pp. 2369–
2372.

[44] H. Khemiri, D. Petrovska-Delacretaz, and G. Chollet, “Detection of
repeating items in audio streams using data-driven ALISP sequencing,”
in Proc. IEEE Int. Conf. Adv. Technol. Signal Image Process. (ATSIP),
2014, pp. 446–451.

[45] S. Fenet, M. Moussallam, Y. Grenier, G. Richard, and L. Daudet,
“A framework for fingerprint-based detection of repeating objects in
multimedia streams,” in Proc. IEEE 20th Eur. Signal Process. Conf.
(EUSIPCO), 2012, pp. 1464–1468.

[46] R. Radhakrishnan and W. Jiang, “Repeating segment detection in songs
using audio fingerprint matching,” in Proc. IEEE Asia-Pac. Signal Inf.
Process. Assoc. Annu. Summit Conf. (APSIPA ASC), 2012, pp. 1–5.

[47] C. Herley, “ARGOS: Automatically extracting repeating objects from
multimedia streams,” IEEE Trans. Multimedia, vol. 8, no. 1, pp. 115–129,
Feb. 2006.

[48] J. P. Ogle and D. P. W. Ellis, “Fingerprinting to identify repeated sound
events in long-duration personal audio recordings,” in Proc. IEEE Int.
Conf. Acoust. Speech Signal Process. (ICASSP’07), Honolulu, HI, USA,
Apr. 2007, pp. 233–236.

[49] I. Bisio, A. Delfino, F. Lavagetto, and M. Marchese, “A television chan-
nel real-time detector using smartphones,” IEEE Trans. Mobile Comput.,
vol. 14, no. 1, pp. 14–27, Jan. 2015.

[50] N. Q. Duong and F. Thudor, “Movie synchronization by audio land-
mark matching,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process.
(ICASSP’13), 2013, pp. 3632–3636.

[51] N. Q. Duong, C. Howson, and Y. Legallais, “Fast second screen TV syn-
chronization combining audio fingerprint technique and generalized cross
correlation,” in Proc. IEEE Int. Conf. Consum. Electron. Berlin (ICCE),
2012, pp. 241–244.

[52] R. Macrae, X. Anguera, and N. Oliver, “MuViSync: Realtime music
video alignment,” in Proc. IEEE Int. Conf. Multimedia Expo (ICME),
2010, pp. 534–539.

[53] T.-K. Hon, L. Wang, J. D. Reiss, and A. Cavallaro, “Audio fingerprint-
ing for multi-device self-localization,” IEEE/ACM Trans. Audio Speech
Lang. Process., vol. 23, no. 10, pp. 1623–1636, Oct. 2015.

[54] P. Shrestha, M. Barbieri, and H. Weda, “Synchronization of multi-camera
video recordings based on audio,” in Proc. ACM Int. Conf. Multimedia,
2007, pp. 545–548.

[55] L. Kennedy and M. Naaman, “Less talk, more rock: Automated organi-
zation of community-contributed collections of concert videos,” in Proc.
ACM Int. Conf. World Wide Web, 2009, pp. 311–320.

[56] K. Su, M. Naaman, A. Gurjar, M. Patel, and D. P. W. Ellis, “Making
a scene: Alignment of complete sets of clips based on pairwise audio
match,” in Proc. ACM Int. Conf. Multimedia Retrieval (ICMR’12), 2012.

[57] N. J. Bryan, P. Smaragdis, and G. J. Mysore, “Clustering and syn-
chronizing multi-camera video via landmark cross-correlation,” in Proc.
IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP’12), 2012,
pp. 2389–2392.

[58] J. Six and M. Leman, “Synchronizing multimodal recordings using audio-
to-audio alignment,” J. Multimodal User Interfaces, vol. 9, no. 3, pp. 223–
229, 2015.

[59] T. Tsai and A. Stolcke, “Aligning meeting recordings via adaptive
fingerprinting,” in Proc. Interspeech, 2015, pp. 786–790.

[60] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-sensitive
hashing scheme based on p-stable distributions,” in Proc. 20th Annu.
Symp. Comput. Geom., 2004, pp. 253–262.

[61] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in Proc. 21st
Adv. Neural Inf. Process. Syst. (NIPS’09), 2009, pp. 1753–1760.

[62] A. Janin, et al., “The ICSI meeting corpus,” in Proc. IEEE Int. Conf.
Acoust. Speech Signal Process. (ICASSP’03), 2003, pp. 364–367.

[63] J. Carletta, “Unleashing the killer corpus: Experiences in creating the
multi-everything AMI meeting corpus,” Lang. Resour. Eval., vol. 41,
no. 2, pp. 181–190, 2007.

[64] D. Ellis. (2015). Robust Landmark-Based Audio Fingerprinting [Online].
Available: http://labrosa.ee.columbia.edu/matlab/fingerprint/

T. J. Tsai (S’13) received the B.S. and M.S. degree
in electrical engineering from Stanford University,
Stanford, CA, USA, in 2006 and 2007, respectively.
He is currently pursuing the Ph.D. degree in the
electrical engineering and computer science at the
University of California Berkeley, Berkeley, CA,
USA (in joint collaboration with the International
Computer Science Institute). From 2008 to 2010, he
worked at SoundHound, a startup that allows users to
search for music by singing, humming, or playing a
recorded track.

Andreas Stolcke (M’95–SM’05–F’11) received the
Ph.D. degree in computer science from the University
of California, Berkeley., Berkeley, CA, USA. He sub-
sequently worked as a Senior Research Engineer with
the Speech Technology and Research Laboratory, SRI
International, Menlo Park, CA, USA, and is cur-
rently a Principal Researcher with the Speech and
Dialog Research Group at Microsoft Research in
Mountain View, CA; he is also an External Fellow
at the International Computer Science Institute in
Berkeley, CA, USA. He is also the author of a widely

used open-source toolkit for statistical language modeling. He research inter-
ests include machine language learning, parsing, speech recognition, speaker
recognition, and speech understanding.

